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Key Points:
• We present a new thermo-hydro-mechanical-chemical model for melt mi-

gration by porosity waves coupled to chemical differentiation

• Chemical differentiation changes the density of solid and melt phases and
significantly impacts the melt velocity and evolving porosity

• 2D results of channelized melt migration show a significant chemical ex-
change between melt and solid, potentially applicable to metasomatism

Abstract
Melt transport across the ductile mantle is essential for oceanic crust forma-
tion or intraplate volcanism. Metasomatic enrichment of the lithospheric man-
tle demonstrates that melts chemically interact with the lithosphere. How-
ever, mechanisms of melt migration and the coupling of physical and chemical
processes remain unclear. Here, we present a new thermo-hydro-mechanical-
chemical (THMC) model for melt migration coupled to chemical differentiation.
We study melt migration by porosity waves and consider a simple chemical
system of forsterite-fayalite-silica. We solve the one-dimensional (1D) THMC
model numerically using the finite difference method. Variables, such as solid
and melt densities or MgO and Si𝑂2 mass concentrations, are fully variable
and functions of pressure (𝑃 ), temperature (𝑇 ) and total silica mass fraction
(𝐶SiO2

𝑇 ). These variables are pre-computed with thermodynamic Gibbs energy
minimisation, which shows that dependencies of these variables to variations in
𝑃 , 𝑇 and 𝐶Si𝑂2

𝑇 are considerably different. These 𝑃 -𝑇 -𝐶SiO2
𝑇 dependencies are

implemented in the THMC model via parameterized equations. We consider 𝑃
and 𝑇 conditions relevant around the lithosphere-asthenosphere boundary and
employ adiabatic and conductive geotherms. Variation of 𝐶SiO2

𝑇 changes the
densities of solid and melt and has a strong impact on melt migration. We per-
form systematic 1D simulations to quantify the impact of initial distributions
of porosity and 𝐶SiO2

𝑇 on the melt velocity. An adiabatic gradient generates
higher melt velocities. Reasonable values for porosity, permeability, melt and
compaction viscosities provide melt velocities between 10 [cm·yr-1] and 100
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[m·yr-1]. We further discuss preliminary results of two 2D simulations showing
blob-like and channel-like porosity waves.

Plain Language Summary
Melt transport across the ductile mantle is essential for oceanic crust forma-
tion or intraplate volcanism. However, melt transport processes are still incom-
pletely understood and poorly quantified. Xenoliths (inclusions in igneous rock
entrained during magma ascent) sampled by kimberlites (an igneous rock that
erupted from the mantle) or intraplate basalts provide evidence that there is
a chemical interaction (metasomatism) between the rising melt and the solid
mantle. However, the impact of chemical processes on melt migration remain
unclear. Here, we present a new mathematical two-phase (fluid-solid) model,
based on fundamental laws of physics and thermodynamics, which couples melt
migration with chemical processes. We study melt migration around the litho-
sphere/asthenosphere boundary and consider the solid (not molten) rocks as
highly viscous fluids due to the high temperatures in these regions (at 80 to 100
km depth). We present one- and two-dimensional results of computer simula-
tions and show that the variation of chemical components, such as silicon dioxide,
changes the density of the solid and melt, and can, hence, have a considerable
impact on melt migration. We also present two-dimensional simulations, which
show the channelization of the rising melt.

1 Introduction
The extraction of melt from its sources and melt transport across the mantle
to the surface is a key process in Earth sciences (e.g. McKenzie, 1984; Spiegel-
man et al., 2001; Keller & Suckale, 2019). The different geodynamic settings
with magmatism observed around the world, such as mid-ocean ridges (MORs),
volcanic arcs and intraplate volcanism, indicate that asthenospheric melts are
extracted under significantly distinct pressure, temperature and rheological con-
ditions. The main difference between melt extraction at intraplate settings and
at MORs is the presence of the lithospheric mantle for the intraplate settings.
The geochemical signature of MOR basalt (MORB) presumably depends on
magma source composition, melt-extraction and differentiation processes inter-
vening between the magma source and the crust (e.g. Langmuir et al., 1992).
MORBs are produced and migrate in the asthenosphere and temperature (𝑇 )
and pressure (𝑃 ) variations are, hence, controlled by the mantle adiabat. In
contrast, asthenospheric melts produced in intraplate settings need to cross the
continental or oceanic lithosphere before their extraction to the surface. The
lithosphere is characterized by a strong temperature gradient and the associated
vertical rheological variations from viscous to elasto-plastic domains (e.g. Burov,
2011). Melt migration in the ductile domain is presumably controlled by porous
flow in a viscous solid (McKenzie, 1984), while hydrous fracture propagating into
the brittle domain allow melt transport to the surface (e.g. Shaw, 1980; Keller
et al., 2013). For intraplate volcanoes, only few studies have focused on the
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mechanism of extraction and transport of melt across a thick and cold litho-
sphere, considering a visco-elasto-plastic deformation behavior (e.g. Keller et
al., 2013). Hence, many aspects of the thermo-hydro-mechanical (THM) process
of melt migration across the lithosphere remain still little constrained.

In addition to THM processes, melt migration can be affected by chemical (C)
reactions, leading to a reactive melt flow (e.g. Jackson et al., 2018). For ex-
ample, low-viscosity magma, like carbonatite or volatile-rich low degree silicate
melts, can rise in the upper mantle. However, such low-degree melts cannot
transport significant heat (McKenzie, 1985) and if such melts rise in the litho-
spheric mantle with a considerable geothermal gradient, then these melts likely
interact with the surrounding solid mantle, cool, and crystallize. This melt-solid
interaction is frequently referred to as metasomatism and was documented by
various xenoliths sampled by kimberlites or intraplate basalts worldwide (e.g.
Best, 1974; Lloyd & Bailey, 1975; Francis, 1976; Irving, 1980). Metasomatic
processes are important to understand the chemical evolution of the continen-
tal lithosphere (e.g. Griffin et al., 2009) and the petrogenesis of alkaline lavas
(e.g. Lloyd & Bailey, 1975; Wass & Rogers, 1980, Pilet et al. 2008). However,
the origin of the metasomatic agent(s), the process by which low degree melts
percolate across the lithosphere, and whether metasomatic processes represent
a global mechanism at the asthenosphere-lithosphere boundary (LAB) are still
a matter of debate. Therefore, we aim here to investigate coupled THMC pro-
cesses during melt migration around the LAB.

