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Abstract

Prior information regarding subsurface patterns may be used in geophysical inversion to obtain realistic subsurface models.

Field experiments require prior information with sufficiently diverse patterns to accurately estimate the spatial distribution

of geophysical properties in the sensed subsurface domain. A variational autoencoder (VAE) provides a way to assemble all

patterns deemed possible in a single prior distribution. Such patterns may include those defined by different base training

images and also their perturbed versions, e.g. those resulting from geologically consistent operations such as erosion/dilation,

local deformation and intrafacies variability. Once the VAE is trained, inversion may be done in the latent space which ensures

that inverted models have the patterns defined by the assembled prior. Inversion with both a synthetic and a field case of

cross-borehole GPR traveltime data shows that using the VAE assembled prior performs as good as using the VAE trained on

the pattern with the best fit, but it has the advantage of lower computation cost and more realistic prior uncertainty. Moreover,

the synthetic case shows an adequate estimation of most small scale structures. Estimation of absolute values of wave velocity

is also possible by assuming a linear mixing model and including two additional parameters in the inversion.
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Key Points:8

• A variational autoencoder (VAE) may be used to effectively assemble a diverse9

set of patterns in a single prior for geophysical inversion.10

• Geologically consistent transformations can be used to improve pattern diversity11

when training the VAE.12

• A VAE assembled prior produces less biased geophysical images than those13

produced by smooth inversion or a VAE trained on a single pattern.14
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Abstract15

Prior information regarding subsurface patterns may be used in geophysical inversion16

to obtain realistic subsurface models. Field experiments require prior information with17

sufficiently diverse patterns to accurately estimate the spatial distribution of geophys-18

ical properties in the sensed subsurface domain. A variational autoencoder (VAE)19

provides a way to assemble all patterns deemed possible in a single prior distribution.20

Such patterns may include those defined by different base training images and also21

their perturbed versions, e.g. those resulting from geologically consistent operations22

such as erosion/dilation, local deformation and intrafacies variability. Once the VAE is23

trained, inversion may be done in the latent space which ensures that inverted models24

have the patterns defined by the assembled prior. Inversion with both a synthetic and25

a field case of cross-borehole GPR traveltime data shows that using the VAE assem-26

bled prior performs as good as using the VAE trained on the pattern with the best27

fit, but it has the advantage of lower computation cost and more realistic prior uncer-28

tainty. Moreover, the synthetic case shows an adequate estimation of most small scale29

structures. Estimation of absolute values of wave velocity is also possible by assuming30

a linear mixing model and including two additional parameters in the inversion.31

Plain Language Summary32

Obtaining realistic images of the subsurface is important for characterizing pro-33

cesses that are sensitive to small scale structures such as solute transport. Geophysical34

methods usually require additional information concerning the spatial patterns of the35

subsurface materials to obtain such realistic images. If more than one kind of pattern36

is deemed likely, enforcing a set of patterns in the geophysical image is not straight-37

forward and traditional methods often result in over-simplified representations of the38

subsurface. In this work, we propose a new method that is capable of enforcing a39

diverse set of spatial patterns. The method is based on a pair of convolutional neural40

networks that form a model called variational autoencoder (VAE). The VAE is trained41

with a large number of samples of all the possible patterns and then it is capable of42

generating new patterns that are consistent with those of the training samples. The43

geophysical images are then constrained only to those generated by the VAE. We show44

that our method effectively assembles the set of possible patterns and provides a more45

realistic and less biased image when compared to other methods or even a VAE trained46

with a single kind of pattern.47

Keywords: prior information, geophysical inversion, variational autoencoder, deep48

learning, ground-penetrating radar, traveltime tomography49

1 Introduction50

Obtaining a spatial model of physical properties from sparse and noisy mea-51

surements is ubiquitous in geophysics and serves important goals such as process un-52
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derstanding and future state prediction. This may be quantitatively framed as the53

solution of an inverse problem and is often simply referred to as inversion. In brief, in-54

version estimates the values of the spatial model parameters by combining information55

regarding the model itself, the measured data and a forward operator, which gives a56

relation between model parameters and data by describing approximately the physical57

process by which the data arose. When data does not provide sufficiently indepen-58

dent information about the distribution of subsurface properties, inversion relies on59

regularization to stabilize the solution (Backus & Gilbert, 1967; Tikhonov & Arsenin,60

1977) but this inherently biases the solution towards an a priori constraint which may61

not be realistic and therefore may hinder the use of the model for certain applications.62

If information regarding spatial patterns of the subsurface is available it may be used63

together with measured data in order to improve model realism (Tarantola & Valette,64

1982). This information is typically obtained from independent knowledge about the65

subsurface structure, e.g. outcrops which are representative of the local geology (Linde66

et al., 2015). To integrate this information with measured data, the patterns must be67

described by techniques that account for their spatial nature. This has been generally68

achieved by using traditional geostatistical techniques, which usually provide more re-69

alistic models than classical regularization by means of imposing a covariance structure70

(Franklin, 1970; Maurer et al., 1998; Hermans et al., 2012). The choice of geostatistical71

technique depends on both the complexity of the spatial patterns and the information72

content of the measured data (Mariethoz, 2018). In general, it is recognized that73

multiple-point geostatistics (MPS) is more suited to reproduce highly-connected spa-74

tial structures than covariance-based (or Gaussian random field) methods (Strebelle,75

2002; Journel & Zhang, 2007). Recently, deep generative models (DGMs) have been76

proposed as an alternative to MPS to reproduce such complex spatial patterns (Laloy77

et al., 2017; Chan & Elsheikh, 2019; You et al., 2021).78

MPS and DGMs rely on a gridded (pixel) representation for generating high-79

resolution spatial realizations. An Euclidian space RN may be assumed for this rep-80

resentation where N is the number of pixels, then models may be seen as points in a81

high-dimensional model space. Since the spatial patterns are restricted, however, the82

set of possible models will not cover the whole model space. This subset may be stated83

by a prior probability distribution (Tarantola & Valette, 1982). While both MPS and84

DGMs are able to approximate such prior distribution and generate new samples with85

patterns similar to those contained in a training dataset (e.g. a large training image,86

