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Abstract
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the statistical parameters of a discrete fracture network (DFN) are scarce. We present an inversion technique to infer two such
parameters, fracture density and fractal dimension, from cross-borehole thermal experiments data. It is based on a particle-
based heat-transfer model, whose evaluation is accelerated with a deep neural network (DNN) surrogate that is integrated into a
grid search. The DNN is trained on a small number of heat-transfer model runs, and predicts the cumulative density function of
the thermal field. The latter is used to compute fine posterior distributions of the (to-be-estimated) parameters. Our synthetic
experiments reveal that fracture density is well constrained by data, while fractal dimension is harder to determine. Adding

non-uniform prior information related to the DFN connectivity improves the inference of this parameter.
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Key Points:

« We present a Bayesian inference strategy to estimate Discrete Fracture Network
properties from thermal experiments.

+ A neural network surrogate is used to accelerate simulations of heat tracer mi-
gration, allowing for thorough exploration of the parameter space.

e Prior knowledge about DFN properties sharpens their estimation, yielding the
region in the parameter space where they lie with high probability.
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Abstract

Field-scale properties of fractured rocks play crucial role in many subsurface applica-
tions, yet methodologies for identification of the statistical parameters of a discrete
fracture network (DFN) are scarce. We present an inversion technique to infer two
such parameters, fracture density and fractal dimension, from cross-borehole thermal
experiments data. It is based on a particle-based heat-transfer model, whose evalu-
ation is accelerated with a deep neural network (DNN) surrogate that is integrated
into a grid search. The DNN is trained on a small number of heat-transfer model
runs, and predicts the cumulative density function of the thermal field. The latter
is used to compute fine posterior distributions of the (to-be-estimated) parameters.
Our synthetic experiments reveal that fracture density is well constrained by data,
while fractal dimension is harder to determine. Adding non-uniform prior information
related to the DFN connectivity improves the inference of this parameter.

1 Introduction

Characterization of fractured rock is a critical challenge in a wide variety of
research fields and applications, such as extraction, management and protection of
water resources. In fractured-rock aquifers, fractures can act as preferential flow paths
that increase the risk of rapid contaminant migration over large distances. While the
resource is generally stored in the surrounding matrix, fractures often determine the
spatial extent of the extraction area (the cone of depression or well capture zone).
Similar considerations play an important role in (oil/gas and geothermal) reservoir
engineering, carbon sequestration, etc.

Various characterization techniques provide complementary information about
fractured rocks. These typically rely on direct observation data, surface and borehole
data acquired with geophysical techniques, and borehole data collected during hy-
draulic and tracer experiments (Bonnet et al., 2001; Dorn et al., 2012, 2013; Demirel
et al., 2018; Roubinet et al., 2018). We focus on the latter because they provide in-
formation that is directly related to the hydrogeological structures that drive flow and
transport processes. For example, measurements of vertical flow velocities in a bore-
hole under ambient and forced hydraulic conditions are used to estimate the properties
of individual fractures that intersect the borehole (Klepikova et al., 2013; Paillet et
al., 2012; Roubinet et al., 2015), and piezometric data collected in observation bore-
holes allow one to evaluate features of complex fracture configurations (Fischer et al.,
2018; Le Goc et al., 2010; Lods et al., 2020). Chemical tracer experiments, typically
comprising the interpretation of breakthrough curves, yield information on the short
and long paths in the fractured rock; these characterize the discrete fracture network
(DFN) and matrix block properties, respectively (Roubinet et al., 2013; Haddad et al.,
2014).

Heat has also been utilized to identify the presence of fractures intersecting bore-
holes (Pehme et al., 2013; Read et al., 2013), to estimate their properties (Klepikova et
al., 2014), and to study flow channeling and fracture-matrix exchange at the fracture
scale (de La Bernardie et al., 2018; Klepikova et al., 2016). Most of these thermal
experiments employ advanced equipment, which deploys the active line source (ALS)
to uniformly modify water temperature in a borehole (Pehme et al., 2007) and the dis-
tributed temperature sensing (DTS) to simultaneously monitor the resulting tempera-
ture changes in observation boreholes (Read et al., 2013). Thermal tracer experiments
offer several advantages over their chemical counterparts. They do rely on neither
localized multi-level sampling techniques nor localized tracer injection in boreholes;
they interrogate larger area because heat conduction covers larger area than solute
diffusion; and they are not restricted by environmental constraints whereas chemical
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tracers may remain in the environment for a long time (Akoachere & Van Tonder,
2011; Ptak et al., 2004).

Without exception, the interpretation of hydraulic and tracer experiments in-
volves inverse modeling. The choice of a strategy for the latter depends on the prop-
erties of interest, the data considered, the models available to reproduce the data, and
the prior information about the studied environment. For canonical fracture config-
urations between two boreholes, (semi-)analytical and numerical models can be used
to the cross-borehole flow-meter experiments mentioned above to evaluate the trans-
missivity and storativity of the fractures that intersect the boreholes at known depths
(Klepikova et al., 2013; Paillet et al., 2012; Roubinet et al., 2015); the inversion consists
of the gradient-based minimization of a discrepancy between the model’s predictions
and the collected data. Large-scale systems with complex fracture configurations re-
quire the use of sophisticated inversion strategies designed for high volumes of data.
Most of such studies generate data via hydraulic and/or tracer tomography experi-
ments, and use the inversion to identify the geometrical and hydraulic properties of a
fracture network (Fischer et al., 2018; Le Goc et al., 2010; Somogyvéri et al., 2017).
Very few studies attempt to infer the statistical characteristics of a network, such
as fracture density and scaling exponents in distributions of length, orientation and
aperture (I. Jang et al., 2008; Y. H. Jang et al., 2013).