From a geometrical point of view, there are two general styles of flow during melt
migration in a viscous domain: (1) a spatially distributed flow, characterised by
a pervasive percolation of melt between the crystals of the solid rock (e.g. olivine
or pyroxene crystals in a peridotite) and (2) a spatially focused flow where melt
migration is localized in channels, which is documented in the mantle by the
presence of metasomatic veins (Wilshire, 1987; Harte et al, 1993). According to
the lithosphere thermal gradient, rising melt cools progressively and crystallizes
mineral phases which are segregated within the lithospheric mantle, producing
metasomatic cumulates sampled by intraplate lavas or observed in mantle out-
crops (e.g. Nielson & Noller, 1987; Wilshire, 1987; Nielson & Wilshire, 1993;
Harte et al., 1993). Both distributed and focused flows involve a change in the
composition of the melt due to its interaction with the solid. For distributed
flow, the change of composition is achieved by the infiltrating melt that reacts
with the peridotite through an exchange of elements (so-called cryptic meta-
somatism; Wilshire, 1987). For focused flow, the change in melt composition
occurs through differentiation as phases crystallise (so called percolative frac-
tional crystallization; Harte et al., 1993). Most models for the metasomatic
enrichment were developed based on observations made in the brittle part of
the lithosphere. How metasomatic agents move into the ductile part of the man-
tle, how such melt interacts with the solid and how channelizing is generated
are questions still debated.

From a physical point of view, the rise of large coherent magma bodies in a
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viscous solid can be described by diapiric flow (e.g. Cruden, 1988; Weinberg &
Podladchikov, 1994; Miller & Paterson, 1999). However, the physical process of
melt extraction and migration in partially molten viscous rock is commonly de-
scribed by two-phase flow models whereby the melt, representing the fluid phase,
flows through the pore space of the viscous rock, representing the solid phase
(e.g. McKenzie 1984). There are several extraction processes for melt migration
in a porous, ductile rock: (1) porous flow, described by Darcy’s law, controlled
by the rate of melt expulsion whereby the characteristics of solid deformation
are of minor importance (e.g. Walker et al. 1978; Ahern & Turcotte, 1979),
(2) melt transport by porosity waves for which volumetric deformation of the
viscous solid is essential (e.g. McKenzie 1984; Scott & Stevenson 1984; Spiegel-
man, 1993; Connolly & Podladchikov, 1998; Connolly & Podladchikov, 2007;
Keller et al., 2013; Yarushina & Podladchikov, 2015; Omlin et al. 2017; Jordan
et al., 2018), (3) melt migration by reaction infiltration instabilities controlled
by depth-dependent solubilities (e.g. Aharonov et al., 1995, 1997; Kelemen et
al., 1997; Spiegelman et al., 2001; Weatherley & Katz, 2012; Jones & Katz,
2018) and (4) extraction by shear localization and melt segregation generating
melt bands (e.g. Stevenson, 1989; Katz et al., 2006; Holtzman & Kohlstedt,
2007). We focus here on melt migration by porosity waves. Connolly & Podlad-
chikov (1998) show that employing a visco-elastic volumetric deformation of the
solid enables porosity waves to travel through rock in the limit of zero initial
connected porosity. Low-porosity (i.e. few percent) scenarios are most relevant
for melt migration across the viscous mantle. The application of decompaction
weakening (e.g. Connolly & Podladchikov, 1998, 2007) and the consideration of
viscous shear deformation of the solid (Räss et al., 2019) enables a significant
channelization of porosity waves for two- and three-dimensional (2D and 3D)
flow. Furthermore, Omlin et al. (2017) show that the coupling of the kinetics of
chemical reactions with fluid flow may enable porosity waves also to potentially
arise in low-temperature regimes, so that the porosity waves are not necessarily
limited to the high-temperature viscous regions (Chakraborty, 2017). Moreover,
Jordan et al. (2018) show that mass, and hence melt, can be transported in 2D
and 3D porosity waves; a fact that has been doubted based on 1D porosity wave
studies. Therefore, porosity waves are a potential mechanism to transport sig-
nificant melt in a channelized style across the LAB and the viscous lithospheric
mantle.

Here, we present a new numerical THMC model to investigate reactive melt
migration by porosity waves in a viscous solid coupled to heat transfer and to
chemical differentiation of major elements in the melt and solid. Chemical differ-
entiation of major elements is important for melt migration because it changes
the density of the melt and solid. Such density variations do not occur for
trace element transport by porosity waves (e.g. Jordan et al., 2018) applied to
study, for example, the chromatographic separation occurring during percola-
tion (Korzhinskii, 1965; Hofmann, 1972), because trace elements do not alter
the density of melt and solid. The importance of chemical differentiation for
the rise of magma in the crust has been highlighted recently by Jackson et al.
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(2018). We couple our THMC model with thermodynamic results calculated by
Gibbs energy minimisation. We perform this minimisation with a self-developed
MATLAB code using a linear programming algorithm. The 𝑃 and 𝑇 conditions
are chosen to reflect conditions at the LAB. We consider a simple ternary sys-
tem composition of MgO, Fe𝑂 and Si𝑂2 based on the olivine phase diagram
system, forsterite (Mg2Si𝑂4) and fayalite (Fe2Si𝑂4). We consider conditions for
which the system is always between solidus and liquidus so that both melt and
solid phase are present simultaneously. We extend this binary system by adding
more Si𝑂2 using experimental data of peridotite in equilibrium with melt at 3
GPa (Davis et al., 2011). All model variables determined by thermodynamic
calculations (e.g. solid and melt densities, mass fractions of MgO and Si𝑂2 of
the melt and the solid) are a function of 𝑃 , 𝑇 and chemical Si𝑂2 composition of
the system (𝐶SiO2

𝑇 ). These variables and their dependence of 𝑃 , 𝑇 and Si𝑂2 are
precomputed and used in the THMC reactive transport model, so that they can
evolve freely with evolving 𝑃 , 𝑇 and Si𝑂2. The model, hence, allows quantifying
the impact of variations in the chemical composition on melt migration.

The aims of this study are (i) to present a new numerical THMC-thermodynamic
model for coupled melt migration and chemical differentiation by reactive poros-
ity waves, (ii) to explain specific features of coupling chemical differentiation
with porosity waves and (iii) to discuss potential applications of our model to
melt migration around the LAB. We present the model derivation and some
systematic results for 1D and show two representative results for 2D showing
blob- and channel-type reactive porosity waves.

2 Mathematical model
We develop a 1D mathematical model for THMC reactive transport by porosity
waves. The model is based on the concepts of continuum mechanics, two-phase
flow and equilibrium thermodynamics and follows the same approach in deriving
a closed system of equations as described in Yarushina & Podladchikov (2015),
Malvoisin et al. (2015) or Schmalholz et al. (2020). The complete THMC
model consists of two parts: a THMC model for reactive transport of melt by
porosity waves, consisting of a system of partial differential equations, and a
thermodynamic model, based on Gibbs energy minimisation, which provides
the required solid and melt densities, solid and melt mass fractions of MgO and
Si𝑂2, and solid and melt thermal energies, and their respective dependencies on
𝑃 , 𝑇 and 𝐶SiO2

𝑇 .

