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Abstract

We apply a coarse-grained decomposition of the ocean’s surface geostrophic flow derived from satellite and numerical model

products. In the extra-tropics we find that roughly 60\% of the global surface geostrophic kinetic energy is at scales between

100 km and 500 km, peaking at ˜300 km. Our analysis also reveals a clear seasonality in the kinetic energy with a spring peak.

We show that traditional mean-fluctuation (or Reynolds) decomposition is unable to robustly disentangle length-scales since the

time mean flow consists of a significant contribution (greater than 50%) from scales <500 km. By coarse-graining in both space

and time, we find that every length-scale evolves over a wide range of time-scales. Consequently, a running time-average of any

duration reduces the energy content of all length-scales, including those larger than 1000 km, and is not effective at removing

length-scales smaller than 300 km. By contrasting our spatio-temporal analysis of numerical model and satellite products, we

show that the AVISO gridded product suppresses temporal variations less than 10 days for all length-scales, especially between

100 km and 500 km.
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Abstract16

We apply a coarse-grained decomposition of the ocean’s surface geostrophic flow17

derived from satellite and numerical model products. In the extra-tropics we find that18

roughly 60% of the global surface geostrophic kinetic energy is at scales between 100 km19

and 500 km, peaking at ≈ 300 km. Our analysis also reveals a clear seasonality in the20

kinetic energy with a spring peak. We show that traditional mean-fluctuation (or Reynolds)21

decomposition is unable to robustly disentangle length-scales since the time mean flow22

consists of a significant contribution (greater than 50%) from scales < 500 km. By coarse-23

graining in both space and time, we find that every length-scale evolves over a wide range24

of time-scales. Consequently, a running time-average of any duration reduces the energy25

content of all length-scales, including those larger than 1000 km, and is not effective at26

removing length-scales smaller than 300 km. By contrasting our spatio-temporal anal-27

ysis of numerical model and satellite products, we show that the AVISO gridded prod-28

uct suppresses temporal variations less than 10 days for all length-scales, especially be-29

tween 100 km and 500 km.30

Plain Language Summary31

Traditionally, ‘eddies’ are identified as transient features that vary in time relative32

to a background time mean flow. As such, a ‘mean’ flow does not necessarily imply a large33

length-scale flow. For example, standing eddies or stationary meanders due to topographic34

interactions have little variation in time, but can still have significant energy at small35

length scales. Similarly, ‘eddy’, ‘time-varying’ or ’transient’ do not necessarily imply small36

length-scale, with examples including the large-scale transient motions from Rossby waves37

or fluctuations of the Kuroshio Current. Hence, the traditional time average approach38

offers no control over the specific physical length that divides oceanic flow into ‘large’39

and ‘small’. That is, the length-scales constituting the large-scale flow cannot be var-40

ied/controlled by time averaging in a manner that is consistent with length-scales resolved41

in a coarse climate simulation.42

We consider a coarse-graining method to studying geostrophic ocean currents with43

this method consistent with our notions of ’mesoscale’ as defined by a length scale. Our44

approach is directly relevant to scale-aware parameterization requirements of coarse-resolution45

simulations, since we are directly focused on length-scales of the flow fields. To illustrate46

the coarse-graining method, and to add understanding to the oceanic flows analyzed here,47

we present the first global characterization of kinetic energy content and its temporal48

variation as decomposed by coarse-graining according to precisely defined length-scales.49

1 Introduction50

The oceanic circulation emerges from a suite of linear and nonlinear dynamical pro-51

cesses that act over a broad range of space and time scales. The flow field is markedly52

inhomogeneous and characterized by waves, instabilities, and turbulent eddies, each of53

which are subject to a variety of energetic sources and sinks. The mesoscale defines a54

key band of spatial scales where ocean flows are largely geostrophic and where kinetic55

energy peaks (Wunsch, 2007). Correspondingly, it is widely recognized that flow at the56

ocean mesoscales, and its response to changes in atmospheric forcing, are fundamental57

to the large-scale circulation and central for regional and global transport of heat and58

biogeochemical tracers (Ferrari & Wunsch, 2009).59

However, significant gaps remain in our understanding of the mesoscale flows and60

their role in ocean circulation and climate. In particular, from a numerical modeling per-61

spective, despite the ever-increasing ability to conduct simulations with mesoscale eddy-62

rich general circulation models (GCMs), accurately resolving these scales in routine climate-63
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scale (order centuries and longer) simulations remains prohibitively expensive; e.g., (Griffies64

et al., 2015). We are thus confronted with the need for mesoscale eddy parameterizations65

for the foreseeable future (Pearson et al., 2017).66

A central question of physical oceanography, and in particular the eddy parame-67

terization problem, concerns a characterization of flow features according to length-scale.68

This question motivates the goal of this paper, which is to provide a length-scale decom-69

position of the global ocean geostrophic kinetic energy, and to study the seasonal vari-70

ations of this decomposition. This goal has previously been unavailable due to limita-71

tions of the commonly used Fourier spectral methods, which are unsuited to global ocean72

analysis due to the complex geometry of ocean basins. We thus make use of a coarse-73

graining method that does not share the limitations of Fourier analysis. This paper thus74

serves to detail the use of coarse-graining for the purpose of decomposing ocean kinetic75

energy, and in so doing we uncover some rather novel features of the ocean surface cir-76

culation as a function of length scale.77

1.1 Limitations of Fourier methods for the ocean78

It is common to quantify the spectral distribution of ocean kinetic energy via Fourier79

transforms computed either along transects or within regions; e.g., Fu and Smith (1996);80

Chen et al. (2015); Rocha et al. (2016); Khatri et al. (2018); O’Rourke et al. (2018); Cal-81

lies and Wu (2019). This approach has rendered great insights into the length scales of82

oceanic motion and the cascade of energy through these scales (Scott & Wang, 2005; Scott83

& Arbic, 2007; Arbic et al., 2012, 2013, 2014). However, it has notable limitations for84

the ocean where the spatial domain is generally not periodic, thus necessitating adjust-85

ments to the data (e.g., by tapering) before applying Fourier transforms. Methods to pro-86

duce an artifically periodic dataset can introduce spurious gradients, length-scales, and87

flow features not present in the original data (Sadek & Aluie, 2018). A related limita-88

tion concerns the chosen region size, with this size introducing an artificial upper length89

scale cutoff. In this manner, no scales are included that are larger than the region size90

even if larger structures exist in the ocean. Furthermore, the data is typically assumed91

to lie on a flat tangent plane to enable the use of Cartesian coordinates. However, if the92

region becomes large enough to sample the earth’s curvature, then that puts into ques-93

tion the use of the familiar Cartesian Fourier analysis of sines and cosines. The use of94

spherical harmonics, common for the atmosphere, is not suitable for the ocean, again since95

the ocean boundaries are complex. These limitations mean that in practice, Fourier meth-96

ods are only suited for open ocean regions away from boundaries, and over a rather lim-97

ited regional size.98

1.2 Eddy and mean flow decomposition using time averages99

A traditional approach to extract the “eddies” from a flow uses time averaging. This100

approach is relatively simple operationally and it accords with the common practice in101

atmospheric and oceanic sciences of studying long-term climate means and fluctuations102

relative to that mean. As part of this decomposition for turbulent flow, we typically uti-103

lize the time averaging operator as a Reynolds averaging (RA) operator, whereby the104

average of a fluctuating quantity vanishes (Vallis, 2017). This assumption is largely based105

on practical considerations, with Reynolds averages strictly holding only for ensemble106

averages that are unavailable for most applications.107

However, within the traditional decomposition, ‘time mean’ flow does not neces-108

sarily imply a large length-scale flow as we shall discuss in this paper. For example, stand-109

ing eddies or stationary meanders due to topography (Youngs et al., 2017) have little tem-110

poral fluctuations but can have much structure at length-scales O(100)km or smaller.111