Yet, such statistics are necessary to quantify uncertainty in predictions of hy-
draulic and transport processes in fractured rocks. Their identification rests on ensem-
ble-based computation, which involves repeated solves of a forward model. Two com-
plementary strategies for making the inversion feasible for large, complex problems
are i) to reduce the number of forward solves that are necessary for the inversion
algorithm to converge, and ii) to reduce the computational cost of an individual for-
ward solve. The former strategy includes the development of accelerated Markov
chain samplers, Hamiltonian Monte Carlo sampling, iterative local updating ensemble
smoother, ensemble Kalman filters, and learning on statistical manifolds (Barajas-
Solano et al., 2019; Boso & Tartakovsky, 2020b, 2020a; Kang et al., 2021; Zhou &
Tartakovsky, 2021). The latter strategy aims to replace an expensive forward model
with its cheap surrogate/emulator/reduced-order model (Ciriello et al., 2019; Lu &
Tartakovsky, 2020a, 2020b). Among these techniques, various flavors of deep neural
networks (DNNs) have attracted attention, in part, because they remain robust for
large numbers of inputs and outputs (Zhou & Tartakovsky, 2021; Mo et al., 2020; Kang
et al., 2021). Another benefit of DNNs is that their implementation in open-source
software is portable to advanced computer architectures, such as graphics processing
units and tensor processing units, without significant coding effort from the user.

We combine these two strategies for ensemble-based computation to develop an
inversion method, which makes it possible to infer the statistical properties of a fracture
network from cross-borehole thermal experiments (CBTEs). To alleviate the high cost
of a forward model of hydro-thermal experiments, we use a meshless, particle-based
method to solve the two-dimensional governing equations for fluid flow and heat trans-
fer in DFNs (Section 2). These solutions, obtained for several realizations of the DFN
parameters, are used in Section 3 to train a DNN-based surrogate. The latter’s cost
is so negligible as to enable us to deploy a fully Bayesian inversion (Section 4) that,
unlike ensemble Kalman filter, does not require our quantity of interest to be (ap-
proximately) Gaussian. Our numerical experiments, reported in Section 5, show that
our approach is four orders of magnitude faster than the equivalent inversion based
on the physics-based model. These synthetic experiments also reveal that the CBTE
data allow one to obtain accurate estimates of fracture density, while the inference of
a DFN’s fractal dimension is less robust. Main conclusions of this study are summa-
rized in Section 6, together with a discussion of alternative strategies to improve the
estimation of fractal dimension.
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2 Models of fracture networks and transport phenomena

A forward model of CBTEs consists of a fracture network model and those of
fluid flow and heat transfer. These models are described in Sections 2.1, 2.2, and 2.3,
respectively.

2.1 Model of fracture networks

To be specific, we conceptualize a DFN via the fractal model of (Watanabe &
Takahashi, 1995),

N, =Cr~ P,

that postulates a power-law relationship between the number of fractures, N,., and
their relative length r (normalized by smallest fracture length rg), in a domain of
characteristic length L. The parameters C' and D denote fracture density and fractal
dimension, respectively. If a network’s smallest fracture has length rg, then the number
of classes in the WT model is Ny = int(C/rf) and the relative length of fractures in
the ith class is r; = (C/i)"/P (i = 1,...,Ny). This formulation is equivalent to
the model (Davy et al., 1990) that expresses fracture density n(l, L) = aLPI~% in
terms of fracture length ! and domain size L, if one sets « = CD/Ny, D = D, and a =
D+1. The latter model reproduces self-similar structures observed in numerous studies
(Sahimi, 2011, chapter 6.6.8), allowing one to represent realistic fracture networks with
the minimal number of parameters.

To generate a synthetic data set, we consider fractures arranged at two preferred
angles 6; = 25° and 6, = 145° in a 100 x 100 m? domain. Fracture centers are
randomly distributed over the whole domain, and their aperture is set to 5 x 104 m,
as in (Gisladottir et al., 2016). The resulting DFN is simplified by removing the
fractures that are not, directly or indirectly through other fractures, connected to the
domain’s perimeter. Fluid flow and heat transfer are modeled on this fracture network
backbone.

2.2 Model of fluid flow in fracture networks

We deploy a standard model of single-phase steady-state laminar flow in a DFN,
which assumes the ambient rock matrix to be impervious to fluid. The flow of an
incompressible fluid is driven by a hydraulic head gradient, J, due to constant hydraulic
heads imposed on the left and right boundaries, the top and bottom boundaries are
impermeable.

The fracture extremities and intersections of the DFN, whose construction is
detailed above, form the network nodes and a fracture connecting two adjacent nodes
are referred to as the network edge. Flow rate in each edge is computed as the cross-
sectional average of the Poiseuille velocity profile. Thus, the flow rate, u;;, of flow from
node i to node j is u;; = —b3;/(12v)Ji;, where v is the fluid’s kinematic viscosity, b;;
is the aperture of the fracture connecting the nodes i and j, and J;; = (h; — h;)/l;; is
the hydraulic head gradient between these nodes with [;; the distance between these
nodes. The hydraulic heads at the DFN nodes, h; (i = 1,2,...), are computed as
the solution of a linear system built by enforcing mass conservation at each node:
ZkeNi briuk; = 0, where N is the set of the neighboring nodes of node i (see, e.g.,
(Gisladottir et al., 2016; Zimmerman & Tartakovsky, 2020) for details).