2.1 Thermodynamic model

We apply a thermodynamic model to determine the stable phases for a range of
𝑃 , 𝑇 and composition (𝑋). We start with a simple binary system of olivine (Fig.
1a) between forsterite, the olivine magnesium-rich end-member (Mg2Si𝑂4), and
fayalite, the olivine iron-rich end-member (Fe2Si𝑂4).
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Figure 1. Panel (a) shows the binary system of olivine for a pressure of 3 GPa.
Blue area shows where solid is stable, red area shows where melt is stable and
orange area shows where both solid and melt are stable. Dashed square indicates
the region used to calculate thermodynamic variables employed in the THMC
model. Panels (b) and (c) show respectively, the melt density and the melt mass
fraction of magnesium (in the dashed region), which are independent on X in
the region of interest.

We minimize the Gibbs free energy, 𝐺, to determine the equilibrium of the bi-
nary system. The Gibbs free energies used for the minimisation are from the
thermodynamic database of Holland & Powell (1998). To calculate this min-
imisation, we use the linear programming “linprog” algorithm from MATLAB.
We consider a pressure range of 0.1 GPa to 4.9 GPa and a temperature range
of 1’200 °C to 1’700 °C. The 𝑋 composition varies from 0 to 1, with 0 corre-
sponding to 100% of fayalite and 0% of forsterite and 1 corresponding to 0%
fayalite and 100% of forsterite. There are four mineral phases for this solid-melt
system; for the solid part there are forsterite (fo) and fayalite (fa) as well as for
the melt (liquid) part there are forsterite (foL) and fayalite (faL) (see Hollande
& Powell, 1998 for nomenclature). Figure 1a shows the result of the minimisa-
tion and emphasizes where the phases are stable for a pressure of 3 GPa. After
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the minimisation of 𝐺, in each point of the 𝑃 -𝑇 -𝑋 domain, we extract several
quantities for the melt (with subscript 𝑚) and the solid (with subscript 𝑠; all
listed in Table 1): Gibbs energy, 𝐺𝑚 and 𝐺𝑠 in [J mol-1], volume, 𝑉𝑚 and 𝑉𝑠 in
[m3 mol-1], entropy, 𝑆𝑚 and 𝑆𝑠 in [J mol-1 K-1] and specific heat capacity, 𝑐𝑝𝑚
and 𝑐𝑝𝑠 in [J mol-1 K-1]. We calculate the extensive quantities from the Gibbs
energies, volume 𝑉𝑚,𝑠 = 𝑑𝐺𝑚,𝑠

dP and entropy 𝑆𝑚,𝑠 = − 𝑑𝐺𝑚,𝑠
dT . The specific heat

capacity 𝑐𝑝𝑚,𝑠 = 𝑇 𝑑𝑆𝑚,𝑠
dT . To have all parameters in mass units of kilogram,

and not in mole, we divide all quantities by their respective melt or solid molar
mass, 𝑚𝑚 and 𝑚𝑠 in [kg mol-1]. With the volume per unit mass, we can then
calculate melt and solid density, 𝜌𝑚,𝑠 = 1

𝑉𝑚,𝑠
in [kg m-3]. In addition, several

molar fractions (in mole units) can be obtained from Gibbs minimisation, like
melt concentrations of forsterite and fayalite, 𝐶foL

𝑚,[mol] and 𝐶faL
𝑚,[mol], and solid

concentrations of forsterite and fayalite, 𝐶fo
𝑠,[mol] and 𝐶fa

𝑠,[mol]. We transform
them into mass fractions in order to use them in the mass conservation equa-
tions of the THMC model. The details of this transformation are presented in
Appendix C, equations C1 to C3.

In the solid-melt THMC model, we focus on the thermodynamic region where
melt and solid coexist (orange area in Fig. 1a). In the considered 𝑃 -𝑇 -𝑋 domain,
this region has a pressure range of 2.4001 GPa to 3.5001 GPa, a temperature
range of 1’535°C (1’808.15 K) to 1’645°C (1’918.15 K) and a composition range
of 0.26 to 0.36. Figures 1b and 1c show that the variation in melt density (𝜌𝑚)
and in melt mass fraction of magnesium (𝐶MgO

𝑚 ), respectively, are independent
of composition in this range. Accordingly, all other thermodynamic parameters
used in the THMC model are also independent of composition, such as solid
density (𝜌𝑠), solid mass fraction of magnesium (𝐶MgO

𝑠 ) and melt and solid mass
fractions of silica (𝐶Si𝑂2𝑚 , 𝐶Si𝑂2𝑠 ). Therefore, we can reduce our binary 𝑃 -𝑇 -𝑋
domain to a 𝑃 -𝑇 domain for all considered parameters. The independency of
densities and mass fractions on composition 𝑋 is a result of the Gibbs phase rule
(e.g. Müller, 2007) because there is no degree of freedom for a system with two
components (fo and fa) and two phases (solid and melt) for a given temperature
and pressure. Figure 2 shows the variation of thermodynamic parameters used
in the THMC code as function of temperature and pressure. All parameters
show an essentially linear variation with 𝑃 and 𝑇 (Figure 2).
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Figure 2. Variation of thermodynamic variables used in the THMC transport
code. Variables are calculated by Gibbs free energy minimization. Enlargement
of the region of coexistence between melt and solid (orange area in Fig. 1a).
All parameters depend on temperature and pressure: panel (a) for melt density,
panel (d) for solid density, panel (b) for mass fraction of magnesium in melt,
panel (e) for mass fraction of magnesium in solid, panel (c) for mass fraction of
silica in melt and panel (f) for mass fraction of silica in solid. Black points in
panel (a) are used to calculate 𝛼 and 𝛽 in equations 1 and 2.

The essentially linear variation allows making a linear approximation for all
six parameters by calculating two values, 𝛼 and 𝛽, whereby 𝛼 quantifies the
variation of a variable with respect to a variation of temperature, for a constant
pressure of reference 𝑃0, and 𝛽 quantifies the variation of the variable with
respect to a variation of pressure, for a constant temperature of reference 𝑇0.
The 𝛼 and 𝛽 for the six variables are calculated, for example, for the melt density
by (see Fig.2a for details):

𝛼𝜌𝑚
= ( 𝜌𝑚(2,𝑃0)−𝜌𝑚(1,𝑃0)

�𝑇 )
𝜌𝑚,0

(1)

𝛽𝜌𝑚
= ( 𝜌𝑚(𝑇0,2)−𝜌𝑚(𝑇0,1)

�𝑃 )
𝜌𝑚,0

(2)

where �𝑇 and �𝑃 are the temperature and pressure differences of domain
𝑃 -𝑇 , 𝜌𝑚 (2, 𝑃0) − 𝜌𝑚 (1, 𝑃0) is density variation as function of temperature,
𝜌𝑚 (𝑇0, 2) − 𝜌𝑚 (𝑇0, 1) is density variation as function of pressure and 𝜌𝑚,0 is
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the density at the reference point 𝑇0 and 𝑃0. The same procedure is applied for
the other five variables: the resulting 𝛼, 𝛽 and corresponding reference points
are given in Table 2 and further discussed in the result section. Figure 3 shows
the results of this approximation for each variable.

