
P
os
te
d
on

23
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
73
07
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Estimating permeability of partially frozen soil using floating

random walks

Jiangzhi Chen1, Shenghua Mei2, and Alan W Rempel3

1Institute of Deep-Sea Science and Engineering, CAS
2Institute of Deep-sea Science and Engineering,Chinese Academy of Sciences
3University of Oregon

November 23, 2022

Abstract

Flow through partially frozen pores in granular media containing ice or gas hydrate plays an essential role in diverse phenomena

including methane migration and frost heave. As freezing progresses, the frozen phase grows in the pore space and constricts flow

paths so that the permeability decreases. Previous works have measured the relationship between permeability and volumetric

fraction of the frozen phase, and various correlations have been proposed to predict permeability change in hydrology and the oil

industry. However, predictions from different formulae can differ by orders of magnitude, causing great uncertainty in modeling

results. We present a floating random walk method to approximate the porous flow field and estimate the effective permeability

in isotropic granular media, without solving for the entire flow field in the pore space. In packed spherical particles, the method

compares favorably with the Kozeny-Carman formula. We further extend this method with a probabilistic interpretation of

the volumetric fraction of the frozen phase, simulate the effect of freezing in irregular pores, and predict the evolution of

permeability. Our results can provide insight into the coupling between phase transitions and permeability change, which plays

important roles in hydrate formation and dissociation, as well as in the thawing and freezing of permafrost and ice–bed coupling

beneath glaciers.
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Abstract16

Flow through partially frozen pores in granular media containing ice or gas hydrate plays17

an essential role in diverse phenomena including methane migration and frost heave. As18

freezing progresses, the frozen phase grows in the pore space and constricts flow paths19

so that the permeability decreases. Previous works have measured the relationship between20

permeability and volumetric fraction of the frozen phase, and various correlations have21

been proposed to predict permeability change in hydrology and the oil industry. However,22

predictions from different formulae can differ by orders of magnitude, causing great uncertainty23

in modeling results. We present a floating random walk method to approximate the porous24

flow field and estimate the effective permeability in isotropic granular media, without25

solving for the entire flow field in the pore space. In packed spherical particles, the method26

compares favorably with the Kozeny-Carman formula. We further extend this method27

with a probabilistic interpretation of the volumetric fraction of the frozen phase, simulate28

the effect of freezing in irregular pores, and predict the evolution of permeability. Our29

results can provide insight into the coupling between phase transitions and permeability30

change, which plays important roles in hydrate formation and dissociation, as well as in31

the thawing and freezing of permafrost and ice–bed coupling beneath glaciers.32

1 Introduction33

Fluid transport through porous granular media is important in understanding hydrate34

accumulation in marine sediments and frost heave in frozen soils. Take the hydrate-bearing35

sediment as an example: near the base of hydrate stability zone (BHSZ), methane-rich36

pore fluid migrates upward and affects the growth of hydrates in the pore space of marine37

sediments (Rempel, 2011; Cook & Malinverno, 2013; Wei et al., 2019; Liu et al., 2019).38

As the hydrate saturation S (i.e., pore volume fraction occupied by hydrate crystals) increases,39

hydrate crystals grow in the pore space, and the relative permeability kr (i.e., the ratio40

of permeability of hydrate-bearing sediment to that of hydrate-free sediment) decreases.41

Moreover, when S approaches the percolation threshold, hydrate crystals grow beyond42

individual pores and form a connected mass (Tohidi et al., 2001), blocking most flow paths43

and leaving only very narrow liquid films so that kr decreases dramatically. The low-permeability44

layer caused by hydrates seals further methane upwelling, which is crucial to creation45

of suitable hydrate storage and potential carbon sequestion strategies (e.g. Tohidi et al.,46

2010). A similar process occurs when ice lenses develop in frozen soils and cause frost47
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heave (e.g. Nixon, 1991) and when frozen fringes form beneath glaciers and contribute48

towards enhanced bed strength (e.g. Meyer et al., 2018). In these cases the permeability49

reduction kr caused by presence of the frozen phase (hydrate or ice) is a crucial control50

on the dynamics of solidification and melting.51

Previous studies have measured the relation between kr and either hydrate saturation52

(e.g., Liang et al., 2011; Kleinberg et al., 2003) or ice saturation (e.g., Chamberlain &53

Gow, 1979); empirical correlations based on these measurements are commonly employed54

in the oil industry (see Lee, 2008). However, predictions from different formulae can differ55

by orders of magnitude, bringing great uncertainty to modeling results. In response, some56

researchers have turned to computational fluid mechanics to solve for the flow field in57

the pore space, which can give more accurate results, but at high computation expense58