2.3 Model of heat transfer in fractured rock

The DFN backbone constructed in Section 2.1 is further pruned by removing the
edges representing the fractures with negligible flow velocities, e.g., u;; < 10719 m/s
used in the subsequent numerical experiments. Convection in the resulting fracture
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network and conduction in the host matrix rock are modeled via the particle-based ap-
proach (Gisladottir et al., 2016). The computational cost of this method is significantly
lower than that of its mesh-based alternatives because it discretizes only the fracture
segments, while the matrix is not meshed. The particle displacement is associated with
conduction and convection times in the fracture and the matrix, respectively. The lat-
ter time is defined from analytical solutions to a transport equation for fracture-matrix
systems, and truncated according to the probability pin, for the particle to reach a
neighboring fracture by conduction through the matrix. Complete mixing is assumed
at the fracture intersections, implying that the probability for a particle to enter into
a fracture depends only on the flow rate arriving at the considered node.

CBTEs are simulated by uniformly injecting Ny, particles on the left side of the
domain and recording their arrival times on the right side. The cumulative distribution
functions (CDFs) of these arrival times describe the changes in the relative temperature
T* observed at distance L from the heat source, assuming complete mixing in the
vertical direction at the observation position. The relative temperature is defined as
T* = (Tobs—Tin)/(Tinj — Tin), where T, is the initial (at ¢t = 0) fluid temperature in the
system, and Ti,; and T,ps the temperature at the injection and observation positions,
respectively (Gisladottir et al., 2016).

3 Neural network model formulation

We define a NN surrogate for the physics-based model described in Section 2
with a map,
f:(C,D)— F(z), F(z)=P(X <z), z€eR,

where (C, D) are the fracture network parameters, and F'(x) is the CDF of a particle’s
arrival time X, i.e., the probability that X does not exceed a certain value x. Since the
nonzero probability space of F(z) varies for different simulations (Gisladottir et al.,
2016; Ruiz Martinez et al., 2014, and Section 5 below), we find it convenient to work
with the inverse CDF (iCDF) F~!. Because any CDF is a continuous monotonically
increasing function, the iCDF (or quantile CDF) is defined as

iCDF : Q(p) = F~(p) = min{zx € R: F(z) >p}, pec(0,1).

If Q(p) is discretized into a set of Nj quantiles {p1,...,pn, : 0 <p1 < -+ <pn, <1},
then

iCDF = {Q(pl)v"'aQ(ka)}v Q(pl) << Q(ka)'

Consider a fully connected neural network (FCNN)

NN:mFCﬂ)a

that describes the forward surrogate model (2)—(4). The vector m, of length N,
contains the parameters to be estimated (in our problems, these parameters are C
and D, so that N,, = 2); and the vector a, of length Ny, contains the discretized
values of the iCDF computed with the model NN. This model is built by defining
an Ng X N,, matrix of weights W, whose values are obtained by minimizing the
discrepancy between the vectors d and the vector d comprising the output of physics-
based model from Section 2. Since the relationship between m and d is likely to be
highly nonlinear, we relate m and d via a nonlinear model d = o(Wm), in which
the prescribed “activation” function o(-) operates on each element of the vector Wm.
Commonly used activation functions include sigmoid functions (e.g., tanh) and the
rectified linear unit (ReLU). The latter, o(s) = max(0, s), is used in this study due
to its proven performance in similar applications (Agarap, 2018; Zhou & Tartakovsky,
2021; Mo et al., 2019).
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The nonlinear regression model d = o(Wm) = (6 o W)(m) constitutes a single
layer in a NN. A (deep) FCNN model with N; layers is constructed by a repeated
application of the activation function to the input,

d=NN(m;0) = (on, o Wy,_1)0...0 (020 Wy)(m).

The parameter set @ = {W1,..., Wy, _1} consists of the weights W,, connecting the
nth and (n + 1)st layers with the recursive relationships

S1 = (0'2 o Wl)(m) = UQ(Wlm),

S; = (Ui—i-l o Wi)(si—l) = Uz’—i—l(Wz’Si—l)a 1= 2, sy Nl -2

d = (o5, 0o Wy,—1)(sn,—2) = o, (W,—18N,-2).
Here, s; is the vector of data estimated in the ith layer; W1, W; (i = 2,..., N;—2) and
W, 1 are the matrices of size dy X Ny, d; xd;—1 and Ngxdpy,_2, respectively; and the
integers d; (i = 1,...,N; — 2) represent the number of neurons in the corresponding

inner layers of the NN. The fitting parameters © are obtained by minimizing the
discrepancy (or “loss function”) £(d;,d;) between d and d,

Naata
©® = argmin Z L£(d;, dy), d; = NN(m;; ©),
® =

where Ngata is the number of forward runs of the physics-based model. We use the
stochastic gradient descent optimizer (Ruder, 2016) to carry out this step, which is
commonly referred to as “network training”.

A choice of the functional form of the loss function L affects a NN’s perfor-
mance. Studies on measuring quantile divergence, especially for discrete inverse dis-
tribution, are scarce. Measures of the distance between probability distributions, such
as the Kullback-Leibler (KL) divergence (Kullback, 1997) and the Hellinger distance
(Le Cam, 2012), might or might not be appropriate for inverse distributions. Thus,
while the KL divergence is a popular metric in Bayesian inference (Boso & Tartakovsky,
2020b) and generative NNs (Kingma & Welling, 2013; Goodfellow et al., 2014), its
asymmetry precludes its use in (7). Consequently, we quantify the distance between
two discrete distributions P = (p1,...,pn,) and P' = (pi,...,ply,) in terms of the
Hellinger distance,

Ny 1/2
£t = S vP - VPl = (33 (-

i.e., solve the minimization problem (7) with £ = L (Q, Q).