Figure 3. Linear approximation of data obtained by thermodynamics with 𝛼 and
𝛽. All variations are in function of temperature and pressure: panel (a) for melt
density, panel (d) for solid density, panel (b) for mass fraction of magnesium
in melt, panel (e) for mass fraction of magnesium in solid, panel (c) for mass
fraction of silica in melt and panel (f) for mass fraction of silica in solid. Black
point in the centre of each panel is the reference point at 𝑇0, 𝑃0 and 𝐶Si𝑂2

𝑇 ,0 .
𝐶Si𝑂2

𝑇 ,0 corresponds to the total mass fraction of silica in the olivine.

A particular result for olivine in the considered pressure and temperature range
is that solid density is smaller than melt density (Figs. 2 and 3). This is a
known phenomenon in the forsterite-fayalite system for high temperature (e.g.
Herzberg et al., 1982). For melt to rise, it should have a smaller density than the
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solid. To obtain smaller melt densities, we add another composition dimension
to our 𝑃 -𝑇 domain, which is the total silica mass fraction 𝐶SiO2

𝑇 . Adding more
silica to the olivine system allows to change the melt and solid densities of the
system to a more realistic value for a peridotitic system. For simplicity, we did
not included pyroxenes in our thermodynamic calculation.

The total silica mass fraction (𝐶SiO2
𝑇 ) is calculated at the reference point 𝑇0 and

𝑃0 as follows:

𝐶SiO2
𝑇 ,0 = 𝐶SiO2

𝑚,0 +𝐶SiO2
𝑠,0

𝐶MgO
𝑚,0 +𝐶MgO

𝑠,0 +𝐶FeO
𝑚,0 +𝐶FeO

𝑠,0 +𝐶
SiO2
𝑚,0 +𝐶SiO2

𝑠,0
(3)

By increasing the total silica mass fraction, the density of melt will become
smaller than the density of solid, allowing the melt to percolate towards the
surface. We use an experiment by Davis et al. (2011) which provides the
composition of a peridotite in equilibrium with the first magma produced by
partial melting at a pressure of 3 GPa and a temperature of 1’450 °C. These
experimental compositions are reported as “KLB-1ox” for the solid, and “0%
melt” for melt in Table 1 of Davis et al. (2011). The combination of these data
and the values obtained by our thermodynamic olivine model allows calculating
a 𝛾 parameter that quantifies the variation of the six variables, 𝜌𝑚, 𝜌𝑠, 𝐶MgO

𝑚 ,
𝐶MgO

𝑠 , 𝐶Si𝑂2𝑚 , 𝐶Si𝑂2𝑠 , as function of the total silica mass fraction in the system.
To calculate 𝛾 for mass fractions of magnesium or silica for melt and solid, we
transform MgO, FeO and Si𝑂2 oxides weight percent of “KLB-1ox” and “0%
melt” into oxides mass fractions (here shown for MgO, same procedure for FeO
and Si𝑂2):

𝐶MgO
𝑚,𝑒𝑥𝑝 = 𝐶MgO

0% 𝑚𝑒𝑙𝑡, [𝑤𝑡%]
𝐶MgO

0% 𝑚𝑒𝑙𝑡, [𝑤𝑡%]+𝐶FeO
0% 𝑚𝑒𝑙𝑡, [𝑤𝑡%]+𝐶Si𝑂2

0% 𝑚𝑒𝑙𝑡, [𝑤𝑡%]
(4a)

𝐶MgO
𝑠,𝑒𝑥𝑝 = 𝐶MgO

𝐾𝐿𝐵−1𝑜𝑥, [𝑤𝑡%]
𝐶MgO

𝐾𝐿𝐵−1𝑜𝑥, [𝑤𝑡%]+𝐶FeO
𝐾𝐿𝐵−1𝑜𝑥, [𝑤𝑡%]+𝐶Si𝑂2

𝐾𝐿𝐵−1𝑜𝑥, [𝑤𝑡%]
(4b)

The total silica mass fraction of the experiment, 𝐶Si𝑂2
𝑇 ,𝑒𝑥𝑝, is calculated in the

same way as shown in equation 3. Then we calculate the 𝛾 (here shown for
𝐶MgO

𝑚 and 𝐶MgO
𝑠 , same procedure for 𝐶Si𝑂2𝑚 and 𝐶Si𝑂2𝑠 shown in Appendix C,

equation C4) by:

𝛾𝐶MgO
𝑚

=
( 𝐶MgO

𝑚,𝑒𝑥𝑝−𝐶MgO
𝑚,0

𝐶Si𝑂2
𝑇,𝑒𝑥𝑝−𝐶Si𝑂2

𝑇,0
)

𝐶MgO
𝑚,0

(5a)

𝛾𝐶MgO
𝑠

=
( 𝐶MgO

𝑠,𝑒𝑥𝑝−𝐶MgO
𝑠,0

𝐶Si𝑂2
𝑇,𝑒𝑥𝑝−𝐶Si𝑂2

𝑇,0
)

𝐶MgO
𝑠,0

(5b)
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To calculate 𝛾 for melt and solid densities we proceed in the same way:

𝛾𝜌𝑚
=

( 𝜌𝑚,𝑒𝑥𝑝−𝜌𝑚,0
𝐶Si𝑂2

𝑇,𝑒𝑥𝑝−𝐶Si𝑂2
𝑇,0

)

𝜌𝑚,0
(6a)

𝛾𝜌𝑠
=

( 𝜌𝑠,𝑒𝑥𝑝−𝜌𝑠,0
𝐶Si𝑂2

𝑇,𝑒𝑥𝑝−𝐶Si𝑂2
𝑇,0

)

𝜌𝑠,0
(6b)

The values for the melt and solid densities, 𝜌𝑚,𝑒𝑥𝑝 and 𝜌𝑠,𝑒𝑥𝑝, are not provided
in Davis et al. (2011). We calculate these densities using the values included
in our thermodynamic data base and the mineral mode reported in Table 1 of
Davis et al. (2011) (see Appendix C for the detail of these calculations).

