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Abstract

Sea Surface Salinity (SSS) is an increasingly-used Essential Ocean and Climate Variable. The SMOS, Aquarius, and SMAP

satellite missions all provide SSS measurements, with very different instrumental features leading to specific measurement

characteristics. The Climate Change Initiative Salinity project (CCI+SSS) aims to produce a SSS Climate Data Record

(CDR) that addresses well-established user needs based on those satellite measurements. To generate a homogeneous CDR,

instrumental differences are carefully adjusted based on in-depth analysis of the measurements themselves, together with some

limited use of independent reference data. An optimal interpolation in the time domain without temporal relaxation to reference

data or spatial smoothing is applied. This allows preserving the original datasets variability. SSS CCI fields are well-suited for

monitoring weekly to interannual signals, at spatial scales ranging from 50 km to the basin scale. They display large year-to-

year seasonal variations over the 2010-2019 decade, sometimes by more than +/-0.4 over large regions. The robust standard

deviation of the monthly CCI SSS minus in situ Argo salinities is 0.15 globally, while it is at least 0.20 with individual satellite

SSS fields. r2 is 0.97, similar or better than with original datasets. The correlation with independent ship thermosalinographs

SSS further highlights the CCI dataset excellent performance, especially near land areas. During the SMOS-Aquarius period,
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when the representativity uncertainties are the largest, r2 is 0.84 with CCI while it is 0.48 with the Aquarius original dataset.

SSS CCI data are freely available and will be updated and extended as more satellite data become available.
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Key Points: 

• 2010-2019 sea surface salinity fields built from three satellite missions data sets 

• Monitors sea surface salinity variability at large meso- to basin scale with unprecedented 

accuracy and spatio-temporal coverage  

• Answers the need for Sea Surface Salinity global fields at higher resolution than 1 month, 
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Abstract 

Sea Surface Salinity (SSS) is an increasingly-used Essential Ocean and Climate Variable. The 

SMOS, Aquarius, and SMAP satellite missions all provide SSS measurements, with very 

different instrumental features leading to specific measurement characteristics. The Climate 

Change Initiative Salinity project (CCI+SSS) aims to produce a SSS Climate Data Record 

(CDR) that addresses well-established user needs based on those satellite measurements. To 

generate a homogeneous CDR, instrumental differences are carefully adjusted based on in-depth 

analysis of the measurements themselves, together with some limited use of independent 

reference data. An optimal interpolation in the time domain without temporal relaxation to 

reference data or spatial smoothing is applied. This allows preserving the original datasets 

variability. SSS CCI fields are well-suited for monitoring weekly to interannual signals, at spatial 

scales ranging from 50 km to the basin scale. They display large year-to-year seasonal variations 

over the 2010-2019 decade, sometimes by more than +/-0.4 over large regions. The robust 

standard deviation of the monthly CCI SSS minus in situ Argo salinities is 0.15 globally, while it 

is at least 0.20 with individual satellite SSS fields. r2 is 0.97, similar or better than with original 

datasets. The correlation with independent ship thermosalinographs SSS further highlights the 

CCI dataset excellent performance, especially near land areas. During the SMOS-Aquarius 

period, when the representativity uncertainties are the largest, r2 is 0.84 with CCI while it is 0.48 

with the Aquarius original dataset. SSS CCI data are freely available and will be updated and 

extended as more satellite data become available. 

 

Plain Language Summary 

Salinity measures the mass of dissolved salts in seawater. Together with temperature and 

pressure, it determines the seawater density, which is crucial in driving oceanic motions. Low 

sea surface salinity (SSS) can be the result of freshwater inputs such as rain, river runoffs, and 

ice melt. In contrast, high SSS often characterize regions of strong evaporation. The salinity 

imprint of these processes is then carried by ocean currents over long distances and long periods 

of time. SSS also impacts ocean circulation through its effect on density, and modulates ocean-

atmosphere exchanges of heat and gases. SSS is a hence key variable for ocean and climate 

studies, both as a passive tracer and as an important actor of oceanic processes.  
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Since 2010, three satellite missions have monitored SSS with an unprecedented spatial and 

temporal resolution. For the first time, data from these satellites are combined, taking each 

instrument specific features into account. The resulting dataset enables global SSS to be 

monitored and studied with unprecedented accuracy over the 2010-2019 period, at a 50km, 

weekly or monthly resolution. It reveals large SSS signals related to phenomena affecting 

climate in various parts of the world ocean. 

1 Introduction 

Salinity is a key ocean and climate variable that plays a fundamental role in the 

thermohaline global ocean circulation, the hydrological cycle, and climate variability (Durack et 

al., 2012; Siedler et al., 2001).  

Along with temperature, salinity controls sea water density. This parameter influences the 

ocean stratification, water mass formation, and ultimately the general circulation of the ocean. At 

high latitudes, in cold polar surface waters (typically Sea Surface Temperature (SST)= 2°C), a 

change of 0.11 in Sea Surface Salinity 1,2 (SSS), is equivalent, in terms of density, to a change of 

1°C in SST. In warm regions (SST=28°C), a larger salinity change of 0.44 is equivalent to a 1°C 

change in SST, as per its density contribution. This is the reason why salinity variations play a 

key role in controlling the global thermohaline circulation, in particular due to high salinities 

anomalies strongly contributing to convective overturning (i.e. transporting waters from the 

ocean surface to the deep ocean) at high latitudes. It is also a tracer of oceanic processes 

(advection, mixing).  SSS bears the signature of freshwater fluxes originating from evaporation 

minus precipitation (E-P), river discharges and ice melting or freezing. Freshwater fluxes can 

modify the vertical stratification in density and strongly influence the air-sea exchange through 

the development of so-called salt-stratified (halocline) barrier layers (Lukas and Lindstrom, 

1991). Indirectly, salinity contributes to El-Nino Southern Oscillation (ENSO) (Vialard and 

Delecluse, 1998), Indian Monsoon (Shenoi et al., 2002) and primary productivity (Picaut et al., 

                                                           
1 Sea Surface Salinity in this article refers to the salinity determined from a satellite microwave radiometer sensing 

the thermal emission at 1.4GHz due to its changing dielectric properties. Thus the measured quantity is 

representative of the upper few cm of the sea surface depending on the depth of surface foam present on the sea 

surface. 
2 Sea Surface Salinity is expressed with no physical units. It is defined according to the Practical Salinity Scale 

(UNESCO, 1985) as conductivity ratio: a seawater sample of Practical Salinity 35 has a conductivity ratio of 1.0 at 

15°C and 1 atmosphere pressure, using a potassium chloride (KCl) standard solution containing a mass of 32.4356 

grams of KCl per Kg of solution. 
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2001). At high latitude, the sharp halocline shields the heat stored in the deep ocean from 

reaching the surface layer and melting the sea ice (Carmack et al., 2016; Lique, 2015; Steele et 

al., 2004).  

The ocean is a major component of the Earth’s water cycle: 86% of evaporation and 78% 

of precipitation take place over the ocean. The near-surface salinity also carries the imprint of the 

anthropogenic influence on water cycle, with a tendency for SSS to increase in evaporation 

regions and decrease in precipitation-dominated regions (Yu et al., 2020). This so-called 

observed ‘dry gets dryer and wet gets wetter’ tendency also occurs in climate models projections 

(Bindoff et al., 2019). Both positive and negative trends in ocean salinity and freshwater content 

have been observed throughout much of the ocean including sea surface and ocean interior, 

providing indirect evidence that the E – P pattern over the oceans is amplifying. In addition, 

evaporated water above the ocean is transported above the continents by atmospheric circulation. 

Li et al. (2016) recently found correlations between satellite SSS anomalies in the North Atlantic 

and anomalies of rain in Sahel lagged by several months suggesting that large-scale SSS 

anomalies could bring skill as precursor indicators of rain over the continents.  

In addition, being the total mass of dissolved salts per kg of seawater, salinity affects the 

entire oceanic carbonate system and its components: total alkalinity, dissolved inorganic carbon, 

pH, and fugacity of CO2 (Millero, 2007).  

Due to its role both as a variable that influences the oceanic circulation, air-sea 

exchanges, upper-ocean biogeochemical state and as a tracer of the water cycle and its changes, 

SSS has been identified as an Essential Climate Variable (ECV) 

(https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-

variables). 

SSS measurement by satellite remote sensing was motivated by the essential need for 

better monitoring, understanding and constraining the marine components of the climate system. 

At the end of the 1990s, the Global Ocean Data Assimilation Experiment (GODAE) group 

estimated that it was necessary to measure SSS with an accuracy of 0.1 at monthly, 100 km (or 

every 10 days at 200 km) scales. Since the beginning of the 21st century, the Argo network of in-

situ profiling floats has continuously evolved (Roemmich et al., 2019) and provided invaluable 

measurements of 3D oceanic salinity. The Argo array reached global coverage in 2006 with one 

https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
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measurement of both temperature and salinity every ~10 days and every ~300 km with a vertical 

sampling range of between about 5 - 2000m depth. Nevertheless, there is increasing consensus 

that the GODAE specifications that are well covered by the Argo network do not serve all the 

needs for ocean and climate studies. The analysis of ship measurements (Delcroix et al., 2005), 

and later of satellite measurements have revealed a natural variability of SSS much larger than 

0.1 in regions characterized by large mesoscale variations (Fournier et al., 2016; Hasson et al., 

2019; Reul et al., 2014), in river plumes and areas characterized by strong precipitation events 

(e.g., Figure 6 in Boutin et al. 2016). In these regions, SSS fields derived from satellite data 

depict SSS variability much better than the salinity products derived from the in situ Argo 

network alone (Fournier and Lee, 2021).  

Satellite SSS data are available with regular repeat global coverage since 2010, thanks to 

to microwave radiometers operating at a frequency of 1.4 GHz (wavelength 21 cm; L-Band). The 

brightness temperature (Tb) measured by ocean-observing microwave radiometers is related to 

the emissivity of the ocean surface layer. The L-Band Tb depends primarily on the dielectric 

properties of the surface seawater (i.e., seawater conductivity and, thus, salinity and temperature) 

and its geometric characteristics, determined by sea surface roughness (Reul et al., 2020). At this 

frequency, the atmosphere is almost transparent (except for strong precipitation). Molecular 

oxygen has the most significant effect on the measured Tb with small contributions from water 

vapor, cloud liquid water, and rain. Tb has a relatively low sensitivity to SSS, especially at low 

SST: the Tb change per SSS unit is ~0.8 K at 30°C and ~0.2 K at 0°C (Yueh et al., 2001). The  

radiometer measurements of SSS in cold waters at high latitudes are thus particularly 

challenging.  

SSS measured from satellites is not directly comparable to near surface in-situ 

measurements due to the vertical structure of salinity in the upper ocean. At L-Band in foam-free 

conditions, the emissive ocean surface layer is ~1cm deep (when the foam is present, emissions 

may emanate from a layer >5 cm thick (Anguelova and Gaiser, 2011)), while the upper 

measurements performed by most in-situ devices (such as Argo floats, thermosalinograph 

onboard ships, or moorings networks) are in the depth range of 1 to 20 m. Obtaining high 

vertical resolution measurements in the upper few meters of the ocean is particularly challenging 

– even when using all available in-situ data sources. Hence, significant differences between 

satellite SSS compared to in-situ salinity have been observed with mean vertical differences 
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larger than 0.1 in the Pacific, Atlantic, and Indian Oceans coinciding with the average position of 

the inter-tropical convergence zone (ITCZ) heavy precipitations. The upper ocean stratification 

effects are the subject of dedicated experiments and their quantification via air-sea coupling 

modeling an active research domain (e.g. (Drushka et al., 2019) and references herein). 

Furthermore, L-band satellite measurements are integrated over a large spatial footprint, from 

~40 km to more than 100 km, which poses obvious representativity issues when compared to 

punctual samples from Argo floats or ship transects. These issues have a strong impact when 

using in situ data for validation and vicarious calibration of satellite SSS products which must be 

managed with care in these areas of potentially significant vertical salinity stratification.  

