
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
72
81
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Intersecting Fluvial and Pluvial Inundation Estimates with

Sociodemographic Vulnerability to Quantify Household Risk in

Urban Areas

Matthew Preisser1,1, Paola Passalacqua1,1, Richard Patrick Bixler1,1, and Julian Hofmann2,2

1University of Texas at Austin
2RWTH Aachen University

November 30, 2022

Abstract

Increased interest in combining compound flood hazards and social vulnerability has driven recent advances in flood impact

mapping. However, current methods to estimate event specific compound flooding at the household level require high perfor-

mance computing resources frequently not available to local stakeholders. Government and non-government agencies currently

lack methods to repeatedly and rapidly create flood impact maps that incorporate local variability of both hazards and social

vulnerability. We address this gap by developing a methodology to estimate a flood impact index at the household level in near-

real time, utilizing high resolution elevation data to approximate event specific inundation from both pluvial and fluvial sources

in conjunction with a social vulnerability index. Our analysis uses the 2015 Memorial Day flood in Austin, Texas as a case

study and proof of concept for our methodology. We show that 37% of the Census Block Groups in the study area experience

flooding from only pluvial sources and are not identified in local or national flood hazard maps as being at risk. Furthermore,

averaging hazard estimates to cartographic boundaries masks household variability, with 60% of the Census Block Groups in

the study area having a coefficient of variation around the mean flood depth exceeding 50%. Comparing our pluvial flooding

estimates to a 2D physics-based model, we classify household impact accurately for 92% of households. Our methodology can

be used as a tool to create household compound flood impact maps to provide computationally efficient information to local

stakeholders.

1



Intersecting Near-Real Time Fluvial and Pluvial Inundation
Estimates with Sociodemographic Vulnerability to Quantify a
Household Flood Impact Index
Matthew Preisser1, 2, Paola Passalacqua1, R. Patrick Bixler2, and Julian Hofmann3

1Environmental and Water Resources Engineering, University of Texas at Austin, Austin, Texas, USA.
2LBJ School of Public Affairs, University of Texas at Austin, Austin, Texas, USA.
3Institute of Hydraulic Eng. & Water Resources Management, RWTH Aachen University, Germany.

Correspondence: Dr. Paola Passalacqua (paola@austin.utexas.edu)

Abstract. Increased interest in combining compound flood hazards and social vulnerability has driven recent advances in flood

impact mapping. However, current methods to estimate event specific compound flooding at the household level require high-

performance computing resources frequently not available to local stakeholders. Government and non-government agencies

currently lack methods to repeatedly and rapidly create flood impact maps that incorporate local variability of both hazards

and social vulnerability. We address this gap by developing a methodology to estimate a flood impact index at the household5

level in near-real time, utilizing high resolution elevation data to approximate event specific inundation from both pluvial and

fluvial sources in conjunction with a social vulnerability index. Our analysis uses the 2015 Memorial Day flood in Austin,

Texas as a case study and proof of concept for our methodology. We show that 37% of the Census Block Groups in the study

area experience flooding from only pluvial sources and are not identified in local or national flood hazard maps as being at

risk. Furthermore, averaging hazard estimates to cartographic boundaries masks household variability, with 60% of the Census10

Block Groups in the study area having a coefficient of variation around the mean flood depth exceeding 50%. Comparing

our pluvial flooding estimates to a 2D physics-based model, we classify household impact accurately for 92% of households.

Our methodology can be used as a tool to create household compound flood impact maps to provide computationally efficient

information to local stakeholders.

1 Introduction15

Flooding is the natural hazard with the greatest economic and societal impacts in the United States, and these impacts are

becoming more severe over time (National Academies of Sciences Engineering and Medicine, 2019). In conjunction, as of

2019, over 80% of the United States population lives in urban areas. The total US population at risk of serious flooding (i.e.,

having an annual exceedance probability of less than 1%) ranges from 13 to 41 million people, depending on the flood model,

with high amounts of uncertainty and underestimation in urban centers (Wing et al., 2018). Urban flood waters come from20

three main sources: fluvial sources, as rivers and streams exceed their banks, pluvial sources from overland runoff, and coastal

sources such as storm surges, tides, and waves. While coastal and fluvial threats are reported in leading flood hazard maps
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such as those produced by the Federal Emergency Management Agency (FEMA) or the City of Austin’s FloodPro software

(the leading source for local floodplain information in Austin, Texas), these maps lack information regarding the threat of

pluvial flood waters, potentially underreporting flood hazards. Furthermore, end users, such as emergency responders and25

city planners, frequently request maps in terms of more concrete reference points including pluvial flood hazards and ponded

water depths/extents instead of in terms of exceedance probability (Luke et al., 2018). It is of specific concern to numerous

government agencies that pluvial flooding be included in flood warning, mapping, and risk management efforts, including the

specific identification of topographic depressions that allow for the ponding of water (Falconer et al., 2009). The goal of this

study is to produce a flooding impact index at the residential parcel level (i.e., a lot or plot of land zoned for human occupancy,30

also referred to as a household in this study), using a near real-time inland compounding flooding estimate and a region specific

social vulnerability index.

Depressions are topographic areas that do not drain and have no outward flow when only partially filled with water. These

areas have a negative relative relief or a lower elevation in reference to their surrounding boundaries (Lewin and Ashworth,

2014). Depressions also form in areas that have little to no change in elevation producing no lateral flow (Le and Kumar, 2014).35

Depressions are not limited to single low points in elevation, rather they can have complex connected structures. Depending

on residual water level, height, soil moisture, and upstream drainage, these depressions can fill, spill, and merge into adjacent

low points. Specifically, depressions begin to fill when runoff water exceeds evaporation and infiltration capacity until the

depression storage threshold is reached and overland flow begins (Hu et al., 2020). Depressions are formed through a variety

of processes along different sections of alluvial plains, ranging from centimeters to kilometers in scale, and play a critical role40

in sediment deposition and water accumulation, suggesting the necessity to include such features in flood management and

forecasting (Syvitski et al., 2012). A depression’s properties vary over different landscapes, and therefore can significantly in-

fluence numerous hydrological processes including delaying the initial time of runoff yield, total volume of outflow, increasing

soil surface roughness, and reducing overland flow velocity (Hu et al., 2020).

Compound flooding broadly refers to the co-occurrence of flooding from rainfall (pluvial and fluvial flooding) and coastal45

sources (Wahl et al., 2015; Muthusamy et al., 2019). This study is specifically concerned with inland compound flooding and

focuses on the two possible fluvial-pluvial mechanisms: compounding in both time and space or compounding in only time

(Wahl et al., 2015). For the former, pluvial and fluvial flooding occur at the same location at the same time. This mechanism

occurs in depressions directly adjacent to and within fluvial floodplains, which have the potential to be impacted from both

fluvial and pluvial floodwaters. For the latter, compound effects are only in time, meaning that pluvial and fluvial flooding50

occur at the same time over a broader region. When pluvial and fluvial flooding occur simultaneously across a city in multiple

locations, emergency services have to be spread out over larger regions, thus constraining access to resources. Topographic

depressions can be integrated into urban flood planning to identify risk associated with the compounding effects of fluvial and

pluvial flooding.

People and neighborhoods that are impacted the most during flooding events can be identified by overlaying flood hazard55

maps with social or sociodemographic vulnerability maps (Rufat et al., 2015). This process is useful in order to discern emer-

gency management plans and identify potential environmental justice concerns (Chakraborty et al., 2014). Kaźmierczak and

2
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Cavan (2011) identified four characteristics of people and their households that influence vulnerability in the context of flood-

ing: access to information, ability to prepare for flooding, ability to respond to flooding, and ability to recover. These factors are

influenced by the individual and household’s social and demographic characteristics. Survey data measuring household flood60

vulnerability (the four previous characteristics) can be targeted to specific flooding scenarios or events and can be insightful

to local and regional planners. However, low survey response rates, inadequate sampling methods, and time between surveys

can make these surveys obsolete after a few years when considering the long-term effects and trends of urban flooding (Collins

et al., 2019). Therefore, social vulnerability indices (SVIs) based on more commonly measured metrics (e.g., household in-

come, household size, age, race, ethnicity, housing type, access to healthcare, access to transportation) are utilized as a proxy65

in general vulnerability applications.