Figure 4 shows the linear approximation using 𝛾 for the different variables be-
tween the forsterite-fayalite binary olivine system, 𝐶SiO2

𝑇 ,0 = 0.33, and the exper-
iment of Davis et al. (2011), 𝐶SiO2

𝑇 ,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 = 0.56. Figure 4a shows the relative
change of solid and melt densities and the value of 𝐶SiO2

𝑇 = 0.41, indicated by
the vertical black dashed line, for which melt and solid densities are equal.
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Figure 4. Linearized dependence of thermodynamic variables on total silica
mass fraction, 𝐶Si𝑂2

𝑇 . Panel (a) densities, melt in red and solid in blue, panel
(b) mass fractions of magnesium, melt in red and solid in blue and panel (c) mass
fractions of silica, melt in red and solid in blue. Black points are reference values
of each variable at 𝑇0, 𝑃0 and 𝐶Si𝑂2

𝑇 ,0 in Figure 3. 𝐶Si𝑂2
𝑇 ,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 corresponds to

the total mass fraction of silica in the experiment of Davis et al. (2011). The
black dashed line indicates at which total silica mass fraction the melt density
becomes smaller than the solid density. The grey dashed line shows the value
selected in the THMC model as the initial total silica mass fraction.

To calculate the melt and solid thermal energies, 𝑈𝑚 and 𝑈𝑠, required for the
temperature calculation, we only consider, for simplicity, their variation with
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respect to temperature and density. We use values for the respective melt and
solid specific heat at the reference point 𝑇0 and 𝑃0, 𝑐𝑝𝑚,0 and 𝑐𝑝𝑠,0 (values are
given in Table 2) and calculate the thermal energies by:

𝑈𝑚 = 𝜌𝑚 ⋅ 𝑐𝑝𝑚,0 ⋅ 𝑇 (7a)

𝑈𝑠 = 𝜌𝑠 ⋅ 𝑐𝑝𝑠,0 ⋅ 𝑇 (7b)

We apply this simplification of the thermal solid and melt energies because in
our model the temperature deviation from the initial thermal gradient is small
because we remain in the region of coexistence of melt and solid.

In summary, the thermodynamic model calculates eight variables: solid and
melt densities, solid and melt mass fractions of MgO and Si𝑂2, and solid and
melt specific heat. The densities and mass fractions are all a function of pres-
sure, temperature and total Si𝑂2 concentration and these dependencies will be
quantified below by a total of 18 parameters, namely 6 different values each for
𝛼, 𝛽 and 𝛾 (Table 2). These 18 parameters will be used in the THMC transport
model.

Table 1. Parameters used in the thermodynamic and THMC model

Symbol Meaning Units
𝜌𝑚, 𝜌𝑠, 𝜌𝑇 melt, solid and total densities kg·m-3

𝐶MgO
𝑚 , 𝐶MgO

𝑠 , 𝐶Si𝑂2𝑚 , 𝐶Si𝑂2𝑠 mass fractions of magnesium or silica for melt and solid [ ]
𝑈𝑚, 𝑈𝑠 melt, solid thermal energies J·mol-1
𝑐𝑝𝑚, 𝑐𝑝𝑠 melt, solid specific heat capacity J·kg-1·K-1

𝜆𝑚, 𝜆𝑠, 𝜆𝑇 melt, solid and total thermal conductivity W·m-1·K-1

𝐺𝑚, 𝐺𝑠 melt, solid Gibbs energies J·mol-1
𝑉𝑚, 𝑉𝑠 melt, solid volumes m3·mol-1
𝑆𝑚, 𝑆𝑠 melt, solid entropy J·mol-1·K-1

𝑚𝑚, 𝑚𝑠 melt, solid molar mass kg1·mol-1
𝑘 Permeability m2

𝜑 Porosity [ ]
𝑣𝑚, 𝑣𝑠 melt, solid velocity m·s-1

𝜎xx total stress Pa
𝜏 deviatoric stress Pa
𝑔 gravitational acceleration m·s-2

𝑃𝑇 , 𝑃𝑚, 𝑃𝑒 total pressure, melt pressure and effective pressure Pa
𝜂𝑠, 𝜂𝑣, 𝜂𝑚 shear viscosity, compaction viscosity and melt viscosity Pa·s
𝑡 Time s
𝑇 Temperature K
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2.2 Thermo-Hydro-Mechanical-Chemical model

The applied THMC model is based on a system of conservation equations. The
general derivation of these conservation equations is given in the appendix and
below only the applied equations are given. The conservation of total mass is

𝜕
𝜕𝑡 (𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝜌𝑚𝜑𝑣𝑚 + 𝜌𝑠(1 − 𝜑)𝑣𝑠) (8)

where 𝑡 is the time, 𝜑 is the porosity, 𝑥 is the spatial coordinate (here the
direction parallel to gravity) and 𝑣𝑚 and 𝑣𝑠 are the melt and solid velocity,
respectively. The equation of conservation of total mass of MgO is

𝜕
𝜕𝑡 (𝐶MgO

𝑚 𝜌𝑚𝜑 + 𝐶Mg𝑂
𝑠 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝐶Mg𝑂
𝑚 𝜌𝑚𝜑𝑣𝑚 + 𝐶Mg𝑂

𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠) (9)

and of conservation of total mass of Si𝑂2 is

𝜕
𝜕𝑡 (𝐶Si𝑂2𝑚 𝜌𝑚𝜑 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝐶Si𝑂2𝑚 𝜌𝑚𝜑𝑣𝑚 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠) (10)

For the conservation of the total masses of MgO and Si𝑂2, we consider only
the advective part of the conservation equation because we assume that diffu-
sion processes are much slower than advection processes (corresponding Péclet
number » 1). The conservation of thermal energy is

𝜕
𝜕𝑡 (𝑈𝑚𝜑 + 𝑈𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝑈𝑚𝜑𝑣𝑚 + 𝑈𝑠(1 − 𝜑)𝑣𝑠 − 𝜆𝑇
𝜕𝑇
𝜕𝑥 ) (11)

where 𝜆𝑇 = (𝜆𝑚𝜑 + 𝜆𝑠(1 − 𝜑)) and 𝜆𝑚 and 𝜆𝑠 are the thermal conductivity of
melt and solid, respectively. The conservation of linear momentum of the solid
is given by

𝜕𝜎xx
𝜕𝑥 = 𝜌𝑇 𝑔 (12)

where 𝜎xx is the total stress, 𝜌𝑇 = 𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑) is the total density and 𝑔 is
the gravitational acceleration. The total stress is given by

𝜎xx = −𝑃𝑇 + 𝜏 (13)
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where 𝑃𝑇 is the total pressure (i.e. the mean stress) and 𝜏 is the deviatoric
stress. The conservation of linear momentum of fluid, also known as Darcy’s
law, is given by

𝜑 (𝑣𝑚 − 𝑣𝑠) = − 𝑘𝜑3

𝜂𝑚
( 𝜕𝑃𝑚

𝜕𝑥 + 𝜌𝑚𝑔) (14)

where 𝑘 is the permeability coefficient in a Kozeny-Carman type model, 𝜂𝑚 is
the melt viscosity and 𝑃𝑚 is the melt pressure. We use the melt pressure as
thermodynamic pressure for the thermodynamic calculations. The system is
closed by two constitutive equations. The first equation is used to calculate the
total pressure,