To reduce the training cost and improve the NN’s performance, we specify ad-
ditional features to refine the initial guess of input parameters. The relationships
between the fractal DFN parameters in Section 2.1, suggest the choice of C*/P C—P
and C'D (which are equal to 7;i*/?, ro/Nf and aNy, respectively) and 1/D as extra
input features. Given the pair of initial parameters (C, D), the resulting full set of
parameters for the NN is

myx = (C,D,CYP ,c=P ¢D,1/D)".

4 Inversion via Bayesian update

According to the Bayes rule, the posterior probability density function (PDF)
Jmja of the parameter vector m is computed as

fm(rh)fdlm(rh; a)
fa(d)

(6a)

(6b)
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where d and m are the deterministic coordinates of random variable d and m, re-
spectively; fm is the prior PDF of m; fqm is the likelihood function (i.e., the joint
PDF of the measurements conditioned on the model predictions, which is treated as a
function of m); and the normalizing factor fq ensures that fuq integrates to 1.

We take the likelihood function fqm to be Gaussian,

1Ll (rh»],

O 8
;d —_——
fd|m(ma ) 9 0'3

1
= ———ex
oqV 2w P

This PDF has the standard deviation oq and is centered around the square root of the
Hellinger distance between the data d predicted by the likelihood and the data g(rm)
provided by the forward model g. Addition of prior knowledge of m to the likelihood
function is done within the standard Bayesian framework by assuming that the prior
PDF is as important as the data. We explore how the posterior PDF can be improved
by adjusting the impact of the prior. To do so, we treat the latter as a regularization
term with a tunable hyper-parameter v that corresponds to the weight associated with
the prior, enabling us to reduce the impact of the prior when its knowledge does not
seem to be persuasive. The resulting posterior PDF is formulated as

fm\d(ﬁl; a) X e_H(ﬁ])v H(m) = Hops(m) + ’YHreg(fh)?

where Hops(m) = —log( fajm (m; d)) and H,ee(1h) = — log(fm(th)) are the negative
log-likelihood and log-prior distributions, respectively. This yields

Fanja (103;d) o fajem (105 d) (fra (@), 7 € [0,1].

This posterior PDF is computed via the following algorithm.

1. The domains C and D of values for the parameters C' and D are discretized with
N¢ and Np nodes, respectively. The result is a No x Np regular grid for the
parameter pair (C, D) with coordinate vectors m;; = (C;, D;)" (i =1,..., N¢,
j=1,...,Np).

2. The iCDFs (4) are computed with the forward model g for all pairs m,;.

3. The negative log-likelihood Hops(m) = — In(fqjm(h; d)) is computed via (11),
with the data g(m) provided by model g in Step 2.

4. The posterior PDF fi, 4 is computed via (13) by adjusting the weight v assigned
to the prior knowledge. (The case v = 0 corresponds to a uniform prior for m,
where the unnormalized posterior PDF is equivalent to the likelihood.)

This brute-force implementation of Bayesian inference is only made possible by
the availability of the FCNN surrogate, whose forward runs carry virtually zero compu-
tational cost. In its absence, or if the number of unknown parameters were large, one
would have to deploy more advanced Bayesian update schemes such as Markov chain
Monte Carlo (Zhou & Tartakovsky, 2021; Barajas-Solano et al., 2019) or ensemble
updating methods (Mo et al., 2019, 2020).

5 Numerical experiments

The synthetic generation of DFNs and breakthrough times, tpreax, for a heat
tracer is described section 5.1. Generation of the data for CNN training is described
in section 5.2, with the construction of a CNN surrogate for the PDE-based model
(section 2) reported in section 5.3. In sections 5.4 and 5.5, we use this surrogate to
accelerate the solution of the inverse problem of identifying the DFN properties from
the breakthrough-time data.

(12)

(13)



269 5.1 Synthetic heat-tracer experiment

270 Our synthetic heat tracer experiment consists of injected hot water with tem-
) perature T, at the inlet (z; = 0) and observing temperature changes at the outlet
272 (x1 = L). The goal is to infer the statistical properties of a DFN, C and D, from
213 a resulting breakthrough curve. A fracture network with known values of C' and
274 D serves as ground truth, with possible measurement errors neglected. Consistent
275 with (Gisladottir et al., 2016), we set the externally imposed hydraulic gradient across
276 the simulation domain to J = 0.01 and the thermal diffusion coefficient in the matrix

orr t0 Diperm = 9.16 x 1077 m?/s.

o18 5.2 Generation and analysis of synthetic data

279 To generate data for the CNN training and testing, we considered the WT frac-
280 ture networks (1) with C' € [2.5,6.5] and D € [1.0,1.3]. These parameter ranges are
281 both observed experimentally (Main et al., 1990; Scholz et al., 1993) and used in pre-
282 vious numerical studies (Gisladottir et al., 2016; Watanabe & Takahashi, 1995). The

283 parameter space [2.5,6.5] x [1.0,1.3] was uniformly discretized into Ny, = 10* nodes,
284 i.e., pairs of the parameters (C,D); with i = 1,..., Ngm. The number of injected
25 particles, Npart, Tepresenting the relative temperature of the injected fluid during a

