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Abstract

This study aims to quantify the impacts of ocean coupling on simulated and projected tropical cyclone (TC) precipitationin

the Northern Hemisphere. We used global climate model (GCM) simulations over 1950-2050 from the High Resolution Model

Intercomparison Project (HighResMIP) and compared its fully coupled atmosphere-ocean GCMs (AOGCMs) with atmosphere-

only GCMs (AGCMs). We find that ocean coupling generally leads to decreased TC precipitation over ocean and land. Large-

scale sea surface temperature (SST) biases are critical drivers of the precipitation difference, with secondary contributions from

local TC-ocean feedbacks via SST cold wakes. The two driving factors, attributed to ocean coupling in the AOGCMs, influence

TC precipitation in association with decreased TC intensity and specific humidity. The AOGCMs and AGCMs consistently

project TC precipitation increases in 2015-2050 relative to 1950-2014 over ocean for all basins, and for landfalling TCs in the

North Atlantic and western North Pacific.
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Key points: 31 

• Ocean coupling generally leads to decreased tropical cyclone (TC) precipitation over both 32 

ocean and land 33 

• Large-scale sea surface temperature biases and TC cold wakes, key facets of ocean 34 

coupling, drive the precipitation decline  35 

• Projected future TC precipitation increases in most regions, however the magnitude can 36 

vary by a factor of 3 depending on ocean coupling  37 

 38 

Abstract: This study aims to quantify the impacts of ocean coupling on simulated and projected 39 

tropical cyclone (TC) precipitation in the Northern Hemisphere. We used global climate model 40 

(GCM) simulations over 1950–2050 from the High Resolution Model Intercomparison Project 41 

(HighResMIP) and compared its fully coupled atmosphere–ocean GCMs (AOGCMs) with 42 

atmosphere-only GCMs (AGCMs). We find that ocean coupling generally leads to decreased TC 43 

precipitation over ocean and land. Large-scale sea surface temperature (SST) biases are critical 44 

drivers of the precipitation difference, with secondary contributions from local TC–ocean 45 

feedbacks via SST cold wakes. The two driving factors, attributed to ocean coupling in the 46 

AOGCMs, influence TC precipitation in association with decreased TC intensity and specific 47 

humidity. The AOGCMs and AGCMs consistently project TC precipitation increases in 2015–48 

2050 relative to 1950–2014 over ocean for all basins, and for landfalling TCs in the North Atlantic 49 

and western North Pacific.  50 

 51 

1. Introduction 52 

Heavy precipitation and associated floods from tropical cyclones (TCs) have caused enormous 53 

damages to the economy and human health (Bell et al., 2018; Rappaport, 2014; Rappaport & 54 

Blanchard, 2016). Globally, TCs have resulted in US$23 billion of economic damages (adjusted 55 

to current value) and more than 9,500 fatalities per year over the past half a century (CRED, 2021), 56 

with excessive precipitation as one of the leading causes (Bakkensen et al., 2018; Bell et al., 2018). 57 

Among the 2544 lives in the US claimed by Atlantic TCs over 1963–2012, about a quarter of the 58 

fatalities was attributed to TC precipitation (TCP)-induced floods and mudslides (Rappaport, 59 

2014). Moreover, extreme precipitation (>750 mm) from Hurricane Harvey in 2017 caused 60 

unprecedented flooding over the greater Houston area, making the hurricane one of the costliest 61 
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disasters (US$131 billion) in US history (NOAA National Centers for Environmental Information, 62 

2021). Future climate change may double the economic damages of TCs by 2100 primarily through 63 

increased TC intensity, storm surge, and precipitation rate (Knutson et al., 2020; Mendelsohn et 64 

al., 2012; Patricola & Wehner, 2018). Therefore, it is imperative to accurately predict TCP and 65 

assess the risk with changing TCP.   66 

 67 

Global climate models (GCMs), especially high resolution models (50 km and higher), are 68 

important tools to simulate and project TCs (Haarsma et al., 2016; Li & Sriver, 2018; Walsh et al., 69 

2016; Wehner et al., 2015). But there exist large uncertainties in simulated TCs and associated 70 

precipitation, which are rooted in model physics, resolution, and experimental design (Hasegawa 71 

& Emori, 2007; Li & Sriver, 2018, 2019; Roberts et al., 2020a; Roberts et al., 2020b; Zhang, W., 72 

et al., 2021). In particular, atmosphere–ocean interactions in GCMs are a major source of 73 

uncertainty (Li & Sriver, 2018, 2019; Roberts et al., 2020b). Active atmosphere–ocean 74 

interactions, as observed in the real world and simulated by coupled atmosphere–ocean GCMs 75 

(AOGCMs), are crucial in correctly representing TC intensity, duration, and precipitation (Li & 76 

Sriver, 2018; Ma et al., 2020; Scoccimarro et al., 2017c; Vincent et al., 2012a; Zarzycki, 2016). 77 