In the open ocean, the uncertainty of the SMOS (Soil Moisture and Ocean Salinity), 

Aquarius, and SMAP (Soil Moisture Active Passive) satellite SSS averaged over the GODAE 

scales is now estimated to be of the order of 0.2 (Reul et al., 2020; Vinogradova et al., 2019). 

SMOS data initially suffered from large systematic errors in the vicinity of the coast and in areas 

polluted by radio frequency interferences (RFI). SMAP data are less polluted than SMOS in 

these areas because of advanced RFI filtering capabilities. However, recent SMOS processing 

largely reduces these systematic errors making SMOS SSS often very close to SMAP SSS (e.g. 

(Akhil et al., 2020; Fournier and Lee, 2021)).   

  As this study started, individual satellite SSS is capable of resolving the upper register 

of the mesoscale spectrum (spatial scale of 50-500 km and temporal scale of 10-100 days) (e.g 

(Hasson et al., 2019; Huang et al., 2021; Kolodziejczyk et al., 2021; Lin, 2019; Melnichenko et 

al., 2021; Olivier et al., 2020)). These scales play an important role in the mixing and exchanges 

of water masses close to fronts, as a result of ocean circulation and atmospheric fluxes. At larger 

scales, ENSO events in the tropical Pacific have serious climatic repercussions at planetary scale 

and are the main source of interannual climatic variability with strong societal consequences 

(agriculture, marine ecosystems, health…) in many areas (McPhaden et al., 2006). We list below 

progresses which have been allowed by satellite SSS data.  Zhu et al. (2014) have shown that 

salinity variability may play an active role in ENSO evolution, and is thus an important 

information to be taken into account for a better understanding of air-sea interaction processes 

during ENSO. Furthermore, monitoring ENSO phases via dedicated SSS-based climate indexes 

is useful to complement existing SST-based indexes (Qu and Yu, 2014). There is also some 

recent evidence that SSS provides an additional forecast skill for ENSO prediction (Hackert et 
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al., 2020). Given the scientific advances made possible by satellite-based SSS, the redefinition of 

the observation strategy in the tropical Pacific Ocean (Cravatte, 2016) and in the tropical Atlantic 

ocean (Foltz et al., 2019) underlined the need to pursue SSS satellite measurements.  

Variations of precipitations above continents lead to variations of river discharges 

(Amazon/Orinoco, Congo, Niger, Mississippi…) which, together with ocean circulation, lead to 

a large SSS variability in river plumes. These have been well observed and documented by 

SMOS, Aquarius, and SMAP measurements in the tropics (e.g. (Akhil et al., 2020; Fournier et 

al., 2016; Houndegnonto et al., 2021; Reverdin et al., 2021) and references herein).  

Furthermore, SMOS and SMAP data analysis have shown that the active role of the 

salinity in the development of barrier layers might intensify the water cycle in some tropical 

areas. Under tropical cyclones, it limits vertical mixing and hence cooling of the ocean surface 

which influences the development of the cyclones themselves (Balaguru et al., 2020; Reul et al., 

2021). These SSS feedbacks on climate are of increasing importance for climate studies. 

Satellite SSS provides a precious information to better understand and constrain the air-

sea CO2 exchanges, due to the dependency of carbonate properties on seawater salinity.  Satellite 

SSS is in particular useful to study the total alkalinity and pH (Fine et al., 2017; Land et al., 

2015; Salisbury et al., 2015).The impact of fresh water input onto air-sea CO2 exchanges has 

been highlighted from satellite data in high precipitation regions (Brown et al., 2015; Ho and 

Schanze, 2020) and in river plumes (Ibánhez et al., 2017; Lefèvre et al., 2014).  

The goal of the European Space Agency (ESA) Climate Change Initiative Sea Surface 

Salinity (CCI+SSS) project is to optimize satellite SSS time series by merging satellite SSS 

acquired by various instruments. For the first time, SMOS, Aquarius, and SMAP measurements 

are combined to produce Level 4 (L4) gridded multi-mission estimates of SSS. Such a 

combination reduces the noise of satellite SSS fields owing to better sampling and improves the 

spatial resolution of large mesoscale SSS features. Examples of the derived merged SSS L4 

maps are illustrated in Figure 1 during a period with SMOS data-only, a period with SMOS plus 

Aquarius data and a period with SMOS plus SMAP SSS measurements. The large mesoscale 

features around tropical river plumes (e.g., Amazone, Orinoco, Congo), frontal regions (e.g. Gulf 

Stream) are nicely captured by the satellite products. The addition of SMAP SSS leads to a 

reduced noise during the SMOS and SMAP period with respect to the SMOS-only period, and to 
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a reduced blurring with respect to the SMOS-Aquarius period, owing to the better spatial 

resolution of SMOS and SMAP compared to Aquarius.  

 
Figure 1: Example of CCI L4 satellite SSS fields in October a) 2010 (SMOS only period), b) 2014 (SMOS 

and Aquarius period) and c) 2019 (SMOS and SMAP period). (CCI monthly maps from the ESA Climate 

from Space website https://cfs.climate.esa.int) 

We have polled potential users of the CCI+SSS product using a Web Survey (available at 

https://forms.gle/BVDroYrNpVvpxFJu9), in order to better define their needs. A more detailed 

overview of the results of this poll can be found in the supporting information S1, but we briefly 

summarize the main points here. Most users were interested by global L4 products that cover a 

period of at least 9 years, with a typical resolution of 1 day to 1 month and 0.25 to 1°. In fact, 

there appear to be both the need for high-resolution, low accuracy (weekly 0.25° ~ 0.3) and 

lower-resolution higher accuracy (montly 1°, < 0.1) products. Users also request some simple 

characterization of the quality of the data, along with its value. Finally, many users thought that 

it was important to merge SSS datasets from several sources. In this paper, we address the 

merging of several satellite products, also using a limited statistical information about SSS 

variability derived from in situ and model reanalyses. 

The objective of this paper is to describe the method and data employed to build the CCI 

L4 SSS time series, and then the ones used in the validation exercise; to analyze the resulting 

fields and their validity; to review and discuss the strength of satellite merged SSS and its 

remaining caveats and propose research avenues to solve or mitigate them. 
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2 Data and Methods: CCI L4 SSS 

2.1 Overview 

The CCI+SSS algorithm described in this paper corresponds to the version 2 of the 

algorithm. It is summarized in Figure 2 and in this subsection, with each step and dataset more 

thoroughly described in the remaining of section 2. 

 
Figure 2: Outline of the CCI+SSS merging methodology which is performed independently on each node 

of the EASE 25km grid. Input satellite SSS data are indicated in light blue boxes, additional input 

information is in green boxes (origin of this information in bold black), processing steps are in yellow 

boxes, temporary informations output of monthly OI are in light violet boxes and output CCI+SSS L4 fields 

are in violet boxes. 

The main inputs are the satellite datasets. The SMOS input data has the same rectangular 

25km Equal-Area Scalable Earth (EASE) 2.0 grid than our final CCI SSS dataset. The SMAP 

and Aquarius datasets are all reprojected on the same grid. The spatial resolution of each level 4 

SSS is driven by the spatial resolution of the SMOS and SMAP SSS measurements, i.e. ~50 km 

x 50 km. Most of the input datasets biases are treated in the optimal interpolation (OI) step (see 

below). The input datasets hence simply undergo a minimal level of pre-processing of well 

known biases. This includes a better model of the dielectric constant and a correction for 

seasonal latitudinal biases for SMOS (see section 2.2 for more details). Seasonal latitudinal 

biases are corrected in the SMAP original processing and are neglected in case of Aquarius. The 

latter could be revised in a future version. 
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The monthly CCI SSS maps are obtained based on an OI in the time domain, i.e. each 

grid point is treated separately, the intent being to  preserve the spatial SSS features contained in 

the original datasets. A larger representativeness error is attributed to Aquarius to account for the 

fact that its effective resolution is lower than that of SMAP and SMOS. The a-priori value of the 

SSS is set to a constant value, the median of the observed SSS over the full time period. The OI 

is performed over the entire time period of the three datasets. 

The errors on the input satellite datasets to be corrected during the OI include: 

• Poorly modeled instrumental effects (solar influence, land contamination, 

absolute calibration …), 

• Radiometric noise, 

• Flaws in the radiative transfer model (e.g. deficiencies in rough sea surface 

emission, in scattering of galactic and solar radiation…),  

• Uncertainty in auxiliary geophysical data used as priors in the retrieval algorithms 

(wind speed, SST…), 

• Measurement contamination by spurious effects (e.g. RFI). 

Both a random component and a systematic component of the error in each dataset are 

estimated by the OI. The systematic component (also called bias) depends on each satellite 

measurements geometry: it is constant in time but highly variable in space (for instance it tends 

to be higher near coasts where RFI and pollution by land signals are more common). 

The OI relies on error statistics to estimate these two components of the error. These 

statistics include the error variance which is deduced from the data itself (see section 2.4.2) and a 

temporal covariance. The bias correction is nonlocal (it uses the entire time period of the three 

datasets), while the random part is treated more locally. A theoretical estimate of random 

uncertainty associated with the CCI L4 SSS product is provided by the OI.  

The previous OI step is meant to combine the various datasets into a consistent one, but a 

final calibration of the absolute reconstructed SSS is still needed. This is done by adjusting the 

median value (or the upper quartile in highly variable regions, see section 2.3.1) of the multi-

satellite SSS to that of the ISAS product, reconstructed from in situ data. 
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The weekly data is obtained through another OI, but this time using as inputs the satellite 

SSS corrected from the systematic uncertainties estimated by the monthly OI, using the monthly 

data as an a priori value and using a representativity uncertainty between monthly and weekly 

SSS derived from an ocean model reanalysis. 

In the following, we present the satellite datasets and the auxiliary datasets used in the 

OI. We then describe the OI method and the methodologies followed to derive the various 

components (such as the error statistics) involved in the OI. 

 

2.2 Input Satellite Data 

The main characteristics of L-band radiometric satellite missions enabling global SSS 

measurements are summarized in Table 1.  

 

Table 1. Missions characteristics 

SMOS MISSION AQUARIUS MISSION SMAP MISSION 

-L-band interferometry. 0°-

~60° earth incidence angles 

-revisit times: 4 days 

-resolution: about 50 km  

-repeat sub-cycle: 18 days 

-see more in (Font et al., 

2010; Y.  Kerr et al., 2010) 

 

-L-band real-aperture 

radiometer. 3 fixed beams at 

28.7, 37.8, and 45.6° earth 

incidence angles 

-revisit times: 7 days 

-resolution: about 150 km 

-repeat cycle: 7 days 

-see more in  (Lagerloef et al., 

2008) 

-L-band real-aperture 

radiometer. Conical scanning, 

40° earth incidence angle 

-revisit times: 3 days 

-resolution: about 40 km 

-repeat cycle : 8 days 

-see more in (Piepmeier et al., 

2017) 

 

We consider the longest SMOS, SMAP, and Aquarius SSS retrieved with up-to-date 

algorithms available at the time of the development of the CCI L4 SSS (Table 2).  
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Table 2. Satellite SSS products used to derive CCI L4 SSS fields. 

SMOS SSS Jan. 2010- Nov. 2019 

L2P CATDS from ESA v622 algorithms (CATDS, 2017)  

Seasonal latitudinal correction 

SST correction derived from (Dinnat et al., 2019) 

SMAP SSS Apr. 2015 – Nov. 2019 

L2C v4.0 RemSS (Meissner et al., 2019) 

Flagging as recommended in the user guide. 

Reprojection on 25 km EASE grid using nearest neighbor criteria. 

AQUARIUS 

SSS 

Aug. 2011 – June 2015 

L3 daily products (Ascending & Descending orbits separated) (Meissner et al., 

2018) 

Nearest neighbor colocation applied to 25 km EASE grid pixels falling within a 

1°x1° Aquarius pixel. 