Similarly, with a temporal decomposition, ‘eddy’ does not necessarily imply small length-112

scale. For example, a time averaging based decomposition would ascribe eddying mo-113
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tion to large-scale Rossby waves (Kessler, 1990) or variations in the Kuroshio Current’s114

path (Kawabe, 1995).115

Moreover, by construction, an eddy-mean decomposition limits our ability to an-116

alyze temporal variability (from intra-annual to inter-annual, (Bryan et al., 2014; Griffies117

et al., 2015)) of the multiscale coupling and evolution of different length-scales, includ-118

ing those that need to be resolved/predicted in global climate (coarse-grid) models. There-119

fore, it offers limited guidance for coarse-resolution models and no control over the spe-120

cific physical length which partitions oceanic flow into ‘large’ and ‘small.’ In other words,121

the set of length-scales constituting the large-scale flow cannot be varied/controlled to122

be consistent with those length-scales resolved in a coarse climate simulation. In this sense,123

the traditional decomposition cannot help with current efforts to develop ‘scale-aware’124

parameterizations (Ringler et al., 2013; Zanna et al., 2017; Pearson et al., 2017; Jansen125

et al., 2019).126

1.3 Coarse-graining127

In order to understand the multiscale nature of oceanic flows, while simultaneously128

resolving them in space and in time, we use a “coarse-graining” framework that is rel-129

atively new in large-scale physical oceanography (Aluie et al., 2018; Busecke & Abernathey,130

2019; Srinivasan et al., 2019; Schubert et al., 2020; Rai et al., 2021; Barkan et al., 2021).131

It is a very general approach to analyzing complex flows, with rigorous foundations ini-132

tially developed to model (Germano, 1992; Meneveau, 1994) and analyze (Eyink, 1995,133

2005) turbulence. Aluie (2017) provides a theoretical discussion of coarse-graining and134

its connection to other methods in physics. The approach has been recently generalized135

to account for the spherical geometry of flow on Earth (Aluie, 2019), and applied to study136

the nonlinear cascade in the North Atlantic from an eddying simulation (Aluie et al., 2018).137

The coarse-graining framework is very useful from the standpoint of ocean subgrid138

scale parameterizations (Fox-Kemper et al., 2011; Zanna et al., 2017; Khani et al., 2019;139

Jansen et al., 2019; Haigh et al., 2020; Stanley et al., 2020; Grooms et al., 2021). Namely,140

it provides a theoretical basis for constructing subgrid closures that faithfully reflect the141

dynamics at unresolved scales. A primary objective in ocean modeling is practical: an142

accurate subgrid parameterization that is numerically stable. Significant advances have143

been achieved in this regard in the fluid dynamics and turbulence community (Piomelli144

et al., 1991; Buzzicotti et al., 2018; Linkmann et al., 2018), and the field of large-eddy145

simulation (LES) is well-established (Meneveau & Katz, 2000).146

Our use of coarse-graining supports the needs of parameterization, but our primary147

objective is to characterize the fundamental dynamics of the flow at all length scales.148

Even within the wider fluid dynamics community, much less work has been done in this149

regard, i.e. using coarse-graining as a “probe” of the fundamental scale-physics. For ex-150

ample, LES sub-grid parameterization studies are seldom concerned with using coarse-151

graining to probe the energy pathways across the entire range of scales, such as the cas-152

cade (Eyink, 1995; Eyink & Aluie, 2009; Kelley & Ouellette, 2011; Aluie et al., 2012; Rivera153

et al., 2014; Buzzicotti et al., 2018), forcing (Aluie, 2013; Rai et al., 2021), dissipation154

(Zhao & Aluie, 2018), or the range of coupling between different scales (Eyink, 2005; Aluie155

& Eyink, 2009).156

As an important case in point, despite LES being a well established field in fluid157

dynamics since the seminal works of Leonard (1974) and Germano (1992), the idea of158

using coarse-graining in physical space to extract the energy content at different scales;159

i.e., the spectrum, was only recently established and demonstrated by Sadek and Aluie160

(2018). This method is central to our calculation here of the spectrum for the oceanic161

general circulation. A main advantage of coarse-graining is that it allows us to decom-162

pose different length scales in a flow, at any geographic location and any instant of time,163

without relying on assumptions of homogeneity, isotropy or domain periodicity. This gen-164
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erality makes it ideally suited for studying oceanic flows with complex continental bound-165

aries over the entire globe or in any particular regions of interest and at any time.166

1.4 Key results and outline of this paper167

In this paper we make use of the coarse-graining method on a satellite sea surface168

product and a global ocean simulation. To directly compare the two products, we focus169

on geostrophic components to the horizontal surface velocity as diagnosed from sea level.170

We here highlight the key novel results from this analysis. First, we show that ≈ 60%171

of the extra-tropical surface geostrophic kinetic energy, as estimated by satellite sea sur-172

face observations and a global ocean simulation, resides at scales between 100 km and173

500 km, peaking at ≈ 300 km. We also show that these scales exhibit a clear season-174

ality, with kinetic energy peaking in spring. Furthermore, we demonstrate how coarse-175

graining allows us a new way to compare observations with models. In particular, com-176

paring data from a numerical simulation with gridded satellite observations reveals that177

the satellite analysis misrepresents the evolution of all length-scales over time-scales less178

than ≈ 10 days, with the mis-representation being more pronounced at scales . 500 km.179

We show that this misrepresentation is due to the temporal averaging required to con-180

struct the gridded satellite product.181

The paper is organized as follows. In Section 2 we give details on the coarse-graining182

and the Reynolds averaging methods used in this work. In Section 3 we present the data183

products used in our analysis. In Section 4 we discuss the main results from this anal-184

ysis, following the coarse-graining decomposition such as the measurement of the energy185

spectrum, and the comparison with the traditional Reynolds average decomposition. At186

the end of Section 4 we introduce the combined spatio-temporal decomposition and com-187

pare satellite and numerical model data. In Section 5 we present our conclusions. Ap-188

pendix A discusses some technical choices used when coarse-graining.189

2 Coarse-graining for the ocean190

In this section, we discuss the coarse-graining framework and how it is used to par-191

tition energy across length scales. We also discuss the traditional approach of temporal-192

based Reynolds averaging, in which the flow is decomposed into a mean and fluctuat-193

ing components.194

2.1 Basics of coarse-graining on the sphere195

For any scalar field, F (x), we can calculate its coarse-grained (or low-pass filtered)196

version, F `(x), by convolving F (x) with a normalized filter kernel G`(r),197

F `(x) = G` ∗ F (x) (1)198

where ∗, in the context of this work, is convolution on the sphere (Aluie, 2019), x is ge-199

ographic location on the globe, and the kernel G`(x) can be any non-negative function200

that is spatially localized (i.e. it goes to zero fairly rapidly as x→ ±∞). The param-201

eter ` is a length-scale related to the kernel’s “width.” We use the notation (· · · )` to de-202

note a coarse-grained field. The kernel is area normalized for all `, so that203

∫
G`(x) dS = 1, (2)204

where dS is the area element on the sphere. Correspondingly, the convolution (1) may205

be interpreted as an average of the function F within a region of diameter ` centered at206

location x. By construction, at each point in space, x, the coarse-grained field, F `(x),207

contains information about the scale `.208
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The above formalism holds for coarse-graining scalar fields. To coarse-grain a vec-209

tor field on a sphere generally requires more work (Aluie, 2019). However, since we are210

concerned only with the surface geostrophic velocity, u(x, t), in this work, it greatly sim-211

plifies our analysis. We assume the geostrophic velocity is non-divergent on the two-dimensional212

spherical surface, so that it is related to the geostrophic streamfunction ψ via213

u = êr×∇ψ, (3)214

with êr the radial unit vector in spherical coordinates, ψ = η g/f , η the free sea sur-215

face height (SSH), and the Coriolis parameter, f = 2Ω sin(φ), is a function of latitude216

φ, where Ω is Earth’s spin rate.217

Aluie (2019) showed that for non-divergent vector fields such as in eq. (3), coarse-218

graining u is equivalent to coarse-graining each of its Cartesian components. We there-219

fore transform the vector from spherical (ur, uλ, uφ) to planetary Cartesian coordinates220