Strong TC–ocean interactions usually cool sea surface temperatures (SSTs) along TC tracks due 78 

to strong winds of TCs (Vincent et al., 2012a). The winds vertically mix and entrain surface warm 79 

water with lower-level colder water and enhance upwelling and ocean–atmosphere heat fluxes 80 

(Liu et al., 2011; Price, 1981; Vincent et al., 2012a). The TC-induced SST cooling (cold wakes) is 81 

approximately 1°C on average and affects at least five radii of maximum wind (Vincent et al., 82 

2012a). As TCs obtain energy from the upper ocean, cold wakes generate a negative feedback to 83 

TCs via modulating enthalpy flux and regional atmospheric circulation (Karnauskas et al., 2021; 84 

Kushnir et al., 2002; Ma et al., 2020; Trenberth et al., 1998; Vincent et al., 2012b; Zarzycki, 2016). 85 

Therefore, they impose profound effects on TC characteristics and TCP (Karnauskas et al., 2021; 86 

Li & Sriver, 2019; Ma et al., 2020; Zarzycki, 2016). Cold wakes were found to decrease post-TC 87 

precipitation by 17% in the wakes (Ma et al., 2020). They can reduce the frequency of subsequent 88 

TCs by 10% and shorten the return period of Category 5 hurricanes by a factor of six across the 89 

North Atlantic (Karnauskas et al. 2021). 90 

 91 
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While AOGCMs are capable of simulating TC–ocean interactions, they produce large-scale SST 92 

biases (Richter, 2015; Richter & Tokinaga, 2020; Zhu et al., 2020) which can cause a substantial 93 

misrepresentation of TC activity (Hsu et al., 2019; Zhang, G., et al., 2021). This deficiency leads 94 

to the common use of prescribed-SSTs with atmosphere-only GCMs (AGCMs), which by 95 

definition lack ocean coupling and therefore simulated cold wakes (Haarsma et al., 2016; Hsu et 96 

al., 2019; Roberts et al., 2020a; Vincent et al., 2012a). The difference in ocean coupling between 97 

AGCMs and AOGCMs generates disparate TC activity and TCP (Hasegawa & Emori, 2007; Li & 98 

Sriver, 2018, 2019; Roberts et al., 2020b; Zarzycki, 2016). For example, Roberts et al. (2020b) 99 

found that for the North Atlantic TCs during 1979–2014, most AOGCMs underestimated its 100 

frequency by 16.7–80% as compared to AGCMs. While AGCMs predicted future increases in TC 101 

frequency and Accumulated Cyclone Energy, AOGCMs estimated an increase only in 102 

Accumulated Cyclone Energy. Hasegawa and Emori (2007) reported the uncoupled MIROC 3.2 103 

model simulated 6.6% more North Atlantic TCP than its coupled model with fixed anthropogenic 104 

forcing in 1900. After doubling CO2 from its 1900 level, the uncoupled model predicted increased 105 

TCP (10.4%), but the coupled model yielded a negligible change (0.6%). Yet, the influence of 106 

ocean coupling on the representation and projection of TCP remains poorly characterized, 107 

especially with multi-model ensembles and state-of-the-art GCMs.  108 

 109 

The High Resolution Model Intercomparison Project (HighResMIP; Haarsma et al., 2016) 110 

provides a unique opportunity to examine the impact of ocean coupling on simulated and projected 111 

TCP. HighResMIP conducted both AGCM and AOGCM experiments with the same set of GCMs, 112 

different horizontal resolutions (varying from 150 to 25 km), and time-varying external forcings 113 

spanning 1950–2050 (Haarsma et al., 2016). Its outputs have been used to investigate global TC 114 

activity with both AGCMs and AOGCMs (Roberts et al., 2020a; Roberts et al., 2020b), as well as 115 

global land precipitation and TCP based on the AGCMs (Bador et al., 2020; Zhang, W., et al., 116 

2021). Nevertheless, assessing the effect of ocean coupling on TCP is still lacking. Therefore, we 117 

address the following questions: 1) How does the representation of TCP differ in the HighResMIP 118 

AGCM and AOGCM simulations? 2) What physical processes are responsible for any TCP 119 

differences? 3) How does ocean coupling affect projections of future TCP?  We first compared the 120 

differences in simulated TCP over 1950–2014 between the AOGCMs and AGCMs in low- and 121 

high-resolutions, and evaluated their performance relative to observations. Then we quantified the 122 
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impacts of two ocean coupling features (large-scale SST biases and local SST feedback to TCs) 123 

on simulated TCP. Lastly, we assessed projected changes in TCP during 2015–2050 (relative to 124 

1950–2014) and associated uncertainties due to ocean coupling. 125 

 126 

2. Data and methods 127 

2.1. Climate model simulations 128 

Climate model simulations are derived from the HighResMIP (Haarsma et al., 2016), one of the 129 