(e.g., Grenier et al., 2018). The sinuosity and interconnection of the pores space affects59

the transport process, and the nucleation of the frozen phase is intrinsically stochastic,60

both posing significant challenges to deterministic methods. Stochastic methods, on the61

contrary, focus on the disorderedness of the porous media, and consider the averaged fluid62

transport over the ensemble of individual pores and throats (e.g., Scheidegger, 1954; Schwartz63

& Banavar, 1989). Among these methods, the floating random walk method, also known64

as walk-on-spheres method, is widely used because it is easy to implement and capable65

of treating complex boundary conditions. The method was first proposed by Muller (1956)66

to solve Laplace equations, and was later extended to solve the Poisson equation (e.g.,67

Haji-Sheikh & Sparrow, 1966; Delaurentis & Romero, 1990). The method does not require68

a regular lattice, and has been applied in studying groundwater diffusion problems (e.g.,69

Lejay & Maire, 2013; Maire & Nguyen, 2016). Here, with the newly formed frozen phase70

approximated as randomly occurring boundaries, we extend the floating random walk71

method to account for the variations in pore structure that are caused by the blockages72

imposed by the frozen phase.73

The paper is organized as follows: first, we briefly review the existing correlations74

used to predict the permeability of hydrate- or ice-bearing soils and sediments, and then75

we describe a floating random walk method to approximate the permeability in packed76

spherical particles, followed by a section extending the method to estimate the permeability77

evolution of granular media in which a frozen phase is present. For simplicity, the porous78

medium is assumed statistically isotropic, the external force is assumed homogeneous79

and time-independent, and gravity is neglected. We validate the method through comparison80
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with experimental data extracted from the literature. Before concluding, we discuss briefly81

how the method might be improved further to better predict the effective permeability.82

2 Existing permeability evolution models83

Without the frozen phase, the permeability in saturated granular media is conveniently84

estimated using the Kozeny-Carman relation (Kozeny, 1927; Carman, 1937)85

k0 =
φ3

c(1− φ)
2D

2
eff (1)86

where the constant c is typically taken as 180 (Kaviany, 1995), and the effective grain87

diameter Deff can be calculated for a distribution of equant grains of size Dg using88

Deff =

∑
D3
g∑

D2
g

. (2)89

After the onset of freezing, permeability reduction takes place with the relative permeability90

kr = k′/k0, a decreasing function of the frozen-phase saturation S. In Table 1 we summarize91

some widely used permeability models listed in Kleinberg et al. (2003, Appendix B) and92

Lee (2008, Appendix A). In semi-empirical treatments Archie’s saturation exponent 1 <93

n < 2 (Archie, 1942) is commonly used to account for the effects of differences in pore-scale94

location for the nucleated frozen phase. Of these models, the wall-coating model and center-occupying95

model are calculated using the lubrication approximation and hence are physically based,96

whereas the other models are semi-empirical or fully empirical. In Figure 1 these kr predictions97

are plotted against the saturation S, using an Archie exponent n = 1.5. At moderate98

S ≈ 0.5, their predictions can have discrepancies of up to three orders of magnitude.99
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Table 1. Existing permeability reduction models. The first two models are physically

based, viewing the porous media as consisting of straight parallel capillary tubes with the

frozen phase coating the walls or occupying the centers. Semi-empirical models use the

Archie saturation exponent 1 < n < 2 to account for the location of the frozen phase, and

fully empirical models may have more parameters.

Type Name kr

parallel

capillaries

wall-coating (1− S)
2

center-occupying 1− S2 + 2(1− S)
2
/ lnS

semi-empirical

models

grain-coating a (1− S)
n+1

pore-filling a (1− S)
n+2

/(1 +
√
S)

2

empirical

models

University of Tokyo b (1− S)
MS

Lawrence Berkeley National Laboratory

(LBNL) c

√
S∗w{1− [1− (S∗w)1/m]}2,

S∗w = (Sw − Sr)/(1− Sr)

Parameters:

a 1 < n < 2 is the Archie saturation exponent bMS = 10 or 15 c Sw = 1− S is

the volume fraction of water, Sr = 0.9 is the irreducible water saturation, and m =

0.46 is a fit parameter.

100

3 General theory101

3.1 Flow in porous medium102

A Newtonian fluid flowing at low Reynolds number through a porous medium must103

satisfy the conservation laws for mass and momentum. The mass conservation for single-phase104

incompressible steady flow requires105

∇ · u = 0 (3)106

and the conservation of momentum without buoyancy and external forces gives107

µ∇2u +∇P = 0 (4)108

where P is the pressure, and µ is the viscosity of the fluid.109
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Figure 1. Existing models of permeability reduction with increasing hydrate or ice saturation.