(ux, uy, uz) via:221

ux = ur cos(λ) cos(φ)− uλ sin(λ)− uφ cos(λ) sin(φ)222

uy = ur sin(λ) cos(φ) + uλ cos(λ)− uφ sin(λ) sin(φ) (4)223

uz = ur sin(φ) + uφ cos(φ)224
225

where λ, φ are longitude and latitude, respectively, and uλ, uφ are the zonal and merid-226

ional velocity components, respectively. The radial velocity component, ur = 0 for the227

geostrophic flow. We apply the spherical convolution operation in eq. (1) to each of ux,228

uy, uz as scalar fields to obtain the corresponding coarse-grained fields ux, uy, uz, then229

retrieve the coarse-grained velocity, u` in spherical coordinates via230

coarse-grained radial flow = ux cos(λ) cos(φ) + uy sin(λ) cos(φ) + uz sin(φ) = 0231

coarse-grained zonal flow = −ux sin(λ) + uy cos(λ) (5)232

coarse-grained meridional flow = −ux cos(λ) sin(φ)− uy sin(λ) sin(φ) + uz cos(φ)233
234

That the ‘coarse-grained radial flow’ (i.e. vertical flow, parallel to gravity) vanishes is235

not obvious and was proved in Aluie (2019) and demonstrated numerically in Teeraratkul236

and Aluie (2021).237

We emphasize that the coarse-graining algorithm we just described is valid only238

for non-divergent vectors such as u in eq. (3). Significant errors can arise for a general239

flow field (Teeraratkul & Aluie, 2021), where the complete coarse-graining formalism of240

Aluie (2019) is necessary (e.g. Aluie et al. (2018)).241

We use the following coarse-graining kernel242

G`(x) =
A

2

(
1− tanh

(
10

(
γ(x)

`/2
− 1

)))
, (6)243

as shown in Figure 1. It is essentially a top-hat kernel (Pope, 2001) but with graded edges244

to avoid numerical artifacts from the non-uniform discrete grid on the sphere. We use245

geodesic distance, γ(x), between any location x = (λ, φ) on Earth’s surface relative to246

location (λ0, φ0) where coarse-graining is being performed, which we calculate using247

γ(x) = REarth arccos
[

sin(φ) sin(φ0) + cos(φ) cos(φ0) cos(λ− λ0)
]
. (7)248

with REarth = 6371 km for Earth’s radius. In eq. (6), A is a normalization factor, eval-249

uated numerically, to ensure G` area integrates to unity as per equation (2). In general,250

we are not restricted to this choice of kernel; however, we use it because of its well-defined251

characteristic width `. Indeed, a convolution with G` in equation (6) is a spatial ana-252

logue to an `-day running time-average.253
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0

0.5
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Figure 1. The coarse-graining kernel from equation (6), which is essentially a top-hat kernel

(or moving window) along with graded edges to avoid numerical artifacts from the non-uniform

discrete grid on the sphere. Geodesic distance γ(x) is relative to location x0 where coarse-

graining is being applied. This plot is for the un-normalized kernel, 1
A
G`(x), with ` = 200 km. It

is a spatial analogue for an `-day window for a running time-average.

2.2 Partitioning the geostrophic kinetic energy254

From the coarse-grained horizontal geostrophic velocity field, u`(x, t), following equa-255

tion (1) as prescribed in (Aluie, 2019), we partition kinetic energy (KE) into different256

sets of length-scales:257

E =
1

2
|u(x, t)|2 (bare KE) (8)258

E` =
1

2
|u`(x, t)|2 (coarse KE) (9)259

E<` =
1

2

(
|u(x, t)|2` − |u`(x, t)|2

)
(fine KE). (10)260

261

The “bare KE” in equation (8) is the KE per unit mass (m2/s2) of the original geostrophic262

flow that includes all scales; “coarse KE” in equation (9) represents energy of the coarse-263

grained geostrophic flow at length-scales larger than `; and “fine KE” in equation (10)264

accounts for geostrophic energy at scales smaller than `, which we discuss more in the265

following two paragraphs. Partitioning geostrophic energy across scales is not trivial since266

one needs to ensure that such quantities are physically valid in the sense described by267

Germano (1992) and Vreman et al. (1994). In particular, it is important to ensure that268

the partitioned kinetic energy is (i) positive semi-definite (≥ 0) at every x and every time,269

and (ii) that summing the partitions yields the total energy.270

While it is clear that E` ≥ 0 in equation (9), this property is not obvious for E<`271

in equation (10). Moreover, it may not be obvious why E<` should represent energy at272

scales smaller than `. Vreman et al. (1994) showed that E<` ≥ 0 if G` ≥ 0, whereas273

E<` can be negative if the coarse-graining kernel G` is not positive semi-definite. A proof274

using convexity of the (. . . )2 operation illustrates why the first term |u(x, t)|2` in eq. (10)275

has an overbar rather than defining fine KE as (|u(x, t)|2−|u`(x, t)|2)/2. The proof from276

Sadek and Aluie (2018) is as follows. When using G` ≥ 0, coarse-graining (. . . )` is a277

local averaging operation. From Jensen’s inequality (Lieb & Loss, 2001), we know that278

[F(u)]` ≥ F(u`) for any convex operation, F . Since F(u) = |u|2 is convex, we are279

–7–



manuscript submitted to JAMES Journal of Advances in Modeling Earth Systems

guaranteed that |u(x, t)|2` ≥ |u`(x, t)|2 and, therefore, E<` ≥ 0 if the kernel G`(r) ≥280

0, which is the case for our study (see equation (6)).281

Regarding condition (ii) on the sum of energy partitions, Aluie (2019) proved that282

(for a normalized G`) the coarse-graining operation on the sphere in equation (1) pre-283

serves the spatial average of any field, {F `(x)} = {F (x)}, where {. . . } = (Area)−1
∫

dS(. . . ).284

Therefore, we have
{
|u|2`

}
=
{
|u|2

}
. This property guarantees that the sum of coarse285

KE and fine KE yields the total kinetic energy after integrating in space and in the ab-286

sence of land,287

{E} = {E`}+ {E<`} . (11)288

Eq. (11) justifies our interpretation of E<` as energy at scales smaller than `, since it is289

the difference between bare and coarse kinetic energy, on average, while also being pos-290

itive locally.291

2.3 Treatment of land-sea boundaries292

In the above decomposition of energy, a choice has to be made in the presence of293

land. We here discuss three possibilities along with their pros and cons.294

Deformed kernel295

The ”deformed kernel” approach is realized by coarse-graining ocean points near296

land with a kernel that is deformed or masked to avoid overlapping with land points. Such297

a deformed kernel must be renormalized to yield an average over just ocean points rather298

than the whole sphere. The main advantage of this approach is that it treats land as a299

well-defined boundary that is separate from the ocean regardless of the coarse-graining300

length-scale. It is also familiar to ocean modelers who routinely mask values over land301

and do not include such masked values when performing area averages.302

However, the deformed kernel has disadvantages that motivate against its use for303

coarse-graining ocean flows. First, a kernel that is inhomogeneous (i.e. changes shape304

depending on geographic location) does not conserve domain averages, including the ki-305

netic energy of the flow. The reason for this failed conservation is detailed in Appendix306

A and demonstrated in Figure 2 (blue plot). This figure shows how a kernel that is de-307

formed (via masking) to exclude land does not yield 100% of the total energy, i.e., it does308

not satisfy equation (11). As a result, it can yield total energy that is either less than309

100% (e.g., over scales larger than 500 km in Figure 2) or greater than 100% (e.g., be-310

tween 100 km and 400 km in Figure 2).311

For some purposes, the total energy values in Figure 2 are fairly close to 100% (de-312

viations less than 1%) so one might argue that the deformed kernel is suitable in prac-313

tice. Nonetheless, a more basic reason to avoid deformed kernels is that such inhomo-314

geneous kernels (which also include averaging values at adjacent grid-cells or block-averaging315

on the sphere) do not commute with spatial derivatives. Consequently, the coarse-grained316

field resulting from a deformed kernel is not guaranteed to satisfy fundamental flow prop-317

erties exhibited by the unaveraged flow, such as incompressibility, geostrophy, and the318

vorticity present at various scales. These considerations are further detailed in Aluie et319

al. (2018) and Aluie (2019).320

Fixed kernel321

The ”fixed kernel”, also shown in Figure 2, is homogeneous so that it preserves its322

shape at all locations. When coarse-graining ocean points near land such that the ker-323

nel overlaps land points, we treat land points in a manner consistent with the bound-324

ary conditions between land and ocean. For example, if we are coarse-graining the ve-325

locity, we treat land as water with zero velocity, which is consistent with the formula-326
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tion of OGCMs where land is often treated as a region of zero velocity. Furthermore, we327

include these zero land values as part of the coarse-graining operation.328

This choice may seem unnatural since we are including unphysical values within329

the coarse-graining operation. However, it is helpful to think of coarse-graining as an op-330

eration analogous to removing one’s eyeglasses, rendering an image fuzzy and boundaries331

less well-defined. When coarse-graining at a scale `, the precise boundary between land332

and ocean becomes blurred at that scale and its precise location becomes less certain.333