Model Intercomparison Projects endorsed by the Coupled Model Intercomparison Project Phase 6 130 

(CMIP6). Table S1 describes four different GCMs used in this study, including CMCC‐CM2 131 

(Cherchi et al., 2019), CNRM‐CM6.1 (Voldoire et al., 2019), EC‐Earth3P (Haarsma et al., 2020), 132 

and HadGEM3‐GC3.1 (Roberts et al., 2019). This multi-model ensemble was produced by the 133 

European Union Horizon 2020 project PRIMAVERA which follows the HighResMIP protocol at 134 

both a CMIP6 standard (~100 km) and a high (25–50 km) horizontal resolution (Roberts et al., 135 

2020a). Note that the remaining two GCMs (ECMWF and MPI-M) in the PRIMAVERA were not 136 

included in this study because of incomplete data (e.g., SST) available in the archive. The modeling 137 

centers listed in Table S1 conducted both AGCM (uncoupled) and AOGCM (coupled) simulations 138 

spanning 1950–2050 which covers historical (1950–2014) and future (2015–2050) periods. Details 139 

about the simulation design are described in Haarsma et al. (2016) and Roberts et al. (2020a) and 140 

summarized in the supplemental Text S1. 141 

   142 

Simulated TC tracks were identified using two feature-tracking algorithms, TempestExtremes 143 

(Ullrich & Zarzycki, 2017) and TRACK (Hodges et al., 2017). They can be accessed through the 144 

Centre for Environmental Data Analysis (Roberts 2019a, 2019b). While both algorithms use 145 

criteria for warm-core and lifetime, their primary feature-tracking variables are different (sea level 146 

pressure in TempestExtremes and relative vorticity in TRACK). Characteristics of the 147 

HighResMIP-based TC tracks were summarized in Roberts et al. (2020a, 2020b). For the sake of 148 

brevity, we only discuss the results based on the TRACK algorithm in section 3, which was 149 

available for a greater number of models than the TempestExtremes tracks. The results from the 150 

TempestExtremes algorithm are described in the supplement (Figures S4 & S5), and the findings 151 

based on the two algorithms are similar. 152 

 153 
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2.2. Tropical cyclone and precipitation observations 154 

To evaluate the performance of the GCMs, we compared the simulated TCP to observations from 155 

the Tropical Rainfall Measuring Mission (TRMM) dataset which integrates precipitation estimates 156 

from satellites and rain gauge analyses (Huffman et al., 2007). The dataset is chosen to validate 157 

the HighResMIP simulations because of its high temporal (3 hourly in the 3B42 subset) and spatial 158 

resolutions (0.25°0.25°) covering 50°N–50°S (Huffman et al., 2007; TRMM, 2011). Given the 159 

spatial coverage and time length of TRMM data (1998 to present), we compared the HighResMIP 160 

historical simulations with TRMM over only their common 17-year period (1998–2014) and 161 

latitudes south of 50°N in the Northern Hemisphere.  162 

 163 

Observed TC tracks in the North Atlantic and eastern North Pacific basins are maintained by the 164 

National Oceanic and Atmospheric Administration (NOAA) National Hurricane Center’s 165 

hurricane database (HURDAT2; Landsea and Franklin, 2013). TC tracks in the western North 166 

Pacific and North Indian basins are documented by the U.S. Navy’s Joint Typhoon Warning Center 167 

(JTWC) best-track database (Chu et al., 2002). Boundaries of the four TC basins in the Northern 168 

Hemisphere are defined in Figure S1. 169 

 170 

2.3. Analysis methods 171 

We computed and compared TCP during the TC season (May–November) in the AOGCM and 172 

AGCM simulations and the TRMM dataset. Here TCP is defined as average precipitation rate 173 

within a 500 km radius of TC center (Knutson et al., 2020). We calculated the percent difference 174 

in TCP (∆TCP) associated with ocean coupling as in equation (1). To uncover possible causes of 175 

the difference in simulated TCP over 1950–2014, we also analyzed basin-averaged SSTs and TC 176 

minimum sea level pressure (SLP) and near-surface specific humidity (HUSS) within a 500 km 177 

radius of TC position. Differences in SST, SLP, and HUSS between the AOGCMs and AGCMs 178 

were computed from equations (2–4). These climate variables were derived from the GCM outputs 179 

at the 6 hourly frequency to match with TC time steps. In addition, we estimated the percent change 180 

in future TCP relative to the historical period 1950–2014 for each AOGCM/AGCM simulation 181 