TI), DGMs present some advantages for inversion. First, contrary to MPS which ei-87

ther saves the number of occurrences of patterns (Strebelle, 2002; Straubhaar et al.,88

2011) or queries them directly from the TI (Mariethoz et al., 2010), DGMs build a89

continuous prior probability distribution from which spatial realizations of the pat-90

terns are generated. This continuous probability distribution means that DGMs may91

provide (1) more diverse patterns, i.e. they generate models whose patterns are not92

necessarily contained in the training image, effectively interpolating between training93

samples, (2) a direct continuous perturbation step while exploring the model space94
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(Laloy et al., 2017) and (3) the possibility of assembling different kinds of patterns in95

a single prior probability distribution (Bergmann et al., 2017). Second, given certain96

conditions, DGMs may also allow for gradient information (of the objective function)97

to be used in inversion which may substantially reduce the computational cost (Laloy98

et al., 2019; Mosser et al., 2018; Lopez-Alvis et al., 2021). This is typically not avail-99

able for inversion with MPS, for which other ways of exploring the model space have100

been used (Hu et al., 2001; Caers & Hoffman, 2006; Hansen et al., 2012; Linde et al.,101

2015).102

There were two main advances that allowed for DGMs to be applicable to high-103

resolution images: (1) neural networks that preserve complex spatial information, and104

(2) inference algorithms that are able to train instances of these networks that specifi-105

cally include a continuous probability distribution within their layers. A common type106

of neural network that fulfills the first point are (deep) convolutional neural networks107

(CNNs) (Fukushima, 1980; LeCun et al., 1989). CNNs are widely used in image pro-108

cessing and computer vision and have shown to be able to process highly complex109

spatial patterns (Krizhevsky et al., 2017). DGMs may use CNNs as their generative110

mapping and therefore produce new high-resolution samples with the training spatial111

patterns (Radford et al., 2016). Given the high-dimensionality of the model space,112

the training of such models was only possible with the introduction of inference algo-113

rithms that were able to cope with such high-dimensionality. Two main algorithms are114

currently used to train DGMs: amortized variational inference (Kingma & Welling,115

2014; Zhang et al., 2018) and adversarial learning (Goodfellow et al., 2014). The for-116

mer gives rise to variational autoencoders (VAEs) while the latter produces generative117

adversarial networks (GANs).118

Both VAEs and GANs may be used to generate samples that display the training119

patterns by sampling from a n-dimensional probability distribution (where typically120

n << N). However, when used for inversion, the concern is not only on pattern121

accuracy but also on the feasibility of efficiently exploring the possible models that fit122

the data, or in Bayesian terms, efficiently integrating model prior information with the123

measured data by means of the forward operator (Mosser et al., 2018; Laloy et al., 2019;124

Canchumuni et al., 2019). It was recently argued that with certain choice of parameters125

VAEs may control both the degree of nonlinearity and the topological changes of their126

generative mapping, which in turn allows the gradient to be used in a computationally127

efficient inversion (Lopez-Alvis et al., 2021). Such choice of parameters is also useful128

in controlling the diversity of samples: instead of only generating samples very close129

to the training samples, the probability distribution expands or covers larger regions130

between the samples what can counterbalance the lack of diversity or finite nature of131

the training image. This improved diversity may be useful when the goal is to generate132

a prior probability distribution which is assembled from different types of patterns (e.g.133

different TIs), including the case when base patterns are perturbed by operations such134

as deformation, erosion-dilation and intrafacies variability. This may be advantageous135
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for field data because it increases the number of possible patterns in the subsurface136

which leads to a better representation of model prior information or uncertainty.137

In this work, DGMs are used to impose spatial patterns during geophysical in-138

version. In particular, the ability of VAEs to build an assembled prior from different139

base TIs and their perturbed versions is tested. The impact of such assembled prior for140

modeling the subsurface is assessed by making use of gradient-based inversion for both141

synthetic and field cases of cross-borehole ground penetrating radar (GPR) traveltime142

data. The novelty of this work lies first in the training of the VAE using perturbed143

images based on transformations which result in a set of patterns that represent sim-144

ilar geological environments. Second, to the best of our knowledge, the current work145

constitutes one of the first efforts to successfully validate DGM-based inversion with146

a field dataset. Finally, the methodology is not restricted to GPR dataset but could147

easily be extended to seismic traveltimes or more generally to other geophysical inverse148

problems. Also, in contrast to previous studies (Laloy et al., 2017, 2018; Mosser et al.,149

2018; Lopez-Alvis et al., 2021) the values of the geophysical parameter (wave velocity)150

are assumed unknown and included in inversion by means of a mixing model.151

The remaining of this work is structured as follows. In section 2, an outline of152

the proposed framework including the underlying theory of VAEs and their use within153

gradient-based inversion is presented. In this section, the field data used to test the154

framework are also described. Section 3 presents and discusses results of the proposed155

approach: first, a synthetic case that mimics the field case is introduced and then156

results of the field case are presented. In this section, the relation of the proposed157

framework with previous studies is also highlighted and suggestions for future work158

are given. Finally, concluding remarks of this work are presented in section 4.159

2 Methods160

The framework proposed in this study is depicted in Figure 1 and may be sum-161

marized as follows:162

1. Define a realistic generative model as prior distribution for the subsurface spa-163

tial patterns. The generative model may include operations that transform164

some base patterns such as erosion/dilation, local deformation and intrafacies165

variability (Figure 1a).166

2. Train the VAE with samples from the generative model. Once trained, the VAE167

works as an assembled prior, i.e. it is able to generate patterns similar to the168

training patterns including those transformed by the defined operations (Figure169

1b).170

3. Perform gradient-based inversion in the latent space of the VAE (Figure 1c).171

All of the methods and concepts required in each of the previous steps are detailed172

in the following sections.173
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Figure 1. Probabilistic graphical models for: (a) generation of model samples using the orig-

inal variables, (b) generation of new model samples from the VAE using the latent variables and

(c) VAE-based inversion. m, d and z refer to the model, data and latent vectors, respectively.