SVIs measure a population’s ability to respond to and recover from the impacts of a hazard. SVIs often rely on national

level survey data, such as the US Census Bureau’s American Community Survey (ACS). ACS data have numerous strengths

when compared to primary survey methods because methods/data are standardized across geographies, are available for all

geographies, and are free to use. Survey data are often aggregated at coarser resolutions than those of flood models (e.g.,70

Census Block Groups, Tracts, Zip Codes, Counties, etc.). This operation is done for a variety of reasons including protecting

individual privacy and for strategic statistical sampling purposes to reduce the necessary resources (time and money). However,

the use of such boundaries does not provide a level of precision sufficient enough for the identification of significant disparities

in flooding impacts, thus limiting a community’s ability to provide emergency services adequately to those most in need

(Nelson et al., 2015).75

Our study acts as a proof of concept for a new workflow to create storm specific flood hazard and the subsequent flood impact

maps in near real-time using the 2015 Memorial Day flood in Austin, Texas as a case study. We quantify fluvial and pluvial

flood hazard using high resolution digital elevation models (DEMs), identifying if there is a significant difference in flood

hazard estimates when considering only fluvial and both fluvial/pluvial sources. Furthermore, we combine residential flood

hazard with relative sociodemographic vulnerability scores to estimate a storm specific impact index at the parcel level. In the80

context of Census Block Groups, these results highlight how aggregating flood hazard and impact estimates to cartographic

boundaries fails to capture important variability at local scales.

The inequitable distribution of flood impacts on different communities is more accurately described when examining hazard

and vulnerability values at the parcel level. This information can be helpful for local officials, natural resource managers, city

planners, emergency responders, non-profits, and community leaders to better discern the extent to which flood events will85

impact their community. Our simplified (i.e., elevation based) approach to estimate inundation allows for our workflow to be

efficiently computed in near-real time, allowing for numerous flood scenarios to be calculated rapidly on personal computing

resources without burdensome data requirements or specialized technical backgrounds.

This paper is organized as follows: first we provide background information (Section 2) on terrain, social vulnerability, and

flood impact mapping, cover the characteristics of our study area and data sources (Section 3), and then explain our workflow90

and methodology (Section 4). We present results (Section 5) for the 2015 Memorial Day flood and discuss them (Section 6).

Finally, we state the conclusions of this work and opportunities for future research (Section 7).
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2 Background

2.1 Fluvial Inundation Mapping

Fluvial flooding is researched and studied at all spatial resolutions from global models to individual streams, and approaches95

to estimate fluvial flooding can be categorized as empirical methods (observation based), hydrodynamic models (mathematical

and physics based), and simplified conceptual models (non-physics based), each with their own advantages and disadvantages

(Teng et al., 2017). This analysis uses an existing terrain based simplified conceptual model to estimate fluvial flooding (Ge-

oFlood) because it has been shown to be able to capture the general inundation patterns of flooding events as well as have a

significant potential in guiding real-time flood disaster preparedness and response (Zheng et al., 2018). Since the use of high100

resolution terrain data in fluvial inundation has been covered in previous work, we refer the reader to the GeoFlood publication

(Zheng et al., 2018) and references therein. Since the novelty of our study lies in the integration of a pluvial flooding estimate

and vulnerability in near real-time into this existing approach, we provide more background on these specific components.

2.2 Modeling Surface Water in Depressions

Prior to the recent increase in availability of lidar data, depressions in coarser resolution DEMs (+30 meters) were seen as105

errors in the data collection process and were subsequently filled in or removed to ensure that water flowed continuously

downstream (Li et al., 2011; Callaghan and Wickert, 2019). Flood-fill, breaching, carving, and combination algorithms modify

the DEM by raising and/or lowering cells to create a depressionless surface (Jenson and Domingue, 1988; Martz and Garbrecht,

1999; Soille et al., 2003; Lindsay and Creed, 2005). Alternatives to modifying elevation data also exist through the use of a

least-cost drainage path algorithm that is able to pass through depressions (Metz et al., 2011). Regardless of the method used,110

these algorithms produce hydrologically connected elevation surfaces by ignoring or removing depressions in the DEM and

discounting their significant hydrologic impact (Callaghan and Wickert, 2019). With lidar technology and the availability of

high resolution DEMs (1-meter and finer), topographic analyses can incorporate existing depressions, both naturally occurring

and from anthropogenic sources. Depressions can be identified through a variety of methods utilizing remote sensing and

automation techniques. Identification methods typically begin by comparing a filled and unfilled DEM (i.e., a depressionless115

DEM and the original DEM) to identify areas that are different. From here, methodologies vary slightly in their ability to

eliminate noise in data and to represent the complex nested hierarchy of depressions. Some methods utilize elevation profiles

(Wu et al., 2016), simplified hierarchical trees (Wu and Lane, 2016), or filtering based on threshold variables for surface

area, depth, or volume (de Carvalho Júnior et al., 2013). Numerous methods exist to model how surface water moves through

complex depressions with possible applications to micro- and macro-topographical features. Examples include the puddle-to-120

puddle (P2P) model, which routes a gridded rainfall depth, and the Fill-Spill-Merge algorithm, which routes a gridded runoff

depth (Chu et al., 2013; Barnes et al., 2019a). As discussed later in Section 4.1, due to the high concentration of impervious

surfaces and likely saturated conditions from multiple days of rain, we use rainfall depth as an equivalent for runoff depth in

this study.
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P2P delineation was first discussed in reference to microtopographic depressions, or depressions at the millimeter scale (Chu125

et al., 2013). P2P exists as a full physically based overland flow model, coupled with infiltration and unsaturated flow models

that can handle spatiotemporally varying rainfall conditions (both single and multiple rainfall events). This model introduced

the idea of cell-to-cell, and subsequently puddle-to-puddle routing of water and identifies the importance and necessity of in-

corporating topographic depressions in overland flow modeling, specifically as the spatial resolution of elevation data increases.

However, given the computationally expensive nature of P2P and other similar overland flow models that utilize cell-by-cell130

algorithms, near real-time analyses need a more efficient approach that is able to be broadly applied across a large landscape

(e.g., an urban watershed). The algorithm chosen for this study is Fill-Spill-Merge, a mass-conserving approach that uses a

network based algorithm (Barnes et al., 2019b, a).

Fill-Spill-Merge utilizes a depression hierarchy and represents the topologic and topographic complexity of depressions

across a landscape as a network. Sub-depressions can merge to form meta-depressions, and a depression hierarchy tree can135

selectively fill and breach depressions based on the volume of water in them. The Fill-Spill-Merge workflow can be described

in four steps: First, Fill-Spill-Merge calculates the depression hierarchy, flow directions, and label matrix needed to route water

over the landscape. Second, water is routed to its lowest downslope pit, assigning it to the appropriate leaf in the hierarchy.

Third, moving through each leaf, water that overflows from a depression is redistributed to siblings and parents within the

hierarchy. Fourth, the algorithm determines the final depths based on if the depression is completely filled, partially filled, or140

empty.

The implementation of the depression hierarchy and routing process between leaves, siblings, and parents makes this algo-

rithm’s computation time independent of the runoff depth, therefore drastically increasing its computational speed at higher

runoff values when compared to cell-by-cell algorithms by a factor ranging between 2,000 – 63,000 (Barnes et al., 2019a). Fill-

Spill-Merge’s ability to efficiently route water over a complex landscape is therefore ideal in determining the extent and depths145

of pluvial flood waters. While Fill-Spill-Merge was originally tested on coarse resolution DEMs (ranging between 15-meter

and 120-meter cell size), this analysis looks to apply Fill-Spill-Merge on a higher resolution DEM (1-meter resolution).

2.3 Recent Compound Flooding Advancements

Recent advancements in the field of flood hazard mapping as related to this study fall into two broad categories, both utilizing

high resolution (5-meter horizontal resolution or better) elevation data: (1) large scale (e.g., global, national, regional) com-150

pound flood mapping efforts for multiple return periods (Bates et al., 2021) and (2) the speeding up of hydrodynamic models

using advanced computing techniques (e.g., using graphical processing units or GPUs) and numerical weather forecasting

(Ming et al., 2020). The former has the advantages of being highly comparable to local 2D models, and being available for the

conterminous US, highlighting spatial patterns such as the identification of the Eastern seaboard’s increase in future flood haz-

ards (Bates et al., 2021). This information can be valuable for long term planning and management of a watershed. However,155

this and other similarly designed models are built on historic data and report results in terms of return periods (i.e., 1, 5, 20,

50, 100, 250, 500-year events). The historical record required to calculate return periods of this length do not exist for many
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smaller and medium sized channels, including those in this study. Furthermore, forecasts and estimates reported as depths are

more relevant to end users than frequency and exceedance probability (Luke et al., 2018).