(equation 5).  182 

∆𝑇𝐶𝑃 =  100 ∗ (𝑇𝐶𝑃𝐴𝑂𝐺𝐶𝑀 − 𝑇𝐶𝑃𝐴𝐺𝐶𝑀)/𝑇𝐶𝑃𝐴𝐺𝐶𝑀                                (1) 183 

∆𝑆𝐿𝑃 =  𝑆𝐿𝑃𝐴𝑂𝐺𝐶𝑀 − 𝑆𝐿𝑃𝐴𝐺𝐶𝑀                                              (2) 184 
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∆𝐻𝑈𝑆𝑆 =  𝐻𝑈𝑆𝑆𝐴𝑂𝐺𝐶𝑀 − 𝐻𝑈𝑆𝑆𝐴𝐺𝐶𝑀                                       (3) 185 

𝑆𝑆𝑇 𝑏𝑖𝑎𝑠 =  𝑆𝑆𝑇𝐴𝑂𝐺𝐶𝑀 − 𝑆𝑆𝑇𝐴𝐺𝐶𝑀                                              (4) 186 

𝐹𝑢𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝐶𝑃 =  100 ∗ (𝑇𝐶𝑃𝐺𝐶𝑀,2015−2050 − 𝑇𝐶𝑃𝐺𝐶𝑀,1950−2014)/𝑇𝐶𝑃𝐺𝐶𝑀,1950–2014         187 

(5) 188 

𝛿𝑆𝑆𝑇 =  𝑆𝑆𝑇𝐺𝐶𝑀,𝑝𝑜𝑠𝑡−𝑇𝐶 − 𝑆𝑆𝑇𝐺𝐶𝑀,𝑝𝑟𝑒−𝑇𝐶                                         (6) 189 

 190 

To quantify TC–ocean interactions in the simulations, we calculated the amplitude of cold wakes 191 

δSST in each AOGCM or AGCM (equation 6). It is defined as the difference between post-TC (1–192 

4 days after TC passage) SST and pre-TC (3–10 days before TC passage) SST averaged over a 193 

200 km radius around each TC position (Vincent et al., 2012a). We note that not all modeling 194 

centers provide SSTs in their data archive, but surface upwelling longwave radiation is provided. 195 

When SSTs were not available, we derived SSTs from longwave radiation using the Stefan-196 

Boltzmann law. We find no significant difference in cold wakes whether quantified using SST or 197 

longwave radiation, as demonstrated by the GCMs (HadGEM3-GC3.1 and CMCC-CM2) that 198 

have both SSTs and surface upwelling longwave radiation available in their data archive (not 199 

shown).  200 

 201 

3. Results and discussion 202 

3.1. Observed and simulated tropical cyclone precipitation 203 

Simulated TCP during the historical period is relatively insensitive to model resolution, for the 204 

same AGCM or AOGCM, but the GCMs tend to underestimate TCP compared to the TRMM 205 

observations. Taking the North Atlantic Ocean as an example, the high- and low-resolution 206 

AGCMs simulate a median TCP of 0.63 and 0.66 mm h-1, respectively (Figure 1a). Their AOGCM 207 

counterparts yield a median TCP of 0.49 and 0.54 mm h-1, respectively (Figure 1b). Like the 208 

medians, the 95% confidence intervals (CIs) of TCP in the high- and low-resolution simulations 209 

are very close. Nevertheless, all GCMs (including coupled and uncoupled) underestimate TCP 210 

compared to the TRMM observations 1998–2014, especially heavy TCP events (Figure S2a, e). 211 

For example, the uncoupled (coupled) HadGEM3-GC3.1-HM model simulates 24.7% (54.6%) 212 

less TCP than TRMM over the North Atlantic. Zhang et al. (2019, 2021) also reported 213 

underestimated TCP, as well as its low sensitivity to model resolution. The undersimulated TCP 214 

can be attributed to GCMs’ limitation in simulating strong TCs, even with model resolutions as 215 
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high as 25–50 km (Roberts et al., 2020a). Similar to our findings over the North Atlantic, most of 216 

the AGCMs and AOGCMs underperform in capturing observed TCP over other TC basins 217 

(Figures S2 & S3). 218 

 219 

Figure 1. Boxplots of simulated tropical cyclone precipitation (TCP, mm h-1) from 1950–2014 in 220 

the (a) uncoupled and (b) coupled simulations by model, and their percentage difference ((coupled 221 

minus uncoupled) / uncoupled, denoted as ΔTCP) over the (c) North Atlantic (NA), (d) eastern 222 

North Pacific (EP), (e) western North Pacific (WP), and (f) North Indian (NI) basins. While 223 

boxplots in (a–b) are based on TCP over ocean, blue and red error bars in (c–f) represent the ΔTCP 224 

over ocean and land, respectively. The two rightmost boxes in (a–b) or blue/red bars in (c–f) refer 225 

to the ensemble of all low- and high-resolution model simulations, respectively. The 95% 226 
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confidence interval in (c–f) is estimated from individually bootstrapping the uncoupled and 227 

coupled data 200 times and then calculating their percentage differences (in relative to the mean 228 

of uncoupled data) and associated bootstrap standard error.  229 

 230 

3.2. The impacts of ocean coupling on tropical cyclone precipitation  231 

Ocean coupling generally leads to decreased TCP over ocean (Figure 1c–f). In the North Atlantic 232 