 

SMOS data are internally generated by the Centre Aval de Traitement des Données 

SMOS (CATDS), the so-called L2P products based on SMOS ESA L2 v622 algorithm (Arias 

and SMOS_Ocean_Expert_Support_Laboratories, 2016). We summarize below the main 

processing steps; detailed information about the processing and the filterings is reported in 

Supporting information S2. Dinnat et al. (2019) found systematic errors of SMOS SSS as a 

function of SST that are attributed to deficiencies of the Klein and Swift (1977) dielectric 

constant model at extreme SST values. This leads us to adjust SMOS SSS with a polynomial 

SST function. A correction for seasonal latitudinal varying biases (e.g. those linked to solar or 

galactic effects) is also applied, similar to what is described in (Boutin et al., 2018): 

SSSobs(t, , ,xswath, xorb)=SSSsmosref (, ,m)–blat(,xswath,xorb,m)    (1) 

where SSSobs is the observed SSS, t is the time of the measurement, , and , are 

respectively the latitude and the longitude of the considered pixel over the ocean, xswath 

corresponds to the pixel location across the swath, xorb indicates the satellite orbit direction 

(ascending or descending), blat is a latitudinal correction that varies seasonally as a function of 

the month, m, and SSSsmosref is a reference SMOS SSS taken at a given xswath and xorb. In order 

to avoid land-sea contamination, blat is derived from SMOS measurements at several hundred 
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kilometers from coast. blat is removed from all SMOS SSS whatever their distance to coast and 

before estimating the temporally constant land-sea contamination correction (section 2.4.4). 

Actually, the seasonal latitudinal bias is expected to affect all pixels, whatever their distance to 

land. 

SMAP v3 and Aquarius v5 SSS retrieval algorithms are described in (Meissner et al., 

2018). SMAP algorithm has been updated towards version 4 as described in Meissner et al. 

(2019) with improved land correction, sea-ice mask, ice flagging. SMAP and Aquarius SSS are 

reprojected on the SMOS CATDS spatial grid, the rectangular EASE 2.0 grid (Brodzik et al., 

2012) with 625 km2 surface resolution (referred to as 25km EASE grid in this paper) using the 

nearest neighbor criterion. We do not apply seasonal latitudinal correction to SMAP SSS as the 

reflector emissivity correction (Table 1) already ensures latitudinal seasonal consistency with 

Argo. Seasonal latitudinal biases are neglected for Aquarius SSS because they are smaller than 

SMOS ones. They could however be considered in future CCI+SSS versions as Kao et al. (2018) 

and Meissner et al. (2018) found latitudinal seasonal SSS systematic differences with respect to 

Argo SSS or between ascending and descending passes that can reach +/-0.2. 

RFI and calibration stability are two main challenges to deal with before retrieving 

reliable SSS measurements, given the low sensitivity of Tb to salinity (0.5K per salinity unit at 

20°C at nadir). The data processing for each satellite mission is summarized below. 

SMOS, Aquarius, and SMAP missions operate in a protected spectrum band (1400-1427 

MHz) that is nevertheless known now to be affected by numerous RFI. Areas affected by RFI 

might experience data loss or result in inaccurate salinity retrieved values. To alleviate this 

situation, several strategies were set up to filter RFI contaminated measurements. SMOS, 

launched in 2009, was the first satellite with a radiometer operating in L-band, and it does not 

have any on-board hardware/software to filter RFI, so that RFI counteracting only relies on data 

post-acquisition processing. Filtering is significantly improved for SMAP (Soldo et al., 2019) 

(and to a lesser extent for Aquarius (Le Vine and Matthaeis, 2014)), as they are (were) equipped 

with on-board frequency/time-domain-based RFI filters. Nonetheless, RFI remains a major 

problem (e.g. (Kristensen et al., 2019)).  

Onboard calibration and correction for parasitic effects does not allow to reach enough 

Tb stability and accuracy to cope with the SSS remote sensing requirements. As a consequence, 
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vicarious calibrations, the so-called Ocean Target Transformation (OTT) for SMOS (Yin et al., 

2013) and Ocean Target Calibration (OTC) (Meissner et al., 2018) for Aquarius  and SMAP, are 

applied for removing spatially homogeneous but time-varying biases in the measured minus 

expected radiometric signal. OTT is computed in a limited region, almost free of RFIs and land 

sea contamination, while OTC is estimated from global comparisons. The SSS references come 

from either a climatology (SMOS), an ocean model (SMAP) or an Argo-derived field 

(Aquarius), the choice being partly driven by the reference product availability with respect to 

production temporal constraints. In addition, a latitudinal seasonal varying correction for the 

SMAP antenna emissivity is derived for each day of the year from Scripps Argo SSS (Meissner 

et al., 2019). 

The auxiliary geophysical information necessary to initialize the SSS retrieval is a 

possible source of uncertainty. In the case of SMOS, wind, SST and atmospheric parameters are 

extracted from the European Center for Medium Weather Forecast (ECMWF) Integrated 

Forecast System (IFS). In the case of Aquarius and SMAP, atmospheric parameters are extracted 

from the National Centers for Environmental Prediction (NCEP) General Data Assimilation 

System (GDAS) and SST is from the Canadian Meteorological Center (CMC). In the future, the 

Copernicus Microwave Imaging Radiometer (CIMR) (Donlon, 2020)) will provide L-band 

measurements together with higher frequency data that are sensitive to SST (C-band), and 

surface roughness (K-band) allowing a more precise initialization of SSS retrieval.  

 

2.3 In situ and model data 

2.3.1 ISAS  

Monthly gridded fields of salinity derived from in-situ measurements are obtained from 

the ISAS v6 algorithm, an optimal interpolation (OI) tool (Bretherton et al., 1976) developed for 

the synthesis of the Argo global dataset (Gaillard et al., 2016). ISAS OI considers spatio-

temporal length scales between 300km and 4 times the Rossby radius and between 3 weeks and 1 

week. In practice, the smoothing is very dependent on the availability of in situ measurements, 

with, on average, one Argo measurement every 10 days and every 3°x3° (Roemmich et al., 

2019).  
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We use the ISAS fields reconstructed at 5 m depth on a half degree horizontal grid for 

two purposes. First, ISAS 2011-2016 latitudinal profiles are qualitatively used for defining the 

reference across swath location for the SMOS latitudinal seasonal bias correction. Second, at 

each grid point, a statistical distribution property of ISAS SSS is used to adjust the long-term 

absolute reference of the CCI L4 SSS corrected fields (see Figure 2 and section 2.4.4). In very 

variable regions, the SSS statistical distribution is skewed towards low SSS values (e.g. 

(Bingham et al., 2002)) and these low SSS values are poorly reproduced by gridded in situ 

salinity products (Fournier and Lee, 2021). Hence, in very variable regions, we adjust the 80% 

quantile of CCI SSS to that of ISAS one whereas we adjust the medians (50% quantiles) in less 

variable regions.    

2.3.2 Ocean model reanalysis 

We estimate the amplitude of the SSS variability at spatio-temporal scales that are not 

resolved from satellite missions. To that end, we use salinity fields at 0.5 m depth between 2011 

and 2014, from the GLORYS eddy resolving (1/12°) global oceanic re-analysis produced by 

Mercator Ocean. This model re-analysis assimilates satellite sea level anomalies, SST, sea ice 

concentration, in-situ temperature and salinity vertical profiles (but not satellite SSS) and is 

forced using climatological runoffs. More information about this product can be found on 

https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL

_REANALYSIS_PHY_001_030. 

2.4 OI methodology: 

We summarize below the basic principle of the OI methodology. A more detailed 

description is given in supporting information S3. 

In order to estimate SSS at a given time, the algorithm uses an OI in the time domain, 

applied independently to each node of the spatial grid. We do not apply any catch-up to reference 

climatological fields which might remove or attenuate important interannual and/or large 

mesoscale variations.  

Together with SSS and its associated random uncertainty, the CCI+SSS monthly OI 

estimates a systematic correction, bc, that is applied to each satellite SSS observation. bc mainly 

corrects for biases related to land-sea contamination and permanent RFI. The algorithm is very 
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similar to the one described in (Kolodziejczyk et al., 2016) but applied to different sensors and 

geometries.  

To estimate SSS time series at spatial resolution R1 and temporal resolution T1, knowing 

that SSSobs are at spatial resolution r1 and temporal resolution t1, the cost function (to be 

minimized) is written as (for monthly OI): 

C(SSS, bc) =(SSSobs – F(m))T.Ct-1.(SSSobs – F(m)) + (m – m_prior)T.Cm-1.(m – m_prior) (2) 

with: 

m= (
𝑆𝑆𝑆
𝑏𝑐

)     and    F(m)=SSS-bc   

where T indicates the transpose operator, SSSobs, SSS and bc are respectively vectors 

containing the observed datasets, the estimated SSS and the estimated biases of the SMOS, 

SMAP and Aquarius data. m_prior contains the SSS and bc a priori values. For the weekly OI, 

there is no bias correcteion as the monthly OI is used as an a-priori value, only SSS is estimated 

(m=SSS). Ct is the observation error covariance matrix containing the expected random errors of 

the satellite SSS relative to the OI SSS. It includes random uncertainty of the satellite SSS 

observation, Co, and a representativity uncertainty, Cr, that is added to take into account the 

difference in resolution of fields (R1;T1) and (r1;t1): 

Ct=Co+Cr 

This covariance is seasonally dependent and specific to each grid node.  

The a priori error covariance matrix, Cm, contains the random fluctuations allowed 

around the a priori fields of SSS, SSS, and of bc, bc. In the monthly OI, SSSprior is constant 

over time and SSS are derived using a monthly climatology of SSS variability. bc is set to an 

arbitrary constant value (chosen equal to 4 pss, a value well above reasonable values for 

retrieved bc). In case of the weekly OI, SSSprior are taken equal to the monthly L4 SSS and SSS 

are derived from the uncertainties of the monthly L4 SSS estimated by the monthly OI combined 

with the expected variability between monthly and weekly fields derived from model 

simulations. The variability fields are seasonally dependent and specific to each grid node.  

The solution of the minimization provides the estimated SSS and bc, m_est: 

m_est=m_prior+Cm'∙HT ∙ (H∙Cm∙HT+Ct)-1 ∙ (SSSobs-F(m_prior)) 

with H the matrix of the partial derivatives of each sensor SSS relative to the estimated 

parameters. Cm is the time covariance matrix operating in the observation space and Cm’ the 
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time covariance matrix between the observation space and OI product space. A posteriori 

uncertainty term, corresponding to L4 SSS random uncertainty, is also derived. 

The way we derive the various terms involved in equation (2) is described in the 

following sections. 

 

2.4.1 Climatology of SSS variability: 

We explain below how the information about SSS variability introduced in the Cm 

matrix is built. 

SSS variability is introduced to distinguish between SSS fluctuations due to an 

instrumental flaw or to a plausible geophysical SSS variation. For instance, in a river plume, 

during runoff season, the SSS is allowed to fluctuate much more than during calm periods. SSS 

variability is considered at two temporal scales in the OI: 

- the sub-monthly SSS variability combined with interannual SSS variability in each 

pixel, SSSvarmonth, that is used to estimate monthly SSS, taking a constant SSS value as 

SSSprior; 

- the variability of SSS at 50km/7days relative to SSS at 50km/1month resolution, 

SSSvarweek, that is used to estimate weekly SSS, taking monthly SSS as SSSprior.  

SSSvarmonth, is estimated on each grid node and for each month of the year, as the root 

mean square difference, RMSD between satellite SSS for the considered month, and the SSS 

averaged over all months and all years, y, over the whole time period, 𝑆𝑆𝑆̅̅ ̅̅ ̅: 

SSSvarmonth(, , m)=√
∑ (𝑆𝑆𝑆(ϕ,λ,𝑦,𝑚)−𝑆𝑆𝑆̅̅ ̅̅ ̅)2

𝑦

𝑁𝑦
  with  𝑆𝑆𝑆̅̅ ̅̅ ̅ =  

∑ 𝑆𝑆𝑆(𝑦,𝑚)𝑦,𝑚

𝑁𝑦∗𝑁𝑚
 

 Hence the variability is seasonal and SSS is allowed to fluctuate more or less around its 

mean value with the seasons. To remain as coherent as possible with respect to the variability 

sampled by the satellite measurements, we prefer to avoid estimating it from model simulations. 