2.1 Variational autoencoder: approximating a complex probability dis-174

tribution175

A variational autoencoder (VAE) may be classified as a deep generative model176

(DGM). A DGM is a type of probabilistic model that relies on a relatively simple177

probability distribution p(z) to approximate a more complex one p(m) by passing the178

samples from the former through a (usually nonlinear) mapping, e.g. a neural network179

(Dayan et al., 1995; Uria et al., 2014). This mapping is referred to as the generative180

mapping gθ(z) and may be represented more generally by a conditional distribution181

pθ(m|z) where θ denotes the parameters of the mapping, e.g. the weights of the neural182

network. Here, m is defined in the original model space RN while z is defined in a183

space Rn. The space Rn is usually referred to as the latent space and z is called the184

code or latent vector. In general, samples m exhibit some order or structure which185

means they are confined to a subset M ⊂ RN . This assumption is known as the186

”manifold hypothesis” (Fefferman et al., 2016) and means that in general it should be187

possible to define Rn with n < N , for which n is at minimum the dimension of the188

subset (or manifold) M. This also means that the probability distribution p(m) only189

needs to be defined over M.190

Assuming a large dataset M = {m(i)}Pi=1 containing P samples from the com-191

plex probability distribution p(m) is available, DGMs are trained by estimating the192

parameters θ of the generative mapping given a fixed p(z). In this way, one is able to193

generate new samples similar to those of the training dataset M by sampling from p(z)194

and passing through the generative mapping, i.e. sampling according to p(z)pθ(m|z).195

However, when the training samples m(i) are high-dimensional, non-standard infer-196

ence methods are required to efficiently estimate the parameters θ of the generative197

mapping. VAEs use a neural network as generative mapping and rely on amortized198

variational inference to estimate its parameters (Kingma & Welling, 2014; Rezende199
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et al., 2014). This inference technique requires another mapping to approximate a200

recognition (or variational) probability distribution qϑ(z|m). In this way the genera-201

tive mapping may take the output of the recognition mapping as input and vice-versa,202

which resembles a neural network architecture known as autoencoder (Kramer, 1991),203

with the generative mapping as decoder and the recognition mapping as encoder. In204

this work the choices proposed by (Kingma & Welling, 2014) regarding the probability205

distributions involved in a VAE are followed. The resulting framework for the VAE is206

detailed in Appendix A. In the rest of this work, we drop the subindex θ in g(z) to207

simplify notation and also because once the DGM is trained, the parameters θ do not208

change, i.e. they are fixed for the subsequent inversion.209

Note that the training dataset M may contain different kinds of patterns which210

allow the VAE to effectively learn what is here termed an assembled prior, i.e. a211

continuous prior distribution which generates not only patterns similar to those in212

the training set but also those corresponding to the transitions between the training213

patterns. Bergmann et al. (2017) propose a similar idea for GANs. One may also214

picture this process as changing or substituting the original (probabilistic) generative215

model by the VAE, i.e. the latent variables now include jointly the effects of the original216

variables (Figure 1).217

In this work we consider a VAE in which both encoder and decoder (see Figure218

A1) are based on CNNs. The size of the latent vector n = 40 was chosen by testing a set219

of increasing values (n = 20, 40 and 60) whose range was based on previous studies for220

similar patterns (Lopez-Alvis et al., 2021) and selecting the one that provides accurate221

reconstruction of the training samples without degrading the similarity of the generated222

patterns (this was assessed by visualizing a set of randomly generated models). We223

found e.g. that n = 60 provides only a slight improvement in reconstruction of the224

training samples but causes a significant degradation of generated patterns.225

2.2 Inversion of traveltime data using a VAE as prior226

As mentioned above, a VAE using CNNs provides a powerful tool to represent227

complex probability distributions. Therefore if one has a large dataset containing ex-228

amples of spatial patterns, the VAE allows to approximate complex prior probability229

distributions in the context of geophysical inversion. Following the derivation in Ap-230

pendix B, inversion is done by minimizing the objective function in equation B5 and231

whose gradient is computed according to equations B6 and B8 as:232

∇zζ(z) = −S(z)T ( J(m)T (d− f(m)) ) + 2λz (1)

where S(z) is the Jacobian matrix of the generative mapping, f is the geophysical233

forward operator, J(m) is the Jacobian matrix of the forward operator and λ is a234

regularization factor in the latent space.235
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In this work, we illustrate the proposed approach with a cross-borehole GPR236

traveltime field dataset. In order to approximate the propagation of waves, a forward237

operator that relies on the eikonal equation:238

|∇τ |2 = v−2 (2)

is used, where τ denotes the traveltime and v is the velocity of the subsurface materials.239

Note that equation 2 is not limited to GPR but may also be applied to e.g. seismic240

traveltime. A numerical solution is typically required, where after discretization one241

obtains the forward operator that relates the vector of traveltimes d = τ to the242

slowness (which is the reciprocal of velocity) vector m = v−1 in equation B1. The243

Fast-Marching method and a factorized version of the eikonal equation are used herein244

(Treister & Haber, 2016). The factorized equation helps to reduce the error induced245

by spatial discretization in the proximity of the sources. It is important to note that246

this forward operator may still result in noticeable error when used for field data247

since effects related to the finite-frequency or scattering are not considered. When248

a proper discretization is chosen and a moderate velocity contrast is assumed, the249

magnitude of this error is comparable to the one of measurement error (Hansen et250

al., 2014) which should allow for data misfit error only a bit higher than with more251

realistic operators. Though, a non-negligible bias remains which must be considered252

when analyzing inversion results. The same implementation allows one to efficiently253

compute the product J(m)T (d− f(m)) which is given by the solution of a triangular254

system exploiting the Fast-Marching sort order of the forward operator (Treister &255

Haber, 2016). The choice of such forward operator is motivated by the need to keep256

computational demand low, as inversions usually require a significant amount of both257

forward simulations and the above sensitivity product.258

In contrast to previous studies where synthetic cases assumed that the mean259

velocity values in each facies were known (Laloy et al., 2017, 2018; Mosser et al., 2018;260

Canchumuni et al., 2019), here the inversion of these velocity (or slowness) values261

is done by assuming a linear mixing model that shifts and scales the spatial models262

obtained from the VAE according to v = w1 + w2 m. This is helpful for field cases263

since typically there is uncertainty in these values. The inversion will then include two264

extra parameters (w1 and w2). If these parameters are assumed independent of the265

latent vector z, one may compute the gradient of the objective function with respect266

to them:267

∂ζ(w)