The speeding up of hydrodynamic models using advanced computing techniques has the advantage of being locally appli-160

cable and having the capability to forecast extreme events in some cases with a substantial lead time (e.g., produce results at

10-meter horizontal resolution within 2 hours) (Ming et al., 2020). This can be applied to local or city planning measures, as

models typically maintain a higher level of accuracy when compared to simplified conceptual flood models. Numerous studies

exist that explore the role of high performance computing technology to speed up otherwise computationally heavy models,

with many showing increasing calculation speeds ranging from 10 to 100 times faster compared to using traditional central165

processing units (CPUs) (Kalyanapu et al., 2011; Morsy et al., 2018; Carlotto et al., 2021; Morales-Hernández et al., 2021).

However, the use of high-performance flood modeling technologies is still in its infancy and hydrodynamic models are still

burdened with massive data input requirements (Ming et al., 2020; Guo et al., 2021).

2.4 Adaptive Capacity and Social Vulnerability

Adaptive capacity is the degree to which an individual or community is able to respond to or cope with changes quickly170

and easily (Smit and Wandel, 2006). Exposure and sensitivity characteristics reflect the likelihood of a system experiencing

a specific event and the characteristics of the system which influence its response to said event. Exposure and sensitivity are

influenced by variables including social, political, cultural, and economic conditions, which influence and constrain adaptive

capacity (Smit and Wandel, 2006). Understanding the interconnected relationships among exposure, sensitivity, and adaptive

capacity is important to estimate the degree to which stakeholders can mitigate environmental hazards (Smit and Wandel,175

2006). Social vulnerability, as seen by social scientists, serves as a proxy for a community’s sensitivity. SVIs are therefore built

on sociodemographic data and can incorporate multi-hazard exposure estimates for a final metric that represents a community’s

resiliency (Smit and Wandel, 2006).

The original calculation and most frequently cited tool for estimating social vulnerability within the United States is the

Social Vulnerability Index SoVI® (Cutter et al., 2003). SoVI® synthesizes 42 socio-economic and built environment variables180

to quantify the social vulnerability to environmental hazards and generate a comparative metric that facilitates the examination

of the differences between U.S. counties (Cutter et al., 2003). Since its inception, it has been revised numerous times (SoVI®

2010-2014) and reduced to 29 socio-economic variables. Since then, numerous social vulnerability indices, both global and

regional, including those created by the United Nations Development Program and the Center for Disease Control (UNDP,

2010; Flanagan et al., 2011) have been developed and widely used. Different constructs and variations of SVIs have different185

levels of predicative power, and therefore require fine tuning for each specific use (Rufat et al., 2019). Both SoVI® and the

Center for Disease Control’s (CDC’s) SVI, two of the most commonly cited SVI’s that specifically focus on the US, estimate

social vulnerability at the county level. Due to the vulnerability heterogeneity that exists within counties, variance can go

undetected which can adversely affect vulnerable populations. With the onset of sociodemographic data available at resolutions

higher than counties, similar methodologies applied by Cutter et al. (2013) can be applied to these higher resolution boundaries.190
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Previous attempts have been made to disaggregate social vulnerability variables to a finer scale, such as individual tax parcels

(Nelson et al., 2015). General methodologies follow the same core concept of using dasymetric mapping techniques, which

utilize ancillary datasets to divide mapped areas into new but still relevant zones, such as tax parcels. This method is commonly

used with cadastral data (land use/land cover data) to divide other geographic boundaries. Nelson et al. (2015) discusses using

cadastral-informed selective disaggregation logic to both extract relevant social vulnerability variables from tax parcel layers195

while dissolving Census Block Group variables to produce a parcel level SVI estimate. Our analysis dissolves Census Block

Group variables to residential parcels, but does not use a selective disaggregation logic. While geographic tax parcel data are

widely available (e.g., parcel boundaries), some associated variables (e.g., housing type, property value, gross rent, etc.) are

not consistently reported across counties, regions, and states. Therefore, for vulnerability uniformity purposes, this analysis

extracted all social and demographic variables from the American Community Survey (ACS) report.200

2.5 Impact as a Function of Vulnerability and Hazard

This study’s focus is on the intersection of social vulnerability and urban inundation mapping in near real-time. It is therefore

important to define key terminology related to flood and climate risk. Risk definitions broadly fall into two categories (Samuels

and Goudby, 2009), depending on the output’s units, whether it is a sum of expected losses (e.g., lives lost, property damaged,

economic activity managed, personal injury, etc.) as defined by the United Nations Disaster Relief Organization (UNDRO)205

(Peduzzi, 2019), or as the probability of an event adversely affecting the normal function of a community or society as defined

by the International Panel for Climate Change (IPCC) (Cardona et al., 2012). Different fields of study are concerned with

quantifying different variables in the context of climate risk. While some researchers are concerned with the sum of expected

monetary losses (Tsakiris, 2014), others are concerned with the probability of a disaster causing harm (Kron, 2005). These

diverging definitions stem from varying uses, understandings, and definitions of the principal components of risk including210

exposure, hazard, vulnerability, and impact. This study uses the latter definition, defining risk as a probability, as the former

definition can be misleading in the context of social vulnerability for this study (i.e., monetary risk might highlight more

affluent/wealthy residents who are, in theory, less vulnerable). Exposure is broadly accepted to be the inventory or physical

count of elements in an area where a hazard occurs, including the number of people, buildings, cultural sites, etc. (Cardona

et al., 2012).215

The definition of a hazard is where researchers begin to diverge. The IPCC defines a hazard as a possible, future occurrence

of a natural or human-induced physical event that may have adverse effects on vulnerable and exposed elements (Cardona et al.,

2012). This implies a probability component to a hazard as it examines future possible occurrences. However, an alternative

definition as used by the United Nations International Strategy for Risk Reduction (ISDR), defines a hazard as a potentially

damaging physical event, phenomenon, or human activity that may cause the loss of life, or injury, property damage, social220

and economic disruption or environmental degradation (ISDR, 2009). With this definition, a hazard in terms of flooding is

quantified by a map of inundation depths of the affected area (Tsakiris, 2014). We choose to use this definition of a hazard

as we are not currently considering probability and are rather using known flood characteristics to create our inundation map

estimate.
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Similarly to risk, vulnerability has also taken numerous definitions, falling into two categories depending on what is consid-225

ered in the vulnerability estimate. The IPCC defines vulnerability as the degree to which a system is susceptible to, or unable

to cope with, the adverse effects of a hazard or more broadly climate change (Cardona et al., 2012). This is more similarly re-

lated to the social vulnerability definition in social science fields, relating vulnerability to adaptive capacity (Smit and Wandel,

2006). Other definitions of vulnerability are more encompassing, including variables such as degree of exposure, capacity of

the system, magnitude of a hazard, or value of assets exposed (Samuels and Goudby, 2009; Tsakiris, 2014). In the context of230

this study, we utilize the former definition of vulnerability, as this is representative of adaptive capacity, and degree/magnitude

of exposure/hazard are covered elsewhere.

The IPCC uses the word impact synonymously with consequence and outcomes, defining it as the effects on natural and hu-

man systems of extreme weather and climate events (Agard and Schipper, 2012). The European Union’s FLOODSite program

further defines impact as the economic, social, and environmental damage that is a result of a flood which can be expressed235

quantitatively or categorically (Samuels and Goudby, 2009). It is with these definitions that we combine hazard and social

vulnerability estimates to compute a flood impact, or consequence, map.

3 Study Area and Data Sources

Austin, Texas, considered one of the fastest growing cities in the US, has a population approaching one million residents.