At moderate S ≈ 0.5, the predictions may differ by up to three orders of magnitude.

Darcy’s law states that the average fluid velocity q = φ 〈u〉 is proportional to the110

pressure gradient across the fluid111

q = −k

µ
· ∇P (5)112

where k is the permeability tensor, determined by the microscopic structure of the medium.113

Note that the porosity φ is needed for the Darcy flux, which is an average over the entire114

cross-section. Combined with the mass conservation, the governing equation is115

∇ · (k∇P ) = 0. (6)116

3.1.1 Poiseuille flow with constant pressure gradient117

In a homogeneous medium, the permeability tensor is k = kI, and the pressure118

satisfies the Laplace equation ∇2P = 0, with a solution of constant pressure gradient119

–6–



manuscript submitted to Water Resources Research

G =∇P . The momentum conservation follows Poisson’s equation for the flow field120

∇2u = −G

µ
, (7)121

where both µ and G are treated as constant. Aligning the z-axis with G, the resulting122

Poiseuille flow through an arbitrary cross-section A ⊥ G with boundary Γ = ∂A is123

described by a velocity field u(x, y) satisfying124

∂2u

∂x2
+
∂2u

∂y2
= −G

µ
(8)125

with a homogeneous no-slip boundary condition126

u

∣∣∣∣
Γ

= 0. (9)127

The effective permeability is128

keff =
φµ

G
〈u〉 (10)129

where 〈u〉 is the spatially averaged fluid velocity.130

3.1.2 Flow with varying pressure gradient131

In disordered granular media, flow paths are constrained by the tortuous pore geometry.132

Hence, the pressure gradient varies spatially at the pore scale and deviations in its magnitude133

and direction from the macroscopic average must be evaluated numerically in deterministic134

treatments. However, the disorder of the porous medium implies that both the deviations135

in magnitude and direction of local gradients can be considered as randomly distributed.136

It is well established that keff can be approximated by the geometric mean of heterogeneously137

distributed local permeabilities k̂ (see e.g., Matheron, 1967; Bakr et al., 1978; Gutjahr138

et al., 1978; Renard & de Marsily, 1997) in 2D isotropic media. Field measurements confirm139

that sampled k̂ of relatively uniform soils follow a log-normal distribution (Law, 1944),140

and it is suitable to use the geometric mean of k̂ as the effective permeability keff (Warren141

& Price, 1961). This greatly simplifies the problem, since the pressure gradient need not142

be evaluated explicitly throughout the pore space, and instead the effects of pore-scale143

variations in the pressure gradient can be treated statistically. An intuitive explanation144

of the log-normal distribution of sampled permeabilities is in Appendix A.145
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3.2 Floating random walk method146

To find the averaged fluid velocity, we need to solve for the flow field at an arbitrary147

point Pi = (xi, yi) in the 2D cross-section A of the pore space. We construct M random148

walks from Pi to the boundary Γ as follows (see Figure 2):149

1. every random walk starts from P
(0)
i = Pi150

2. in one walk, the walker is at a point P
(n)
i after n steps151

3. let ρn be the shortest distance between P
(n)
i and Γ152

4. a circle centered at P
(n)
i with a radius ρn is constructed153

5. a random point is chosen on the circle as the new location P
(n+1)
i154

6. the walk is terminated when ρn is smaller than some prescribed small tolerance155

τ to the boundary.156

Γ

P(0)i

P(1)i

Γ

P(0)i

P(1)i

(a) (b)

Figure 2. Schematics showing (a): fixed random walk in a domain with a grid. (b): floating

random walk in the domain without a grid.
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With a homogeneous boundary and constant G/µ, the value of ui is157

ui ≈
G

4Mµ

M∑
j=1

Kj∑
n=1

ρ2
n (11)158

where Kj is the number of random steps required to reach the boundary in the j-th walk.159

The effective permeability becomes160

keff ≈
φ

4M

〈
N∑
i=1

M∑
j=1

Kj∑
n=1

ρ2
n

〉
=

2φ

M

〈
M∑
j=1

Kj∑
n=1

k̂n

〉
, (12)161

where k̂n = ρ2
n/8 is the permeability of a hypothetical cylindrical tube of a radius ρn162

at the n-th step. The average number of steps in one walk is Kj ∼ O(|ln τ |) (Delaurentis163