∂wi
= ∇vγ(v)

∂v

∂wi
(3)

where ∇vγ(v) is given by equation B8 but computed using the values of v instead of268

m. For the two wi parameters we have:269
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∂v

∂w1
= 1,

∂v

∂w2
= m (4)

Similarly, the first term on the right of equation B6 should now be computed using v270

instead of m. Strictly, this term should also include a derivative with respect to m,271

however, this is a constant and it has no impact since the step size of the optimization272

is scaled in every iteration. Since these two parameters cause a stronger impact on273

traveltime values than the latent variables, their step is multiplied by a factor equal274

to 10−4 to make the inversion stable.275

In this work, stochastic gradient descent (SGD) and equation 1 are used for opti-276

mization of the objective function (Lopez-Alvis et al., 2021). SGD provides two main277

advantages: (1) it is less prone to get trapped in local minima, especially if the objec-278

tive function has the shape of a global basin of attraction, and (2) the computational279

cost of each iteration is reduced by simulating only a subset of the data (also called280

a data batch). Decreasing of the step size (or learning rate) is also employed as it281

has been shown to further aid in reaching the neighborhood of the global minimum282

(Kleinberg et al., 2018).283

2.3 Training VAE with realistic patterns based on an outcrop284

The size of the spatial domain to be modeled was selected according to the285

region sensed by the acquisition setup (see details on section 2.4). A uniform cell286

discretization of 5 cm was chosen to model high-resolution details. Although CNNs287

may be set to the desired dimensions by selecting the correct size for the filters, stride288

and padding, one could also consider a slightly larger size and then crop the cells289

outside the domain since they do not affect the data misfit. In this work, some cells290

close to the surface are retained even if they are outside the sensed volume because291

they allow a qualitative assessment of the effect of the prior pattern information in the292

absence of data. Therefore, the spatial domain was discretized by 65 × 129 = 8385293

cells, corresponding to a 3.25 m × 6.45 m section.294

The training patterns used to train the VAE are constructed by a hierarchical295

model that allows for the transformation of an initial set of TIs (Figure 1a). The296

sensed subsurface was assumed to be mainly composed by two different materials:297

till and sand. Two initial object-based TIs (BTI1 and BTI2) were built according to298

information on local geology and a quantitative analysis of an outcrop close to the299

investigated cross-borehole section (Kessler et al., 2013). These two TIs were mainly300

chosen because there is uncertainty in the presence of sand sheets (the most elongated301

sand bodies) in the sensed region: they were not present in the outcrop used in the302

analysis but they were present in other outcrops. All of the sand bodies were assumed303

to be approximated with ellipses of different sizes and eccentricity (Figure 2a). For304

this, the statistical distribution of the major and minor axes of the sand bodies was305

approximated from the outcrop by a two-dimensional histogram (Figure 2b). Then,306
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BTI1 is directly constructed by sampling ellipses sizes according to the histogram,307

placing them randomly in the domain (overlapping is allowed to partially account for308

the more complex shapes) while maintaining a facies proportion similar to the one in309

the outcrop which is 0.17 (Figure 2c). BTI2 is built similarly but includes the sand310

sheets (Figure 2d) whose size distribution was based on the one reported by (Kessler311

et al., 2012). The size of these TIs was chosen in order to include many repetitions of312

the patterns for the target size to be simulated (65 × 129), therefore TIs with a size313

of 4762 × 4762 are used.314

To account for more diverse and realistic shapes for the sand bodies (as those315

seen in the outcrop) two main transformations were applied to the initial TIs: ero-316

sion/dilation and local deformation. Erosion/dilation here refers to the image mor-317

phological operation for which pixels are removed/added to the limits of objects by318

setting a pixel to the minimum/maximum over all pixels in a neighborhood centered319

at that pixel (Soille, 2004). Though erosion/dilation may refer to either of the two320

facies, here we will refer to that of the sand bodies to avoid confusion. One step for321

dilation and one for erosion was done using a neighborhood which is 6 × 2 pixels. The322

local deformation was done by a piecewise affine transformation (van der Walt et al.,323

2014) which requires defining a uniform grid of nodes and a corresponding mesh by324

Delaunay triangulation. Then, the positions of the nodes were perturbed according to325

two Gaussian random fields (one for the x- and one for the y-coordinates) and finally a326

local affine transformation is done to the pixels inside each triangle of the original mesh327

in order to fit the new deformed mesh. Deformation was applied with two different328

amplitudes in the perturbation of the grid, resulting in two different levels of deforma-329

tion. Considering all the combinations of erosion-dilation and deformation (including330

the ones with no erosion-dilation and zero deformation) a total of nine different cases331

or modified TIs for each base TI are built. The patterns of each of the nine modified332

TIs obtained from BTI2 are shown in Figure 2e. The size of each of these modified333

TIs is a bit smaller (4722 × 4722) than for the base TIs since cropping was needed in334

the edges after deformation.335

Finally, intrafacies variability was considered by means of using Gaussian field336

simulations with different means and anisotropy for each facies: both facies use a337

Gaussian covariance function with correlation length of 1.0 m but the channels facies338

uses an anisotropy factor of 0.2 and a mean of 0.35 (prior to transforming to velocity339

values) while the background facies uses a factor 0.25 and a mean of 0.7. This vari-340

ability was added following a ”cookie cutter” approach where each of the simulations341

is only set in pixels with the corresponding facies value. Values were log-transformed342

in order to prevent negative values. This step is done after the sample is cropped343

from the modified TI to train the VAE to allow more variability in the patterns. The344

overall hierarchical model from where training samples for the VAE are taken is shown345

in Figure 1a. Note that the transformations are coherent with the geological processes346

and one could also easily include others such as faulting.347
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Figure 2. (a) Digitized outcrop from Kessler et al. (2013) showing sand bodies in black,

background till in white, the axes of fitted ellipses for the sand bodies in red and centers of the

ellipses in green. (b) Two-dimensional histogram of the major and minor axes lengths of the el-

lipses fitted in the outcrop. 1500 × 1000 pixel croppings of: (c) base image BTI1, (d) base image