Ocean, TCP is 7.9–28.6% lower in the eight AOGCMs than in their corresponding AGCMs. The 233 

high-resolution four-member AOGCM ensemble produces 20.8% less TCP than the AGCM 234 

ensemble (95% CI: [-21.3%, -20.4%]). The TCP difference in the low-resolution ensemble is -235 

16.5% (95% CI: [-17%, -16.1%]), indicating a low sensitivity of TCP difference to model 236 

resolution (Figure 1c). For other ocean basins, we find a similar contrast in TCP arising from ocean 237 

coupling (Figure 1d-f). Specifically, relative to the high-resolution AGCM ensemble, the high-238 

resolution AOGCM ensemble simulates a difference in TCP of -1.3% (95% CI: [-1.7%, -0.8%]) 239 

in the eastern North Pacific, -12.8% (95% CI: [-13.1%, -12.6%]) in the western North Pacific, and 240 

-17.9% (95% CI: [-18.6%, -17.3%]) in the North Indian. The low-resolution AOGCM ensemble 241 

yields comparable TCP, except for the eastern North Pacific (+3.1%). We note that the sign of the 242 

TCP difference over the eastern North Pacific varies by GCM (Figure 1d). While two AOGCMs 243 

(HadGEM3-GC3.1-MM and HadGEM3-GC3.1-HM) simulate 13.6% and 17.5% less TCP, 244 

respectively, the other AOGCMs estimate 4.5–12.3% more TCP, for reasons explained in the 245 

following section.  246 

 247 

Landfalling TCP is likewise decreased with ocean coupling (Figure 1c–f). The high (low) 248 

resolution AOGCM ensemble underestimates landfalling TCP relative to the AGCM ensemble by 249 

-27.2% (-23.2%) in the North Atlantic, -20.4% (-13.4%) in the eastern North Pacific, -6.9% (-250 

5.5%) in the western North Pacific, and -15.8% (-11.8%) in the North Indian basin. The TCP 251 

differences between the AOGCMs and AGCMs are significantly below 0 at the 0.05 level. Only 252 

one AOGCM (CNRM-CM6.1-LR) simulates significantly higher landfalling TCP (+51.5%) over 253 

the eastern North Pacific basin (Figure 1d). However, the TCP difference simulated by the coupled 254 

CNRM-CM6.1-HR model is not significantly different from 0 (95% CI: [-1.5%, 28.5%]), implying 255 

some uncertainty due to model resolution. 256 

   257 
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3.3. The role of large-scale SST biases and TC–ocean feedbacks 258 

Large-scale SST biases of the AOGCMs are critical drivers of the differences in TCP between the 259 

coupled and uncoupled simulations (Figures 2a and S1). Here we characterized large-scale SST 260 

biases as the SST differences between the AOGCMs and prescribed-SSTs AGCMs (i.e., 261 

observations) over tropical oceans (5–30°N). SST biases are generally cold over the North Atlantic 262 

and North Indian oceans, ranging from -0.92 °C to -0.04 °C and -1.13 °C to 0.1 °C, respectively. 263 

In contrast, SST biases are mostly warm over the eastern North Pacific (except for the HadGEM3-264 

GC3.1-MM and HadGEM3-GC3.1-HM models) and more mixed in the western North Pacific. 265 

These large-scale SST biases significantly influence the TCP differences between the AOGCMs 266 

and AGCMs (Figure 2a). Their linear regression suggests that every 1 °C of large-scale SST bias 267 

increases TCP by 9±0.3% in the AOGCMs relative to the AGCMs. Interestingly, AOGCMs and 268 

AGCMs with the same large-scale SST (i.e., zero bias in the AOGCM) produce TCP that differs 269 

by -8.2±0.2%. This indicates the importance of some additional mechanism for TCP, potentially 270 

local-scale coupling and TC cold wakes.  271 

 272 

Therefore, to investigate the potential influence of local-scale SST on TCP, we pose the question: 273 

Given the same local SSTs (averaged within a 200 km radius of each TC center) in the AOGCMs 274 

and AGCMs, do AOGCMs tend to simulate weaker TCP than AGCMs? By comparing TCP with 275 

the same underlying SST, we attempt to evaluate the influence of local-scale SST when controlling 276 

for the existence of large-scale SST biases. Figure 2c–f shows ocean TCP differences against pre-277 

TC SSTs in the AOGCMs and AGCMs. Here the pre-TC (3–10 days before TC passage) SSTs are 278 

used in order to minimize the impact of TC–ocean interactions on subsequent TCP in the 279 

AOGCMs. We confirm the AOGCMs usually produce lower TCP than their corresponding 280 