The coarse-grained velocity, u`, can be nonzero within a distance `/2 beyond the con-334

tinental boundary over land. Forfeiting exact spatial localization in order to gain scale335

information is theoretically inevitable due to the uncertainty principle, which prevents336

the simultaneous localization of data in physical-space and in scale-space (Stein & Weiss,337

1971; Sogge, 2008). The main advantage of the “Fixed Kernel” choice is ensuring that338

coarse-graining and spatial derivatives commute so that it preserves the fundamental phys-339

ical properties of the flow. Further discussion of these issues can be found in Aluie et al.340

(2018) and Aluie (2019).341

Fixed kernel with or without land342

After coarse-graining the velocity field with a fixed kernel, we show in Figure 2 the343

level of energy conservation if we include or exclude land points from the final tally of344

kinetic energy. We call these, respectively, the ”fixed kernel w/ land” and ”fixed kernel345

w/o land”. The latter (orange plot) highlights how coarse-graining smears energy onto346

land (within `/2 distance inland) such that if we exclude land from the final tally, we347

find some leakage of energy onto land, which increases as the coarse-graining scale ` in-348

creases. We find energy leakage of the order of 1% at coarse-graining scales < 100 km,349

≈ 4% for scales . 500 km, and up to 12% at scales of order 2000 km. However, if we350

choose to include land in our final tally, we are guaranteed to conserve 100% of the en-351

ergy by satisfying equation (11), thus ensuring that the energy budget is fully closed. Af-352

ter all, in an ocean model on a discrete grid, the land boundary is only expected to be353

accurate within a ∆x distance from any estimate of the truth, where ∆x is analogous354

to our coarse-graining scale `.355

What we use here356

While we have implemented all three approaches to coarse-graining (see Figure A1357

in Appendix A), unless otherwise stated in this work, we choose the fixed kernel w/ land358

by including land regions that have non-zero velocity (again, as realized through leak-359

age from nearby ocean values). We have checked that our results in all figures shown are360

almost indistinguishable from choosing fixed kernel w/o land due to the relatively small361

percentage of energy leakage involved in Figure 2. We avoid coarse-graining with a de-362

formed kernel to remain consistent with previous work Aluie et al. (2018) and with forth-363

coming studies where we apply coarse-graining to the dynamical equations where com-364

muting with spatial derivatives is essential.365

2.4 The filtering spectrum366

Sadek and Aluie (2018) showed how coarse-graining can be used to extract the en-367

ergy content at different length scales. They do so by partitioning the velocity into dis-368

crete length scale bands rather than the two sets (coarse KE and fine KE) in equations369

(9) and (10). The resulting quantity is called the filtering spectrum. The filtering spec-370

trum is distinct from the traditional Fourier spectrum, with coarse-graining offering a371

way to measure energy distributions without relying on a Fourier transform, thus avoid-372

ing the limitations noted in Section 1.1.373
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Figure 2. Percentage of total energy recovered by summing the fine and coarse KE terms

in equation (11) obtained by coarse-graining over the full ocean surface as a function of the fil-

ter scale, k` = 1/`. The three lines correspond to the three approaches described in section 2.3,

namely, filtering with a fixed kernel shape and excluding/including land (orange/green lines)

when tallying the total energy. We also coarse-grain with a deformable filter kernel to exclude the

filter overlapping land regions (blue line).

The filtering spectrum is obtained by differentiating in scale the coarse KE374

E(k`) =
d

dk`
{E`} = −`2 d

d`
{E`} , (12)375

where k` = 1/` is the ‘filtering wavenumber.’ Sadek and Aluie (2018) showed that E(k`, t) ≥376

0 when using certain types of kernels (e.g., concave) of which the top-hat kernel is an377

example. Moreover, Sadek and Aluie (2018) identified the conditions on G` for E(k`, t)378

to be meaningful in the sense that its scaling agrees with that of the traditional Fourier379

spectrum (when a Fourier analysis is possible, such as in periodic domains). Below, we380

shall sometimes refer to E` as the “cumulative spectrum” following Sadek and Aluie (2018)381

since it accounts for all energy at scales larger than `. In contrast, E(k`, t), is the spec-382

tral energy density at a specific scale `.383

2.5 Reynolds averaging384

We close this section by reviewing basic properties of Reynolds averaging (RA) as385

realized by time averages.386

Basics of Reynolds averaging387

Time averaging separates the flow into a time-average/‘mean’ and a fluctuating/‘eddy’388

as given by (Pope, 2001)389

〈u〉(x) =
1

T

∫ t0+T

t0

u(x, t)dt, (13)390

391

u′(x, t) = u(x, t)− 〈u〉(x), (14)392

where 〈u〉 is the mean component, u′ the eddy component, and T represents the entire
time record and not just a time window. Two key properties of the Reynold’s decom-
position are

〈〈u〉〉 = 〈u〉 and 〈u′〉 = 0, (15)
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so that the mean of a mean returns the mean (idempotence property) while the mean393

of the eddy is zero. The resulting mean and eddy kinetic energy components are respec-394

tively given by395

MKE(x) =
1

2
|〈u〉|2(x), (16)396

397

EKE(x, t) =
1

2
|u′|2(x, t). (17)398

Notice that the sum of mean and eddy kinetic energy is not equal to the total kinetic399

energy. Rather, there is an extra cross term, u′·〈u〉, needed to close the budget. How-400

ever, the cross term is not positive definite and it has a zero time average, 〈u′ · u〉 =401

0. Following a RA decomposition, the total energy can be written as402

E(x, t) = EKE(x, t) +MKE(x) +
1

2
(u′ · 〈u〉) (x, t). (18)403

Key differences between Reynolds averaging and coarse-graining404

A key difference between coarse-graining and Reynolds-averaging is that within RA,405

applying the averaging operation twice on any field yields the same result whereas that406

property does not hold for coarse-graining with non-projector kernels (Buzzicotti et al.,407

2018)408

〈〈F 〉〉 = 〈F 〉 whereas F 6= F . (19)409

Another important difference is that a Reynolds average does not provide a control to410

adjust the partition between the “mean” and “eddy” components. That is, a Reynolds411

decomposition is not a length-scale decomposition and this point is illustrated in section412

4.5 (see Figure 11). Consequently, the time-mean flow is not synonymous with large-scale413

flow, nor does a Reynolds eddy fluctuation directly correspond to a characteristic fine-414

scale.415

To help understand the above points, we emphasize the distinction between time-416

scale and decorrelation-time for a particular flow feature. While it is generally true that417

larger (smaller) scales have slower (faster) time-scale dynamics, it is not always true that418

their decorrelation-time follows this relation. As an example, consider stationary eddies,419

such as the Mann eddy in the North Atlantic. Such eddies have a small spatial-scale (rel-420

ative to the gyre or basin) but are persistent in time. As a result, even if the timescale421

(∼ `/u) for a structure is small when it is associated with the relatively fast dynamics422

of eddying flows, it can be highly correlated (or even stationary) in time, so that its con-423

tribution to the MKE is not completely removed by a time-average. We show this be-424

havior in sections 4.5 and 4.6.425

3 Satellite and numerical model data426

We examine the horizontal geostrophic velocity of surface ocean currents from a427

global numerical model simulation and from an analysis of satellite sea surface altime-428

try, focusing on regions to the north and south of the tropics, [15◦N−90◦N] and [15◦S−429