𝑃𝑇 = 𝑃𝑚 − 𝜕𝑣𝑠
𝜕𝑥 (1 − 𝜑)𝜂𝑣 (15)

where 𝜂𝑣 is the solid volumetric viscosity (i.e. compaction viscosity). We con-
sider in the equation for 𝑃𝑇 only a viscous volumetric deformation since an
additional reversible elastic volumetric deformation is generated by the consid-
ered thermodynamic reactions, specifically the variation of density with melt
pressure. Temporal variations of 𝑃𝑚 are related via a compressibility, 𝛽, to
temporal variations of the densities (Table 2 and eq. 2). These density varia-
tions are considered in the mass conservation equations and, hence, affect the
volumetric deformation. Therefore, the temporal variation of 𝑃𝑚 is indirectly
related via the compressibility and density to the divergence of solid velocities,
which effectively corresponds to a reversible elastic relation between melt pres-
sure and divergence of solid velocity (e.g. 𝛽 𝜕𝑃 𝑚

𝜕𝑡 = − 𝜕𝑣𝑠
𝜕𝑥 ). Elastic volumetric

deformation is, hence, considered indirectly in our THMC model by the consid-
eration of reversible equilibrium reactions. The second constitutive equation is
used to calculate 𝜏 by

𝜏 = 2𝜂𝑠
𝜕𝑣𝑠
𝜕𝑥 (16)

where 𝜂𝑠 is the shear viscosity of the solid. For more details on the development
of all equations, see Appendix A.

2.3 Coupled THMC and thermodynamic model and numerical
method

The entire system of equations describing the THMC and thermodynamic mod-
els has a total of 14 unknowns; 8 unknowns are determined by the thermody-
namic model, namely 𝜌𝑚, 𝜌𝑠, 𝐶Mgo

𝑚 , 𝐶Mgo
𝑠 , 𝐶Si𝑂2𝑚 , 𝐶Si𝑂2𝑠 , 𝑈𝑚 and 𝑈𝑠, and 6

unknowns are determined by the THMC model, namely 𝑃𝑚, 𝜑, 𝐶Si𝑂2
𝑇 , 𝑇 , 𝑣𝑚,
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𝑣𝑠. In the thermodynamic model the unknowns are determined by 𝑇 , 𝑃𝑚 and
𝐶Si𝑂2

𝑇 using pre-computed results from Gibbs energy minimizations (i.e. phase
diagrams of the 8 thermodynamic variables) whereas in the THMC model the
unknowns are calculated by numerically solving a system of coupled partial
differential equations.

We use a standard staggered grid finite difference (FD) method (e.g. Gerya 2019)
to solve the partial differential equations of the THMC model. The numerical
algorithm consists of a standard time loop with an internal pseudo-transient
(PT) iterative loop to determine 𝑃𝑚, 𝜑, 𝐶Si𝑂2

𝑇 , 𝑇 and 𝑣𝑠. This PT method
(e.g. Duretz et al. 2019; Räss et al. 2019; Schmalholz et al. 2020) solves non-
linear system of equations in an iterative way without the need of inverting a
numerical coefficient matrix. To use the PT method, we transform the conserva-
tion equations in pseudo-transient equations by adding a pseudo-transient time
derivative, with PT time step �𝑡PT, for each unknown variable, 𝑃𝑚, 𝜑, 𝐶Si𝑂2

𝑇 , 𝑇
and 𝑣𝑠. The PT equations are

𝜕𝑃𝑚
𝜕�𝑡𝑃

TP = − 𝜕
𝜕𝑡 (𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑)) − 𝜕

𝜕𝑥 (−𝜌𝑚
𝑘𝜑3

𝜂𝑚
( 𝜕𝑃𝑚

𝜕𝑥 + 𝜌𝑚𝑔) + 𝜌𝑇 𝑣𝑠) (17a)
𝜕𝜑

𝜕�𝑡𝜑
TP = − 𝜕

𝜕𝑡 (𝐶MgO
𝑚 𝜌𝑚𝜑 + 𝐶Mg𝑂

𝑠 𝜌𝑠(1 − 𝜑)) − 𝜕
𝜕𝑥 (𝐶Mg𝑂

𝑚 𝜌𝑚𝜑𝑣𝑚 + 𝐶Mg𝑂
𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠) (17b)

𝜕𝐶Si𝑂2
𝑇

𝜕�𝑡
𝐶Si𝑂2

𝑇
TP = − 𝜕

𝜕𝑡 (𝐶Si𝑂2𝑚 𝜌𝑚𝜑 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑)) − 𝜕
𝜕𝑥 (𝐶Si𝑂2𝑚 𝜌𝑚𝜑𝑣𝑚 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠) (17c)

𝜕𝑇
𝜕�𝑡𝑇

TP = − 𝜕
𝜕𝑡 (𝑈𝑚𝜑 + 𝑈𝑠(1 − 𝜑)) − 𝜕

𝜕𝑥 (𝑈𝑚𝜑𝑣𝑚 + 𝑈𝑠(1 − 𝜑)𝑣𝑠 − 𝜆tot
𝜕𝑇
𝜕𝑥 ) (17d)

𝜕𝑣𝑠
𝜕�𝑡𝑣𝑠

TP = 𝜕
𝜕𝑥 (−𝑃𝑇 + 𝜏) − 𝜌𝑇 𝑔 (17e)

When the PT time derivatives on the left-hand sides of the above equation are
zero, the corresponding equations of the right-hand side are solved. In practice,
the iteration will continue in the PT iteration loop as long as PT time derivatives
are not smaller than a specified numerical tolerance error. In the FD method, we
use numerical time steps representing the physical time step �𝑡 to approximate
the time derivatives, which control the physical time evolution (i.e. the “real”
time derivatives). We employ five PT time steps to solve for 𝑃𝑚, �𝑡𝑃

TP, for 𝜑,
�𝑡𝜑

TP, for 𝐶Si𝑂2
𝑇 , �𝑡𝐶Si𝑂2

𝑇

TP, for 𝑇 , �𝑡𝑇
TP and for 𝑣𝑠, �𝑡𝑣𝑠

TP. The choice of these
numerical PT time steps is crucial for a stable convergence of the PT iterative
solution but does not affect the result after the convergence. The values of
the PT time steps are given in Appendix B, Table B3. The melt velocity can
be directly calculated from Darcy’s law (eq. 14), which does not require the
solution of an additional differential equation.