AGCMs over warm ocean water (SST>26.5 °C, a critical SST threshold for TC development in 281 

the current climate; Tory & Dare, 2015). The reduced TCP in the AOGCMs relative to AGCMs is 282 

evident in a vast majority of the models, SST ranges, and ocean basins. We caution that over part 283 

of the North Indian Ocean where SSTs are below 27.5 °C, there are large positive TCP differences 284 

in the HadGEM3-GC3.1-MM and HadGEM3-GC3.1-HM models, because TCP in their AGCM 285 

simulations is much lower than those in the AOGCM runs (Figure 2f). But the TCP differences 286 

become negative with warmer water (>27.5 °C), in line with other GCMs and basins.  287 

 288 
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 289 

Figure 2. (a) Basin-scale SST bias (°C) averaged over tropical oceans (5–30°N) from the AOGCM 290 

and the percentage difference in ocean tropical cyclone (TC) precipitation (ΔTCP) between the 291 

coupled and uncoupled simulations during the period from May to November 1950–2014. (b) 292 

Basin-scale SST bias and TC cold wake δSST (°C) in the coupled simulations. (c–f) Ocean-293 

specific ΔTCP with the same pre-TC SST (binned by 0.1 °C increment) in the coupled and 294 

uncoupled simulations. Each point in (a–b) is derived from a unique combination of four ocean 295 

basins and seven climate models (SST data is not available in the CNRM-CM6.1-HR model), with 296 

the error bar in y-axis representing its uncertainty range (mean ± one standard deviation).   297 
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 298 

Given absent large-scale SST bias and similar local pre-TC SSTs, what physical processes in the 299 

AOGCMs may be responsible for the weaker TCP compared to AGCMs? Past studies have linked 300 

TC-induced cold wakes to suppressed TC intensity and reduced post-TC precipitation (Karnauskas 301 

et al., 2021; Ma et al., 2020). By contrasting SST changes before and after TC passage in both the 302 

AOGCMs and AGCMs, we evaluated the impacts of TC cold wakes on TCP and TC intensity. 303 

Figure 2b shows that TCs in the AOGCMs do produce appreciable cold wakes, regardless of large-304 

scale SST biases. The magnitudes of cold wakes are averaged at -0.63 to -0.23 °C among all ocean 305 

basins and AOGCMs. The more intense TCs tend to produce stronger cold wakes (not shown). 306 

We note the magnitudes of simulated cold wakes are smaller than those in observations (Vincent 307 

et al., 2012a), because the GCMs tend to generate weaker TCs than observations (Roberts et al., 308 

2020a). As expected, TCs in the AGCMs do not generate cold wakes (not shown), since SSTs are 309 

prescribed from observations as per the HighResMIP protocol (Haarsma et al., 2016). In other 310 

words, the AOGCMs reproduce active atmosphere–ocean interactions which result in local and 311 

negative SST feedback to TCs via cold wakes, but the AGCMs do not. The interactions and 312 

feedback have been found to modulate enthalpy flux and regional atmospheric circulation, and 313 

therefore negatively affect TC intensity and precipitation (Karnauskas et al., 2021; Kushnir et al., 314 

2002; Ma et al., 2020; Trenberth et al., 1998; Vincent et al., 2012b; Zarzycki, 2016). We find 315 

generally decreased TCP in the AOGCMs, in the absence of large-scale SST bias and with similar 316 

local pre-TC SSTs. This is in agreement with previous studies on TC-related precipitation 317 

(Hasegawa & Emori, 2007; Ma et al., 2020). Our findings suggest that cold wakes may play an 318 

important role in decreasing TCP, independent of the contributions from large-scale SST biases.  319 

 320 

Large-scale SST biases and TC cold wakes, both tied to ocean coupling in the AOGCMs, influence 321 

TCP in association with changes in sea level pressure and specific humidity. Figure 3 compares 322 

the difference between AOGCM and AGCM TC minimum sea level pressure and near-surface 323 

specific humidity. We discover that TC minimum sea level pressure over both ocean and land is 324 

typically higher in the AOGCMs compared to AGCMs (Figure 3a–b), which means weaker TC 325 

intensity. Specific humidity is lower in most AOGCMs (Figure 3c–d). Furthermore, both sea level 326 

pressure and specific humidity are linearly correlated (p<0.01) with the difference in TCP.  327 

 328 
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 329 

Figure 3. Differences in TC minimum sea level pressure (ΔSLP, hPa), near-surface specific 330 

humidity (ΔHUSS, %), and tropical cyclone precipitation (ΔTCP, %) between the coupled and 331 

uncoupled simulations over ocean (a, c) and land (b,d). Each point is derived from a unique 332 

combination of four ocean basins and seven/eight climate models (ΔHUSS data is not available in 333 

the CNRM-CM6.1-HR model), with the error bar representing its uncertainty range (mean ± one 334 

standard deviation).  335 

 336 

To sum up, large-scale SST biases primarily drive the TCP difference between the AOGCMs and 337 