BTI2 and (e) the nine modified TIs corresponding to BTI2.
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2.4 Field site and data description348

The field site is located at the Kallerup gravel pit, Denmark. The local geology349

is composed by a glacial till with several elongated sand bodies (Kessler et al., 2012).350

Till is composed of particle sizes from clay to gravel, while sand bodies have a more351

narrow grain size distribution. Further, shapes of the sand bodies display varying352

degrees of deformation characteristic of basal till. This type of geology results in highly353

contrasting subsurface, as may be seen in Figure 2a. After the data was acquired,354

the field site was excavated which allows to compare with inversion results, at least355

qualitatively (Larsen et al., 2016; Bording et al., 2019).356

The field dataset is the cross-borehole traveltime data presented by Looms et357

al. (2018). Measurements were collected with 100 MHz borehole antennas and a358

PulseEKKO system (Sensors & Software, ON, Canada). The two boreholes are lo-359

cated 3.25 m apart and are 8 m deep. Data was acquired forming a multi-offset gather360

(MOG) with all source positions in one borehole and receiver positions in the other.361

Spacing for both sources and receivers was 0.25 m and data was collected from 1.0 m to362

7.0 m deep, for a total of 625 traces. First arrivals were picked with a semi-automatic363

procedure (Looms et al., 2018). Data for sources and receivers with depth less than364

1.5 m were removed to avoid error from refraction at the air-ground interface. For365

similar reasons, since the boreholes are located in the unsaturated zone, data offsets366

with angles greater than 30 degrees were not considered to avoid error from borehole367

refraction. Estimated measurement error is 0.47 ns while average traveltime is 41.5368

ns.369

To assess the performance of our proposed inversion, a synthetic case is first ana-370

lyzed with the same acquisition settings than those of the field data. A synthetic model371

was built with the same statistical distribution of BTI2 but with a higher proportion372

of sand to till proportion (0.32) and different degree of deformation (an amplitude373

just in the middle between 1 and 2 in Figure 2e). The model was cropped from a374

TI of the same size as the ones used for training but its random spatial realization375

was different, i.e. the ellipses and its positions were randomly set, therefore one should376

expect different patterns may be present than those in the TI used for training. Then,377

synthetic data was generated using the forward operator and Gaussian noise with the378

same magnitude as the error estimated for the field data was added (0.47 ns). Note379

that in this case, there is no error due to the forward operator. In this way, the syn-380

thetic case should provide an idea of how performant is the VAE-based inversion in381

obtaining patterns that deviate from the ones used for training.382

3 Results383

3.1 Training the VAE384

The VAE for the assembled prior is trained by randomly selecting from any of385

the 18 modified TIs, then randomly sampling a cropped piece (with the appropriate386

–12–



manuscript submitted to JGR: Solid Earth

Figure 3. Examples of training samples (a) and samples generated from the trained VAE (b).

The grey scale is with respect to the model variable m prior to its transformation to velocity

values.

size of the spatial domain) and adding the intrafacies variability. Examples of the387

cropped samples are shown in Figure 3a. The VAE was implemented and trained388

using PyTorch (Paszke et al., 2017). The training used a total of P = 107 cropped389

samples and took around ∼ 4.5 hrs on a Nvidia GPU RTX 2060 (∼ 3 hrs without the390

intrafacies). Note that deformation and erosion-dilation may have been done directly391

while feeding the samples to train the VAE (similar to the intrafacies), however, this392

would have likely resulted in prohibiting computational time (while erosion-dilation is393

typically fast, the local deformation is generally much slower). Once trained, samples394

are generated according to the graphical model in Figure 1b (following the process395

defined by Figure A1). A few examples of random samples generated from the trained396

VAE are shown in Figure 3b, these are samples from the assembled prior distribution397

approximated by the VAE. Also, a VAE is trained for each individual TI to make a398

comparison with the assembled prior.399

The VAE-based generated patterns may fail to adequatly represent the patterns400

of heterogeneity encountered in the field for three main reasons: (1) sufficiently similar401

patterns are not included during training, (2) patterns are filtered or simplified by the402

VAE, and (3) the diversity of the patterns was not sufficient to simulate new consistent403

patterns. In general, these three reasons play a role to different degrees. The first is404

unavoidably present in any study that aims to use information from nearby outcrops405

or local geology to constrain the subsurface patterns in the sensed domain. However,406

this may be partially accounted for by considering different base patterns and their407

perturbed versions (obtained by morphological operations and local transformations)408

which may all be attributed to a similar environment. Note, however, that this strategy409

will not add new materials (lithologies). A prior consistency check before training may410

indicate if the VAE fails due to the first reason. In this work, this check was done411

using a methodology based on a low-dimensional representation of the data (Park et412
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al., 2013; Hermans et al., 2015; Scheidt et al., 2018; Lopez-Alvis et al., 2019) according413

to which none of the TIs is falsified, i.e. all the proposed patterns are likely to have414

generated the data. The details are shown in Supplementary material S1. The effect415

arising from the second reason is directly related to generative accuracy and is captured416

e.g. in Figure 3 where the generated samples seem to have filtered out patterns with417

very high curvature. Finally, the third reason, which is somewhat tied to the first, is418

related to how the VAE is able to interpolate between training patterns. This may be419

checked by visualizing a set of training images as in Figure 3 and also making a latent420

traversal as shown in Figure 4, which makes steps along two of the dimensions of the421

latent space and fixes the rest. This should also be supplemented by an assessment422

of how much the generated patterns depart from the training samples while retaining423

consistent patterns. In recent work, Lopez-Alvis et al. (2021) show that VAEs are424

able to deviate from training patterns while still preserving realistic patterns through425

breaking continuous channels from the original training image. There have been some426

recent efforts to quantitatively measure diversity in DGMs (Lucic et al., 2018; Sajjadi427

et al., 2018) however, it remains an open question whether useful departures (such as428

the breaking channels) would be adequately captured by these measures. In summary,429

the proposed approach is not intended to generate perfectly accurate patterns but to430

allow the generated patterns to deviate from training patterns in order to both improve431

diversity and fit the data without compromising the patterns’ realism.432

3.2 SGD-based inversion of synthetic data with VAE as prior433

Once the VAE is trained, the assembled prior may be used directly in inversion434

to impose the diverse patterns. It is worth noticing that the latent parameters z of the435