In conjunction with rapid urbanization to accommodate for the influx of new residents, Central Texas has seen an increase240

in the occurrence of 1% annual exceedance probability storms, experiencing three in a five-year window, including the 2013

Halloween Day flood, 2015 Memorial Day flood, and the 2018 Hill Country flood. These events pose a risk to new residents

as increased development, and subsequent expansion of impervious surfaces, increase people’s potential exposure to both

pluvial and fluvial flooding. Dividing Austin, Texas in the middle is the Colorado River, which is dammed by the Tom Miller

Dam to the north-west (upstream) and the Longhorn Dam to the south-east (downstream). There are also numerous major245

creeks throughout the northern and southern sections of Austin. This study focuses on the region of Austin that is north of

the Colorado River containing the majority of new developments, major creeks, and population groups within Austin (Figure

1). Furthermore, this area encompasses a wide range of demographic groups stretching from West to East Austin, as well as

encompassing the downtown and University of Texas areas. When discussing hazard, vulnerability, and impacts at the parcel

level, our analysis only considers residential parcels within the formally defined Austin neighborhood boundary.250

We use the 2015 Memorial Day flood in our analysis, as this event is often referred to as the worst flood in recent Austin

history. In 2015, Texas saw intense rainfall events from April through May, causing state and local emergency response agencies

to be active throughout the entire month of May and the majority of June (Schumann et al., 2016). On Memorial Day, starting

at 13:00 (CST), it began to rain in Austin, TX, pouring 5.2 inches in the following 5 hours, with 80% falling within a 2 hour

period. This value is the second most precipitation in a single day in Austin, Texas since 2002 and the eighth most since255

1927, the farthest back that uninterrupted records for this region extend to. All stream reaches in this study reached their peak

instantaneous flow rates within the three hours immediately following the end of the precipitation (i.e., by 20:00 CST).
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N

0.0 2.01.0

Miles

Austin Neighborhood Boundary

Boggy Creek Catchment Area

Colorado River (Lower) Catchment Area

Colorado River (Upper) Catchment Area

Shoal Creek Catchment Area

Waller Creek Catchment Area

Walnut Creek (Lower) Catchment Area

Walnut Creek (Middle) Catchment Area

Walnut Creek (Upper) Catchment Area

Major Flowlines and Reaches

Austin, Texas Study Area and
Relevant Reach Catchment Areas

Figure 1. Austin, Texas study area boundary and relevant stream reach catchment areas.

The data sources and tools used in our analysis were deliberately chosen for their broad accessibility across the country,

allowing the application of this methodology to occur across the US with little to no data availability concerns (Table 2).
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Table 1. Austin, Texas catchment characteristics.

Catchment Name
Mean of Daily

Mean Discharges

Instantaneous Peak

Dischargea

Total

Rainfall

Depthb

USGS Stream

Gauge Number

(m3 · s−1) (m3 · s−1) (cm)

Walnut Creek (Lower) 2.49 328.5 13.2 08158600

Walnut Creek (Middle) 1.39 475.7 13.2 08158200

Walnut Creek (Upper) 1.39 475.7 13.2 08158200

Boggy Creek 0.14 37.9 13.2 08158035

Shoal Creek 0.45 311.5 13.2 08156800

Waller Creek 0.25 131.4 13.2 08157560

Colorado River (Lower) 9.97 982.6 13.2 08158000

Colorado River (Upper) 9.97 982.6 13.2 08158000
aPeak instantaneous discharge was used as a representation of the worst-case scenario and of the rapid-flood characteristics related to

the Memorial Day flood.
bTotal rainfall represents the total amount of precipitation that fell on Memorial Day (May 25th, 2015) over a 5-hour period.13.2 cm

of rain is approximately a 0.005 annual exceedance probability for this region (according to NOAA historical precipitation data).

Stream reaches, their boundaries, streamflow discharge, and rainfall are all publicly available and provided by the United260

States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) (Table 1). 1-meter

DEMs for the contiguous United States are also broadly available from the USGS, as well as through other state and regional

agencies. Parcel boundaries are well defined across the country, and while a single national source is not publicly available,

most city and state agencies will provide this information for free. For example, the Texas Natural Resources Information

System (TNRIS) currently has 228 of 254 counties’ parcel data available for free.265

The ACS 5-Year Estimates are period estimates that represent data from the previous 60 months, the largest sample size

when compared to other ACS reports. For example, the 2017 data used in this analysis is an aggregation of data collected

from 2013 through 2017. This large sample size is able to dampen outliers and potential errors in sociodemographic data.

ACS 5-Year Estimates are available for all Block Groups across the US, the highest spatial resolution at which the Census

Bureau publishes data, and is therefore able to capture variation in the demographic makeup of a region. Block Groups have a270

population ranging from 600 to 3,000 people, depending on if the Block Group is in a more rural or urban location.

ACS 5-Year Estimate reports at the Block Group level are not without disadvantages. Block Groups are not perfect delin-

eations of neighborhoods, and can unintentionally group dissimilar neighborhoods (e.g., a predominantly black neighborhood

that is grouped with an adjacent predominantly white neighborhood might not capture socio-economic differences and give a

false illusion of neighborhood heterogeneity), creating a large margin of error in some estimations. ACS 5-Year Estimates are275

also the least current datasets available due to their 5-year look back nature. This 5-year look back period also limits compar-

isons that can be made between datasets. For example, the 2017 ACS 5-Year Estimate used in this study could not be compared
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to the 2018 5-Year Estimate, as they would have four out of five years of overlapping coverage. However, compared to other

ACS reports and the difficulties and expenses of other survey data sources, the advantages of using the ACS 5-Year Estimates

reports outweighs the disadvantages presented. This analysis uses social and demographic data from the 2017 ACS 5-Year280

Estimates report, as it best captures the socio-economic conditions of 2015 (i.e., 2015 is the midpoint of the 2017 dataset). In

applications of this methodology in terms of future planning and emergency response, the most relevant 5-Year Estimate will

be the most recently released.

Table 2. Programming tools and data sources utilized in this methodology.

Tool/Data Name Resolution Source Description and Purpose

Fill-Spill-Merge NA
(Barnes et al.,

2019a)

Utilizing a depression hierarchy, routes water through a

topographic surface in order to map ponded water

GeoNet NA
(Passalacqua et al.,

2010)

Geometric framework to extract channel networks from

high resolution topographic information

GeoFlood NA (Zheng et al., 2018)
Builds on GeoNet in order to create inundation maps

based on streamflow data and the HAND method

Parcel Boundaries NA TNRIS
Parcel boundaries with land use classification. Only

residential parcels were considered

Elevation (DEM) 1-meter TNRIS Topographic extent of the study region

Stream Reaches NHD-MR USGS
USGS maintained stream reach shapefile for the study

region

Stream Reach Boundaries NHD-MR USGS
USGS maintained stream catchment area shapefile for

the study region

Streamflow Discharge NA USGS

The peak instantaneous discharge during the flooding

event for each catchment area was used for fluvial

flooding inundation estimation

Rainfall NA NOAA 24-hour rainfall total in inches for the study region

American Community

Survey: 2013-17 5 Year

Estimates

Block Group US Census Bureau ACS 5-year socio-economic data by block group

Census Block Group

Boundaries
NA US Census Bureau

Shapefile acquired from Census database. There are

177 block groups in the study area

4 Methodology and Workflow

The following subsections detail the methodology and workflow for calculating the flood hazard map, sociodemographic285

vulnerability, and flood impact index at the parcel level (Figure 2).
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Figure 2. Complete workflow of our approach including fluvial/pluvial inundation estimation and SVI calculation.

4.1 Flood Hazard at the Parcel Level

The 1-meter DEM was first processed using the GeoNet workflow (Passalacqua et al., 2010; Sangireddy et al., 2016). GeoNet

extracts channel networks from high resolution topography data through the application of nonlinear filtering and the identifi-

cation of geodesic paths as curves of minimum cost. GeoNet uses a Perona-Malik non-linear smoothing image filter (set to 50290

iterations) to remove observational noise and irregularities within the DEM. This non-linear filter uses gradient information to

define the diffusion coefficient in order to preferentially smooth regions outside and within the channel, rather than across its

boundary, in order to maintain clear channel boundaries. GeoNet is able to calculate both a geometric and Laplacian curvature

based on the desired use. We chose to use the geometric curvature in order to normalize across the entire study region (as
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compared to the Laplacian calculation which is more selective). GeoNet uses this information, along with flow accumulation,295

flow direction, and slope in a cost function representing travel between two points to determine the geodesic curve from the

channel head to the basin outlet. Terrain and hydrological outputs from GeoNet are integrated within GeoFlood, which creates,

through the application of the Height Above Nearest Drainage (HAND) method, an inundation map (extent and depths of flood

waters) along the delineated stream channels for a given input flow rate (Nobre et al., 2011; Zheng et al., 2018).