AGCMs, and local TC–ocean feedbacks via SST cold wakes in the AOGCMs reinforce the TCP 338 

contrast. The dynamic and thermodynamic processes through which they are linked include 339 

weakened TC intensity and decreased specific humidity in most ocean basins and AOGCMs. 340 

Given the design of the HighResMIP AGCM and AOGCM experiments, it is very difficult to 341 

completely isolate the effects of large-scale SST biases and cold wakes on the processes and 342 

therefore TCP. A better understanding of their individual effects warrants a further study, such as 343 

running AGCM-like experiments with TC cold wakes specified (Karnauskas et al., 2021) or 344 
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mechanistic experiments based on specific TC events using a simple ocean model that lacks basin-345 

scale SST biases, as suggested by Patricola & Wehner (2018).  346 

 347 

3.4. Projected tropical cyclone precipitation and its dependence on ocean coupling  348 

The AOGCMs and AGCMs consistently predict an increase in ocean TCP during 2015–2050 349 

relative to 1950–2014 across all TC basins (Figure 4). The high-resolution AGCM (AOGCM) 350 

ensemble projects TCP to increase by 3.7% (10.9%) in the North Atlantic, 5.0% (6.5%) in the 351 

eastern North Pacific, 1.8% (4.4%) in the western North Pacific, and 3.0% (0.2%) in the North 352 

Indian oceans. The increases in ocean TCP are significant at 0.05 level, because their 95% CIs are 353 

generally above 0 (except for the AOGCMs runs in the North Indian Ocean). The low-resolution 354 

GCMs produce similar changes, despite intermodel differences in their magnitudes.  355 

 356 

Landfalling TCP is expected to increase in the North Atlantic and western North Pacific basins, 357 

whereas TCP changes in the eastern North Pacific and North Indian basins are mixed (Figure 4). 358 

The high-resolution AGCM (AOGCM) ensemble predicts landfalling TCP to rise by 4.2% (4.5%) 359 

and 8.3% (5.0%) over the North Atlantic and western North Pacific basins, respectively. These 360 

increases are significant at the 0.05 level, as are the changes simulated by the low-resolution 361 

GCMs. In the eastern North Pacific, however, landfalling TCP is projected to decrease by 1.7% 362 

(1.9%) in the high-resolution AGCM (AOGCM) ensemble, although the changes are insignificant. 363 

Conversely, the low-resolution AGCM (AOGCM) ensemble estimates a substantial TCP 364 

intensification of 16.9% (11.4%). Over the North Indian basin, landfalling TCP is expected to 365 

decrease (increase) significantly by 1.2% (2.3%) in the high-resolution AGCMs (AOGCMs). The 366 

low-resolution AGCMs and AOGCMs yield changes of 2.7% and -1.2%, respectively. The 367 

opposite changes demonstrate a large uncertainty in landfalling TCP predictions over the eastern 368 

North Pacific and North Indian basins. In summary, future TCP over land and ocean is generally 369 

predicted to increase, with a few exceptions for individual GCMs and basins. The magnitude of 370 

the TCP changes can vary by a factor of 3 depending on whether the ocean is coupled with the 371 

atmosphere, for example for North Atlantic TCs over ocean in the high-resolution simulations. 372 

Our findings align with Knutson et al. (2020), Scoccimarro et al. (2014), and Patricola & Wehner 373 

(2018) who discovered robust increases in TCP with future anthropogenic warming. 374 

 375 
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 376 
Figure 4. Percentage changes in 2015–2050 tropical cyclone precipitation relative to 1950–2014 377 

by model and basin in the (a–d) uncoupled and (e–h) coupled simulations. Blue and red error bars 378 

in each panel represent future changes in TCP over ocean and land, respectively. The basins 379 

include the North Atlantic (NA), eastern North Pacific (EP), western North Pacific (WP), and 380 

North Indian (NI). The two rightmost blue/red bars in each panel refer to the ensemble of all low- 381 

and high-resolution model simulations, respectively. The 95% confidence interval is estimated 382 

from individually bootstrapping the 2015–2050 and 1950–2014 data 200 times and then 383 

calculating their percentage differences (in relative to the mean of 1950–2014 data) and associated 384 

bootstrap standard error. The first red error bar in (e) extends beyond the figure because of its large 385 

uncertainty in the future change in TCP.   386 

 387 

4. Conclusions  388 
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This study aims to quantify the impacts of ocean coupling — associated with basin-scale SST 389 

biases and local-scale TC–ocean feedbacks — on simulated and projected TCP in the Northern 390 

Hemisphere. We find that ocean coupling generally leads to decreased TCP during 1950–2014 391 

over ocean and land. The TCP difference exhibits a low sensitivity to model resolution across TC 392 

basins (except the eastern North Pacific). Large-scale SST biases in the AOGCMs are critical 393 

drivers of the TCP difference. Every 1 °C of large-scale SST bias increases TCP by 9±0.3% in the 394 