90◦S], as depicted in Figure 3. We avoid the tropics since our interest is with the geostrophic430

flows in the higher latitudes, and only the surface geostrophic current is available from431

satellite altimetry. Details of the two products are given in the following subsections, and432

both were publicly accessed through the Copernicus Marine Environment Monitoring433

Service (CMEMS) webpage.434

3.1 AVISO analysis of satellite altimetry435

Geostrophic currents are obtained from the AVISO+ analysis of multi-mission satel-436

lite altimetry measurements for sea surface height (SSH) (Pujol et al., 2016). We used437

the Level 4 (L4) post-processed dataset of daily-averaged geostrophic velocity, gridded438
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Figure 3. Geographic regions considered in this analysis. The shaded area between

[15◦S− 15◦N] is the tropical band that is neglected in this work. We instead consider the

geostrophic flow in the higher latitudes. Visualization shows a one-year time average of the

full kinetic energy from NEMO for illustration.

at a resolution of 0.25◦ × 0.25◦ and spanning from January 2010 to October 2018. Post439

processing was performed by the Sea Level Thematic Center (SL TAC) data processing440

system, which processes data from eleven altimeter missions.441

The product identifier of the AVISO dataset used in this work is442

“SEALEVEL GLO PHY L4 REP OBSERVATIONS 008 047”, and can be down-443

loaded at https://marine.copernicus.eu/services-portfolio/access-to444

-products/.445

3.2 Numerical simulation446

We analyze 1-day averaged surface geostrophic currents from the NEMO nu-447

merical modeling framework, which is coupled to the Met Office Unified Model448

atmosphere component, and the Los Alamos sea ice model (CICE). The NEMO449

dataset consists of weakly coupled ocean-atmosphere data assimilation and forecast450

system, which is used to provide 10 days of 3D global ocean forecasts on the same451

grid of 0.25 degree spacing. We use daily-averaged data that spans three years, from452

2016 to 2019. More details about the coupled data assimilation system used for453

the production of the NEMO dataset can be found in (Hewitt et al., 2011; Lea et454

al., 2015). The specific product identifier of the NEMO dataset used in this work455

is “GLOBAL ANALYSISFORECAST PHY CPL 001 015”, and it can be down-456

loaded from CMEMS at https://marine.copernicus.eu/services-portfolio/457

access-to-products/.458

4 Analysis results459

In this section we present results of the coarse-graining analysis along with a460

comparison with Reynolds averaging based on time averages. In the second part of461

this section we present results from coarse-graining in both space and in time as a462

means to characterize the time-scales associated with different length-scales.463
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4.1 Coarse-graining the surface geostrophic flow from AVISO464

We split the geostrophic kinetic energy from AVISO into its fine and coarse-465

grained components following equations (9) and (10). For a qualitative appreciation466

of this decomposition, Figure 4 displays maps of the kinetic energy just over the At-467

lantic using two different filter scales, ` = 100 km in the top row and ` = 400 km in468

the bottom row. From left to right, panels in Figure 4 show the total kinetic energy,469

E , the coarse energy, E`, and the fine energy, E<`. The fine scale kinetic energy, E<`,470

represents kinetic energy at scales less than `, as represented (or projected) on a grid471

of resolution ∆x ∼ `. Notably, as seen in Figure 4, E<` does not have small scale472

features, which results since there is a filter applied to both terms in equation (10)473

defining E<`. This definition ensures that E<` is positive semi-definite at each point474

in space and time.475

Visualization of fine kinetic energy, E<`, is still useful to identify the regions476

where it is dominant in the ocean. Even so, one may wish to view the alternative477

quantity478

E − E` =
1

2

(
|u(x, t)|2 − |u`(x, t)|2

)
, (20)479

which is shown in the right-most column of Figure 4. This quantity reveals more fine480

scale features since only the second term on the right hand side is filtered. However,481

as discussed in Section 2.1, the energy difference, E − E`, can be negative locally482

in space, and so it does not serve our purposes for decomposing the energy into483

non-negative terms.484

4.2 Seasonality of the fine scale geostrophic kinetic energy485

In Figure 5, we present the seasonality of the fine scale geostrophic kinetic486

energy in the North (solid lines) and South (dashed lines). We show results just487

from AVISO, though note that similar results hold for the NEMO output. Figure 5488

shows the calculation of fine scale kinetic energy with four different filter scales,489

` = 77 km, 129 km, 215 km, and 464 km. We choose these length-scales due to their490

equal spacing on a logarithmic scale.491

The fine scale geostrophic kinetic energy in Figure 5 reveals a clear seasonality492

across all length scales, generally peaking in the spring and attaining a minimum in493

the autumn of both hemispheres. The study of Qiu et al. (2014) and Steinberg et494

al. (2021) arrive at a similar conclusion about seasonality using different methods.495

The cause for such seasonality is an ongoing topic of research, requiring the anal-496

ysis of various mesoscale sources and sinks. Rai et al. (2021) recently showed that497

eddy-killing is a significant global mesoscale sink with a seasonal cycle that peaks in498

winter, thereby offering a potential explanation for mesoscale seasonality. Another499

possible explanation was put forth by Qiu et al. (2014), who showed evidence for500

seasonality in the upscale energy cascade in the North Pacific. While it is beyond501

the scope of this paper, it is worth noting that, in addition to highlighting seasonal502

variations, the bottom panel of Figure 5 reveals a general increase in mesoscale503

energy over the plotted timeframe. This long-term increase is present in both the504

North of Tropics and South of Tropics regions and is consistent with recent analysis505

by Mart́ınez-Moreno et al. (2021).506

In the middle panel in Figure 5 we show the fine scale kinetic energy normal-507

ized as a percentage of the total energy, {E<`} / {E} (t). From this plot we can see508

that along the full time series, more than 90% of the total geostrophic kinetic energy509

resides at scales . 500 km and a large percentage (≈ 60%) is contained between510

≈ 100 and ≈ 500 km, which can be identified as the bulk of the geostrophic flow.511
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Figure 4. Maps of the coarse-grained decomposition of kinetic energy performed on a single-

day from the AVISO analysis at two different filter scales, ` = 100 km (top row) and ` = 400

km (bottom row). Here the bare KE, E(x, t), is compared with coarse KE, E`(x, t), and fine KE,

E<`(x, t). The right-most column shows the resulting fine scale term defined by equation (20),

which can yield values that are negative.

4.3 The filtering spectrum512

In Figure 6 we show the filtering spectrum for the global ocean surface513

geostrophic kinetic energy as obtained from equation (12) for both AVISO and514

NEMO. In the left panel we show the cumulative energy spectra, E`, as a function515

of coarse-graining scale, `. These results highlight those from Figure 5, revealing516

that the overwhelming contribution to geostrophic kinetic resides at length-scales517

` < 500 km. Based on prior characterization of ocean energetics (Ferrari & Wunsch,518

2009), we assume that this length scale is dominated by mesoscale features such as519

geostrophic turbulence, boundary currents, and fronts. Hence, our analysis provides520

further compelling evidence for dominance of the ocean surface kinetic energy by521

mesoscale flows.522

In the right panel of Figure 6, we show the actual filtering spectrum, which523

is the derivative (in scale) of the corresponding plot in the left panel. We can see524

a peak centered at ` ≈ 300 km, with the bulk of the geostrophic kinetic energy re-525

siding between scales 100 km and 500 km. From the analysis shown in Figure 6,526

we find that 60± 0.4% of the kinetic energy in the extra-tropics from the AVISO527

and NEMO products lies within the 100 km to 500 km scale-band. Again, Figure 6528

provides compelling evidence that the mesoscales in the extra-tropical latitudes529

constitute the most energetic component of the oceanic circulation.530
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Figure 5. Top panel: Time-series of fine scale geostrophic kinetic energy, E<`, representing

energy at scales smaller than `, in the North (solid lines) and South (dashed lines) obtained

from the AVISO analysis. Different colors indicate different scales `. Middle panel: The same

time-series, but now normalized by the original kinetic energy, E , to show the % of kinetic energy

residing at scales < `. Bottom panel: deviation of E<` from the time-mean value to emphasize

seasonal variability. Vertical grid lines indicate the start of each quarter-year (01Jan, 01Apr,

01Jul, 01Oct). We see that the mesoscales exhibit a seasonal oscillation that generally peaks in

the spring, and that they account for a dominant fraction of the total geostrophic kinetic energy.