Instead, we estimate it recursively from satellite SSS fields as follows. In a first step, we estimate 

this variability from the SMOS filtered SSS in regions that are not strongly contaminated by 

errors (low to middle latitudes, excluding RFI contaminated areas). In regions where SMOS SSS 

are very noisy (such as in RFI contaminated areas e.g. close to Fiji island or in the Bay of Biscay, 
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we artificially set a low variability; at very high latitudes, we consider ISAS SSS variability 

increased by a factor of 2 in order to leave the possibility of unexpected fluctuations). These 

monthly variability fields are then used to provide a first estimate of CCI L4 SSS weekly fields. 

The CCI L4 SSS weekly fields are then used to derive a SSSvarmonth. The use of weekly OI fields 

instead of individual satellite SSS aims at avoiding too large RMSD values due to outliers (see 

Figure 3 and supporting information S4).    

The monthly SSS variability is the dominant term among the representativity 

uncertainties between the several spatio-temporal scales involved in the OI and the monthly to 

weekly variability which will be described below. An example SSSvarmonth is illustrated on 

Figure 3 for August. The main regions of high variability include, as expected, river outflow 

regions (Amazon, Congo, Mississippi, Ganges) and western boundaries (Gulf Stream). Other 

examples of monthly variabilities used in the OI are provided in supporting information S4. 

 
Figure 3: Climatological map of monthly SSS variability in August (August SSS RMSD relative to the SSS 

averaged over the whole period). 

Estimates of the variance of weekly fluctuations relative to the monthly averaged fields 

are derived from GLORYS simulated SSS. Since river discharges used in the model simulations 

are based on climatological river runoff information, temporal and spatial variations in river 

plumes are not properly considered and may be underestimated. We, therefore, take an estimate 

for this variability defined by twice the RMSD between 50 x 50 km2 daily and 50 x 50 km2 30-

day mean SSS for each month, obtained from GLORYS fields at 1/12th of a degree resolution 

and then smoothed over space scales of 200 km (see supporting information S5).    
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2.4.2 Random uncertainties of satellite SSS measurements: 

We describe below how the random uncertainties, linked to observational errors 

(Vinogradova et al., 2019) and reported in the Co matrix are built. 

The SMOS processing provides a ‘theoretical’ random error, ESSS_L2, derived from the 

Jacobian of Tb relative to SSS and auxiliary parameters, the expected radiometric noise, the 

expected random errors on auxiliary parameters, and radiative transfer model. A more realistic 

estimate of the SSS random uncertainty is obtained by multiplying ESSS_L2 by the normalized  of 

the Bayesian retrieval, N (Boutin et al., 2018). 

For SMAP and Aquarius SSS, we derive random uncertainties from self-consistency 

analyses of the observed SSS as a function of SST. We check that they correspond to a realistic 

radiometric noise given the SST dependency of Tb derivative with respect to SSS (Yueh et al., 

2001). A theoretical uncertainty is derived that is used for our analysis.  

For SMAP, we derive empirical uncertainties by comparing collocated retrieved SSS 

between fore and aft acquisitions. We computed the standard deviation of the difference, STDD, 

which should be an estimator of the SSS random uncertainty multiplied by √2  (assuming that 

the random uncertainty is the same for aft and fore acquisitions). The STDD is very close to 

modeled uncertainty with a 0.45K radiometric noise.  

For Aquarius, the random uncertainties are derived from comparisons of Aquarius SSS at 

time t with the Aquarius SSS at time t + 7 days given the 7-day periodicity of this satellite orbit. 

For that, we assume that SSS in the open ocean does not change significantly during 7 days, so 

that the STDD relates to the random error (multiplied by √2). A fit to the observed random 

errors is derived as a function of SST (see supporting information S6). 

We check the reasonable behavior of estimated random uncertainties, σ𝑆𝑆𝑆, by 

considering the statistical distribution of the centered reduced SSS, namely, SSSc: 

𝑆𝑆𝑆𝑐 =
𝑆𝑆𝑆𝑜𝑏𝑠 − 𝑆𝑆𝑆𝑟𝑒𝑓

𝜎𝑆𝑆𝑆
(3) 

Where SSSobs is the retrieved SSS possibly corrected from systematic errors and SSSref 

is a reference SSS. We find that the distribution of SSSc is most often close to a Gaussian law 

with a standard deviation, STD, equal to 1 over the open ocean at distances further than 800 km 
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from the coast. Closer to the coast, STD(SSSc) deviates from 1. Hence, we estimate 

multiplicative factors, f(dcoast), to be applied to σ𝑆𝑆𝑆, for each instrument independently. Since 

part of this difference can be associated with representativity errors, we quantify STD(SSSc) in 

grid nodes with low spatio-temporal SSS variability, lower than 0.2, as derived from each 

instrument RMSD. In regions with greater SSS variability, it is likely that representativity errors 

will make the SSSc distribution non-Gaussian and generate outliers. Hence instead of using a 

criteria on STD(SSSc), we prefer to use robust STD, STD* that filters out outliers (STD*(x) is 

defined as the median(abs(x -median (x)))/0.67; STD*(x) is equal to STD(x) in case of a 

Gaussian distribution of x). We then adjust f(dcoast) so that STD*(SSSc) becomes close to 1 (see 

supporting information S6).  

 

2.4.3 Representativity uncertainties: 

We explain below how the representativity uncertainties that are reported in the Cr matrix 

are estimated. They originate from the different samplings of the various sensors and they are 

also called sampling uncertainties (Vinogradova et al., 2019).  

In the monthly OI, we neglect the representativity uncertainty for SMOS and SMAP, that 

corresponds to the transition from acquisition time (about one second) to monthly resolution (30 

days), because, in the majority of cases, SMOS and SMAP random uncertainties, on the order or 

larger than 0.5, are much larger than their representativity uncertainties. This might be an issue in 

highly variable regions, such as river plumes but there, the SSS variability is poorly known, and 

the frequent revisits of SMOS and SMAP in a month should alleviate this issue. Nevertheless, 

this will be included in a future version. For Aquarius, which has much smaller observational 

uncertainty and a poorer spatial resolution, the algorithm takes into account the representativity 

uncertainty. It corresponds to SSS variability at CCI spatio-temporal scales smaller/shorter than 

those resolved by the Aquarius fields. The aim is to increase the uncertainty associated with 

Aquarius data by a representativity uncertainty. We estimate it as the STD between SSS fields 

smoothed over 150 x 150 km2 and 50 x 50 km2 which is calculated off-line using GLORYS 

simulations. This representativity uncertainty depends on the month and increases in highly 

variable regions (see supporting information S7). In some parts of the ocean, SSS does not vary 

over large distances and durations: in this case, the representativity uncertainty tends towards 0. 
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Tests using this representativity uncertainty lead to too smoothed L4 SSS fields particularly in 

very variable areas suggesting that the representativity uncertainty is not large enough. This 

might be due, among other reasons, to a spatial variability of SSS underestimated in GLORYS 

simulations, especially given the limited 2011-2014 time period we considered, as well as to 

non-Gaussian distribution of SSS not handled by our method. In order to bypass these artifacts 

and to preserve small scale features detected by satellite data, possibly at the expense of an 

increased noise of L4 fields, the variability was spatially smoothed and doubled. This rather 

coarse methodology should be revised in the future. 

Representativity uncertainties are generally low (compared to observational uncertainties) 

for grid nodes in the open ocean but are large near river mouths, in rainy areas, and very 

dynamical regions (e.g. Gulf Stream). 

Close to the coast and near the river mouths, these uncertainties are difficult to assess to a 

large extent because of the high interannual variability that limits the validity of the statistical 

approach. These uncertainties can be greater than 1 and becomes dominant in the error budget as 

they are larger than SSS observational random uncertainties of original L2 satellite data.  

 

2.4.4 Systematic uncertainty: 

We describe below how bc is parametrized and we illustrate how it is retrieved together 

with SSS. 

Systematic uncertainties, the bc term in equation (2), that depend on the satellite 

measurements geometry, are retrieved in the course of the monthly OI. Only systematic 

uncertainties constant over the full time period, which have been shown to be a main source of 

contamination (e.g. (Kolodziejczyk et al., 2016)), are estimated in the frame of the OI. The 

amplitude of the systematic uncertainties depends strongly on the sensor passes (ascending or 

descending), on the satellite pixel location on Earth, and, on the acquisition geometry (e.g., beam 

number (for Aquarius), across-swath position in the field of view (for SMOS), aft or fore view 

acquisition (for SMAP)). We assume that land sea contamination biases are constant over time. 

This is a reasonable assumption given that temporal variations in Tb on land and sea are 

generally an order of magnitude smaller than the contrast between land and sea Tb. bc varies as a 

function of location, instrument and geometry of observation: 
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SSSobs(t, , ,X, xorb)=SSS0 (, ) + SSSrel (t, , ) – bc(, ,X, xorb)        (4) 

where the notations are as in equation 1 and X accounts for the geometry of observation, and can 

pertain to different instruments. X corresponds to fore or aft acquisition for SMAP, to across 

swath location for SMOS and does not vary for Aquarius. Actually, for a given xorb, a pixel at a 

(, ) location is always seen by the same Aquarius antenna; possible biases between the three 

Aquarius antennas acquisitions are corrected by bc estimated in different pixels.  In a given pixel, 

bc varies relatively to the other geometries with respect to a time invariant arbitrary reference 

SSS, SSS0 ( ). The residuals of SSSobs – SSS0 + bc correspond to the temporal variations of 

SSS, adjusted for biases so as to ensure consistency between the temporal variations of the SSS 

retrieved under various geometries from the various sensors; they are expressed relative to SSS0 

and are called SSSrel (see example on Figure 4ab). bc are derived through a least square 

minimization approach, and a series of iterations. SSS0 is taken as the mean of all satellite SSS. 

The largest bc occurs in the vicinity of land for SMOS data. At the end of the correction process, 

the corrected SSS, SSScorr, is derived from SSSobs+bc adjusted with a time-invariant shift, ΔSSSq, 

derived from an intercomparison of a quantile of the corrected SSS and ISAS SSS (Figure 4d): 

SSScorr= SSSobs+bc+ΔSSSq          (5) 

In regions with low SSS variability, ΔSSSq is derived from the 50% quantile (median) and the 

quantile is increased up to 80% in regions with high SSS variability, where SSS statistical 

distribution is skewed towards low values which are not well represented in ISAS fields, due to 

the Argo undersampling and ISAS smoothing. 
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Figure 4: Illustration of the self-consistency approach. Example of a grid point near the Amazon plume 

(48°W, 5.2°N) affected by land sea contamination, seen under various satellite geometry during ascending 

orbits (SMOS L2 SSS, left hand side of the FOV, green points; SMAP L2 SSS, aft antenna, red points; 

Aquarius L3 daily SSS, blue points). a) Satellite SSS before correction (SSSobs) and SSSref (black line) ; b) 

Satellite SSS after relative adjustment (SSSrel+SSSref) and SSSref (black line); c) Satellite SSS after relative 

adjustment (SSSrel+SSSref), weekly OI relative SSS (black) and ISAS SSS (light blue); d) Same as c) but 

after absolute calibration of the weekly OI SSS by adjusting the 80% quantile of the weekly OI SSS 

statistical distribution to that of the ISAS SSS.  
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3 Data and Methods: Validation of CCI L4 SSS 

Systematic validations of CCI L4 SSS with respect to various in-situ SSS have been 

performed by the SMOS Pilot-Mission Exploitation Platform (Pi-MEP). The full PI-MEP 

comparisons between weekly or monthly CCI+SSS fields and in-situ measurements are available 

on https://www.salinity-pimep.org/reports/mdb.html. In this paper, we summarize the most 

striking results, by considering comparisons with in-situ data from Argo profilers, Voluntary 

Observing Ships (VOS), and Research Vessels (RV).  

The differences between satellite and in situ SSS, ΔSSS, are characterized using 

commonly used L2 norm estimators, arithmetic mean and standard deviation of ΔSSS, STDD. 

However, representativity errors are likely to generate non-Gaussian statistical distribution of 

ΔSSS and outliers. In order to minimize these effects, median, STD* (see STD* definition in 

section 2.4.2) of ΔSSS, STDD*, and the interquartile range, IQR (IQR would be equal to 

1.35*STDD in case of a Gaussian distribution of ΔSSS) are also considered as they are expected 

to better represent satellite SSS errors. We also report the square of the Pearson correlation 

coefficient, r2, that indicates the proportion of variance contained in in-situ SSS that is explained 

by satellite SSS.   