VAE have effectively substituted the parameters related to the original hierarchical436

model (the substitution is denoted by the grey arrow in Figure 1). The latent param-437

eter distribution now includes all the discrete and intractable operations (i.e. different438

base TIs, erosion-dilation, deformation and intrafacies variability) in a continuous and439

searchable space. This allows for optimization to be performed by continuously step-440

ping in the latent space. Moreover, such steps can take advantage of the gradient (as441

detailed in section 2.2) which generally would not be the case if one sought to directly442

estimate the original parameters.443

The results of our proposed inversion approach are first assessed using the syn-444

thetic data presented above. Figure 5a,b,c shows the real synthetic model, an inverted445

model with traditional smooth regularization and a VAE inverted model (for one ran-446

domly chosen starting model), respectively. The smooth inversion is done with a low447

regularization factor (10−9), so it mainly represents the information content of the448

data and therefore is prone to artefacts due to noise (e.g. ray artefacts in Figure 5b).449

In contrast, due to the use of prior information that is geologically coherent, the VAE450

inverted model is artefact-free. For the model in Figure 5c, the behavior of the data451

misfit (RMSE), the Euclidian distance between the current model and the real model,452

the norm of z and the velocity parameters as the inversion progresses are shown in453
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Figure 4. Examples of VAE latent traversals (stepping in two latent dimensions while keeping

the rest �xed) for: latent dimensions z1 and z2 (left) and latent dimensions z9 and z3 (right).

The gray scale is with respect to the model variable m prior to its transformation to velocity

values.
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Table 1. Mean and standard deviation values of inversions using 10 different initial models

TI* data RMSE (ns) ‖z‖ v1 v2

synthetic case

All 0.655 ± 0.050 8.004 ± 0.309 0.017 ± 0.005 0.17 ± 0.007

best 0.632 ± 0.017 7.767 ± 0.124 0.019 ± 0.001 0.166 ± 0.002

median 0.728 ± 0.011 8.325 ± 0.072 0.017 ± 0.001 0.171 ± 0.001

worst 1.058 ± 0.018 10.097 ± 0.326 0.015 ± 0.001 0.175 ± 0.003

field case

All 0.634 ± 0.008 5.342 ± 0.244 0.031 ± 0.001 0.157 ± 0.004

best 0.623 ± 0.013 5.194 ± 0.124 0.029 ± 0.001 0.157 ± 0.004

median 0.674 ± 0.041 5.155 ± 0.294 0.033 ± 0.003 0.148 ± 0.010

worst 0.732 ± 0.035 5.371 ± 0.214 0.031 ± 0.001 0.150 ± 0.004

*The labels indicate best, median and worst in terms of data RMSE from all 18 TIs.

Figure 7. Inversion results for the field case: (a) smooth inverted model, (b) VAE-SGD in-

verted model for one random starting model using the assembled prior. For the model in (b),

the values in each iteration for: data RMSE (c), norm of z (d) and linear mixing parameters (e).

VAE-SGD inverted modes for three different starting models using the assembled prior (f,g,h).

VAE-SGD inverted models for prior with individual TIs using one random starting model: best

(i), median (j) and worst (k) in terms of RMSE (see Figure 6b). For all inverted models, data

RMSE is shown at the top.
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and even inclination trends of both the upper sand and lower sand bodies seem to513

match those observed in excavated profiles close to the GPR sensed domain (Larsen514

et al., 2016; Bording et al., 2019). Regarding the performance of the assembled prior515

for inversion, Table 1 shows that training the VAE with all the TIs at the same time516

performs better than the median individual TI and results in approximately equal517

values of average RMSE compared to inversion with the best individual TI. This518

indicates that it may be better to build an assembled wide prior than to consider519

many TIs individually for inversion (Hermans et al., 2015). Note that results of the520

best individual TI have slightly lower values of RMSE. This may be partially explained521

by the fact that a constant dimensionality n = 40 for the latent vector is used. A522

better strategy might be to slightly increase n when more diversity in the patterns523

is considered. The assembled prior also has the advantage of a lower computational524

demand: one does not have to train a VAE and do the inversion for each individual525

TI. In the presented field case, for instance, the computational demand is 18 times526

higher if the TIs are considered individually. Moreover, prior uncertainty tends to be527

larger in field cases therefore a wider prior distribution, such as the one modeled by528

the VAE with all the TIs, is preferable. This wider prior distribution may indeed help529

in reducing bias arising when highly informative prior information is used.530

It is interesting to contrast the mechanism by which the VAE generates new531

samples of the patterns to equivalent mechanisms in MPS. While the departure of532

new patterns from training patterns in a VAE depends mainly in training parameters533

such as regularization weights α and β (see Appendix A) which in turn impact the534

approximation of the continuous prior in model space, MPS may control the diversity535

of patterns by relaxing the conditioning, e.g. by changing the number of condition-536

ing pixels or by defining distances to the conditioning event. Further study of this537

relation should enlighten under which circumstances it is better to use either of these538

strategies to produce more diverse patterns or even if it is possible to combine them539

to better represent prior uncertainty in the most realistic way possible (see e.g. Bai540

& Tahmasebi, 2020). It is worth mentioning that the problem of using multiple TIs541

with MPS seems to have received little attention (Silva & Deutsch, 2012; Scheidt et542

al., 2016) perhaps because most studies focus on discrete aspects (e.g. different deposi-543

tional environments) rather than continuous aspects as in this study (i.e. deformation,544

erosion-dilation and intrafacies variability). In some cases, however, one should be545

able to frame inversion problems for subsurface models in terms of continuous vari-546

ables (e.g. two depositional environments may have transitional environments between547

them), so further study of this subject may prove beneficial.548

In this work we considered a normal multivariate Gaussian distribution to model549

the prior in latent space (i.e. as input to the generative function of the VAE), however,550

other types of distributions may also be used, e.g. a Gaussian mixture model (Makhzani551

et al., 2015). These other types of distributions may provide two main advantages:552