The HAND method relies on a flow direction raster as one of its primary inputs, thus requiring a hydrologically connected,300

or a “hydrologically coherent” (Nobre et al., 2011), DEM where all depressions, pits, and flat areas are removed. Therefore,

the resulting estimated fluvial inundation depths do not consider depressions. Given a known centerline water depth, h, at a

river segment, the HAND raster is used to produce a water depth grid of the inundated area, F(h), within the local catchment

draining to that segment. The water depth, d, at any location, i, is therefore

di =





h−handi if handi ≤ h (flooded, i ∈ F (h))

0 if handi > h (notflooded, i /∈ F (h))
(1)305

The Fill-Spill-Merge algorithm determines the pluvial inundation depths and extents using a uniform runoff depth across

the study region. The storm being analyzed had numerous days of heavy rain leading up to the peak flood. This condition led

to saturated soils for the majority of downtown Austin, justifying using rainfall depth as an equivalent for runoff depth. We

utilized a uniform rainfall depth, as it is a more accurate representation of an input that would be available in a near real-time

scenario as compared to a gridded satellite precipitation measurement. The rainfall depth is routed through the depression310

hierarchy to its lowest down stream point before being redistributed to nodes with enough volume to contain the volume of

rainwater, with the excess being sent to the "ocean" (Barnes et al., 2019a). Fill-Spill-Merge requires an input elevation that is

equal to the lowest elevation across the DEM which serves as the “ocean”, or the super-sink of the network that all water not

remaining in a depression drains to. To accommodate this, we added an artificial elevation along the entire perimeter of the

DEM that was set to 0-feet. Given a known volume of water in a depression, Vw, and the raster cells within that depression315

with a known length (l) and width (w), ci = c1, ...,cN , the water level in the depression, Zw, is therefore

Zw =
1

N ∗ (l ∗w)
∗ (Vw +

N∑

n=1

Zi ∗ (l ∗w)) (2)

with each cell in the depression having a water elevation equal to the computed Zw. For a more detailed explanation of this

algorithm, we refer the reader to the Fill-Spill-Merge publication (Barnes et al., 2019a) and references therein.

Since the rainfall event was concluded in approximately 5-hours and all stream reaches have their maximum instantaneous320

streamflows within 3 hours following the storm, we chose to use the peak discharge of each reach independent of time as a

proxy for the worst-case scenario of fluvial flooding. Similarly, we consider the total cumulative rainfall depth as the worst-case

scenario for pluvial flooding. The inundation extents produced by GeoFlood and Fill-Spill-Merge, eq. [1] and [2], are merged
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to estimate the compound hazard. Using raster math functions, the fluvial and pluvial inundation estimates are summed. This

summation specifically highlights areas that will experience both fluvial and pluvial flooding.325

Residential parcel hazard was determined by overlaying the inundation and parcel layers and extracting the highest flood

depth that intersects each parcel. Numerous factors affect an individual’s exposure to a hazard, including but not limited to

the flood duration, depth of water, velocity of storm water, and water quality (Middelmann-Fernandes, 2010). Therefore, there

is uncertainty regarding the direct correlation between flood depth and flood damage (Freni et al., 2010). Regardless, flood

depth-damage relations remain one of the leading methodologies for flood exposure estimation in numerous models (de Moel330

and Aerts, 2011). For this study, flood depth remains the quickest and easiest proxy for hazard.

Adapting methods from other flood communication research, flood depths are reclassified and binned to a more easily un-

derstandable scale that relates water depth to various heights along the average person’s body (Calianno et al., 2013; Ahmed

et al., 2018a, b). Relating flood depths to human features is becoming a useful tool for relating hazards to physical vulnerability

during extreme flood events ((Wang and Marsooli, 2021)). Putting the hazard in terms of physical vulnerability helps to more335

easily combine it with social vulnerability in the final impact index. This approach coincides with the United Nations Inter-

national Strategy for Disaster Reduction (UNISDR), as vulnerability is an assortment of physical and social factors affecting

the susceptibility of an individual to the damaging effect of a hazard (ISDR, 2009). Furthermore, this approach avoids the

over/under inflation of other relative exposure results from one storm to another. For example, if flood depths were only min-

max normalized, a small regional flood would appear to have a similar hazard to a large regional flood. Therefore, a household’s340

hazard level refers to the reclassified maximum inundation depth, dmax, at that parcel (Eq. [3]). Before being multiplied by

SVI, the reclassified flood depths are normalized to a 0-1 scale with one having the highest flood hazard and zero experiencing

no flood.

Hazard =





0 dmax = 0 (No Flooding)

1 0.01≤ dmax ≤ 0.15 (Ankle Deep)

2 0.15 < dmax ≤ 0.29 (Lower than Knee)

3 0.29 < dmax ≤ 0.49 (Knee)

4 0.49 < dmax ≤ 0.91 (Waist)

5 0.91 < dmax ≤ 1.07 (Chest)

6 dmax > 1.07 (Higher than Chest)

(3)

4.2 Sociodemographic Vulnerability at the Parcel Level345

Sociodemographic vulnerability data at the Block Group level was collected from Bixler et al. (2021), who utilized data from

the 2017 ACS 5-Year Estimates. Bixler et al. (2021)’s procedure is an adaptation of SoVI® specifically developed for Austin,

TX and Texas at large (Figure 3). Of the 29 SoVI variables, 4 were not available for this time period in Austin at the block

group level and were therefore not extracted (hospitals per capita, percent of population without health insurance, nursing home
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residents per capita, percent female headed households). To further handle missing values, Bixler et al. (2021) excluded special350

use block groups (e.g., airports, military bases, prisons) and filled in holes by spatially interpolating from the surrounding

area by averaging the neighboring block groups’ values. Min-max scaling all values for each block group further prepared the

variables for the principal component analysis (PCA).

SoVI variable 
extraction

Handling 
Missing 
Values

Normalize
Principal 

Component 
Analysis

Finalize SVI 
Score

Figure 3. Procedure for calculating the Social Vulnerability Index (SVI).

The PCA’s purpose is to reduce the dimensionality to statistically optimized components. A large number of variables are

likely to have an influence on an individual’s vulnerability. The PCA reduces variables to the most influential factors and merges355

them into similar highly correlated components. As a result, seven variables were eliminated, leaving a total of 18 variables

divided into six components (Wealth, Language and Education, Elderly, Housing Status, Social Status and Gender). These 18

variables (Table 3) accounted for 74.48% of the observed variance. The cardinality of each component was adjusted so that a

higher variable value indicated a higher vulnerability (Table 3). For example, Wealth has a negative cardinality because having

a higher per capita income would make an individual less vulnerable. The numerical composite social vulnerability score for360

each block group is the sum of the normalized and direction-adjusted values for each variable. This final score was again

normalized from 0-1 (with one being the most vulnerable). The residential parcel SVI score is the SVI score for the block

group to which that parcel belongs to.

V ulnerability = (Block Group)SV I ∈ [0,1] (4)

4.3 Flood Impact at the Parcel Level365

As previously described, impact is the product of hazard and vulnerability (Eq. [5]). Therefore household impact is calculated

by multiplying the normalized flood hazard value (Eq. [3]) by the normalized relative sociodemographic vulnerability value

(Eq. [4]). Plotted by quintile, the final residential parcel flood impact index highlights the comparative communities that are

the least and most impacted.

Impact = V ulnerability ∗Hazard (5)370

4.4 Pluvial Flooding Comparison

GeoFlood has been shown to capture the general fluvial inundation patterns of flood events, with inundation extents overlapping

with 60–90% of FEMA inundation extents (Zheng et al., 2018). To compare Fill-Spill-Merge and our pluvial inundation
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Table 3. Variables included and excluded from the Social Vulnerability Index (SVI) of Austin, Texas, retrieved from Bixler et al. (2021).