286 CBTE, Ty, varied between 10% and 10%.

0.8 0.8 Npart = 100 0.8 Npars = 100

0.69 0.69 0.6 9

041 041 0.4

0.2 021

(C,D) = (3.67,1.14)

(C,D) = (3.58,1.21) 001 4
16 19 21 24 27 30 16 19 22 24 27 30 15 18 21 24 27 30

(C, D) = (5.67,1.24)

Npare = 1000

0.8 Npare = 1000 0.8 0.8 Npare = 1000

0.6 9 0.6 1 0.6

Cumulative distribution function, F(In tpreak)

0.4 0.4 0.4

0.24 0.24 0.2
Npart = 1000, Ngjs = 2

(C, D) = (5.67,1.24)

(C,D) = (3.67,1.14) 00| 4

(C,D) = (3.58,1.21) 0.0
15 1'9 24 28 3‘2 37 15 1'9 2‘2 2‘6 2‘9 33 15 ]‘8 21 24 27 30

Logarithm of breakthrough time, Intpreak

Figure 1. Representative CDFs of the logarithm of breakthrough times (in seconds) of Npart
particles, F'(Intpreak), for 20 realizations of the DFN characterized by a given combination of the
DFN parameters (C, D). Each colored curve corresponds to a different random realization; in all

simulations, we set pim = 0.5.

287 In addition to Npart, the simulation time and accuracy of each forward model run
288 are largely controlled by the number of elements used to discretize a fracture, which
289 is defined by the parameter pj, introduced in section 2.3. The simulation time ¢,
290 refers to the time (in seconds) it takes to estimate the CDF of breakthrough times for
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one random DFN realization and one of the Ny, = 10* pairs of the parameters (C, D).
We found the average tsim not to exceed 1 s if either N,a¢ = 100 or the fracture is
not discretized (Table 1 of the Supplemental Material); the average is over 20 random
realizations of the DFN obtained with different random seeds for each parameter pair
(C, D).

1.04 1.0 1.0
é 0.84 (C,D) = (3.67,1.14) 0.8 (C,D) = (3.58,1.21) 0.8 1 (C,D) = (5.67,1.24)
3
-~
E]
= 0.6 0.6 0.6
<%
o
a 04 0.4 0.4
O
g
§ 021 Npart = 021 Npart = 021 Npart =
— 1000 — 1000 — 1000
004 — 100 004 — 100 001 — 100
15 19 24 29 33 38 15 19 22 26 30 33 15 18 21 24 27 30

Logarithm of breakthrough time, In tpyeak

Figure 2. Mean CDFs of the logarithm of breakthrough times (in seconds) of Npart particles,

F(Intpreak ), averaged over the corresponding DFN realizations in Figure 1.

Representative CDFs of breakthrough times of Ny, particles, in each of these
20 DFN realizations, are displayed in Figure 1 for three pairs of the DFN parameters
(C, D). The across-realization variability of the CDF's is more pronounced for Npa, =
10% then 10 particles, and visually indistinguishable when going from Nyt = 103
to 10* particles (not shown here). Likewise, no appreciable differences between the
CDF's computed with pj, = 0.5 and 0.2 were observed. Finally, when the random-seed
effects are averaged out, the resulting breakthrough-time CDFs for Ny, = 10 and
10% are practically identical (Figure 2). Based on these findings, in the subsequent
simulations, we set Npar, = 100 and pjim = 0.5 in order to obtain an optimal balance
between the computational time and accuracy.

27
1.0 . C.0) .
—(3.67,1.14)
0.8 b I (3.58,1.21)
% , |- e 4
Soed 1 Kol — (563,103 M
£ ] (C,D) = % —— (2.96,1.16) Vs /
& ——(367.1.14) | % mem (201,113) T
ol 044 0 L. (3.58,1.21) E 201 o
A - . (5.67,1.24) .
© 0 —  (5.63,1.03) 5
—— (2.96,1.16)
004 —em (2.91,1.13)
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Figure 3. CDFs (left) and corresponding iCDFs (right) of the thermal breakthrough times for

a single realization of the six DFNs characterized by six pairs of the parameters (C, D).



306 For some parameter pairs (C, D), not every DFN realization (defined by the ran-

307 dom seed) hydraulically connects the injection and observation boundaries. Such hy-
308 draulically disconnected networks are not suitable for our flow model (see section 2.2).
300 However, in our numerical experiments, there were at least 10—and, in the major-
310 ity of cases, 19—connected fracture networks for each (C, D) pair (Figure 2 of the

su Supplemental Material).

312 The final step in our data generation procedure consists of converting the esti-
313 mated CDFs F into corresponding iCDFs F~! (Figure 3). The latter form the data
314 set d, different parts of which are used to train a CNN and to verify its performance.
315 5.3 CNN training and testing

316 The data generated above are arranged in a set {myn;, dz}fvgln with Ngjm = 10%

a7 and myy defined in (9). We randomly select 8 - 10® of these pairs to train the FCNN
318 NN in (5), leaving the remaining 2 - 10® for testing. The output data d come in
319 the form of iCDFs, i.e., non-decreasing series of numbers. Since a NN model is not
320 guaranteed to reproduce this trend, we use the hyper-parameter tuning method (Liaw
321 et al., 2018) to perform the search in the hyper-parameter space specified in Table 1.