Here, we show only 6.5 years of the 9-year record analyzed with a 4-day sampling, but averages

are based on a 1-day sampling.

If we focus on each hemisphere separately, we find that the 100 km to 500 km531

scale-band comprises 62± 1% of the North’s kinetic energy and 58± 1% of the532

South’s kinetic energy. Indeed, one can notice slight differences between the North’s533

and South’s spectra in Figure 6 (right panel), where the South has relatively more534

energy at scales larger than 1000 km. This bias can be attributed to the large-scale535

contribution from the Antarctic Circumpolar Current. On the other hand, the North536

has slightly more kinetic at scales within the 100 km to 1000 km range, which can537

be attributed to boundary currents (Kuroshio and Gulf Stream). In support of our538

assertion, consider Fig. 7, which shows the zonally-averaged kinetic energy for se-539

lected length-scale bands. Scales larger than 1000km (blue plot in Fig. 7) have a540

dominant contribution from latitudes [60◦S, 40◦S], which roughly corresponds with541

the Antarctic Circumpolar Current. However, these latitudes are no longer domi-542

nant when considering the band of smaller scales: 215 km < ` < 1000 km. These543

scales (orange plot in Fig. 7) show a distinct signal at latitudes [30◦N, 40◦N], which544

roughly aligns with the Gulf Stream and Kuroshio. There is also a weaker signal at545

latitudes [40◦S, 35◦S], with roughly aligns with the Agulhas and the Brazil-Malvinas546

currents.547
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Figure 6. Left panel: Cumulative surface geostrophic kinetic energy spectra, E`, as a function

of scale `, obtained from both the AVISO and NEMO products in the North and South. Right

panel: Filtering spectra obtained as a derivative with respect to k` = 1/` of the corresponding

cumulative energy spectra showed in the left panel (see equation (12)). Envelopes show inter-

quartile range (25th to 75th percentiles) of temporal variation. Note that the bulk of surface

geostrophic kinetic energy resides at scales within the 100 km to 500 km range.
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Figure 7. Time- and zonally-averaged kinetic energy computed from AVISO within selected

length-scale bands (see in-set legend) as a function of latitude. We can see that the Antarctic

Circumpolar Current has significant energy at scales > 1000 km, while the North has significant

energy within ≈ 30◦N-40◦N where the Western Boundary Currents are located. Note that the

latitude axis is broken to exclude the band [15◦S, 15◦N].

4.4 Reynolds averaging decomposition548

In this subsection and the next, we show that the time-mean flow consists of549

an entire range of length scales with substantial contributions from the mesoscale.550

Figure 8 shows the mean-fluctuation decomposition following the Reynolds averaging551

approach. The maps are focused on the Atlantic region to help reveal details and552

we show just those obtained from AVISO. The time mean is obtained by averaging553

the velocity over the whole time series available, spanning nine years. From left to554

right we show the total energy at a single day, the time mean energy, MKE(x), the555

fluctuating eddy term, EKE(x, t), and the cross term, 1/2(u′ · 〈u〉).556

Having used a relatively long time series for averaging, the mean energy in Fig-557

ure 8 is rather depleted away from major current systems, so that the Gulf Stream558
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Figure 8. Decomposition of geostrophic kinetic energy from AVISO for the Atlantic basin

from a time averaging (Reynolds) decomposition. Left panel: total energy, E(x, t) at a single

day. Left middle panel: 9-year time mean, MKE(x). Right middle panel: fluctuating eddy term,

EKE(x, t). Right panel: the cross term required to recover the total geostrophic energy as de-

fined in equation (18). Note that MKE(x) contains small length-scales and EKE contains a

large-scale component of the flow.

and the Antarctic Circumpolar Current are quite pronounced relative to the gyre559

interiors. We appreciate from this figure that the mean flow retains a substantial560

contribution from structures with a variety of sizes. In the same way, the ‘eddy’ (or561

temporally fluctuating) flow in Figure 8 contains most of the small scale fluctuations562

but also a substantial contribution from large-scale structures. The cross term shown563

on the right panel of Figure 8 has strong fluctuations around zero, which make its564

contribution almost (but not exactly) zero after a spatial-average. The blending565

of length scales revealed by these figures reflects the inability of time averaging to566

decompose the kinetic energy according to length-scales.567

To further investigate the role of the three Reynolds average energy terms,568

Figure 9 shows their temporal variability in both hemispheres. In the first row, we569

see that EKE constitutes a substantial portion of the total energy E (80%) and570

their temporal evolution is almost indistinguishable. Both EKE and E tend to peak571

during the spring-summer. The bottom row of Figure 9 shows MKE, which is inde-572

pendent of time, and the cross term, which has a zero average. These two quantities573

are much less energetic, with the mean term ≈ 20% of the total and the cross term574

fluctuates about its zero average without a clear seasonal signal.575

4.5 Spatio-temporal decomposition576

In this section we present results from coarse-graining in both space and time577

to reveal the time-scales of various length-scales, including length-scales present in578

the 9-year temporal mean. Our analysis demonstrates a new way for comparing data579

from satellite analysis (AVISO) and numerical models (NEMO).580

The approach consists of measuring the filtering spectrum of a temporally-581

smoothed version of the original velocity field. The latter is obtained from a running582
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Figure 9. Top panel: Time-series of total geostrophic kinetic energy, {E(t)} (blue), and the

fluctuating component, {EKE(t)} (orange), in the North (solid line) and South (dashed line)

from the AVISO analysis. Vertical grid lines indicate the start of each quarter-year (01Jan,

01Apr, 01Jul, 01Oct). Bottom panel: Time-series of the cross term (blue) and kinetic energy of

the 9-year mean, {MKE(x)} (orange), in the North (solid line) and South (dashed line). EKE

constitutes a substantial portion of the total energy and with an almost indistinguishable tem-

poral variation. Here, we show only 6.5 years of the full 9-year record. Plots shown use a 4-day

sampling frequency, but averages are based on a 1-day sampling of the 9-year record.

window time-average,583

〈u〉τ (x, t) =
1

τ

∫ t+τ/2

t−τ/2
u(x, t′) dt′, (21)584

with τ the size of the time window. Note that a running window time-average in585

equation (21) is similar to spatial coarse-graining (equation (1)) since586

〈〈F 〉τ 〉τ 6= 〈F 〉τ , (22)587

so that it does not satisfy the Reynolds averaging idempotent property, 〈〈F 〉〉 = 〈F 〉.588

Combining equation (12) with equation (21) allows us to measure the filtered589

energy spectrum of the time smoothed field590

E(k`, τ) = 〈 d
dk`
{1

2
|〈u`〉τ |2}〉 = 〈 d

dk`
{E`,τ}〉, (23)591

where we introduced592

E`,τ (x, t) =
1

2
|〈u`〉τ |2, (24)593

which is the cumulative spectrum of the temporally-smoothed field. As indicated,594

E`,τ (x, t) is a function of both the size of the time-window, τ , and the inverse coarse-595

graining scale, k` = `−1.596

We show the time-smoothed energy map, E`=0,τ , in Figure 10 from AVISO.597

Here, the two columns compare results from the North and the South regions, while598

different rows compare results with different time windows, τ . From these maps we599

–18–



manuscript submitted to JAMES Journal of Advances in Modeling Earth Systems

can see that increasing τ from one day to 1093 days reduces the energy down to600

≈ 21% (≈ 25%) of the original total energy in the North (South). Hence, averaging601

over three years brings the energy down to values comparable to those over the full602

nine years obtained in the previous section by the Reynolds averaging decompo-603

sition, where we found that MKE accounts for ≈ 20% of the total energy in the604

extra-tropics. This result indicates that temporal averaging converges quickly for605

the geostropphic kinetic energy, and using longer time records does not significantly606

alter the partitioning between the temporal mean and fluctuating components of the607

surface geostrophic ocean flow.