Variable Component Cardinality
Variance

Explained (%)

Percent households earning over $200,000 annually

Wealth (-) 17.53%
Median housing value

Per capita income

Median gross rent

English as a second language with limited proficiency
Language and

Education
(+) 14.51%Percent with less than 12th grade education

Percent Hispanic

Percent households receiving social security benefits

Elderly (+) 12.17%Percent population under 5 years or 65 and over

Median age

Percent children living in 2-parent families
Housing Status (+) 11.91%

People per unit (avg. household size)

Percent of housing units with no car

Social Status (+) 9.61%
Percent civilian unemployment

Percent Poverty

Percent Black

Percent female participation in labor force
Gender (+) 8.75%

Percent female

Percent of population without health insurance

Removed due to

lack of BG data
NA NA

Nursing home residents per capita

Percent female headed households

Hospitals per capita

Percent employment in extractive industries

Removed during

PCA
NA NA

Percent employment in service industry

Percent unoccupied housing units

Percent Native American

Percent mobile homes

Percent renters

Percent Asian

TOTAL Variance Explained 74.48%

estimates to a full hydrodynamic model, we employed a physically-based 2D hydrodynamic model by using the software

ProMaIDes (Protection Measure against Inundation Decision Support). ProMaIDes is a modular open-source tool for the risk-375

based assessment for river, urban and coastal flooding and has been developed at the RWTH Aachen University and University
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Magdeburg-Stendal, Germany (Grimm et al., 2012; Bachmann, 2012, 2021). The hydrodynamic analysis implemented in

ProMaIDes is based on a finite volume approach solving the diffusive wave equations and includes a multistep backward

differentiation method for the temporal discretization (Tsai, 2003).

The 2D model domain for the hydrodynamic model is one subbasin within the Shoal Creek Watershed, covering approx-380

imately 5 km2. Furthermore, an adaptive control method was used on the time increment. The hydrodynamic model can be

driven by spatially and temporally varying rainfall input. However, to enhance comparability, a uniform rainfall depth of 13.2

cm was applied. Additionally, a uniform roughness coefficient for the model area of 0.03 (Manning) was used. To avoid high

computational costs, the simulation time was limited to 1-hour of rainfall and 5-hours of follow up time, and the DEMs res-

olution was down sampled to 3-meter by 3-meter cells. The computational time required was 670 minutes using an AMD385

Ryzen 9 3900X 12-Core Processor. The model’s final inundation output was then put through the same reclassification scheme

to determine parcel level hazards (Eq. [3]). We compared the parcel level hazard values of our terrain-based estimate to the

model’s final inundation output for all parcels in this subbasin that are not impacted by fluvial flood waters (3,015 parcels).

5 Results

Following the initial preprocessing steps (i.e., initializing GeoNet, GeoFlood) the flood inundation layers (fluvial and pluvial390

components) were computed in under 28 minutes on a Linux machine with a 4.2 GHz i5-10210U processor with 4 cores (8

threads). In the following figures (excluding Figure 4), inset areas (A) and (B) compare two different locations within Austin,

TX and represent the same area across all figures. Inset (A) to the North highlights an area that is dominated by fluvial flooding.

Inset (B) to the South highlights an area that is dominated by pluvial flooding.

5.1 Pluvial Flooding Comparison395

To compare the inundation extent estimates from Fill-Spill-Merge to the physical based model, both rasters were overlaid and

intersected (Figure 4). The intersected raster was then classified into four categories of wet-wet, wet-dry, dry-wet, and dry-dry,

with each term in each pair referring to one of the raster layers (i.e., wet-wet refers to a cell that is flooded in both rasters, where

wet-dry refers to a cell that is flooded in only one raster) (Johnson et al., 2019). Accuracy is then defined as the number of wet-

wet cells divided by the sum of the wet-wet, wet-dry, and dry-wet cells. The Fill-Spill-Merge and physical based model were400

found to be 31% accurate when excluding any inundated depths less than 1-cm. When the lower limit of allowable depths is

increased to 6-cm and 15-cm, the accuracy increases to 44% and 66.5% respectively, suggesting that Fill-Spill-Merge performs

comparably well at depths that are more likely to have an impact on the final impact index. Fill-Spill-Merge is predominantly

underestimating inundated extents when compared to the model, and this is occurring at larger intersections and along some

roadways (Figure 4, inset A, B, C).405

Comparing our reclassified parcel level pluvial flood hazard estimates to that of a hydrodynamic model’s output, we classified

92% of the 3,015 parcels similarly (Figure 4). Of the 251 misclassified parcels, 94.4% (237 parcels) of them were misclassified

by only one class (Eq. [3]). For example, a residential parcel may have an exposure classification of 2 (between 15 and 29 cm of
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flooding) in the model output, but only a a hazard classification of 1 (between 1 and 15 cm of flooding) in the Fill-Spill-Merge

estimate. Furthermore, of the misclassified parcels, 69% (173 parcels) of them involve a misclassification between no flooding,410

and less than 15-cm of flooding, the lowest hazard level. Therefore, the misclassified parcels have a minimal impact on final

impact values across the subbasin. Misclassifications are not specifically concentrated in any one area and appear across the

subbasin.

5.2 Flood Hazard

Through the application of our workflow (Figure 2) we estimated the worst-case fluvial and pluvial flood extent for the Memo-415

rial Day flood (Figure 5). Insets A1 and B1 only show the fluvial inundation component, while insets A2 and B2 only show

the pluvial inundation component of the flood event. The compounding mechanism varies across the study region, with some

locations experiencing both fluvial and pluvial flooding in time and space (Inset A1 and A2) and other locations compounding

only in time (Inset B1 and B2).

Overall floodwater extents increase when considering both pluvial and fluvial sources. (Figure 6). However, pluvial and420

fluvial flooding do not affect all locations equally, with some locations being affected more by fluvial flooding and others being

affected more by pluvial flooding. Of the 177 block groups within the study area, 67 (37.9%) experience flooding from only

pluvial sources. Flood mapping that exclusively considers fluvial sources would not identify these block groups’ potential flood

hazard. Only five block groups have an increase in flood extents greater than 100%, suggesting that while pluvial flooding can

greatly increase inundation extents across a city or region, fluvial flooding remains the dominant source of flood waters (i.e., the425

majority of flooding comes from fluvial sources) in those block groups that already experience fluvial flooding. This increase

in floodwater extents is also visible by catchment area, showing that the increase in floodwater extents is equally substantial

across an entire watershed and not limited to certain locations along a stream reach (Table 4). The increase in floodwater extents

within catchment areas when considering the combined effects of fluvial and pluvial flood sources ranges from 40% to 156%.

Analyzing flood hazard results by block groups produces a high level of variability, both between and within block groups430

(Figure 7). High coefficients of variation (standard deviation divided by mean) signals a wide distribution, suggesting that

mean hazard within the giving boundary is going to significantly over- and under- estimate household hazard. Furthermore, the

high dispersion in average by block group suggests that aggregating at a higher-level boundary (e.g., county) would result in

similarly high coefficients of variation.

Reporting hazard values by residential parcels allows for this variability and dispersion to be captured in the final impact435

calculation (Figure 8). The reclassification of hazard values (Eq. [3]) allows for easier comparisons between regions, thus

allowing for quicker identification of potential hot spots. High hazard results appear predominantly along streamlines, which is

expected as fluvial channel floodplains offer more locations for higher depths as compared to topographic depressions which

have a much smaller scale in size.
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Figure 4. Comparison between near real-time estimate (Fill-Spill-Merge) and a 2D physical based hydrodynamic model estimate of pluvial

flooding at the parcel level. (A), (B), and (C) highlight areas with concentrated parcel misclassifications. Parcel misclassification is defined

as the absolute value of the difference between a parcel’s hazard class when determined with either FSM or the hydrodynamic model.
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Flood Hazard and Extent:
Memorial Day Flood, Austin, TX
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Memorial Day Flood Depth
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Figure 5. Fluvial and Pluvial flood depths and extent in Austin, Texas during the 2015 Memorial Day flood. Insets A1 and B1 only show the

the fluvial inundation component, while insets A2 and B2 only show the the pluvial inundation component of the flood event.

5.3 Sociodemographic Vulnerability440

Clear geographic disparities exist between the eastern and western portions of the study area in terms of the SVI estimates

(Figure 9). Each residential parcel’s SVI value is equivalent to the SVI value of the block group that it coincides with. It is

important to remember that the SVI estimate shown is relative and is therefore an arbitrary value that can be compared between

locations. Parcels with a score of 1 are the most vulnerable, and parcels with a score of 0 are the least vulnerable. The purpose
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Figure 6. Percent increase in inundation extent by Census Block Group when comparing fluvial/pluvial flooding with only fluvial sources

during the 2015 Memorial day flood in Austin, Texas.
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Table 4. Percent increase in inundation extent by catchment area when comparing fluvial/pluvial flooding with only fluvial sources during

the 2015 Memorial Day flood in Austin, Texas.