Table 1. Hyper-parameter search space defined by the number of layers, the number of neu-
rons in each layer, the optimizer names, and (logarithm of) the learning rate. These parameters
are uniformly sampled from either a discrete set of values, U{,-,...,-}, or an interval, U[-,].
The RMSprop optimizer (Graves, 2013; Hinton et al., 2012), rms; the stochastic gradient descent
optimizer (Sutskever et al., 2013), sgd; the Adagrad optimizer (Duchi et al., 2011) ada; and the
Adam optimizer (Kingma & Ba, 2014), adam, slightly differ from each other when performing the

parameter gradient descent during the NN training.

Parameter name Search region

Number of layers Uu{3,4,5,6}

Number of neurons  U{22,23,...,2%}
Optimizer name U{rms, sgd, ada, adam}
Learning rate, I, logyo(lr) ~ U[—4, —2]

322 The hyper-parameter search involved 2500 trials; in each trial, the subset of
323 data {myy;,, d;}3%° were randomly split into a training set consisting of 6400 pairs
324 {mnx;,,d;} and a validation set comprising the remaining 1600 pairs {mnny;,,d;}. For
35 each epoch, the 6400 training pairs were used to optimize the NN parameters, and the
326 NN accuracy is evaluated on the validation set. Each trial used one of the optimizers
327 in Table 1 for at most 103 epochs; the trial was stopped if the validation loss did not
328 decrease for 10?2 epochs. After completion of all the trials with these rules, the trial
329 with the smallest validation loss was saved. The optimal FCNN, described in Table 2,
330 has 6 layers between the input and output layers and is obtained using the Adam
331 optimizer with the Adam optimizer coefficients 5 = (0.9,0.999) to perform gradient
33 descent. This trial is associated with a learning rate [, = 0.00403 and the averaged
333 Hellinger loss of 0.0827 on the validation set. This FCNN was further trained with
334 a learning rate that reduces on plateau of the validation performance to further fine-
335 tune the model parameters for another 10% epochs; the ending testing Hellinger loss

336 is 0.0652 and the total training time is 37340 seconds. Figure 4 depicts the FCNN
337 predictions of the iCDF's of the particle breakthrough times in DFNs characterized by
338 different parameter-pairs (C, D) not used for training. These predictions are visually
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351

352

353

354

indistinguishable from those obtained with the physics-based model g(m) described
in section 2.1.

Table 2. The best-trial NN architecture consists of six hidden layers, FC; (i = 1,...,6), with

the corresponding weight matrix W; and layer output s; (i = 1,...,6) in (6). Bias parameters

are added to each layer, but not shown in this table.

Layer Weights Layer output

Input - 6

FC, W, :256 x 6 s1 : 256
FCy W, : 64 x 256 So @ 64
FCy W3 : 512 x 64 s3 : 512
FC4 W4 1 256 x 512 Sq : 256
FCy W5 : 32 x 256 S5 : 32
FCs Wy @ 128 x 32 sg : 128
Output Wy :50 x 128 50

r] q
@ Physics-based model 26 ® Physics-based model @ Physics-based model
261 4

FCNN surrogate FCNN surrogate ¢ 26 FCNN surrogate
247

24 4 24

[ ]
L]
[ ]
[ ]
[
‘F 221
P

22 A 221
&

111 tbreak (F)

20 209 20 1

18 A 18 4 f : 18 -
& (C,D) = (3.32,1.22) &
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

CDF, F

@ (C, D) = (2.83,1.02) (C,D) = (5.71,1.16)

Figure 4. Physics-based and FCNN predictions of the iCDF's of the particle breakthrough

times in DFNs characterized by different parameter-pairs (C, D) not used for training.

5.4 Bayesian inversion without prior information

We start with the Bayesian data assimilation and parameter estimation from
section 4. Taking the uniform prior, v = 0 in (13), and assimilating the Ny, = 10%
candidates provided by the physics-based model g, this procedure yields the posterior
PDFs of C and D shown in Figure 5. While this non-informative prior indicates that
all values of the parameters (C, D) are equally likely, the sharpened posterior correctly
assigns higher probability to the region containing the reference (C, D) values. The
relatively small number (N, = 10%) of the forward solves of the physics-based model
g manifests itself in granularity of the posterior PDF maps.

Significantly more forward model runs are needed to further sharpen these pos-
terior PDFs around the true values of (C,D) and to reduce the image pixelation.
Generating the significant amounts of such data with the physics-based model is com-
putationally prohibitive. Instead, we use 107 additional candidates, corresponding to
a 10% x 103 mesh of the parameter space, provided by the FCNN surrogate. Figure 5
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£

© 2570 2.023 2.692

] 2.294 1.813 o reference 2.400
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1.467 1.183 1.524

1.192 0.973 1.232

0.916 0.763 0.940

0.641 0.553 0.648

0.365 0.343 0.356

0.089 0.133 0.064

25 35 45 55 65 25 35 45 55 65

Fracture density, C

Figure 5. Examples of posterior PDF's of the DFN parameters C' and D, for three experi-
ments defined by the reference parameter values (blue circles). These PDF's are computed via
Bayesian assimilation of either 10* runs of the physics-based model (top row) or additional 107

runs of the FCNN surrogate (bottom row).

demonstrates that assimilation of these data (forward runs of the cheap FCNN surro-
gate) further reduces the band containing the unknown model parameters (C, D) with
high probability. Generation of such large data sets with the physics-based model is
four orders of magnitude more expensive than that with the FCNN.