& Romero, 1990). Another way to interpret eq. (12) is that the effective permeability164

is a weighted mean of the permeabilities of the tubes. In implementing the algorithm,165

we choose τ/Rmin = 10−3 where Rm is the minimum radius of the particles comprising166

the porous medium. Errors arise from two sources: first, random walks introduce an error167

in estimating individual ui, dependent on the value of τ ; second, the averaging introduces168

an error related to the sample variance (Haji-Sheikh & Sparrow, 1966).169

3.2.1 Floating random walk approach in straight ducts170

In straight ducts, φ = 1, and 〈u〉 can be approximated using the arithmetic mean171

of N points sampled uniformly within the boundary Γ of the duct172

keff =
µ

G
〈u〉 ≈ µ

NG

N∑
i=1

ui (13)173

and ui = u(xi, yi) comes from solving Poisson’s equation. It is easy to verify that floating174

random walk can calculate permeabilities of ducts of arbitrary cross-sections. Next we175

will apply the method on packed spherical particles.176

3.2.2 Floating random walk on packed spherical particles177

One major difference of granular media from straight ducts is that the local pressure178

gradient G′i at the point (xi, yi) is different from the macroscopic pressure gradient G.179

We still choose the cross-section A ⊥ G, and the angle between the local gradient G′i180

and G is ψi < π/2. In a small patch in the vicinity of (xi, yi), the local pressure gradient181

variation is negligible, and we can approximate u as satisfying182

∇2ui = −G
′
i

µ
= −χiG

µ
(14)183

–9–
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where χi = G′i/G. The boundary condition of the small patch is still approximated as184

a homogeneous no-slip boundary, and the floating random walk leads to185

ui ≈
χiG

4Mµ

M∑
j=1

Kj∑
n=1

ρ2
n. (15)186

In the cross-section A, the component of the velocity through A is u⊥i = ui cosψi, and187

the effective permeability is188

keff ≈
φµ

G

〈
u⊥i
〉
≈ φ

4M

〈
χi cosψi

M∑
j=1

Kj∑
n=1

ρ2
n

〉
=

2φ

M

〈
χi cosψi

M∑
j=1

Kj∑
n=1

k̂n

〉
. (16)189

As argued in previous section,
〈
u⊥i
〉

is suitably approximated using the geometric190

mean instead of the arithmetic mean. A major simplification involves assuming ψ ∼ U(0, π/2)191

rather than going through the process of evaluating the most appropriate angle from the192

exact pore geometry, because the packing is isotropic, these angles ought to be drawn193

from a uniform distribution. Also, we assume χ ∼ U(0, 1), and the distributions of ψ194

and χ are independent so that the geometric mean of random variables χi cosψi can be195

replaced with their expected value196

keff ≈
2φ

M

 N∏
i=1

χi cosψi

M∑
j=1

Kj∑
n=1

k̂n

1/N

≈ φ

Me

 N∏
i=1

M∑
j=1

Kj∑
n=1

k̂n

1/N

. (17)197

The detailed derivation of the simplification is given in Appendix B.198

4 Permeability reduction due to emerging frozen phase199

At the onset of its formation, the frozen phase (ice or hydrate) emerges in the pore200

space, blocks fluid flow paths, and reduces the permeability (Figure 3). As a simple demonstration,201

here we focus on the soil freezing case. The liquid saturation Sl is the volume fraction202

of pore liquid remaining in partially frozen pores, and the ice volume fraction S = 1−203

Sl can be treated as the probability of a random point within the pore space. Ice in the204

pores can terminate a random walk before the walker ever reaches the pore boundary205

Γ, thereby serving as an additional boundary. As a result, the expectation of ρn and the206

total number of steps Kj are reduced, and the effective porosity becomes φSl, reducing207

the calculated permeability.208

From Haji-Sheikh and Sparrow (1966), when choosing the next position of the walker209

P (n+1), instead of walking to a random position on a regular grid (Figure 2a), the floating210

random walk method moves the walker to a random position on a circle of a radius ρn211

u(xn, yn) =
1

2π

ˆ 2π

0

u(ρn, ω)dω =

ˆ 1

0

u(ρn, ω)dF (ω) (18)212

–10–
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Figure 3. Schematic showing the frozen phase blocking the flow pathway. On the top brown

circles are the solid particles saturated by water (blue). When ice or hydrate (white) grows in the

pores, the flow paths are blocked, and the permeability is reduced.

where ω is the angular coordinate, F = ω/2π is the probability density and ρn is the213

radius of a circle centered at (xn, yn). In the original method, all walks are terminated214

at the boundary, or in other words, the boundary “absorbs” walkers. There is no radial215

contribution in F because there is no absorbing boundary within the circle, but when216

ice exists in the pore space, it can be treated as a new absorbing boundary, or “trap”.217