Catchment Name
Area

(km2)

Fluvial Inun.

Area (km2)

Pluvial Inun.

Area (km2)

Percent

Fluvial Inun.

Percent

Compound

Inun.

Percent

Increase Inun.

Area

Walnut Creek (L) 52.7 5.37 4.73 10.2% 17.5% 71.3%

Walnut Creek (M) 35.0 4.04 2.57 11.5% 17.1% 47.9%

Walnut Creek (U) 41.7 6.22 4.18 14.9% 22.5% 50.6%

Boggy Creek 34.4 1.93 3.36 5.6% 14.4% 156.0%

Shoal Creek 33.9 4.59 2.58 13.5% 19.3% 42.3%

Waller Creek 14.3 1.48 1.12 10.4% 16.7% 61.4%

Colorado River (L) 24.0 2.97 4.50 12.4% 30.3% 145.3%

Colorado River (U) 19.6 2.07 0.91 10.5% 14.9% 41.1%

of dissolving SVI down to the parcel level is to intersect it with our household hazard estimate to compute a parcel specific445

impact.

5.4 Impact

There is a clear distinction in the flood impact index between the east and west portions of the study area, however individual

block groups themselves also contain variability (Figure 10). Some locations have varying levels of impact within the same

block group, which aggregated estimates would not capture. This is especially prevalent in areas with a higher concentration450

of higher impact households. Furthermore, high impact parcels exist in areas not directly adjacent to stream reaches.

6 Discussion

6.1 High-Resolution Compound Flooding’s Role in Increasing Parcel Level Hazard

Flood hazard is a function of both inundation extents and depths. Extent determines the breadth of flood waters, with larger

flood extents forcing response and recovery efforts to spread out over large areas. Depth determines the level of damage, with455

a higher depth related to a higher level of damage. A significant source of hazard in urban areas that is often ignored is from

pluvial sources (Houston et al., 2011; Grahn and Nyberg, 2017). The exclusion of pluvial flooding from flood mitigation and

emergency response planning will result in a drastic under representation of flood water extents which could impact millions of

households across the United States (Wing et al., 2018). With 38% of all Census Block Groups in our study area only impacted

by pluvial flooding, our results show that pluvial flooding cannot be excluded from flood hazard maps (Figure 6).460

Leading flood hazard maps (e.g., FEMA floodplain maps) and numerous flood risk studies (Burton and Cutter, 2008; Fekete,

2009; Burton, 2010; Finch et al., 2010; Abbas and Routray, 2014; Chakraborty et al., 2014; Tate et al., 2016) do not consider
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Average Hazard Class & Coefficient of Variation

 of Residential Parcels by Block Group:

Memorial Day Flood, Austin, TX

N

0.0 2.01.0

Miles

Average Hazard Class of Residential Parcels 
≤ 1.2 ≤ 1.5 ≤ 2.1 > 2.8≤ 2.8

Coefficient of Variation
≤ 37% ≤ 51% ≤ 65% > 104%≤ 78%

Stream Centerlines

Figure 7. Average flood hazard class of residential parcels and their coefficient of variation by Census Block Group during the 2015 Memorial

Day flood in Austin, Texas.
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Figure 8. Reclassified residential flood hazard during the 2015 Memorial Day flood in Austin, Texas.

pluvial flood waters in their inundation estimations, focusing on fluvial and/or coastal flooding. Recent national level ex-

ploratory analyses that do consider pluvial flood waters rely on coarser resolution (30-meter) estimates (Wing et al., 2018; Tate
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Figure 9. Austin, Texas relative Social Vulnerability Index (SVI), with 1 being most vulnerable and 0 being least vulnerable.

et al., 2021), which can fail to capture small scale topographic depressions that exist in urban environments. For example, the465

average width of a 4-lane intersection is approximately 15-meters. At 30-meter resolution, it will not be possible to capture
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Figure 10. Residential flood impact during the 2015 Memorial Day flood in Austin, Texas.

pluvial flooding’s impact on roadways. We show that pluvial flooding specifically leads to ponded water on impervious sur-

faces such as roadways, intersections, and parking lots, that would otherwise not be identified as being inundated (Figure 5).
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Standing water depths greater than 13-cm can be high enough to reach the undercarriage of most passenger cars, inhibiting

safe evacuation routes (Moftakhari et al., 2018). Any increase in velocity or depth can block emergency response vehicles from470

reaching inundated areas.

The co-occurrence of multiple types of flooding will either increase depths (i.e., occurring at the same location), extents

(i.e., occurring at the same time), or a combination of both (Wahl et al., 2015). In our study area, compound flooding is

predominantly related to increasing extents (Figure 5). Fluvial flooding is associated with higher depths, concentrated along

stream reaches, while pluvial flooding is associated with lower depths spread out over larger areas (Figure 8). Low depth pluvial475

flooding can be described as “nuisance flooding”, which has the ability to disrupt transportation networks, impact public safety,

and potentially damage property (Moftakhari et al., 2018). Fluvial and pluvial floodwaters require specific mitigation actions;

therefore, it is important to quantify this distinction due to the place-based nature of flooding.

The City of Austin’s FloodPro software, which is the city’s leading source of floodplain information, lacks pluvial flooding

information, therefore significantly under reporting exposure. The inclusion of high-resolution pluvial flooding estimates is480

necessary in understanding the potential impacts to local infrastructure, residents, and emergency services. High-resolution

compound flooding estimates can drastically improve local and regional flood polices’ impacts by more accurately addressing

flood issues that would otherwise go unnoticed.

6.2 Impact of Aggregating Hazard and Impact to Cartographic Boundaries

One of the leading purposes of mapping flood hazards with social vulnerability is to identify the most impacted populations485

and individuals. However, aggregating and reporting estimates to cartographic boundaries can significantly mask household

level variability, thus misclassifying some high- and low-impacted households. This misidentification can inhibit the proper

allocation of mitigation and emergency response services. Our results show that when household hazard is averaged to Census

Block Groups, 60% of all Block Groups have a coefficient of variation higher than 50%, showing that using a central tendency

statistic to report flood hazards over a cartographic boundary is not representative of actual flood conditions (Figure 8).490

The majority of recent research on social vulnerability to floods aggregates exposure, hazard, impact, consequence, or the

subsequent risk estimates to Census Tract, zip code, or county boundaries (Burton and Cutter, 2008; Cutter et al., 2013;

Chakraborty et al., 2014; Wing et al., 2020; Tate et al., 2021).The two primary reasons for aggregating results are (i) the

exploratory nature and large geographic scale of these studies to identify broad regions of interest and (ii) the aggregated

boundary is the resolution of the utilized socio-economic data. In this study, hazard is heterogeneous within Block Groups,495

(Figure 8). Since social vulnerability estimates do not vary within a block group (Figure 9), the observed heterogeneity in

the final impact estimate comes solely from the variability in hazard (Figure 10). While aggregated results can draw attention

to broad regions of risk, household level data are required to properly classify who will be impacted. This is not the first

study to incorporate tax parcel data to attempt to estimate a hazard at the household level (Nelson et al., 2015; Fahy et al.,

2019), however previous studies have relied on 100-year floodplain data that lack pluvial estimates. Recent studies have also500

computed high resolution compound floodplains based on a multitude of return periods (Bates et al., 2021). However, return

period information has implementation limitations in city planning and natural resource management scenarios, as end users
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prefer to have information reported in more easily understandable and concrete reference points such as depth values (Luke

et al., 2018).