To avoid the irregular spatial sampling of Argo matchups (Figure 5), we also report 

statistics of gridded collocated datasets. In order to keep a significant number of matchups per 

grid point, the Argo/CCI pairwise MDB is re-gridded on the CCI grid subsampled by a factor of 

7 both in latitude and longitude. It corresponds to an Equal Area EASE grid resolution of 175 

km. The same bi-weekly temporal sampling as CCI monthly product is conserved. The median 

value for each grid point of all pairwise MDB values is taken. 

We summarize below the characteristics of each dataset and the methodology used to 

build the matchup data bases (MDB) with CCI L4 SSS.  

3.1 Comparisons with Argo SSS: 

Argo is a global array of almost 4,000 free-drifting profiling floats that measure 

temperature and salinity of the upper 2000 m of the ocean. This allows continuous monitoring of 

the upper ocean conditions, with all data being transmitted by the GTS and made publicly 

available within 24 hours after collection. The array provides on the order of 100,000 

temperature/salinity profiles per year distributed over the global open ocean. Only Argo salinity 
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and temperature float data with a quality flag set to 1 or 2 and data mode set to real time (RT), 

adjusted (A), or delayed mode (DM) are considered in Pi-MEP. Argo floats that may have 

problems with one or more sensors appearing in the grey list maintained at the Coriolis/GDACs 

are discarded. Furthermore, Pi-MEP provides an additional list of ∼1000 ”suspicious” Argo 

salinity profiles that are also removed after visual inspection. The upper ocean salinity and 

temperature values recorded between 0 m and 10 m depth are considered as Argo sea surface 

salinities (SSS) and sea surface temperatures (SST). These data were collected and made freely 

available by the international Argo project and the national programs that contribute to it 

(ARGO, 2020). 

The Argo Match-up Data-Base (MDB) is produced from the previously described 

cleaned Argo dataset. The match-up co-localization temporal window search radius is chosen to 

select the closest match-up both in time and space, within the spatio-temporal resolution of the 

satellite fields, i.e. within a spatial radius of 12.5 km around each satellite grid node center and 

±7.5 days around the central date of each satellite time step for the monthly CCI L4 SSS 

products, and ±0.5 days for the weekly ones. If several satellite pixels are found to meet these 

criteria, the final satellite SSS match-up point is the closest in time from the in-situ data 

measurement date.  

3.2 Comparisons with SSS collected by ship thermosalinograph: 

Ship ThermoSalinoGraph (TSG) measurements are sampled at a few kilometres 

resolution along ship transects, hence, reducing the spatial representativity uncertainty in a 

satellite pixel with respect to Argo. These higher resolution ‘validation’ data are therefore very 

useful in very variable regions and the vicinity of land. In this study, we have considered the 

GOSUD-RV and the LEGOS-DM datasets located mostly at low to mid latitudes, which are very 

complementary to Argo in high SSS variability regions (Figure 5). 

The TSG-GOSUD-Research-vessel dataset corresponds to French research vessels, 

which have been collecting data since early 2000 as a contribution to the GOSUD program. The 

set of homogeneous instruments is permanently monitored and regularly calibrated. Water 

samples are taken daily by the crew and later analyzed in the laboratory. The careful calibration 

and instrument maintenance, complemented with a rigorous adjustment on water samples lead to 

reach an accuracy of a few 10-2 in salinity. This delayed mode dataset (Kolodziejczyk et al., 
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2020) is updated annually and freely available on https://www.seanoe.org/data/00284/39475/ . 

Adjusted values when available and only collected TSG data that exhibit quality flags 1 or 2 

were used. 

The TSG-LEGOS-DM dataset is delayed mode data derived from voluntary observing 

ships collected, validated, archived, and made freely available by the French Sea Surface Salinity 

Observation Service (Alory et al., 2015). Adjusted values when available and only collected TSG 

data that exhibit quality flags=1 and 2 were used. 

 

  

  
Figure 5: Temporal STD of SSS, in spatial boxes of size 1◦x1◦ as derived from ship TSG (LEGOS DM 

and GOSUD-Research-vessel) (a), and Argo (b). Number of ship-CCI matchups (c) and Argo-CCI 

matchups (d). Only match-up pairs with monthly CCI SSS are used to generate these maps. 

A spatial smoothing (running median filter with a window width of 25 km) is applied to 

TSG data before co-locating TSG with CCI L4 SSS, in order to reduce the spatial 

representativity error. 

Each TSG smoothed data is then co-located with all CCI L4 SSS data within a radius of 

12.5 km and +/-15 days (for the monthly CCI product) from the TSG data location. If several 

satellite SSS pixels meet these criteria, the final satellite SSS match-up pixel is selected as the 

CCI L4 SSS whose central time is closest to the TSG measurement date.   
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4 Results 

4.1 Overview of large scale SSS variability 

The ten year-long CCI L4 SSS time series include large scale SSS anomalies, as shown 

by quarterly SSS anomalies (Figure 6). These SSS anomalies are particularly large in the tropical 

and subtropical bands and are detected with great realism as indicated by ISAS derived SSS 

anomalies (see supporting information S8). This comparison is fully independent as no 

information about interannual SSS variability in ISAS is introduced in the CCI+SSS OI. In areas 

strongly affected by rain, the comparison must be considered cautiously as the vertical 

representativeness of Argo and satellite SSS can contribute to non-negligible measurement 

differences. We shortly recall below the extreme events which occurred during this period and 

contributed to the main large-scale patterns of SSS variability. In the Pacific ocean, the 2010 and 

2011 La Niña events generated strong anomalies in the western equatorial region (Hasson et al., 

2014) followed by positive anomalies under the South Pacific Convergence Zone in 2011 and 

2012. The 2015-2016 extreme El Niño event first generated large negative anomalies in the 

equatorial region (Gasparin and Roemmich, 2016; Guimbard et al., 2017) which extended from 

the eastern Pacific fresh pool to the west of the basin, and which were further advected towards 

~25°N (Hasson et al., 2018). In the tropical Indian Ocean, main large scale anomalies are 

associated with the Indian Ocean Dipole as first evidenced by (Durand et al., 2013). Also 

noticeable is the interannual variability of the large river plumes (Amazon, Congo, Niger…) 

where satellite datasets have been shown to better detect variability associated with strong river 

discharges than in-situ gridded datasets (Fournier and Lee, 2021; Grodsky and Carton, 2018), 

providing a useful tool for a better understanding of interannual variability related to interactions 

between fresh plumes and ocean circulation (Akhil et al., 2020). 
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Figure 6: Quaterly SSS anomalies derived from L4 CCI SSS. 

 

4.2 Comparisons with in-situ SSS: 

The statistics of the comparisons between monthly CCI SSS and in-situ SSS are reported 

in Table 3 to Table 6; the ones for weekly SSS are reported in the supporting information S9.  

Over the global Ocean, when considering all matchups of monthly (weekly) CCI SSS 

with Argo SSS, STDD* is 0.16 (0.17), STDD is 0.27 (0.28), r2 is 0.97 (0.97) (Table 3). When 

considering only match-up pairs acquired with no Rain Rate (RR) at in situ measurement time 

(RR=0 mm/h) collected at moderate 10 m height wind speed, 3<U10 <12 m/s, over SST>5°C, 

and away from coasts, > 800 km (case C1 in PI-MEP; Table 4), the STDD* decreases to 0.13 
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(0.14), the STDD to 0.16 (0.17) and r2 is 0.97(0.97). These metrics are amongst the best 

performance of satellite-Argo comparisons made at the PI-MEP (Table 3 & Table 4).  

Table 3: Statistics of monthly satellite SSS comparisons with Argo SSS (All matchups; notice that Aquarius 

L4 IPRC is adjusted monthly using Argo information) 

  

 

Table 4: Statistics of monthly satellite SSS comparisons with Argo SSS (only match-up pairs where 

RR=0 mm/h, 3<U10 <12 m/s, SST>5°C, distance to coast > 800 km; ; notice that Aquarius L4 IPRC is 

adjusted monthly using Argo information) 

 

The large decrease in STDD between All cases and case C1 is in a large part due to the 

increasing representativity errors between Argo and CCI fields in regions close to land, but could 

also reflect remaining errors related to land-sea contamination. The statistical comparisons with 
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Argo exhibit better performances with Aquarius L4 IPRC data likely because the latter are 

adjusted monthly with Argo SSS, contrary to CCI L4. With respect to the statistical indicators 

obtained with L3 SSS fields for each individual sensor, the STD and RMS differences with CCI 

L4 SSS are systematically reduced, because of the noise reduction associated with the OI 

method. r2 is much improved with respect to the Aquarius L3, especially when considering “All 

cases”. It is reduced when considering only open ocean data (0.95 with Aquarius weekly data 

instead of 0.97 with CCI weekly data) where variability at scales smaller than 100 km is 

significantly less than when the data are within a distance of 800 km from the nearest coastlines. 

Comparisons of CCI data with TSG data (Table 5 & Table 6) also show systematic improvement 

of all statistical indicators with respect to L3 SSS from individual sensors. The Aquarius L4 

IPRC SSS still outscores CCI SSS in term of STDD* but not for the STDD and r2 for all cases 

comparisons: the STDD of CCI SSS with respect to ship TSG SSS is 23% less and r2 is higher 

by 16% for monthly CCI L4 SSS compared to Aquarius L4 IPRC SSS (Table 5). This is likely 

because ship TSGs dominantly explore tropical and mid-latitudes regions (Figure 5) and better 

sense SSS spatial variability than Argo punctual measurements, in particular in case of extreme 

values, hence strengthening the better sampling of spatial SSS variability with CCI L4 SSS. 

  

Table 5: Statistics of monthly satellite SSS comparisons with VOS LEGOS DM TSG and GOSUD RV 

TSG SSS (All matchups)  
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Table 6: Statistics of monthly satellite SSS comparisons with VOS LEGOS DM TSG and GOSUD RV 

TSG SSS (only match-up pairs where RR=0 mm/h, 3<U10 <12 m/s, SST>5°C, distance to coast > 800 km)  

 

 

With a regular sampling (gridded collocated dataset), the CCI statistical indicators 

improve slightly: the STDD* is 0.15, the STDD is 0.24. This is likely because of the Argo 

oversampling in regions strongly contaminated by RFIs (e.g., along Asian coasts; Figure 5). 

The global pattern of SSS, its variability and the global SSS statistical distribution are 

consistently observed by both Argo and the CCI+SSS fields (Figure 7). The spatial patterns are 

especially coherent in the tropics. At higher latitudes, the CCI+SSS variability in very dynamical 

regions (Gulf Stream, Agulhas current, Rio De La Plata river plume) appears slightly smaller 

with CCI fields than it is with Argo individual measurements, possibly due to variability at 

smaller spatio-temporal scale than 50 x 50 km2 and one month. On the opposite, the CCI product 

variability is larger in regions with very stable SSS, e.g. in the Southern Ocean, likely a result of 

the increasing satellite SSS noise with decreasing temperatures. The statistical distribution of the 

CCI SSS is close to the one of Argo SSS (Figure 7, bottom left). The statistical distribution of the 

difference is much narrower than a Gaussian distribution derived from the STDD, and very close 

to that derived from STDD*, due to the presence of outliers at the edges of the distribution. 
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 Figure 7: 1st row: Temporal median of (left) CCI L4 and (right) Argo SSS. 2nd row: Temporal robust 

standard deviation of (left) CCI SSS and (right) Argo SSS; 3rd row: Temporal median (left) and robust 

standard deviation (right) of gridded pairwise SSS differences between CCI and Argo. 4th row: Histogram 

of all pairwise gridded data (left) Argo SSS in grey and CCI L4 v2 in light green (regions where Argo and 

CCI L4 histograms overlap are plotted in dark green); (right) CCI L4 v2 minus Argo difference, (blue line) 

normal pdf using computed mean and STDD, (orange curve) normal pdf using computed median and 

STDD*. 