2.4 Model configuration and characteristic values

The algorithm is programmed in such way that most parameters have magni-
tudes close to 1. This approach was extremely useful to determine the best
possible numerical stability and convergence of the pseudo-transient algorithm.
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For that purpose, we define independent and dependent model parameters. We
choose four independent parameters that are used to determine all other pa-
rameters, namely (1) melt density times gravitational acceleration, 𝜌𝑚𝑔 = 1
[Pa·m-1], (2) permeability divided by melt viscosity, 𝑘

𝜂𝑚
= 1 [m2·Pa-1·s-1],

(3) solid volumetric viscosity, 𝜂𝑣 = 1 [Pa·s] and (4) temperature, 𝑇 𝐴 = 1
[K]. Next, we specify the following characteristic scales of the model: the
characteristic length, 𝐿𝑐 = √ 𝑘

𝜂𝑚
⋅ 𝜂𝑣 = 1 [m], the characteristic time, 𝑡𝑐 =

𝜂𝑣
𝜌𝑚𝑔⋅𝐿𝑐

= 1 [s], the characteristic stress, 𝑃𝑐 = 𝜌𝑚𝑔 ⋅ 𝐿𝑐 = 1 [Pa], the charac-

teristic power, 𝐸𝑐 = 𝜌𝑚𝑔⋅𝐿𝑐
4

𝑡𝑐
= 1 [W], the characteristic thermal conductivity,

𝜆𝑐 = 𝐸𝑐
𝐿𝑐⋅𝑇 𝐴 = 1 [W·K-1·m-1], and the characteristic density times specific heat,

�Cp𝑐 = 𝜌𝑚𝑔⋅𝐿𝑐
𝑇 𝐴 = 1 [Pa·K-1]. The characteristic length 𝐿𝑐 of the model, also

known as compaction length in the context of porosity waves (e.g. McKenzie
1985; Connolly & Podladchikov 2007), corresponds to the characteristic distance
over which deformation occurs. Next, we define several dimensionally dependent
scales to configure the model. These scales must be chosen in such way that the
considered process can be numerically resolved and that the applied parameters
are applicable to the considered process. Therefore, we apply a model height
𝐿𝑥 = 100 ⋅ 𝐿𝑐 and a width of perturbations in the initial distribution of poros-
ity and/or total concentration of Si𝑂2, 𝑤 = 10 ⋅ 𝐿𝑐 so that the characteristic
compaction for the two-phase flow can occur within the model domain and is
affected by the size of initial perturbations. Furthermore, the solid density times
gravitational acceleration 𝜌𝑠𝑔 = 𝜌𝑠,0

𝜌𝑚,0
⋅ 𝜌𝑚𝑔 = 0.9423 ⋅ 𝜌𝑚𝑔, which is a relation

calculated for the reference point in the olivine system (see Fig. 3a and d). The
shear viscosity is considered equal to the compaction viscosity 𝜂𝑠 = 𝜂𝑣 = 1. The
thermal conductivity of melt and solid 𝜆𝑚 = 𝜆𝑠 = 483 ⋅ 𝜆𝑐 =, which applies to
a natural conductivity of 3 [W·m-1·K-1] if we assume a natural 𝐿𝑐 = 1 km,
𝜂𝑣 = 1.25×1020 Pas and 𝑇 𝐴 = 1860 [K] and reference melt density (Table 2).
Similarly, the product of density times specific heat for melt and solid can be
determined with reference values in Table 2 as �Cp𝑚 = 205 ⋅ �Cp𝑐 = 205 and
�Cp𝑠 = 𝜌𝑠,0

𝜌𝑚,0
⋅ Cp𝑠,0

Cp𝑚,0
⋅ �Cp𝑚 = 0.9014 ⋅ �Cp𝑚 = 184.7906 ⋅ �Cp𝑐.

To further configure the model, we define four initial profiles, namely for tem-
perature, porosity, total silica mass fraction and total pressure (Fig. 5). First,
we apply a constant porosity profile with a value of 0.02 and a constant total
silica mass fraction profile with a value of 0.45 (in Fig. 4 this silica mass fraction
corresponds to the grey dashed lines in the region where melt density is lower
than solid density). We then add a perturbation to the porosity and/or the
total silica mass fraction profiles in the form of a Gaussian with its maximum
at a depth of 𝑥 = −20 (Fig. 5g and h). For the simulations presented below,
we apply five perturbation amplitudes for porosity, Δ� (0.005, 0.01, 0.02, 0.03
and 0.04) and five for total silica mass fraction Δ𝐶Si𝑂2

𝑇 (0, 0.25, 0.5, 0.75 and 1;
see Fig.6 for the systematic scheme of simulations). We define the temperature
profile in the model with a temperature difference Δ𝑇model of 2 between the
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bottom and the top of our model (Fig. 5d). For the initial pressure profile, we
calculate the lithostatic pressure across the model with the model total densities
and obtain a pressure difference Δ𝑃model of approximately 90 for all simulations.
We performed two series of systematic simulations with two different thermal
gradients, one representing an adiabatic and one a conductive gradient. In order
to adapt our temperature and pressure profiles in the model to realistic natu-
ral profiles, we must rescale the 𝛼 and 𝛽 parameters with a temperature ratio
(Δ𝑇nature/Δ𝑇model) and a pressure ratio (Δ𝑃nature/Δ𝑃model). Δ𝑇nature is dif-
ferent depending on whether it represents an adiabatic or conductive gradient.
We apply a natural pressure variation, Δ𝑃nature, across our model equal to 1
[GPa], which corresponds to the pressure range chosen for the thermodynamic
data (Figs 2 and 3). Thus, we can determine a certain model height (ℎ = 𝑃

𝜌𝑇 𝑔 ,
with 𝜌𝑇 = 𝜌𝑚,0𝜑 + 𝜌𝑠,0(1 − 𝜑) and 𝜑 = 0.02) that we can use to calculate
a natural temperature difference, Δ𝑇𝑛𝑎𝑡𝑢𝑟𝑒,1, corresponding to a realistic adi-
abatic gradient. We found ℎ~28 [km] and Δ𝑇𝑛𝑎𝑡𝑢𝑟𝑒,1~15 [K] for an adiabatic
gradient between 0.5-0.55 [°C·km-1]. To define the second, larger natural tem-
perature difference Δ𝑇𝑛𝑎𝑡𝑢𝑟𝑒,2 representing a conductive gradient at the base of
the lithosphere, we multiplied Δ𝑇𝑛𝑎𝑡𝑢𝑟𝑒,1 by ten, thus Δ𝑇𝑛𝑎𝑡𝑢𝑟𝑒,2=150 [K].

3 Results
We first present results from the thermodynamic model which consist essentially
of the determined values of 𝛼, 𝛽 and 𝛾 for the thermodynamic variables (Table
2). Subsequently, we show results from the THMC melt migration model.