Table 3. Computational cost of the Bayesian inversion using the physics-based model g(m)

or the FCNN surrogate NN(m). Each inversion requires Ngim forward runs and takes time Tio.
The latter comprises time to train the model (Ttrain), time to execute the forward runs (Trun) and
time to define the posterior PDF on the discretized parameter grid (Tgra). The running time for
g(m) is a projection based on the simulation time of 6560 seconds that was necessary to run 10*
simulations. The FCNN was trained and executed on GPUs provided by GoogleColab. All times

are in seconds.

Nsim Ttrain Trun Tgrid Ttot
g(m) 2x10%8 0 1.312-108 547 1.312-108
NN(m) 107 37340 1.26 547  3.735-10%

The posterior PDFs displayed in Figure 5 show that the fracture density C' is
well constrained and amenable to our Bayesian inversion, whereas the inference of the
fractal dimension D is more elusive. Examples of the DFNs in this study are provided
in Figure 2 of (Gisladottir et al., 2016). They suggest that, for the parameter ranges
considered, C' impacts the spatial extent of a fracture network, while D affects the
fracture-length distribution. Consequently, C' has a more significant impact on the
overall structures.
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5.5 Bayesian inversion with data-informed priors

To refine the inference of parameters C' and D from the breakthrough-time CDFs,
we add some prior information. First, we observe that the field data reported in
Appendix A suggest that C' and D are correlated. These data are fitted with a shallow
feed-forward NN resulting in the prior PDF of C' and D shown in Figure 6. These
data vary over larger ranges than those used for C' and D in the previous section; at
the same time, most values correspond to C' < 2. That is because the field data come
from a large number of different sites and from direct outcrop observations. Figure 9
in (Watanabe & Takahashi, 1995) shows that a network with C' < 2 would have low
connectivity. On the other hand, a DFN with a large D is very dense, requiring
large computational times to simulate and, possibly, being amenable to a (stochastic)
continuum representation. Driven by these practical considerations, and to ascertain
the value of this additional information, we restrict the prior PDF from Figure 6 to
the same range of parameters as that used in the previous section.

Fractal dimension, D
o = = = [ N
I o N U N o
w o (6] o w o

o
wn
o

o
N
[

00 25 50 7.5 10.0 125 15.0 2.5 3.5 4.5 5.5
Fracture density, C

Figure 6. Prior joint PDF of C and D inferred from the field-scale data in Appendix A (left)

and its rescaled counterpart over the parameter range used in our study (right).

The relative importance given to the prior information about the DFN properties
C and D (Figure 6) is controlled by the parameter v in (12). Large values of ~
correspond to higher confidence in the quality and relevance of the data reported
in Appendix A. Figure 7 exhibits posterior PDFs of C and D computed via our
Bayesian assimilation procedure with v = 0.5 and 1. Visual comparison of Figures 5
and 7 reveals that the incorporation of the prior information about generic (not site-
specific) correlations between C' and D sharpens our estimation of these parameters,
i.e., decreases the area in the parameter space where they are predicted to lie with high
probability. Putting more trust in the prior, i.e., using a higher value of v, amplifies this
trend. However, the increase in certainty might be misplaced, as witnessed by several
examples the reference parameter values fall outside the high probability regions.

Fracture network’s connectivity is another potential source of information that
can boost one’s ability to infer the parameters C and D from CBTEs. Let Nco,, denote
the number of connected fracture networks among 20 random realizations of a DFN
characterized by (C, D);. Figure 8 exhibits Neon, for Ny, = 10* DFNs characterized
by (C,D); (i = 1,..., Ngm), with the results interpolated to 10* x 103 mesh of the
(C, D) space by means of a shallow NN. We define a prior PDF for C' and D as

fm(ﬁl)O(Nc?on(fh)? ]VCOI‘Ie [0717"'720]a
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Figure 7. Examples of posterior PDF's of the DFN parameters C' and D in the presence of
prior information, for three experiments defined by the reference parameter values (blue circles).
These PDFs are computed via Bayesian assimilation with the informative prior (Figure 6), whose

relative importance increases from v = 0.5 (top) to v = 1.0 (bottom).

which is properly normalized to ensure it integrates to one. This prior PDF, shown in
Figure 8, assigns larger probability to those (C, D) pairs that show higher connectivity
in our data set.

Jm 9059
0.8707
0.8355
0.8002
0.7650
0.7298

0.6945

Fractal dimension, D

0.6593
0.6241

0.5889

25 35 45 55 6.5
Fracture density, C'

Figure 8. Number of connected networks, Ncon, averaged over 20 random realizations of the
DFN model with a given parameter pair m = (C,D)" (left); and corresponding prior PDF fm
n (14) (right).

The Bayesian inference procedure with this prior yields the posterior joint PDF's
of C" and D in Figure 9. These distributions are sharper than those computed with
either uninformative (Figure 5) or correlation-based (Figure 7) priors, indicating the
further increased confidence in the method’s predictions of C' and D. As before,
assigning more weight to the prior, i.e., increasing 7, reduces the area of the high-
probability regions in the (C, D) space. This increased confidence in predictions of
C and D is more pronounced when the connectivity-based prior, rather than the
correlation-based prior, is used. The connectivity information also ensures that this
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Figure 9. Examples of posterior PDFs of the DFN parameters C' and D in the presence of
prior information, for three experiments defined by the reference parameter values (blue circles).
These PDFs are computed via Bayesian assimilation with the informative prior (14), whose

relative importance increases from v = 0.5 (top) to v = 1.0 (bottom).