(1) they may produce more accurate patterns, and (2) they are more directly related553

to the prior distribution in model space and therefore cause less nonlinearity and/or554
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topological changes. However, sampling from these distributions in latent space is not555

as straightforward as for a multivariate Gaussian. This means that one would have556

to rely on either different regularization terms in latent space or more advanced (but557

potentially more computationally demanding) ways of sampling.558

4 Conclusions559

When prior information is expressed by a set of TIs and their perturbed versions,560

a VAE may be used to approximate a prior distribution that effectively assembles all561

the possible spatial patterns. The perturbations are key to reproduce the expected het-562

erogeneity and may include geologically consistent operations such as erosion/dilation,563

local deformation and intrafacies variability which result in a set of patterns that rep-564

resent similar geological environments. The VAE is capable of producing patterns565

that deviate from training patterns but remain realistic, therefore increasing pattern566

diversity. The cross-borehole GPR traveltime synthetic case demonstrates that in-567

version with SGD in the latent space of the VAE is able to obtain a realistic model568

while remaining computationally efficient. Even though the final misfit is higher than569

the noise level, most structural features are correctly inverted. By assuming a linear570

mixing model (two additional parameters), the absolute values of velocity may be also571

estimated in the inversion. This allows for inversion using a VAE as prior to be more572

readily applied to a field dataset. Results from the field case validate VAE-based in-573

version since they show a realistic inverted model with misfit only slightly higher than574

the estimated noise and therefore provide one of the first successful applications of575

DGM-based inversion. A comparison of VAEs trained on individual TIs and the VAE576

trained with all the TIs at the same time shows that the latter performs as good as the577

best individual TIs. Moreover, it has the advantage of lower computational demand578

and a more adequate (wider) prior uncertainty, which in turn may reduce bias from579

highly informative prior information. Finally, future work may include extending the580

proposed method to handle more than two subsurface materials, testing new geolog-581

ically consistent transformations, considering more general distributions in the latent582

space and using it in combination with MPS to improve the accuracy and diversity of583

patterns.584

Appendix A Variational Autoencoder585

The starting point is to pose the VAE’s training as maximizing the sum of the586

evidence (or marginal likelihood) lower bound of each individual sample m(i). The587

evidence lower bound for each sample can be written as:588

L(θ, ϑ; m(i)) = Lm + Lz (A1)

with589
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Lm = Eqϑ(z|m(i))[log(pθ(m
(i)|z)] (A2)

and590

Lz = −DKL(qϑ(z|m(i))||p(z)) (A3)

where pθ(m|z) is the (probabilistic) decoder, qϑ(z|m) is the (probabilistic) encoder, E591

denotes the expectation operator, DKL denotes the Kullback-Leibler distance and, θ592

and ϑ are the parameters (weights and biases) of the neural networks for the decoder593

and encoder, respectively.594

In order to maximize the evidence lower bound in equation A1, an estimator595

for L is used. This estimator is based on a so called reparameterization trick of the596

random variable z̃ ∼ qϑ(z|m) which uses an auxiliary noise ε. In the case of a VAE,597

the encoder is defined as a multivariate Gaussian with diagonal covariance:598

qϑ(z|m) = N (hϑ(m),uϑ(m) · In) (A4)

where hϑ(m) and log uϑ(m) are modeled with neural networks and In is a n × n599

diagonal matrix. Then, the encoder and the auxiliary noise ε are used in the following600

way during training:601

z̃ = hϑ(m) + uϑ(m)� ε, ε ∼ N (0, α · In) (A5)

where � denotes an element-wise product and α defines the magnitude of the vari-602

ance of ε. Often equation A3 has an analytical solution, then only equation A2 is603

approximated with the estimator as:604

L̃m =
1

L

L∑
j=1

log(pθ(m
(i)|z̃(i,j))) (A6)

where z̃(i,j) = hϑ(m(i)) + uϑ(m(i)) � ε(j) and L is the number of samples used for605

the estimator. Further, if we set the decoder pθ(m|z) as a multivariate Gaussian with606

diagonal covariance structure, then607

pθ(m|z) = N (gθ(z),vθ(z) · IN ) (A7)

where gθ(z) and log vθ(z) are modeled with neural networks and IN is a N×N diagonal608

matrix. In this work, we consider only the mean of the decoder pθ(m|z) which is just609

the (deterministic) generator gθ(z). Then, the corresponding (mean-squared error)610

loss function may be written as611
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Figure A1. A diagram for a VAE: (a) steps needed for training and (b) steps needed for

generation.

L̃m =
1

L

L∑
j=1

‖gθ(z̃(i,j))−m(i)‖2 (A8)

The described setting allows for the gradient to be computed with respect to both θ612

and ϑ and then stochastic gradient descent is used to maximize the lower bound in613

equation A1.614

As previously mentioned, it is often possible to analytically integrate the Kullback-615

Leibler distance in equation A3. In this work, we consider that p(z) and qϑ(z|m) are616

both Gaussian therefore equation A3 may be rewritten as (Kingma & Welling, 2014):617

Lz =
1

2

n∑
i=1

(1 + log((ui)
2)− (hi)

2 − (ui)
2) (A9)

where the sum is done for the n output dimensions of the encoder.618

Note that the term in equations A2, A6 and A8 may be interpreted as a recon-619

struction term that causes the outputs of the encode-decode operation to look similar620

to the training samples, while the term in equations A3 and A9 may be considered621

a regularization term that enforces the encoder qϑ(z|m) to be close to a prescribed622

distribution p(z). In practice, one may add a weight to the second term (Higgins et623

al., 2017) of the lower bound as:624

L̃(θ, ϑ; m(i)) = L̃m + βLz (A10)

to prevent samples to be encoded far from each other in the latent space, which625

may cause overfitting of the reconstruction term and degrade the VAE’s generative626

performance. The overall process of training and generation for a VAE is depicted in627

Figure A1.628
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Appendix B Objective function for inversion with VAE629

Following a Bayesian approach (to be consistent with the one used to derive the630

VAE), inversion may be considered as the conjunction of information regarding the631

model, the measured data and their relation given by a forward operator (Tarantola632