It is interesting to consider the temporal evolution of the median, STDD and correlation 

coefficient, r, between CCI and Argo SSS (Figure 8 and Figure 9). STDD* is always less than 
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0.2 (Figure 8, 3rd panel). The zonal correlation (Figure 9, bottom) is very rarely less than 0.7 and, 

in the subtropics, it is most of the time larger than 0.95. r values lower than 0.95 in the tropics are 

attributable to representativity errors because of frequent vertical salinity stratification between 

5m depth and the sea surface in rainy regions and in river plumes. After mid-2011, the STDD 

decreases, and r increases, due to the inclusion of Aquarius SSS in the OI. Before mid-2015, the 

median difference varies seasonally pointing out some limitations of our method concerning both 

Aquarius and SMOS corrections. Our method focused on the correction of the largest biases: 

temporally constant biases mostly related to land sea contamination, and latitudinal seasonal 

biases observed on SMOS SSS. Some biases remain due to seasonal latitudinal variations of 

Aquarius SSS (Kao et al., 2018) which were neglected as they are an order of magnitude lower 

than the ones observed on original SMOS SSS. The remaining seasonal biases in SMOS data 

happen because they are not fully constant from year to year, likely because the sun 

contamination varied (the sun emissivity was maximum in 2014-2015) and the RFIs 

contaminations varied. For instance, the low r values around 25°N (Figure 9) is linked to 

intermittent RFI contamination in the Oman Gulf. After mid-2015, the seasonal variations of the 

median differences are much reduced and r is more stable (Figure 8 and Figure 9). This is 

possibly because the thermal model of the SMAP reflector was empirically adjusted using Argo 

temporal-latitudinal SSS profiles (Meissner et al., 2018). However, we also noticed that seasonal 

latitudinal biases in SMOS SSS and RFI contaminations are reduced after 2015 (not shown). 

Indeed, the largest differences are observed at high latitudes in cold waters where the sensitivity 

of radiometric L-band measurements to SSS is reduced, where the correction for roughness 

effects is very challenging, where the effect of the transitions into and out of the solar eclipse is 

the largest (in boreal winter above 47°N for SMOS descending orbits) and where sea ice possibly 

contaminates satellite SSS. Nevertheless, in the Southern Ocean (south of 50°S), the relatively 

low zonal r values are mainly due to the fact that the zonal SSS variability is lower there than at 

higher latitude. Actually, STDD and RMSD obtained with the CCI+SSS dataset in the Southern 

Ocean are of the same order as the global scale values, and in many cases a factor 2 to 3 better 

than the STDD and RMSD obtained with the original level 3 SSS (Supplementary Information 

S10).  
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Figure 8: (1st panel): SSS mean of gridded pairwise Argo in red and L4 CCI SSS in green; (2nd panel) 

Average of; (3rd panel) standard deviation of; the gridded pairwise SSS difference between CCI and Argo 

SSS. Blue and black dashed lines represent (2nd panel) the mean  and (3rd panel) the standard deviation. 

Orange and solid black lines represent (2nd panel) the median and (3rd panel) the robust standard deviation. 

The shading indicates the 95% confidence interval.(4th panel): Number of gridded pairwise Argo and L4 

CCI SSS and bar chars of SMOS, Aquarius and SMAP periods. 
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Figure 9: Global latitude-time Hovmöller of (top) the zonally averaged gridded pairwise CCI SSS 

difference with Argo SSS and (bottom) zonal correlation between gridded pairwise CCI and Argo SSS. 
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5 Discussion and Perspectives 

For the first time, SSS measurements from the three L-band satellite sensors have been 

merged to produce CCI L4 SSS time series over a decade over the global ocean. No spatial 

smoothing nor temporal relaxation to in-situ SSS have been introduced in order to keep as much 

as possible SSS interannual variability sensed by original SSS satellite measurements. On the 

other hand, the consistent signal between satellite SSS measured by the various sensors and 

under various geometries has been used to correct for systematic uncertainties. When compared 

with in-situ Argo SSS, the STDD* over the global ocean is 0.15 with monthly CCI products, the 

coefficient of determination is 0.97. These performances outscore the ones obtained with fields 

built from individual satellite measurements. The 50 x 50 km2 CCI L4 SSS product provides one 

of the most realistic measure of SSS in very variable regions. The potential of the CCI L4 dataset 

for revealing new insights has been demonstrated already by various scientific studies. Focussing 

on the interannual variability of the SSS in the Bay of Bengal and on the signature of the river 

plumes, Akhil et al. (2020) found that CCI L4 SSS performed better than SSS retrieved from 

individual satellite sensors. In the tropical Atlantic Ocean, the CCI L4 SSS allowed to study 

large seasonal and interannual variability in the respective roles of salinity and temperature on 

the development of the tropical instability waves (TIWs) and to show that, in the top 60-m of the 

ocean, salinity and temperature each contribute to about 50% of the TIWs perturbation potential 

energy (Olivier et al., 2020). CCI L4 SSS is also used to document events of freshwater transport 

off the coast of Suriname and French Guyana from the shelf to the open ocean in January-March 

since 2010, showing that such unexpected events occurred in 7 out of 10 years (Reverdin et al., 

2021). 

The specifications of the CCI fields have been defined based on a poll to which 54 

potential users have answered. Their requirements are, for a large part, in line with the ones 

formulated by other user groups and/or in other contexts, as summarized by the World 

Meteorological Organization (WMO) (https://www.wmo-

sat.info/oscar/variables/view/sea_surface_salinity), or by a former user requirement analysis for 

future microwave radiometers operating at low frequencies (mainly L-Band) (Kerr et al. 2019). 

All these studies require an accuracy between 0.1 to 0.3 at spatio-temporal scales greater than 

100km and one week (see https://www.wmo-sat.info/oscar/variables/view/sea_surface_salinity). 

While the spatial and temporal resolution requirements of the users and the previously mentioned 

https://www.wmo-sat.info/oscar/variables/view/sea_surface_salinity
https://www.wmo-sat.info/oscar/variables/view/sea_surface_salinity
https://www.wmo-sat.info/oscar/variables/view/sea_surface_salinity
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studies are compatible with the Global Climate Observing System (GCOS) Implementation Plan 

(GCOS-200 (214) ; https://library.wmo.int/doc_num.php?explnum_id=3417), the GCOS 

uncertainty and stability requirements of 0.01 and 0.001 per decade respectively are an order of 

magnitude more stringent. These values, the same as the ones for subsurface in-situ data, appear 

very small compared to the SSS variability and the spatio-temporal undersampling of this 

variability by in-situ near surface salinity measurements. Even with the increase of 

measurements associated with the full deployment of the Argo buoy network, in-situ near surface 

salinity measurements do not allow to reach such accuracy over all regions of the global ocean.  

The improved accuracy of the CCI L4 SSS with respect to individual sensor SSS 

accuracy has been made possible because individual sensor SSS products were already shown to 

detect consistent variabilities. For instance, D'Addezio and Subrahmanyam (2016) showed that 

SMOS and Aquarius detect high SSS variability associated with the Agulhas current consistent 

with Argo SSS, whereas Fournier and Lee (2021) showed very consistent SMOS and SMAP SSS 

in river plumes areas. Yu et al. (2021) and Bingham et al. (2021) found that SSS annual and 

semiannual amplitudes are quite well represented over the open ocean by the satellite SSS 

products considered for building the CCI L4 SSS.  

The methodology we have developed for building the CCI L4 dataset aims at preserving 

the SSS variability globally observed by satellite every few days in footprints integrated over 

typically 50 x 50 km2. The bias corrections are mostly based on the consistency between SSS 

signatures recorded by the various satellite datasets and are considering specific properties of 

each sensor measurements. External SSS information is considered only for calibrating the long 

term SSS absolute value and for estimating representativity uncertainties. The CCI+SSS 

approach is, therefore, upstream of the optimal interpolations which correct satellite SSS biases 

using in-situ SSS fields on a monthly basis or less, such as (Melnichenko et al., 2016). The 

CCI+SSS fields could be used as inputs to such method, as was done with SMOS data (Nardelli 

et al., 2016) or with SMOS and SMAP data (Kolodziejczyk et al., 2020).  

Nevertheless, there is still room for improving CCI L4 SSS, their uncertainties and 

validation. In particular, it would be interesting to reach better stability of the CCI L4 SSS time 

series. 

https://library.wmo.int/doc_num.php?explnum_id=3417
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In particular, seasonal latitudinal differences remain with respect to Argo salinities, 

mostly before mid-2015. After mid-2015, both the inclusion of SMAP SSS and reduced SMOS 

SSS latitudinal biases are responsible for the improvement. The reason why SMOS SSS are more 

stable after mid-2015 is not entirely clear, even though a change in the SMOS calibration mode 

(warm Noise Injection Radiometer (NIR) calibration after November 2014) likely contributes to 

this improvement. An uncertainty on the temporal variability of SMOS SSS arises from the 

current use of SSS climatology in the SMOS OTT region. The interannual variability of the 

median SSS over the OTT region, as determined from ISAS SSS, reaches +/-0.05 during the 

2010-2019 period which could be corrected. The model for the dielectric constant of seawater at 

L-band in cold water has also been shown to remain an issue (Boutin et al., 2021). This will be 

corrected in the future CCI L4 SSS release. Another source of uncertainty comes from the 

varying versions of ECMWF forecast fields used as priors (wind speed, SST) in the SMOS SSS 

retrieval. The use of the same model version for the reanalyzed fields, such as reanalyses like 

ERA5, could help stabilize the time series. Last, an ongoing SMOS reprocessing with a revised 

calibration is more stable (preliminary results) and the level 1 revised algorithm corrects part of 

the sun contamination at the high northern latitudes. For Aquarius SSS, remaining systematic 

differences have been found between ascending and descending orbits (Kao et al., 2018; 

Meissner et al., 2018). We have not considered correcting Aquarius SSS for systematic 

latitudinal seasonal biases before merging with SMOS SSS, but this should be envisioned in the 

future. Future studies should also pay more attention to systematic differences arising from the 

components of the radiative transfer models and of the prior datasets which differ between the 

processing chains of each of the three sensors.  

The development of this CCI L4 version 2 algorithm focused on low to mid latitudes 

regions where satellite SSS datasets were the most mature. Recent products (Brucker et al., 2014; 

Olmedo et al., 2018; Supply et al., 2020b; Tang et al., 2018) are nevertheless achieving a useful 

accuracy for detecting Arctic Ocean freshwater changes (Fournier et al., 2020), changes in river 

plumes extent (Vazquez-Cuervo et al., 2021) and their relations to wind atmospheric forcing 

(Tarasenko et al., 2021). Hence keeping the best potentialities demonstrated with the existing 

datasets associated with the three satellite missions at high latitudes will be another remaining 

main challenge for the future research and developments of CCI+SSS merging algorithms.  
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In this CCI product, no correction has been applied for rain effects on SMOS SSS 

products, because reliable rain estimates at hourly resolution as provided by IMERG, and as 

required by correction or sorting methods (Supply et al., 2020a; Supply et al., 2018), were not 

available before 2014, i.e., at the time of this CCI+SSS version 2 development. This effect might 

be non-negligible, even on monthly SSS estimates in the rainiest regions of the globe and is very 

likely responsible for zonal r lower than 0.95 in the tropics (Figure 9). In very rainy regions such 

as the Pacific ITCZ, Boutin et al. (2014) estimated that vertical representativeness mismatch 

might lead to differences between monthly salinity at a few meters depth and in the first-

centimeter depth of up to 0.5 at satellite pixel level (50x50 km2). Nevertheless, this effect is very 

patchy, and when averaged over all longitudes, it is mostly less than 0.1, except in very abnormal 

conditions such as in the second part of 2015, when it reached up to 0.15 in the latitudinal band 

affected by the freshest anomalies (Supply et al. Ph.D. thesis 2020). During this 2015 abnormal 

period, modelled salinities at 10 m depth and satellite SSS in the northern tropical Pacific Ocean 

also differed by this order of magnitude (Hasson et al., 2018). Thus, even though this effect did 

not hamper the detection of 2015 large scale SSS anomalies, and that an estimate of the 

freshening at 1 cm depth could also be of interest for air-sea interactions studies, it will be 

important in future CCI L4 SSS releases to provide an estimate of CCI L4 SSS corrected from 

the vertical representativeness effect.  