6 Conclusions

We developed and applied a computationally efficient parameter-estimation me-
thod, which makes it possible to infer the statistical properties of a fracture network
from cross-borehole thermal experiments (CBTEs). A key component of our method is
the construction of a neural network surrogate of the physics-based model of fluid flow
and heat transfer in fractured rocks. The negligible computational cost of this surro-
gate allows for the deployment of a straightforward grid search in the parameter space
spanned by fracture density C' and fractal dimension D. Our numerical experiments
lead to the following major conclusions.

1. The neural network surrogate provides accurate estimates of an average inverse
cumulative distribution function (iCDF) of breakthrough times, for the fracture
network characterized by given parameters (C, D).

2. In the absence of any expert knowledge about C' and D, i.e., when an uninforma-
tive prior is used, our method—with the likelihood function defined in terms of
the Hellinger distance between the predicted and observed iCDFs—significantly
sharpens this prior, correctly identifying parameter regions wherein the true
values of (C, D) lie.

3. Incorporation of the prior information about generic (not site-specific) corre-
lations between C' and D sharpens our estimation of these parameters, i.e.,
decreases the area in the parameter space where they are predicted to lie with
high probability. Putting more trust in the prior, i.e., using a higher value of
~, amplifies this trend. However, the increase in certainty might be misplaced,
as witnessed by several examples the reference parameter values fall outside the
high probability regions.

4. Incorporation of the prior information about a fracture network’s connectiv-
ity yields the posterior joint PDFs of C' and D that are sharper than those
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computed with either uninformative or correlation-based priors, indicating the

further increased confidence in the method’s predictions of C' and D.

5. The increased confidence in predictions of C' and D is more pronounced when
the connectivity-based prior, rather than the correlation-based prior, is used.
The connectivity information also ensures that this confidence is not misplaced,

i.e., the reference parameter values lie within the high-probability regions.

Appendix A Field-scale characterization of fracture networks

For the sake of completeness, we report in Table A1 the field-scale observations of
fracture networks from (Bonnet et al., 2001). These are accompanied by our calculation
of the corresponding values of parameters C and D in the WT model of fracture

networks.

Table A.1: Fracture number (N¢), power-law exponent (a), surface area (S), minimum fracture
length (Imin), and density parameter « for various fracture networks reported in Table 2 in (Bonnet

et al., 2001). The corresponding values of fracture density (C') and fractal dimension (D) in the

WT network model (1) are determined from the parameter relationships in Section 2.1.

Ne[] al] S[m? Imin [m] o -] D[] CI]

107 1.74 24 0.1 0.60035 0.74  86.80731
121 211 25 0.1 0.41703 1.11  45.46014
3499  1.88 2.70-10'* 103 4.97809-107°  0.88  0.01979
120 0.9 825107 40 -1.00582-10~7  -0.1  0.00012
101 1 2.62-107 57 0 0 NaN

300 1.76 NP 7.00-10°  NaN 0.76  NaN

380 1.9  343.10° 3 0.26777 0.9 113.05832
350 2.1 1.26:10% 220 0.00115 1.1 0.36680
1000 3.2 1.60-10° 380 0.65137 2.2 296.07649
1000 2.1 1.65-10° 2.00-10°  0.00028 1.1 0.25921
800 2.2 250101 6.00-1072  1.31254 1.2 875.02702
380 2.1 NP 2.50-10% NaN 1.1 NaN
1700  2.02 1.00-10'° 1.00-10°  0.0002 1.02  0.33182
260 1.3 87510°  1.00 0.00891 0.3 7.72571
100 1.8 21010°  1.00 0.03809 0.8 4.76190
873 2.64 3.40-10"  5.00-107%  0.00709 1.64  3.7745
320 2.61 2.07-107  4.00-10 0.00945 1.61  1.87779
50 1.67 2.90-10°  7.00-10 1.99004-107°  0.67  0.00148
180 1.97 2.80-10°  3.00-10>  0.00016 0.97  0.02925
400 2.21 1.20-10%  4.00-10 0.00035 1.21  0.11573
250 2.11  2.50-10**  4.50-10° 1.26005-107°  1.11  0.00284
400 2.84 2.90-10""  5.50-10°  0.01935 1.84  4.20716
70 2.67 3.60-10°  1.60-10>  0.00728 1.67  0.30533
150 2.66 5.10-10°  1.25-10>°  0.00675 1.66  0.61021
200 3.07  6.20-10°  1.00-10°  0.10829 2.07  10.46329
1034 251  8.70-10"  1.00-10 0.00058 1.51  0.39767
40 1.6 2.00-10"  6.00-107%  0.00022 0.6 0.01479
318 242  1.69-10%  7.00-10 0.00111 1.42  0.24946
291 2.69 1.69-10%  7.00-10 0.00382 1.69  0.65783
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218 2.02 1.00 2.00-1072  4.11251 1.02  878.94881
111 3.04 840107  2.00-102  0.13328 2.04  7.25217
470 1.8 1.17-10*  6.00-1072  0.00338 0.8 1.98852
417 218 6.00-107  4.00-10 0.00064 1.18  0.22519
201 2.4  3.00E-01 1.50E-04 0.00416 1.4 0.59676
100 2.4 6.0010°  7.0010°  0.00224 1.4 0.16032
1034 2.36  8.70-107  1.00-10 0.00037 1.36  0.28153
450 2.18  2.20-10°  7.00-10 0.00036 1.18  0.13843
350 275 1.50-10°  1.80-10>  0.00361 1.75  0.72239
300 2.37 NP 1.00-102> NaN 1.37  NaN
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