Extensive research has been reported concerning random walks performed on regular lattices218

with known trap concentrations (e.g., Montroll & Scher, 1973) to study important properties219

including the survival probability of the walker after a large number of random steps.220

For a floating random walk without a lattice, however, it is difficult to estimate the survival221

probability of the walker because each step in the floating random walk is essentially a222

sum of numerous small segments of random walks in arbitrary directions, and in theory223

any point in the circle may be visited by the walker before it escapes the circle.224

–11–
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We take a novel approach to address this problem, which relies on terminated random225

walks. When the walker is at P
(n)
i and the shortest distance from the walker to the particles226

is ρn, two random factors are involved in taking the next step in the pore space when227

ice may be present: first, the distribution of ice in the circle of radius ρn; and second,228

whether the direction of the walker’s next step causes it to be absorbed by ice. We treat229

the ice distribution as unknown so that any point in the circle is equally likely to be frozen230

with a probability p = S. However, we anticipate that this assumption will introduce231

bias in the simulation, leading to further analysis in the discussion. Because the radial232

distribution function of uniform sampling in the circle of radius ρn is ψ(r) = 2r/ρ2
n, eq. (18)233

in presence of additional randomly distributed absorbing boundaries is modified to234

u(xn, yn) =

ˆ 1

0

dF (ω)

ˆ ρn

0

u(r, ω)ψ(r)dr. (19)235

The circle of radius ρn when no ice is present shrinks to a new circle of a radius
√
ξρn,236

where ξ is a random number drawn from U(0, 1). In every random step there is a probability237

p that the next position is on an icy absorbing boundary, and the walk is terminated.238

When there is no ice, i.e., p = S = 0, the original random walk scheme is recovered.239

Essentially, at P (n) we sample over all possible positions of P (n+1), and approximate the240

survival probability as a joint probability of subsequent successful steps.241

4.1 Modified Kozeny-Carman formula242

In addition to the stochastic method presented above, the Kozeny-Carman formula243

can also be extended to approximate the permeability in partially frozen soils with a simulated244

soil freezing curve relating the fraction of water remaining liquid in pore spaces to undercooling245

below bulk melting temperature. The porosity φ and effective diameter Deff are changed246

with nucleated ice or hydrate crystals. Assuming that the new frozen phase occurs in247

the form of small spherical particles of the same size Dt, and the new effective diameter248

is249

D′eff =

∑
D3
g +

∑
D3
t∑

D2
g +

∑
D2
t

. (20)250

The grain volume Vg and emerging frozen phase volume Vt are related using the remaining251

liquid fraction Sl,252

π

6

∑
D3
g = Vg = (1− φ)V (21)253

π

6

∑
D3
t = Vt = (1− Sl)φV (22)254

255

–12–
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so256 ∑
D3
t =

(1− Sl)φ
1− φ

∑
D3
g (23)257

and combined with
∑
D3
t = Dt

∑
D2
t , we have258

D′eff

Deff
=

Dt(1− Slφ)

Dt(1− φ) +Deffφ(1− Sl)
. (24)259

Together with the reduced porosity φ′ = Slφ, we can predict the permeability reduction260

given Dt and Sl261

kr =
S3
l (1− φ)

2

(1− Slφ)
2

D′2eff

D2
eff

. (25)262

The emerging spherical particle size Dt can be estimated using the Gibbs-Thomson263

relation264

Dt ≈
4γTm
ρiL∆T

(26)265

where the water-ice surface tension γ ≈ 0.029 J/m2, ice density ρi = 917 kg/m3, ice266

latent heat L = 3.34× 105 J/kg, and bulk melting point Tm = 273.15 K. The liquid267

fraction Sl is related to the undercooling ∆T by the simulated soil freezing curve of Chen268

et al. (2020), where the soil particle size distribution is assumed to be log-normal lnN (µ, σ2
d),269

and the synthetic soil models are generated using the algorithm from Kansal et al. (2002).270

5 Validation and Results271

5.1 Comparison with existing models272

In Figure 4 we plot the floating random walk result for the mono-dispersed Finney273

pack (Finney, 1970) with other models listed in Table 1. For comparison, the modified274

Kozeny-Carman result is also shown as a black dashed curve. At low S < 0.15 our floating275

random walk result resembles the University of Tokyo result. For the entire range S <276

0.9, our model is very close to the pore filling and capillary filling curves, consistent with277

the physical picture that the frozen phase is distributed in the pore space, especially at278

higher S. The modified Kozeny-Carman equation gives higher predictions for S < 0.8,279

but converges to the floating random walk model as S increases. At S = 0.9, our model280

result gives four orders of magnitude drop in kr, similar to that of the modified Kozeny-Carman281

equation. The soil freezing curves are easy to calculate, and the modified Kozeny-Carman282

equation can be an adequate approximation for kr.283

It is worth noting that for synthetic soil models where the soil particle sizes D ∼284

lnN (µ, σd), if we keep the porosity φ unchanged, and let σd vary, for well-sorted particle285