Validation with standard statistical indicators such as the ones used in this paper has 

inherent limitations. For instance, high-resolution fields might appear as having a higher RMS 

difference with respect to reference fields than lower resolution fields when representativity 

errors between reference fields and high-resolution fields are important. This effect contributes 

to some lower RMS difference computed with Aquarius than with CCI L4 SSS. We identified it 

by looking at r2, but methodologies such as the ones developed in the high resolution modeling 

community (Crocker et al., 2020) could be investigated to better quantify the accuracy of high-

resolution fields relative to lower resolution fields. Wavenumber spectral analysis, such as the 

one performed on sea surface height by (Dufau et al., 2016), should also be studied in order to 

validate dynamical features of SSS at various spatio-temporal scales.  

The characterization of SSS variability remains challenging as, on one hand, the 

combination of in-situ and satellite information remains to be improved (Stammer et al., 2021); 

and on the other hand, regions with high SSS variability such as the river plumes or strong 
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surface currents regions are the ones benefiting the most from the satellite information 

(Tranchant et al., 2019). The statistical distribution of SSS is not expected to be Gaussian 

(Bingham et al., 2002), especially in regions affected by fresh-water inputs, so that vertical, 

temporal and spatial representativity errors between in-situ and satellite measurements are not 

expected to be Gaussian. In particular, the SSS distributions are expected to be skewed towards 

low SSS values while the higher salinity parts of the SSS distributions are expected to vary much 

less. This leads us to adopt an adjustment of the full time series of CCI L4 SSS and ISAS SSS in 

fresh and very variable regions based on a high quantile of their statistical distributions. 

Nevertheless, the OI assumption of Gaussian errors used here might lead to some drawbacks in 

fresh regions such as river plumes or rainy areas, e.g., an artificial increase (decrease) of the 

uncertainty during periods with decreased (increased) variability that are very difficult to 

quantify given the sparseness of existing in-situ measurements. For the reasons outlined above, 

the validation of the SSS and its uncertainty estimate is very tricky and requires extended 

research to go beyond the relatively crude validation presented in this paper. 

Finally, we plan future CCI+SSS updates typically once every 18 months. In future 

versions of the CCI products, in addition to a global product, polar products are foreseen. We 

also plan to develop several regional products with longer time series than the one presented in 

this paper by extending the L-band based SSS back in time to 2002 over four large and warm 

river plume regions  (1) Mississippi; (2) Orinoco and Amazon; (3) Niger and Congo and (4) Bay 

of Bengal. For this, we will complement the observations provided by the suite of L-band 

sensors using AMSR-E lowest microwave frequency channel data (at 6.9 GHz=C-band and 10.7 

GHz=X-band) acquired in warm and strongly contrasted dynamical river plume regions. In such 

conditions, the small SSS signal contained in C-band radiometer data is improved by 

differentiating the vertical polarization surface reflectance between the C and X band, 

minimizing SST and wind effects on the data. Monthly-averaged SSS retrievals using such 

approaches have been already demonstrated from AMSR-E data for the Amazon plume region 

(Reul et al., 2009) and HY2-A data for the freshwater runoff near the Yangtze Delta (Song and 

Wang, 2017). In the future, new missions such as the Copernicus Imaging Microwave 

Radiometer (Donlon, 2020) and the SMOS-High Resolution mission (Rodríguez-Fernández et 

al., 2019) will benefit from the methods and approaches pioneered by the SSS-CCI activities and 

extend the climate record of satellite SSS into the 2040’s. 
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Introduction  

This supporting information provides information on the user survey, on SMOS data 

preprocessing, on the methodology used to build L4 SSS fields, to estimate SSS variability and 

level 2 SSS uncertainties used for the L4 SSS generation. It also illustrates maps of climatology of 

SSS variability taken as input in the OI, of Aquarius representativity uncertainties and of SSS 

anomalies computed with ISAS SSS fields. Last, it gives details about PIMEP validation statistics 

obtained for weekly SSS CCI fields over the global ocean and for monthly fields in the Southern 

Ocean. 

All the material presented here is not essential to the comprehension of the article but provides 

more detailed information to the reader. 
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S1. SSS data requirements for ocean and climate studies  

To create an SSS data set that satisfies the needs of climate users, both modeling and Earth-

observing scientists groups, users of satellite SSS data were consulted through various 

approaches: personally, via e-mail, mailing lists, or at meetings. They were invited to participate 

in web surveys and to specify their requirements for satellite SSS data. In our survey, we asked 

specific questions to find out the user’s priorities (typically higher resolution or improved 

uncertainty estimates).  

The survey (available on https://forms.gle/BVDroYrNpVvpxFJu9) gathered 54 answers from 

various countries of origin/fields (Table S1). Most responses were from the USA (28%), followed 

by Germany (19%) and the UK (17%). 

Table S1: Percentage of respondents to the online survey.   
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The questionnaire had four different parts, which were 1) User profile information, 2) User dataset 

requirements, 3) User dataset quality information, 4) Other user requirements or suggestions. 

 The majority of users requires global spatial coverage and temporal coverage from at 

least 9 years. The resolution requirements vary according to the studied phenomena. About 33% 

of respondents require data with a temporal resolution of 1-3 days, while, for 35% (28%) of 

respondents, weekly (monthly) averaged data are sufficient (Figure S1a). In terms of spatial 

resolution, 39% of respondents require data on a 0.25° spatial grid, while 28% of respondents 

require data on 1° spatial grid (Figure S1b). The majority of respondents would prefer a data 

product with high spatial and temporal resolution (weekly, 0.25°) on a regular latitude-longitude 

grid. Interestingly, a majority of users would prefer a product with high temporal and spatial 

resolution and a lower accuracy rather than working with a product with high accuracy but a 

lower resolution (Figure S1c). It was also found that the participants are aware of the data set 

limitations and have realistic expectations. 
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a)                            

 

 

 

b)            

 

c)                        

 

 

Figure S1: Percentage of required (a) temporal and (b) spatial resolution. c) Preferred SSS product based 

on the user’s spatial and temporal resolution needs.  

 

According to the survey, data should be combined to overcome the weaknesses of 

individual datasets. 50% prefer a combination of satellite and in-situ measurements, whereas 39% 

require the combination of data from different satellite sensors. However, in the CCI L4 SSS 

products described here, information from in-situ measurements was restricted to a minimum in 

order to work with measurements having homogeneous spatio-temporal resolution and sampling. 

By making available the multiple-sensor datasets on different spatial-temporal grids, the needs of 

different users can be met. The most common requirement is for L4 data (43%), directly followed 

by requirements for L3 (37%). Some potential users, mainly modelers or scientists investigating 

rapid SSS changes, require L2 (20%). L3 and L2 data are already available from the original data 

centers. L2 and L3 datasets including the CCI+SSS systematic corrections are kept as an internal 

CCI+SSS product. 

Uncertainty information for each SSS grid point has to be fully characterized, including 

random noise and systematic uncertainties of the applied adjustments. Information about bias 

(systematic uncertainty) correction is most commonly required by respondents. 46% of the 

respondents would prefer a quality information easy to use, such as a good/bad flag or the 

probability that a value is good/bad.  

User Requirement Survey results show the importance of contacting users and promoting 

communication between the users and potential users of CCI L4 SSS fields. Users will be 



 

 

5 

 

regularly contacted to refine requirements, as well as to check their satisfaction with the CCI L4 

SSS product. The recommendations regarding resolution, format, quality, and additional 

information derived from the user consultation are summarized in the User Requirement 

Document (URD available on https://climate.esa.int/en/projects/sea-surface-salinity/key-

documents/). 

S2. SMOS SSS data pre-processing 

We only consider SMOS SSS satisfying the following criteria (same notations as in (Boutin et al., 

2018)): normalized  of the retrieval,  N < 3, SSS random uncertainty, ESSS_L2 < 3, pixel within 

+/-400 km from the center of the swath, with small number of Tb outliers (level 2 fg_outlier flag), 

uncontaminated by ice (level 2 Dg _suspect_ice=0; this flag removes pixels in cold waters 

(SST<2°C) in which at least one Tb differs by more than 20K from modeled Tb. This is a very 

stringent filtering that is likely to be removed in future versions), with moderate to strong RFI and 

ice contamination as detected using SMOS retrieved pseudo-dielectric constant, Acard (|Acard 

smos – Acard mod|<2 and Acard>42; see more in (Supply et al., 2020b)), wind speed less than 16 

m/s, SSS between 2 and 45. 

Deficiencies in the dielectric constant model leads us to adjust SMOS SSS with a 

polynomial SST function derived from comparisons between Aquarius SSS (retrieved with  

similar dielectric constant model and atmospheric model as SMOS processing models), and Argo 

SSS (blue dotted curve in Figure 16 of (Dinnat et al., 2019)). A correction for seasonal latitudinal 

varying biases is also applied, similar to what is described in (Boutin et al., 2018): 

SSSobs(t, , ,xswath, xorb)=SSSsmosref (, ,m)–blat(,xswath,xorb,m)    

where SSSobs is the observed SSS, t is the time of the measurement, , and , are 

respectively the latitude and the longitude of the considered pixel over the ocean, xswath 

corresponds to the pixel location across the swath, xorb indicates the satellite orbit direction 

(ascending or descending), blat is a latitudinal correction that varies seasonally as a function of the 

month, m, and SSSsmosref is a reference SMOS SSS taken at a given xswath and xorb, chosen so that 

SSSsmosref interannual variability for the considered month and the corresponding pixel is the 

closest with that of in situ interpolated (In-situ Analysis System, ISAS) SSS after 5° latitudinal 

smoothing. blat is estimated through a least square minimization approach, and through a series of 

iterations. In order to avoid land-sea contamination, blat is derived from SMOS measurements 

further than 1200 km from coast except at the high northern latitudes where the distance to coast 

is reduced to 600km in order to get enough measurements. It is computed over 2012-2018 to 
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avoid large RFIs in the North Atlantic in 2010 and 2011. blat is then removed from all SMOS SSS 

whatever their distance to coast and before estimating the land-sea contamination correction. 

 

S3. Generation of level 4 SSS fields: detailed algorithm 

 

The algorithm is searching for solutions SSS(t) and bc that both minimize the cost function. Each 

grid node is processed separately. All available SSS data associated with the grid node considered 

are used by the algorithm. The problem is linear, so that to minimize the cost function, a classic 

Raphson-Newton descent is used. 

SSSobs is the observation vector that contains SMOS, SMAP and Aquarius data: 

SSSobs=(
SSSsmos
SSSaqua
SSSsmap

) 

The parameter vector is written: 

m=(

SSS
bc_smos
bc_aqua
bc_smap

) 

 

bc_smos, bc_aqua,bc_smap are the vectors that contain the biases for each type of acquisition 

(ascending/descending,dwell lines, etc) that can be grouped into a vector bc. We take as a priori 

bc=0 for all sensors and acquisition types. 

The vector parameter a priori is written: 

m_prior=(

SSSprior
0
0
0

) 

SSSprior is the initial SSS value, this value is constant over time. It is taken equal to the median 

of the observed SSS.   

We call H, the matrix of partial derivatives: 

 

H=

[
 
 
 
 
 
 
∂SSSsmos

∂SSS

∂SSSsmos

∂bc_smos

∂SSSsmos

∂bc_aqua

∂SSSsmos

∂bc_smap
∂SSSaqua

∂SSS

∂SSSaqua

∂bc_smos

∂SSSaqua

∂bc_aqua

∂SSSaqua

∂bc_smap
∂SSSsmap

∂SSS

∂SSSsmap

∂bc_smos

∂SSSsmap

∂bc_aqua

∂SSSsmap

∂bc_smap]
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where: SSSsensor=F(m)=SSS-bc_sensor 

with "sensor" = smos (SMOS), aqua (Aquarius) or smap (SMAP).  

This matrix is calculated on the observation points.   