& Valette, 1982). The latter relation may be expressed as:633

d = f(m) (B1)

where d is a Q-dimensional vector representing the data and f : RN → RQ is the634

geophysical forward operator. Since both the measurements and the forward operator635

typically have some error, the relation in equation B1 may be represented with a636

conditional probability distribution p(d|m). Then, inversion is stated as:637

p(m|d) = k p(d|m) p(m) (B2)

where p(m|d) is the posterior distribution, p(m) is the model prior distribution and638

p(d|m) is termed the likelihood function.639

When the prior distribution is approximated with a VAE, inversion may be re-640

stated in terms of the latent vector z as:641

p(m, z|d) = k p(d|m) p(z) p(m|z)

p(z|d) = k p(z)

∫
p(d|m) p(m|z) dm (B3)

where p(z) is the latent prior distribution and p(m|z) is the generative mapping (or642

decoder), as defined in section 2.1. Further, as mentioned above when only considering643

the mean of the decoder then p(m|z) = δ(m− g(z)) and equation B3 may be written644

as:645

p(z|d) = k p(z)

∫
p(d|m) δ(m− g(z)) dm

= k p(z) p( d|g(z) ) (B4)

Equation B4 may be used to solve an inverse problem in which a VAE (or some646

other DGM) is used to state the prior model distribution. For instance, one may apply647

Markov chain Monte Carlo to equation B4 and get the posterior distribution of the648

latent variables (Laloy et al., 2017, 2018). When appropriate values to train the VAE649

are used (Lopez-Alvis et al., 2021), g is expected to be only mildly nonlinear. If we650

further assume that f is also mildly nonlinear and that errors in the data (with respect651

to forward predictions) are independent and Gaussian, the likelihood p( d|g(z) ) will652
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be approximately independent and Gaussian (Holm-Jensen & Hansen, 2019). Given653

these conditions, minimizing the following objective function ζ(z) should provide a654

good approximation for maximum likelihood model parameters:655

ζ(z) = ‖f(g(z))− d‖2 + λ‖z‖2 (B5)

where f(g(z)) is the composition of the forward operator after the generative mapping,656

‖z‖2 is a regularization term which enforces the search to be consistent with the657

multivariate Gaussian distribution p(z) = N (0, In) and λ is a regularization weight658

(Bora et al., 2017). To minimize ζ(z) we take advantage of the gradient, which is659

computed following the chain rule as:660

∇zζ(z) = ∇z‖f(g(z))− d‖2 + λ∇z‖z‖2

= S(z)T∇m‖f(m)− d‖2 + 2λz (B6)

with the Jacobian S(z) of size N ×n obtained directly by the autodifferentiation used661

to trained the VAE (Paszke et al., 2017) and whose elements are:662

[S(z)]i,j =
∂gi(z)

∂zj
(B7)

The gradient with respect to the data misfit may be computed by linearization663

of the forward operator:664

∇m‖f(m)− d‖2 = −J(m)T (d− f(m)) (B8)

where is J(m) is the Q ×N Jacobian (or sensitivity) matrix of the forward operator665

whose elements are:666

[J(m)]i,j =
∂fi(m)

∂mj
(B9)
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Text S1. Checking the prior consistency

When the inversion described in section 2.2 is applied to a field case, it is important to

check that the chosen prior is consistent with the data (Scheidt et al., 2018). Further, when

considering an assembled prior, this check may allow to falsify some of the patterns before

training the VAE, potentially improving the accuracy of the generated patterns and/or

allowing for a lower dimensionality to be used for the latent space. This prior consistency

or falsification step is done using the original generative model (Fig. 1a). The method

applied here relies on approximating the marginal conditional distribution with respect
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to the TI as p(d|TI) ≈ p(d∗|TI) where d∗ refers to a lower-dimensional or compressed

version of the data d. Here, a number of samples from each TI and their corresponding

simulations (using the forward operator) are obtained, then principal component analysis

(PCA) is used to perform the dimensionality reduction. The conditional p(d∗|TI) is then

approximated with adaptive kernel density estimation (KDE) (Park et al., 2013). Finally,

the value of p(d∗|TI) at the observed data is compared to the probability density value

at the 99 percent confidence region of a multivariate Gaussian distribution with the same

dimension as d∗. If the density value at the observed data is lower than the density value

of the multivariate Gaussian, the TI is falsified or deemed inconsistent with the data.

The prior consistency check is performed for both the synthetic and field data (see

sections 3.2 and 3.3). For this, 300 model samples (generated as in Fig. 1a) and their

corresponding forward simulations are obtained for each training image. Then, the first

three PCA components of these simulations and the data are used to compute the value of

p(d∗|TI). The first three components were considered because they account for about 84

percent of data variability (explained variance). The density value at the contour of the

99 percent confidence region of a three-dimensional multivariate Gaussian distribution is

equal to 2.2× 10−4, so any TI with a conditional density value lower than this is deemed

non-consistent or very unlikely to have generated the data. Figure S1 shows the p(d∗|TI)

for each TI. For both the synthetic case and the field case, all TIs show a conditional

probability above the defined threshold, i.e. none of the TIs is falsified. Note that for the

field data, TIs 3 and 5 are very close to the threshold. An additional visual check for

these two TIs is performed by plotting of the data point together with the simulated data
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points (Figure S2), which confirms that the data point is in a low density region but it is

still likely to be produced by each of the two TIs.

Note that the prior falsification step for the field data gives a rather low probability

value for the best performing inversion case (compare TI5 in Fig. 6b and Fig. S1b). This

may be caused by: (1) the low number of samples used for the prior falsification (300

forward runs for each TI) and (2) the enhanced diversity caused by the VAE, i.e. even if

the patterns in TI5 did not produced sufficiently similar patterns to those giving rise to

the field data, the VAE trained with this TI does produce such patterns.
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Figure S1. Prior falsification results for synthetic (a) and field case (b) for individual priors

(VAEs trained on each of the 18 TIs) and the assembled prior (labeled ”All”). Dashed line is

the threshold for falsification.
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Figure S2. Principal components of simulated data and field data for TI3 (a) and TI5 (b).

Simulated data is in colored dots and field data is denoted by the ’×’ symbol.
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