–13–
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Figure 4. Simulated permeability reduction with increasing frozen phase saturation (yellow)

using N = 5000 and M = 200, compared with existing permeability reduction models. At low

S < 0.15, the floating random curve resembles the University of Tokyo model with MS = 10,

but its slope gradually becomes gentler. At higher S, the predicted kr is close to the pore filling

model. The modified Kozeny-Carman model is also shown as black dashed line for comparison.

sizes (i.e., small σd), the permeability reduction curves only change slightly. This suggests286

that certain properties of the pore space are invariant for synthetic soil models with well-sorted287

particle sizes.288

5.2 Comparison with experimental data289

The variation of permeability k with the ice or hydrate saturation is technically difficult290

to measure directly, and only a few reliable data sets have been published, using the hydraulic291

conductivity kH instead of the permeability. With constant pressure head, the hydraulic292
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conductivity is related to the permeability as293

kH =
kρg

µ
(27)294

where the viscosity of water can be calculated using the empirical relation (Straus & Schubert,295

1977)296

µ(T ) = µ0 exp

(
A

T −B

)
(28)297

where µ0 = 2.414× 10−5 Pa s, A = 570.58 K and B = 140 K. At 0 ◦C, µ = 0.0018 Pa s.298

Watanabe and Osada (2016) reported the hydraulic conductivity in samples of Iwate299

andisol, Fujinomori silt loam and Tottori dune sand as a function of liquid water content300

under both frozen and unfrozen conditions, and the Fujinomori silt loam and Tottori dune301

sand parameters were reported previously in Watanabe and Wake (2009). Among the302

three soil samples, the Tottori dune sand has a mean particle diameter dm = 0.35 mm303

and a uniformity coefficient of 1.7, which is categorized as well sorted, corresponding to304

σd ≈ 0.34 when fitted to a log-normal distribution. Figure 5 shows the simulated reduction305

of hydraulic conductivity with an ice-free k∗H = 1.6× 10−5 m/s, shown as a red line,306

together with the modified Kozeny-Carman result using the same k∗H . Apparently, the307

measured data for S < 0.75 and S > 0.75 show different trends, possibly due to the308

coarse sand particle size. Our model fits nicely with the experimental data for S > 0.75.309

310

There are other reports in the literature on the change of kH against the undercooling311

below bulk melting temperature (e.g., Nixon, 1991, and references therein) with finer soils,312

which can be used for validation combined with the soil freezing curves. Horiguchi and313

Miller (1983) measured conductivities of six different sediments at subzero temperature314

as low as −1 ◦C, and we use the Manchester silt data because it has detailed grain size315

analysis, enabling the construction of a synthetic particle pack with realistic characteristics.316

The 4 µm to 8 µm fraction of Manchester silt is well sorted, and is approximated using317

mono-dispersed soil of a diameter of 6 µm. Figure 6 compares the calculated conductivity318

evolution with undercooling, using calculated soil-freezing curves following Chen et al.319

(2020) and the ice-free k∗H = 2.6× 10−8 m/s. It is clear that the measurements, both320

the whole Manchester silt and the more well-sorted 4 µm to 8 µm fraction, generally follow321

the trend of the floating random walk simulation, but the well-sorted fraction fits the322

model better, and the whole Manchester silt data deviate more significantly as the pore323

space becomes increasingly filled by ice.324
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Figure 5. Simulated conductivity evolution of Tottori sand with ice saturation S. The solid

dots are measurements from (Watanabe & Osada, 2016), and the red line is the simulated

conductivity with an ice-free k∗
H = 1.6 × 10−5 m/s using N = 5000 and M = 200. The modified

Kozeny-Carman result is shown in blue dashed line for comparison.

In both the Tottori sand and Manchester silt simulation, no adjustable parameters325

are needed to obtain the predictions, and we only need the ice-free conductivity and grain326

size distribution.327

6 Discussion328

6.1 Synthetic soil models329

It is difficult to use a single functional relationship to describe the dependence of330

permeability on undercooling because changes in ice (or hydrate) saturation with undercooling,331

as well as its heterogeneous distribution, differ greatly between real sediments. Previous332

analytical models are commonly based on highly idealized geometries consisting of parallel333
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Figure 6. Hydraulic conductivity of Manchester silt decreases with undercooling below bulk

freezing temperature. The black triangles are measurements of the Manchester silt, and the solid

circles are the 4 µm to 8 µm fraction. The ice-free conductivity is chosen as k∗
H = 2.6 × 10−8 m/s.