Figure 10. The surface geostrophic kinetic energy from the temporally coarse-grained flow,

E`=0,τ , in the North (left column) and South (right column) from AVISO. The top row shows

the original 1-day averaged flow. The middle and bottom rows show the kinetic energy from the

flow when averaged with a ≈ 6 months time window and a ≈ 3 years time window, respectively,

with the kinetic energy decreasing with an increasing time window. Each panel indicates the % of

kinetic energy remaining relative to the 1-day top row.

608

In Figure 11 we show the filtering spectra of the temporally-smoothed flow,609

E(k`, τ). The top panel shows the filtering spectra E(k`, τ) as a function of k` for610

various values of τ . Bottom panel shows the same quantities, but normalized by611

E(k`, τ = 0), which is the spectrum of the flow without temporal coarse-graining.612

From this analysis, we find that the main effect of the temporal coarse-graining is to613

make the energy peak around ` ≈ 300 km less pronounced, with the consequence of614

having a spectral energy distribution that is more evenly distributed across length-615

scales than in the original flow. Indeed, we can see from Figure 11 (bottom panel)616

that time averaging removes energy at all scales. As we increase the time window τ ,617

E(k`, τ) at scales . 300 km appears to mostly shift downward in equal proportion.618

This behavior is counter to the notion that smaller scales decorrelate faster in time619

and are removed more efficiently with time-averaging.620

From Figure 11, we see that as the time window τ →∞, E(k`, τ) converges621

to the time-mean spectrum (dashed plot in Figure 11), which highlights that the622

9-year mean flow consists of an entire continuum of length-scales. The spectrum of623

the 9-year mean flow shows a reduction of ≈ 20% of the total at the largest scales of624

> 1000 km (bottom panel in Figure 11). Our analysis of Figure 11 (dashed line), al-625

lows us to infer that roughly 60% of the kinetic energy in the 9-year time-mean is at626
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Figure 11. Top panel: Kinetic energy spectra as a function of spatial scale, k` = 1/`, of the

temporally smoothed velocity field, E(k`, τ), in the North from AVISO. Colours indicate the

time-window size τ used in the smoothing procedure, ranging from 1 day (pale yellow colour) up

to 1000 days (dark green). Bottom panel: The same spectra but now normalized by E(k`, τ = 0),

which is the spectrum of the flow without temporal smoothing. In both panels the dashed lines

represent the spectra of the mean energy obtained via the Reynolds averaging decomposition,

from which we find that 70% of energy in the time-mean flow in the North is at scales < 500 km

(55% in the South, not shown).

scales < 500 km outside the [15◦S− 15◦N] band, underscoring the poor association627

between temporal averaging and length-scales.628

4.6 Spatio-temporal comparison of AVISO and NEMO629

We now demonstrate a new method to compare data from satellite analysis630

(AVISO) and numerical models (NEMO) by using a spatio-temporal coarse-graining631

to identify inconspicuous flow properties or artifacts, and may complement cur-632

rent efforts to disentangle balanced from unbalanced motions in SSH-derived flows.633

Figure 12 presents space-time 2-D spectra, −〈 ddτ d
dk`
{E`,τ}〉, which decomposes the634

energy as measured from AVISO and NEMO. In the main panel of Figure 12 we635

show the isolevels of space-time spectra from AVISO (blue lines), superposed onto636

those from NEMO (red lines). Here, the color intensity is proportional to the energy637

as indicated by the colorbar in Figure 12. At the side of the main panel we show638

the one dimensional energy spectra as a function of time, τ , and scale, `. The most639

striking difference is that AVISO isolines (blue) are concentric circles with a peak at640

τ ≈ 20 days and ` ≈ 300 km, while NEMO isolines (red) resemble horseshoes with a641

peak that encompasses shorter time-scale τ ≤ 20 days and a wider range of length-642

scales. The right panel in Figure 12 plots −〈 ddτ {E`=0,τ}〉, underscoring the difference643

between AVISO and NEMO spectra, which disagree significantly over time-scales644

smaller than ≈ 10 days. Note that the top panel in Figure 12, which compares645
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Figure 12. Combined spatio-temporal coarse-graining shows space-time 2D spectra,

−∂τ∂k`E`,τ , (central panel) from AVISO (blue isolines) and NEMO (red isolines). Right

(top) panel shows energy spectra as a function of time-scale τ (length-scale k` = 1/`). Spatio-

temporal spectral isolines from AVISO are concentric circles with a peak around τ ≈ 20 days and

` ≈ 300 km while those from NEMO (red isolines) are horseshoe-like with a peak encompassing

smaller time-scales. AVISO mis-represents time-scales . 10 days over all length-scales.

spectra of spatial scales, shows very good agreement and, without a temporal de-646

composition, it fails to detect the disagreement in time-scales that exist over a wide647

range of spatial scales, from ` ≈ 100 km to 1000 km (main panel in Figure 12).648

Remember that for the entire analysis in this paper, we are using 1-day aver-649

ages of SSH to derive velocity from the NEMO data. While the SSH from AVISO650

is also available daily, it is effectively averaged over longer periods of time to pro-651

duce gridded SSH maps from along-track altimeter data. We hypothesize that the652

difference between isocontours from AVISO and NEMO in Figure 12 comes from653

the optimal interpolation used to produce the gridded AVISO product (Pujol et654

al., 2016), which is necessary to construct the global maps from satellite altimeters’655

along-track data. To support this hypothesis, in Figure 13, we show the spectra as a656

function of τ measured from AVISO and NEMO. In this plot we have repeated the657

analysis of the NEMO spectra after passing the data through a 7-day running time-658

average (green line), which reproduces the time average over the satellite orbits. We659

can see that the green curve overlaps the AVISO measurement (blue) very closely,660

supporting our hypothesis. This is similar to what was done in Arbic et al. (2014);661

Khatri et al. (2018) who were comparing the cascade from AVISO and model data662

and determined that AVISO’s spectral fluxes can be reproduced from model data663

after filtering the latter in both space and time.664
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What component of the flow could be yielding the discrepancy between NEMO665

and AVISO? The most obvious possibility is unbalanced motion present in the 1-day666

mean SSH fields of NEMO that is absent from AVISO due to the effective weekly667

averaging required for gridding the satellite measurements. However, unbalanced668

motion had been believed to be important mostly over length-scales . 100 km and669

time-scales . 2 days (e.g. Richman et al. (2012); Qiu et al. (2018)). If our conjec-670

ture is correct, it would imply that unbalanced motion is present at all scales and is671

significant even at scales between 200 km to 1000 km, requiring averaging over a few672

days to be removed. Isolating balanced from unbalanced motions (e.g. Bühler et al.673

(2014)) is an active research topic that is beyond the scope of this work.674

Figure 12 shows the importance of performing a combined spatio-temporal675

decomposition to access all information in the data. Our method is similar to676

frequency-wavenumber analysis performed within Fourier boxes by several re-677

cent studies: Arbic et al. (2014) were interested in mesoscale-driven intrinsic low-678

frequency variability, while Savage et al. (2017); Qiu et al. (2018); Torres et al.679

(2018) were primarily motivated by isolating the unbalanced motions from SSH-680

derived velocities. Our Figure 12 is analogous, for example, to Figure 4 in Arbic681

et al. (2014) and to Figure 3 in Torres et al. (2018). However, as we mentioned in682

the introduction, the coarse-graining approach gives us access to the global energy683

budget and, moreover, frees us from the limitations of Fourier boxes and the re-684

quired tapering and detrending. As such, the approach here complements previous685

frequency-wavenumber analysis by allowing us to access much larger length-scales.686