The covariance matrices used are defined as follows: 

- Co the error matrix with data uncertainties derived,  

- Cm the matrix of SSS variability and a priori uncertainty on bc, 

- Cr the matrix of representativity uncertainties.  

Co=[
Co_smos 0 0

0 Co_aqua 0
0 0 Co_smap

] 

 

Cm=[
CSSS 0

0 Cbc
] 

 

CSSS is a time smoothing operator that contains the expected variability that is provided as 

auxiliary data. Thus, the covariance of the SSS that links two times t1 and t2 (either between two 

observational times or between an observational time and a sampled time of the OI) is written:  

CSSS(t1,t2)=sigSSS(t1)sigSSS(t2)exp(-
(t1-t2)2

ξ2
) 

with ξ=25 days and 6 days for monthly and weekly products respectively. "sigSSS" is 

interpolated temporally to t1 and t2 from seasonal variability. 

"Cbc" is a diagonal matrix that contains the a priori standard deviation of biases. This standard 

deviation is set at 4 pss.  

The Cr matrix corresponds to representativity uncertainties: 

 

Cr= [
Cr_smos 0 0

0 Cr_aqua 0
0 0 Cr_smap

] 

With, in CCI v1 and v2, "Cr_smos" and "Cr_smap" set to 0. 

In addition to measurement uncertainties, representativity uncertainties are added:  

Ct=Co+Cr 

Representativity uncertainties are reported monthly. They are interpolated temporally to the 

acquisition times.  

In this formalism the cost function is written for each grid node:  
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C(SSS,bc) =(SSSobs – F(m))T.Ct-1·(SSSobs – F(m)) + (m – m_prior)T.Cm-1·(m – m_prior) 

with: 

F(m)=SSS-bc 

We look for SSS_est and bc_est that minimizes C (SSS,bc). The solution of minimization is 

written: 

m_est=m_prior+Cm'∙𝐻𝑇 ∙ (H∙Cm∙𝐻𝑇+Ct)-1 ∙ (SSSobs-F(m_prior)) 

where "T" indicates the transpose operator, Cm is the matrix of variability operating in the 

observational space and Cm’ the matrix of variability between observational time and regular 

sampled time of the OI. 

 

 

Estimation of monthly SSS 

In order to estimate the monthly SSS, we proceed in 3 steps:  

1) a first estimation of the biases and time series of SSS is performed spatial grid node by spatial 

grid node, 

2) a 3-sigma filtering of the observed SSS in comparison with the estimated SSS is done. 

 The aim here is to identify any outliers against the returned SSS field. Outliers can be linked to 

intermittent RFIs. It is assumed here that stable RFI contamination can be corrected.  

3) a second estimate of SSS biases and time series after removing outliers. 

The relative biases used to derive monthly SSS are estimated taking the averaged SSS from the 

SMOS central across swath location as a priori.  

Estimation of weekly SSS 

To estimate the weekly SSS, the biases calculated at the monthly SSS generation step are frozen 

(it is assumed that the biases will not be better estimated from a weekly smoothing). We start 

from the monthly SSS as a priori value. We estimate the weekly fluctuations around this a priori, 

taking into account the acceptable SSS variability between weekly and monthly fields that was 

derived as a monthly climatology from the Mercator model. A 3-sigma filter is used in order to 

eliminate outliers that deviate too far from what is expected. Here, 𝜎 =

√𝑒𝑟𝑟𝑜𝑟_𝐿22 + 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2. The weekly SSS field estimate is done in a single step. 
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Absolute SSS correction 

At the end of the inter-sensor bias correction step, the salinities are obtained in relative values, i.e. 

they are known within one additive constant. This is corrected by adjusting a quantile of the CCI 

and ISAS SSS statistical distributions in each grid node over the period considered. The dynamics 

of SSS variability are not affected by this adjustment as only one constant value, grid node per 

grid node, is added for the entire period. In regions where SSS variability is low, we assume that 

high frequency variability better sampled by CCI than by ISAS does not affect significantly the 

median of the SSS and we therefore adjust the SSS median (50% quantile). In regions with larger 

variability, given that intermittent freshening is much more frequent than intermittent over-

salting, we expect the high part of the SSS distribution to be less affected by the higher frequency 

sampling by satellite than by ISAS. Hence in case of high weekly variability, we perform the 

calibration of CCI SSS on ISAS SSS, not by using the median but a higher quantile, in order to 

promote the calibration on the high SSS values. A high quantile is not used everywhere as in case 

the SSS error is greater than the variability, the high quantile of the satellite SSS is expected to 

differ (be higher) from the one of ISAS. 

If the variability is greater than 0.8, the quantile is taken as 80%. If the variability is between 0.6 

and 0.8, we take a quantile intermediate between 50% and 80% that varies linearly with the SSS 

variability. The map of quantiles used for the absolute calibration of the SSS is given in Figure 

S4.  
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Figure S3: Quantile map used for the SSS absolute calibration. x and y axis units in pixel number 

for longitude and latitude respectively.  

Estimation of SSS uncertainties 

The computation of theoretical uncertainties is obtained directly from the pseudo Hessian matrix. 

Cpost=Cm''-Cm'∙HT ∙ (H∙Cm∙HT+Ct)
-1

∙ H ∙ Cm′T 

Where single apostrophe (') indicates covariance defined between observational time and regular 

sampled time of the OI. Double apostrophe ('') indicates covariance acting over regular sampled 

time of the OI. 

The problem becomes into inverting the "H·Cm·HT+Ct" matrix over the entire period, which is 

rather computationally heavy. We therefore prefer to take a sliding window over a large time 

interval and invert the matrix on this time domain (the computation being similar to the one we 

could perform over the entire period). 

Note that the a posteriori uncertainty is necessarily lower than the variability introduced in the 

operator Cm. In the monthly case, this variability corresponds to the expected monthly 

fluctuations with respect to the whole time series. In the weekly case, the variability is calculated 

relative to the monthly field. The latter is generally lower than the monthly variability. The a 
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posteriori uncertainty obtained on the weekly fields should therefore be lower than that obtained 

on the monthly fields. However, this is only true if the weekly fields are derived from noise-

corrected monthly fields, which is not the case. The propagation of uncertainties on the weekly 

fields must therefore take into account uncertainties on the monthly field. Thus, for the monthly 

fields, we have: 

Cpostmonth=Cmmonth
′′ -Cmmonth

′ ∙HT∙(H∙Cmmonth∙HT+Ct)-1 ∙ H ∙ Cmmonth
′ T  

and for the weekly fields: 

Cpostweek=Cpostmonth+Cmweek
′′ -Cmweek

′ ∙HT ∙ (H∙Cmweek∙HT+Ct)-1 ∙ H ∙ Cmweek
′ T  

with "Cmmonth", the monthly variability and "Cmweek" the weekly variability relative to the 

monthly variability.  

The a posteriori uncertainties on the monthly and weekly fields are therefore obtained as follows: 

σSSSmonth=√diag(Cpostmonth) 

 

σSSSweek=√diag(Cpostweek) 

The number of outliers is also calculated on this same basis as well as the number of data 

available. The window sizes used are respectively +/- 30 days and +/- 10 days for monthly and 

weekly products respectively. 
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S4. Climatology of monthly SSS variability relative to the whole period SSS mean 

 

  

  

Figure S4. Examples of climatological maps of monthly SSS variability relative to the whole 

period SSS mean. a) February; b) May; c) August; d) November.  
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S5. Climatology of weekly SSS variability relative to monthly mean: 

  

  

Figure S5. Examples of variability of weekly SSS relative to monthly mean SSS taken as input 

information in weekly OI , from GLORYS reanalysis. A) February; b) May; c) August; d) 

November. 

 

 

 

 

 

S6. SSS random uncertainties of L2 satellite SSS 

 

The SMAP random uncertainties are derived from the std of the difference between SSS retrieved 

from fore and aft acquisitions (Figure S6.1, red). They are very close to a modeled error with a 

0.45K radiometric noise.  

The Aquarius random uncertainties are derived from comparisons of successive (7-days apart) 

Aquarius SSS measurements and are fitted with an SST dependency. 

  (Figure S6.1, blue).  

The SMOS random uncertainties are taken from the theoretical error multiplied by the Chi of the 

retrieval provided in SMOS L2 files which provide a reasonable estimate (Figure S6.2). 

In the above estimates, only pixels further than 800 km from coast have been considered in order 

to avoid land-sea contamination and very large representativity uncertainties. 
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Figure S6.1. SSS uncertainties derived for SMAP (red) and Aquarius (blue) as a function of SST.  

We check the reasonable behavior of estimated random errors, σ𝑆𝑆𝑆, by considering the 

statistical distribution of the centered reduced SSS, SSSc: 

𝑆𝑆𝑆𝑐 =(SSSobs-𝑆𝑆𝑆𝑟𝑒𝑓)/σ𝑆𝑆𝑆      ( 1 ) 

where SSSobs is the retrieved SSS possibly corrected from systematic uncertainties, SSSref is a 

reference SSS. Figure S6.2 shows an example obtained with SMOS data further than 800 km 

from coast compared with a 20-day SSS average. In that case SSSc is quite close to the expected 

Gaussian law. The slightly large value of std(SSSc) (1.25 instead of 1) is partly due to the 

presence of outliers.  

 

Figure S6.2. Example of the distribution of the centered reduced SSS for grid points in open 

ocean (further than 800 km from coast) in March 2012.  SSScorr represents SMOS L2 SSS 

corrected from systematic uncertainties. meanSSS is an estimation of the true SSS obtained by 

averaging SSScorr over a 20day period.  

Closer to the coast, std(SSSc) deviates more significantly from 1. Part of this difference can be 

associated with the variability of salinity. In order to verify this, we sought to quantify std(SSSc) 

in regions with low variability. For grid nodes with variability lower than 0.2 on SMOS-CCI SSS 
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rmsd, we compute a robust std, and we observe it to increase towards the coast. We apply the 

same process to SMAP and Aquarius data. We then derive multiplicative factors which are 

function to the distance to the coast, f(dcoast), that will be applied to σ𝑆𝑆𝑆 of each instrument 

(Figure S6.3), so that the reduced random variables normalized with the L2 random uncertainties 

multiplied by these factors, have a standard deviation equal to 1.    

 

 

Figure S6.3: Multiplicative factor applied to the σ𝑆𝑆𝑆 as a function to the distance to the coast. 
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S7. Aquarius representativity uncertainties  

 

  

  

 

Figure S7. Examples of representativity uncertainties between Aquarius and SMOS/SMAP 

(150km/7day Aquarius, 50km/30days), from GLORYS simulations. A) February; b) May; c) 

August; d) November. 
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S8. Maps of SSS anomalies derived from ISAS SSS 

 

Figure S8. Quarterly SSS anomalies derived from ISAS SSS (only grid points with 

PCTVAR<95% have been retained to avoid grid points very far from in situ measurements and 

almost only affected by climatological values). 
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S9. Statistics of weekly satellite SSS comparisons with in situ SSS 

Table S9.1. Statistics of weekly satellite SSS comparisons with Argo SSS (All matchups) 

 

 

 

Table S9.2. Statistics of weekly satellite SSS comparisons with Argo SSS (only match-up pairs 

where RR=0 mm/h, 3<U10 <12 m/s, SST>5°C, distance to coast > 800 km)  
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Table S9.3. Statistics of weekly satellite SSS comparisons with VOS LEGOS DM TSG and 

GOSUD RV TSG SSS (All matchups)  

 

 

 

Table S9.4. Statistics of weekly satellite SSS comparisons with VOS LEGOS DM TSG and 

GOSUD RV TSG SSS (only match-up pairs where RR=0 mm/h, 3<U10 <12 m/s, SST>5°C, 

distance to coast > 800 km) 
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S10. Statistics of monthly satellite SSS comparisons with in situ SSS in the Southen Ocean 

(south of 50°S) 

Table S10.1. Statistics of monthly satellite SSS comparisons with Argo SSS (All matchups) 

 
 

Table S10.2. Statistics of monthly satellite SSS comparisons with sea mammals SSS (All 

matchups; see a description of the dataset on https://www.salinity-pimep.org) 

 

 

 

 

 

 

https://www.salinity-pimep.org/