The permeability reduction simulated using the floating random walk with N = 5000 and

M = 200 and the soil freezing curve is shown as red curve, and the blue dashed line is the

modified Kozeny-Carman result. The deviation between the floating random walk curve and

whole Manchester silt data increases at larger ∆T .

capillaries, or use the Archie saturation exponent to parameterize the contribution of tortuosity334

between packed grains. Other works assume that the pore space is fractal (e.g., Yu &335

Cheng, 2002). In our model we use synthetic model soils of packed grains, more closely336

mimicking real soils and sediments, while idealizing the grains as spherical to maintain337

tractability. Due to the limitations of packing algorithms, our approach is best suited338

for modeling relatively well-sorted soils and sediments, with the variance σd in the log-normal339

distribution less than 0.5, equivalent to about 0.72 in terms of the inclusive graphic standard340

deviation (Folk & Ward, 1957). In poorly-sorted soils, such as the Fujimori silt loam investigated341
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by (Watanabe & Osada, 2016), smaller particles may fill in interstitial spaces between342

larger grains, and crucial parameters such as the porosity can vary significantly, making343

it difficult to sample potential flow paths adequately.344

6.2 Biased distribution of absorbing ice boundary345

When ice grows in the pores, we assume that ice is uniformly distributed in the pore346

space so that the absorbing boundary randomly occurs and changes the random walking347

steps, and we determine the next position of the walker by a point process. This is equivalent348

to treating the newly formed ice as a set of discrete points. However, in reality the emerging349

ice particles are spatially correlated, occupying the center of the pore space. Although350

we can find the interface curvature of ice particles using the Gibbs-Thomson equation,351

their geometry are constrained by the irregular pore walls, and their contributions to the352

walker survival probability are difficult to estimate without their locations. Extensions353

to this work that are directed towards approximating changes in pore-scale frozen phase354

distributions with undercooling hold promise for further improving relative permeability355

predictions.356

6.3 Anticipated range of validity357

At low saturation, ice (or hydrate) first occupies only the largest pores, invading358

smaller and smaller pores as the undercooling increases, with small residual liquid volumes359

remaining in premelted films that coat sediment particles and in liquid-filled crevices near360

particle contacts (e.g. Cahn et al., 1992; Chen et al., 2020). In the floating random walk361

we essentially approximate potential liquid flow paths with a weighted geometric mean362

of tubes, effectively neglecting the liquid crevices and films between ice and grains. However,363

as the ice or hydrate saturation grows, at some point most liquid water will remain in364

small reservoirs between the grains instead of in the pore centers. In mono-dispersed packing,365

we can estimate the critical liquid saturation below which the crevices dominate the flow366

paths using an averaging method inside a hypothetical triclinic cell formed by eight spherical367

grains, with each side being 2R and three angles α, β and γ (Bordia, 1984). Theoretically368

crevices can occur between particles not in contact, but as the distance between the two369

particles increases, it is much more difficult for liquid connecting the particles to form370

a concave meniscus with positive mean curvature. So in low liquid saturation conditions,371

most liquid stays in crevices between contacting particles (Figure 7), while at lower saturations372
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still, the small volumes of liquid in premelted films coating ice–particle contacts are expected373

to dominate (e.g. Cahn et al., 1992; Chen et al., 2020).

r1

r2

y

x

R

x0

ρ

Figure 7. Crevice between two contacting mono-dispersed particles and ice. The ice grows in

the pore (light blue), leaving only a small crevice for residual liquid (blue) which revolves around

the x-axis. The dashed circle is the poloidal circle in the toroidal approximation.

374

As shown in Figure 7, the interface of liquid in the crevice is approximated using375

a torus, with the poloidal radius given by the inverse throat curvature r1. The toroidal376

radius is ρ, and r2 = ρ−r1 is the second principal radius. Between contacting mono-dispersed377

particles of radius R, the crevice has volume378

V =2π

[
(ρ2 + r2

1)x0 −Rx2
0 − ρx0

√
r2
1 − x2

0 − r2
1ρ arctan

R

ρ

]
=2πr2

1

[
R−

√
r1(r1 + 2R) arctan

R

ρ

] (29)379

which, keeping only the leading order, can be approximated to (Cahn et al., 1992)380

Vc ∼ 2πRr2
1 (30)381

and in the triclinic cell there are three crevices, so the liquid saturation is382