A common feature between our Figure 12 and those in previous studies is687

a slight elongation of iso-contours along the diagonal from small to large spatio-688

temporal scales in the main panel of our Figure 12. Such elongation is most promi-689

nent in Figure 3 of Torres et al. (2018), who were probing scales < 100 km and from690

roughly 3 hours to 40 days. The diagonal elongation of isocontours represents a691

slight tendency for larger length-scales to have longer time-scales.692

However, we emphasize that unlike in Torres et al. (2018), such tendency is693

only slight over the larger scales we analyze here. In fact, an important take-away694

from Figure 12 is that all length-scales evolve over a wide range of time-scales, con-695

sistent with plots in Figure 11. Consider, for example, ` ≈ 500 km in the main panel696

of Figure 12 at different τ values. We see that the (red) isoline is almost vertical697

over τ ≈ 5 days to τ ≈ 50 days, indicating that flow at 500 km has an equal contri-698

bution from all these time-scales. We also see that both AVISO and NEMO isolines699

get flatter (stretched horizontally) as τ increases, such that at τ ≈ 300 days, there is700

almost equal energy at all scales between ` ≈ 100 km and ` ≈ 1000 km.701

5 Conclusions702

5.1 Summary of the main results703

In this paper, we have exhibited a suite of analysis insights available from a704

coarse-graining approach that is relatively new in physical oceanography. As part705

of our coarse-grained analysis of numerical model and satellite analysis products,706

we found that the surface geostrophic kinetic energy is dominated by the mesoscale707

flow, thus supporting our understanding that it is the most energetic component708

of the general circulation (Ferrari & Wunsch, 2009). More precisely, our use of709

coarse-graining to measure the global spectrum (Sadek & Aluie, 2018), reveals that710

≈ 60% of the surface geostrophic kinetic energy resides at scales between 100 km711

and 500 km. We also found that the kinetic energy has a clear seasonality, peaking712

in the spring of both hemispheres, thus supporting analysis using different meth-713

ods by Qiu et al. (2014) and Steinberg et al. (2021). Furthermore, results of the714
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Figure 13. Evidence that the disagreement between AVISO and NEMO over time-scales

. 10 days is due to temporal averaging used in generating the gridded AVISO product. Here,

we show temporal spectra from AVISO (blue) and NEMO (red) in the North (solid lines) and

South (dashed lines), which disagree over τ . 10 days as in Figure 12. However, the temporal

spectra from NEMO agree with those from AVISO after applying a 7-day temporal smoothing to

the original NEMO velocities (green). This result supports our hypothesis that AVISO is miss-

ing dynamical information at time-scales less than 10 days due to temporal smoothing over all

length-scales.

global energy spectrum from both AVISO satellite analysis and NEMO model are715

consistent.716

By coarse-graining in both space and time, we have shown that every length-717

scale evolves over a wide range of time-scales. This result makes temporal averaging,718

which is traditionally used to decompose oceanic flow into a mean and fluctuating719

components, unable to decompose the flow according to length-scales. Indeed, we720

showed that temporal averaging reduces the energy at all length-scales and not just721

the mesoscales. We found that the mean flow from a 9-year average has over 50%722

of its energy residing at length-scales smaller than 500 km. This result makes us723

appreciate the significance of temporally coherent forcing mechanisms acting on the724

mesoscales, such as bottom topography and continental boundaries.725

An important contribution of this work is to demonstrate how a combined726

spatio-temporal coarse-graining analysis in Section 4.6 is able to expose hidden727

properties in the data. We did so by showing that the gridded AVISO product728

misrepresents the SSH-derived velocity over time-scales less than ≈ 10 days at all729

length-scales, including at ≈ 1000 km. The misrepresentation, however, was most730

severe over scales . 500 km. We showed evidence supporting our hypothesis that731

this deficiency in AVISO is due to the temporal averaging (optimal interpolation)732

required for generating a gridded product from altimeter along-track measurements733

(Pujol et al., 2016). This deficiency is unravelled from a combined spatio-temporal734

analysis but not by a spatial scale analysis alone. In fact, AVISO has a spatial reso-735

lution (Ballarotta et al., 2019) comparable to that of the NEMO model we analyzed736

here and their spatial spectra agree well at all resolved spatial scales. We conjecture737

that the discrepancy between AVISO and NEMO is due to unbalanced motions in738

NEMO that is absent from AVISO, including at scales larger than 500 km.739
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5.2 Coarse-graining and the filtering spectrum740

The coupling between different length- and time-scales and also between dif-741

ferent geographic regions presents a major difficulty in understanding, modeling,742

and predicting oceanic circulation and mixing. Indeed, the oceanic kinetic energy743

budget is estimated to suffer from large uncertainties (Ferrari & Wunsch, 2009). A744

major reason behind these difficulties is a lack of scale-analysis methods that are745

appropriate in the global ocean.746

In this paper, we have demonstrated the versatility of coarse-graining in serv-747

ing as a robust scale-analysis method for the global ocean circulation that comple-748

ments existing methods. The approach is very general, allows for probing the dy-749

namics simultaneously in scale and in space, and is not restricted by assumptions of750

homogeneity or isotropy commonly required for traditional methods such as Fourier751

or structure-function analysis. Therefore, coarse-graining offers a way to probe and752

to quantify the energy budget at different length-scales globally while maintaining753

local information about the heterogeneous oceanic regions.754

Here, we have also demonstrated how the recently developed filtering spectrum755

(Sadek & Aluie, 2018), which relies on coarse-graining, can be used to quantify the756

energy spectrum in the ocean. The method frees us from the limitations of Fourier757

boxes, and allows us to extract the spectrum globally. We view this work as a nec-758

essary step toward constructing a scale-aware global Lorenz Energy Cycle for the759

ocean circulation.760

Appendix A Deforming the kernel around land761

As outlined in section 2.1, filtering with a constant kernel while treating land762

as zero-velocity water and including land cells (“Fixed Kernel w/ Land”) in the final763

tally is guaranteed to conserve 100% of the energy, while excluding land cells and764

integrating only over water cells (“Fixed Kernel w/o Land”) leads to a loss of about765

11% of the total kinetic energy at a filter scale of 2000 km (see Figure 2). This re-766

sult follows since some of the kinetic energy ‘smears’ onto the land cells, which are767

then excluded from the spatial integrals.768

An alternative approach is to deform the kernel around land (“Deforming769

Kernel”) so that only water cells are incorporated in the filtering operation. This ap-770

proach has the advantage of not needing to treat land as water, yet we have shown771

in Figure 2 that this choice still does not conserve 100% of the energy, sometimes772

even yielding larger values, albeit still within 1% error. Here, we explain why a de-773

forming a kernel cannot be expected to yield 100% of the energy, unlike the “Fixed774

Kernel w/ Land.”775

To illustrate how the loss of energy conservation can happen with the Deform-776

ing Kernel method, consider a one-dimensional domain with five equally spaced777

points and a simple kernel that has a weight of 2 at the target point, 1 at neighbour-778

ing points, and 0 otherwise.779

If the domain were periodic then the filtering operation could be represented as
the matrix

G :=




1/2 1/4 0 0 1/4
1/4 1/2 1/4 0 0
0 1/4 1/2 1/4 0
0 0 1/4 1/2 1/4
1/4 0 0 1/4 1/2



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such that KE = G ·KE, where KE is a column vector. Note that the sum of each780

row of G is 1, a result of normalizing the kernel (assuming a grid spacing of 1 for781

simplicity).782

Domain integrating in this scenario is simply left-multiplying by the row vector783

S := [1, 1, 1, 1, 1], which is equivalent to taking a column-wise sum. Since S · G = S,784

S ·KE = S ·G·KE = S ·KE, and so the domain integrated kinetic energy is conserved.785

However, if the domain is non-periodic (such as if the edges were ‘land’), then
the resulting filtering kernel according to the Deformed Kernel approach that ex-
cludes anything outside the boundaries would be

G :=




2/3 1/3 0 0 0
1/4 1/2 1/4 0 0
0 1/4 1/2 1/4 0
0 0 1/4 1/2 1/4
0 0 0 1/3 2/3




In this case, S ·G = [11/12, 13/12, 1, 13/12, 11/13] 6= S, and so in general S ·KE 6= S ·KE.786

Moreover, there is no guarantee that S ·KE ≤ S ·KE, and so it may be that the total787

filtered kinetic energy exceeds the total unfiltered kinetic energy.788

As observed, in general the error arising from deforming the kernel will be789

much smaller than that of treating land as zero-velocity water and only integrating790

over true water cells, especially for large filter kernels. However, again, it is worth791

recognizing that deforming the kernel does not guarantee energy conservation. To792

fully conserves energy and maintain commutativity with differentiation, we choose793

the “Fixed Kernel w/ Land” option, which treats land as zero-velocity water and794

include land cells in spatial integrals to compute total energy. Figure A1 shows the795

spectra obtained from implementing the three different coarse-graining possibilities.796
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