The methodology proposed in this study is not intended to replace large-scale pluvial and compound flood mapping tech-505

niques that also utilize high resolution DEMs. As stated in Bermúdez et al. (2018); Bulti and Abebe (2020), full hydrodynamic

1D and 2D drainage models are well established to simulate urban pluvial floods and are available in a number of commercial

software including SOBEK, XP-SWMM 2D, MIKE FLOOD, and InfoWorks ICM (see references therein). Furthermore, Tate

et al. (2021) has demonstrated that high resolution elevation data can be incorporated into full hydrodynamic models at the

national scale. While broad exploratory and aggregated studies can assist with equally scaled mitigation and planning programs510

at the national and state level (e.g., FEMA’s National Flood Insurance Program, or the Texas Water Development Board’s Flood

Intended Use Program), household estimates are necessary for local planning and action plans to effectively serve those who

are most impacted. If our final impact estimates were aggregated to the block group level, high impact households would be

masked and not identified. Similarly, low impact households could be labeled inaccurately, leading to a misappropriation of

resources. Highly impacted households are not necessarily limited to high vulnerability neighborhoods, and it is therefore im-515

portant to view and report impact and risk estimates in an unbiased manner and at the highest resolution possible. Additionally,

this simplified model has fewer input data requirements and requires less technical expertise to produce inundation scenario

maps, a feature that is unavailable in full hydrodynamic models.

6.3 Pluvial Flooding Comparison

While GeoFlood’s accuracy and comparability to full hydrodynamic model results has already been researched (Zheng et al.,520

2018), Fill-Spill-Merge’s applicability as a pluvial flooding estimate has previously not been studied. The advantages and dis-

advantages between a terrain-based estimate of pluvial flooding to a hydrodynamic model can be grouped into two categories:

time and accuracy.

The single subbasin used in the hydrodynamic model, which is 5 km2 in size, represents only 2% of the entire watershed

studied and took over 11 hours to compute. This is even considering the additional model parameters chosen to reduce com-525

putational time such as using a uniform rainfall and roughness coefficient, reduced rainfall and follow up time, and down

sampling the DEM. While there is room for the model to be optimized and be increased in speed, the terrain-based estimate

for the entire study area can be processed in less than thirty minutes. Rapidly occurring floods (i.e., flooding occurring within

6 hours of the onset of precipitation) are some of the most hazardous natural events (Hapuarachchi et al., 2011). Short-term

storm specific hazard and impact estimates require the speed that comes with our estimation methodology, which can play a530

critical role in deploying emergency communications before a flooding event begins.

When we compared the terrain based pluvial inundation estimate to the hydrodynamic model, we found that it had a spa-

tial extent accuracy of 31%, which further increased to 66.5% when we ignored the lowest depth classification (Eq. [3]). The

mismatch in inundation extents predominantly occurred along intersections and roadways, which do not have an impact on our

household level classification since these locations do not intersect with residential parcels. This is supported by our 92% simi-535

lar household classification, especially considering 237 of the 251 misclassified parcels were by only one class. The difference
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in the depth estimates of Fill-Spill-Merge and the hydrodynamic model are minimized when we examine maximum parcel

depths. Identifying the households with the highest impact is the most important function of the reclassification methodology.

69% of the misclassified houses are misclassified between not experiencing the hazard (i.e., no flooding) and receiving less

than 15-cm of flooding (i.e., the lowest classification), therefore having little effect on the final impact calculation.540

Comparing simplified conceptual models to full hydrodynamic models is a common methodology of verifying the function-

ality of said simplified models in their ability to produce comparable results in a fraction of the time (Lhomme et al., 2008;

Bernini and Franchini, 2013; Zheng et al., 2018). A validation of the proposed methodology would involve comparing esti-

mates to historical observations (McGrath et al., 2018). However, these data do not exist for the 2015 Memorial Day flood in

Austin, Texas.545

6.4 Limitations and Future Work

There are inherent challenges associated with SVIs and reporting results in terms of relative risk that will require future and

more in-depth analyses. Studies have shown that social vulnerability models related to specific hazards and outcomes perform

better than generic social vulnerability indices (Tellman et al., 2020). Furthermore, the performance of generic indices has

been shown to be statistically biased based when the model configuration in manipulated (Tate, 2013). Similarly, while some550

studies show that flood exposure is higher for socially vulnerable populations (Lee and Jung, 2014; Rolfe et al., 2020), other

studies show that low socially vulnerable populations can experience the highest exposure to flood hazards given certain

circumstances (Fielding and Burningham, 2005; Bin and Kruse, 2006; Ueland and Warf, 2006; Chakraborty et al., 2014).

Resiliency and vulnerability indices are created unequally, and researchers should clearly state index objectives and structure

underlying their metrics to support validation of the results based on established goals (Bakkensen et al., 2017). We selected555

the SoVI® algorithm and variable set due to its widespread adoption and the proof of concept nature of our workflow to be

able to accept an SVI-like variable.

The simplistic nature of SVIs allows instantaneous estimations, but SVIs cannot measure the full complex nature of vul-

nerability (Rufat et al., 2015). SVIs could inadvertently weight variables inaccurately (i.e., household income caries the same

vulnerability weight as median age), creating a biased depiction of vulnerability over a region, thus misidentifying at risk indi-560

viduals and perpetuating risk. SVIs should incorporate city specific information, including variables such as distance to critical

infrastructure (e.g., hospitals) or access to resources (e.g., gas, food, electricity, transportation, and water), to ensure proper

representation of all residents. Further consideration needs to be given to estimating social vulnerability at the household level.

Census data, especially at the Block Group level, can have large margins of error. Assuming values found for the areal units

apply at the household level requires a more specific analysis. One such option that has been used to address this concern565

is the use of primary household survey data (Collins et al., 2015). Despite these limitations, generic social vulnerability in-

dices continue to have prolific use in disaster and emergency research fields and are beneficial in identifying potentially at risk

individuals (Tellman et al., 2020; Tate et al., 2021).

There are also challenges associated with estimating flood hazard. The methods used to estimate exposure are a simplification

of much more complex flood mechanics and do not account for such variables as storm drainage networks, movement around570
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buildings and structures, and timing/velocity considerations. While this workflow can produce estimates in near real-time, it

is important to consider these estimates in the broader context of flood modeling and consider the inherent uncertainties of

terrain-based flood mapping. In the context of pluvial flooding, specifically nuisance flooding at lower depths, estimates are

directly impacted by DEM accuracy. The DEM used has a vertical accuracy of 6-cm, which is significant when considering

flood depths that are between 3 and 10-cm (Moftakhari et al., 2018). While uncertainty and its communication can have a575

substantial impacts on regulatory and response processes (Downton et al., 2005; Luke et al., 2018), there is also evidence

that flood emergency managers are willing to trade larger uncertainties for faster information (McCarthy et al., 2007). As

shown, pluvial flooding has a direct impact on roadways and intersections, suggesting its predominant impact may be in the

disruption of traffic and emergency services, especially considering the exponential decrease in vehicular traffic as a result of

standing water, and the complete halting of traffic when depths exceed 15-cm (Pregnolato et al., 2017). Future research will580

examine how to improve FSM’s ability to estimate lower depth inundation extents (i.e., less than 15-cm) as well as how road

network disruptions impact a household’s ability to access critical resources in near real-time (e.g., grocery stores, gas stations,

pharmacies, hospitals, etc.)

While it is necessary to understand both short-term and long-term risk, as they require unique actions and policies to address

them, this study is a specific attempt to identify short-term impacts for a known storm event. Long term future flood risks caused585

by the projected increase in frequency of extreme weather events due to climate change will require their own analyses. Future

flood risk calculations can incorporate this workflow by using modeled storm characteristics and projected sociodemographic

information. As a supplemental tool, this workflow can contribute to other research, response, and mitigation efforts.

7 Conclusion

The proposed workflow in this study creates a storm specific urban flood impact index at the parcel level using high resolution590

topographic data, near real-time pluvial and fluvial flood estimations, and a region specific social vulnerability index. The

application of this workflow to the Memorial Day flood in Austin, TX showed that estimating fluvial flooding alone is not

enough to predict urban flood hazards. Our pluvial hazard estimate was shown to be accurate in determining the parcel level

impact index 94.4% of the time when compared to a full hydrodynamic model, while only taking a fraction of the amount of

time. Furthermore, we show that aggregating results to cartographic boundaries masks the dispersion of hazards and impacts,595

thus making it difficult to identify priority locations that must be addressed in planning, management, and emergency response

scenarios. Through the inclusion of a social vulnerability index, end users are better informed in identifying those individuals

facing the greatest impact (a product of flood hazard and vulnerability). Future work will explore including more flooding and

vulnerability factors, such as non-census sociodemographic data, social and governance networks, and local infrastructure data

to improve impact estimates.600
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