Sl =
3Vc
V0
≈ 6πR

V0
r2
1. (31)383

The total pore volume V0 is the volume of the triclinic cell minus the volume of a sphere,384

which is385

V0 = 8R3
√

1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ − 4

3
πR3 (32)386

and the crevice volume is independent of α, β and γ. So the average liquid saturation387

is388

〈Sl〉 =

〈
3Vc
V0

〉
= 3Vc

〈
1

V0

〉
= 3Vc

(
6

π

)3 ˆ π
2

π
3

ˆ π
2

π
3

ˆ π
2

π
3

dα dβ dγ

V0(α, β, γ)
≈ 1.089Vc

R3
(33)389

–19–



manuscript submitted to Water Resources Research

and with the expression for Vc, we can calculate the 〈Sl〉 curve for the low-saturation regime,390

mainly between 0.01 < Sl < 0.1. The minimum possible pore radius inscribed between391

three mutually touching grains is r∗ = (2/
√

3−1)R, and the crevice contributions become392

significant for r1 ≤ r∗, which gives the corresponding saturation 〈S∗l 〉 ≈ 0.065. Therefore,393

for ice saturation S < 1−〈S∗l 〉 ≈ 0.935, the contributions of crevices (and liquid films)394

to the flow paths is expected to be insignificant and our floating random walk procedure395

should be most effective at capturing the dominant controls on relative permeability. For396

poly-dispersed grains, we cannot use the method above to properly estimate the range397

of validity, but since the permeability reduction curves change only slightly for well-sorted398

particles, the range of validity should be similar to the mono-dispersed case.399

7 Conclusion400

We demonstrate that the floating random walk method can conveniently predict401

the permeability of porous granular media, with a statistically simple, yet accurate, treatment402

of spatially varying pressure gradients. The method can be further extended to account403

for the emerging frozen phase, and estimate the permeability reduction caused by growing404

ice or gas hydrate in pores. The model predicts a permeability reduction similar to the405

pore filling model for moderate ice (or hydrate) saturation S < 0.5, and the reduction406

is smaller for higher S > 0.5. Combined with simulated soil freezing curves, our model407

results fit well with previously published measurements, with no adjustable parameters.408

Our approach provides a method to quantitatively estimate the permeability change within409

partially frozen soils, helps to understand the effects of frozen phase on the tortuosity,410

and sheds light on other transport properties in partially frozen soils.411

Appendix A Geometric mean of permeability sampling412

We assume that the permeability of interest is uniform in the direction parallel to413

the macroscopic pressure gradient, and the permeability tensor is then reduced to a scalar414

function k(r). The governing equation becomes415

∇2P +∇P · ∇ ln k = 0. (A1)416

Again, we let the z-axis be aligned with the macroscopic pressure gradient G, and we417

write the pressure as composed of a mean pressure and a perturbed pressure P = Gz+418
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h(r)419

∇2h+∇h · ∇ ln k = 0. (A2)420

Let k = k0 exp(ξ), we have421

∇2h+∇h · ∇ξ = 0. (A3)422

From the perspective of force balance, pressure gradient ∇h is balanced by viscous frictional423

forces from the medium, which are additive. The central limit theorem ensures that the424

collective result is that the perturbation h on a 2D surface follows a Gaussian distribution425

in stochastic medium no matter what the original distribution of the frictional forces is426

h(r) ∼ h0 exp

(
− 1

2σ2
h

|r− r0|2
)

(A4)427

where the correlation between two arbitrary orthogonal directions is zero and σh is the428

variance. Then we can find that ξ also follows a Gaussian distribution with the same variance429

σh, which ensures that the sampled permeabilities follow a log-normal distribution.430

Appendix B Expectation of products of random variables431

When evaluating the geometric mean, we have432

k′eff ≈
φ

4M

 N∏
i=1

χi cosψi

M∑
j=1

Kj∑
n=1

ρ2
n

1/N

=
φ

4M

(
N∏
i=1

χi cosψi

)1/N
 N∏
i=1

M∑
j=1

Kj∑
n=1

ρ2
n

1/N

.

(B1)433

Because χi and cosψi are independent random variables, the first part can be replaced434

by their expectations435

lim
N→∞

(
N∏
i=1

χi cosψi

)1/N

= exp

(
lim
N→∞

∑
lnχi +

∑
ln cosψi

N

)
(B2)436

= exp

(ˆ 1

0

lnxdx

)
exp

(ˆ 1

0

ln cos
πx

2
dx

)
=

1

2e
(B3)437

438

where e ≈ 2.71828. Therefore,439

keff ≈
φ

8Me

 N∏
i=1

M∑
j=1

Kj∑
n=1

ρ2
n

1/N

. (B4)440
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