AOGCMs relative to the AGCMs. Moreover, local TC–ocean feedbacks via SST cold wakes also 395 

play an important role in decreasing TCP in the AOGCMs, as demonstrated by the TCP decline 396 

with the absence of large-scale SST biases. Both large-scale SST biases and cold wakes are present 397 

due to ocean coupling in the AOGCMs. Altogether the two features influence TCP by modulating 398 

its sea level pressure and specific humidity, with decreased TCP in the AOGCMs associated with 399 

higher sea level pressure (i.e., weaker TC intensity) and lower humidity. During the future period 400 

of 2015–2050, TCP over ocean is projected to increase across all TC basins, consistent in the 401 

AOGCMs and AGCMs, although the magnitude can vary by up to a factor of 3 depending on 402 

whether the ocean is coupled. Landfalling TCP will likewise increase in the North Atlantic and 403 

western North Pacific basins, but TCP changes over the eastern North Pacific and North Indian 404 

basins are mixed. Our findings highlight the importance of better understanding and characterizing 405 

the physical mechanisms governing the accurate representations of SSTs, TCs, and TCP. Bridging 406 

the gap between AOGCMs and AGCMs may provide a better constraint on future TCP projections, 407 

and therefore a more robust assessment of future climate change risk. 408 

 409 
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Text S1. 

The modeling centers listed in Table S1 conducted both AGCM (uncoupled) and AOGCM 

(coupled) simulations spanning 1950–2050 which covers historical (1950–2014) and future 

(2015–2050) periods. Initial conditions of these simulations were provided through the 

ERA-20C reanalysis (Poli et al., 2016). Imposed boundary conditions were based on 

climatological seasonally varying leaf area index and constant land use during present-day 

period (Haarsma et al., 2016). Both simulations were driven by the same forcing fields, 

including the historic and time-varying forcings (Eyring et al., 2016) during 1950–2014 and 

the high‐emission SSP585 scenario (O’Neill et al., 2016) for 2015–2050. The selection of 

SSP585 is to enhance anthropogenic signal, because the ensemble size (typically 1–3) of 

each GCM is small (Roberts et al., 2020a). When multiple ensemble members were 

available, we chose the first ensemble member of each GCM to analyze its outputs, 

because a majority of the GCMs used in this study have only one ensemble member. GCM 

outputs at the 3–6 hourly frequencies were employed in our analyses. For the AGCM 

simulations over 1950–2014, SSTs and sea ice were prescribed by the daily 0.25°×0.25° 

Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST.2.2.0; Kennedy et al., 

2017) dataset. For the AGCM simulations over 2015–2050, SSTs and sea ice forcings were 

constructed by imposing a future warming trend (estimated from the CMIP5 RCP8.5 

simulations) on historical SSTs and sea ice (Haarsma et al., 2016). For the AOGCMs, a 50-

year integration was first started with the 1950 initial conditions and 1950s forcings as 

model spin-up. Then it was continued for another 100 years with the abovementioned 

forcings 1950–2050 and fully coupled atmosphere–ocean (Haarsma et al., 2016). The 

experimental design enables a robust comparison between the AGCMs and AOGCMs, 

which may lead to process-oriented understanding of the origins of GCM biases (Haarsma 

et al., 2016). 
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Figure S1. Sea surface temperature (SST) biases (ºC) in the AOGCMs from May to 

November 1950–2014. The four black boxes in (a) encompass (from right to left) the North 

Atlantic (NA), eastern North Pacific (EP), western North Pacific (WP), and North Indian (NI) 

basins. For climate models without SSTs in their data archive, SSTs were indirectly 

estimated from surface upwelling longwave radiation using the Stefan-Boltzmann law. 

Note that neither SSTs nor surface upwelling longwave radiation are available in the 

CNRM-CM6.1-HR model. 
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Figure S2. Boxplots of observed (TRMM) and simulated tropical cyclone precipitation 

(TCP, mm h-1) over ocean from 1998–2014 in the (a–d) uncoupled and coupled (e–h) 

simulations. Ocean basins include the North Atlantic (NA), eastern North Pacific (EP), 

western North Pacific (WP), and North Indian (NI) basins.  
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Figure S3. Same as Figure S2, but for tropical cyclone precipitation over land.  
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Figure S4. Same as Figure 1 in the paper, but based on tropical cyclone tracks identified 

by the TempestExtremes algorithm. 
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Figure S5. Same as Figure 4 in the paper, but based on tropical cyclone tracks identified 

by the TempestExtremes algorithm. TCP over land is required to have at least 50 6-hourly 

time steps. The models without meeting the criteria and therefore the ensemble of all low- 

and high-resolution models are not plotted. 
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Table S1. Global climate models and their characteristics 
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