3.1 Linearization of thermodynamic results

The parameters 𝛼, 𝛽 and 𝛾 are used to linearize the dependency of the ther-
modynamic variables on temperature, pressure and total silica content. For
example, for the melt density the linearized relation is

𝜌𝑚 = 𝜌𝑚,0 + 𝛼𝜌𝑚
�𝑇 + 𝛽𝜌𝑚

�𝑃 + 𝛾𝜌𝑚
�𝐶SiO2

𝑇 (18)

The calculated values of all 𝛼, 𝛽 and 𝛾 are presented in Table 2. If values
of 𝛼, 𝛽 or 𝛾 are positive, then the corresponding parameter will increase with
the respective increase of temperature, pressure or total silica mass fraction
(e.g. in Fig. 3, 𝜌𝑚 increase with increasing pressure, since 𝛽𝜌𝑚

is positive).
Consequently, if values 𝛼, 𝛽 or 𝛾 are negative, then the associated parameter
will decrease with the respective increasing temperature, pressure or total silica
mass fraction (e.g. in Fig. 3, 𝜌𝑚 decrease with increasing temperature, 𝛼𝜌𝑚

is
negative). The determined values of 𝛼, 𝛽 and 𝛾 provide a transparent overview
on the relative importance and interdependence of the parameters. For example,
the 𝛼 for solid density 𝛼𝜌𝑠

and for solid mass fraction of silica 𝛼𝐶SiO2𝑠
are 2 to 5

times larger than values of 𝛼 for melt density 𝛼𝜌𝑚
and for melt mass fraction of
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silica 𝛼𝐶SiO2𝑚
. This relationship is opposite for magnesium mass fraction where

𝛼 for the melt, 𝛼𝐶MgO
𝑚

, is 1.5 times larger than the solid one, 𝛼𝐶Mgo
𝑠

. We observe
the same trend for 𝛽, where 𝛽𝜌𝑠

and 𝛽𝐶SiO2𝑠
are 1.5 to 4 times larger than 𝛽𝜌𝑚

and 𝛽𝐶SiO2𝑚
and 𝛽𝐶Mgo

𝑚
is slightly larger than 𝛽𝐶Mgo

𝑠
. For the 𝛾 the situation is

different, because all 𝛾 values for melt (𝛾𝜌𝑚
, 𝛾𝐶Mgo

𝑚
and 𝛾𝐶SiO2𝑚

) are 2.5 to 4.5
times larger than 𝛾 values for solid (𝛾𝜌𝑠

, 𝛾𝐶Mgo
𝑠

and 𝛾𝐶SiO2𝑠
). This difference

in dependence on P, T and 𝐶Si𝑂2
𝑇 between variables related to melt and solid

is between a factor of 1.5 and 4.5 and it is, hence, important to consider this
difference in the THMC model.

We use the linearized relations employing parameters 𝛼, 𝛽 and 𝛾, instead of
the results obtained directly from the Gibbs free energy minimization (Fig. 2),
mainly because of computational efficiency, since direct usage of Gibbs energy
minimisation results would require numerical interpolations in order to calcu-
late the thermodynamic variables used in the THMC model. Such data inter-
polations are computationally time consuming, especially if the algorithm is
extended to 2D (see below) or 3D.

Table 2. Values for linear approximation of thermodynamic variables. Values
are calculated from Gibbs free energy minimisation and the experiment of Davis
et al. (2011), see section 2.1 for details.

Adopted values for linearization:
𝑃0 3.0001 109 [Pa]
𝑇0 1863.15 [K]
𝐶SiO2

𝑇 ,0 0.3280 [ ]
Value at reference point alpha [K-1] beta [Pa-1] gamma [ ]
𝜌𝑚,0 3.8631·103 [kg m-3] 𝛼𝜌𝑚

-3.3260·10-4 𝛽𝜌𝑚
3.2666·10-11 𝛾𝜌𝑚

-1.0700
𝜌𝑠,0 3.6401·103 [kg m-3] 𝛼𝜌𝑠

-6.5732·10-4 𝛽𝜌𝑠
4.7575·10-11 𝛾𝜌𝑠

-0.3791
𝐶MgO

𝑚,0 0.0449 [ ] 𝛼𝐶MgO
𝑚

0.0073 𝛽𝐶MgO
𝑚

-3.3051·10-10 𝛾𝐶MgO
𝑚

17.0251
𝐶MgO

𝑠,0 0.2232 [ ] 𝛼𝐶MgO
𝑠

0.0047 𝛽𝐶MgO
𝑠

-2.9722·10-10 𝛾𝐶MgO
𝑠

3.7930
𝐶SiO2

𝑚,0 0.3079 [ ] 𝛼𝐶SiO2𝑚
2.3932·10-4 𝛽𝐶SiO2𝑚

-1.0870·10-11 𝛾𝐶SiO2𝑚
4.5448

𝐶SiO2
𝑠,0 0.3481 [ ] 𝛼𝐶SiO2𝑠

6.8708·10-4 𝛽𝐶SiO2𝑠
-4.3008·10-11 𝛾𝐶SiO2𝑠

1.7257
𝑐𝑝𝑚,0 1.2481·103 [J kg-1 K-1]
𝑐𝑝𝑠,0 1.1940·103 [J kg-1 K-1]

The initial density profile of the model impacts the melt migration. For a
constant chemical composition, the initial density profile is controlled by the
initial variation of P and T, but with opposite trend: from the top to the bottom
of the model, the melt and solid densities increase with increasing pressure but
decrease with increasing temperature. We determine for the applied values of
�𝑇 and �𝑃 the critical value of �𝑇 , for which the density is constant with depth.
We use the equation
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𝜌 = 𝜌0 + 𝛼�𝑇 + 𝛽�𝑃 (19)

and reformulate the equation to

�𝜌
𝛼 = �𝑇 + 𝛽

𝛼 �𝑃 (20)

where �𝜌 = 𝜌 − 𝜌0. We assume no density variation (isochoric system) with a
variation of 𝑇 and 𝑃 , i.e. �𝜌

𝛼 = 0 and solve the remaining equation for �𝑇 which
yields

�𝑇 = − 𝛽
𝛼 �𝑃 (21)

If the applied �𝑇 is larger than the above expression, then the density is de-
creasing with depth in the model (i.e. the initial density variation is controlled
by the temperature variation) and if �𝑇 is smaller, then the density increases
with depth, controlled by the pressure variation. The above analysis can also
be applied to the mass fractions. Choosing �𝑃 of 1 [GPa] and using 𝛼 and 𝛽
values from Table 2, we obtain for the melt density a critical �𝑇 =98.2 [K], for the
solid density a critical �𝑇 =72.5 [K], for magnesium melt mass fraction a critical
�𝑇 =45.3 [K], for magnesium solid mass fraction a critical �𝑇 =63.2 [K], for silica
melt mass fraction a critical �𝑇 =45.6 [K] and for silica solid mass fraction a crit-
ical �𝑇 =62.6 [K]. All values of critical �𝑇 are between Δ𝑇𝑛𝑎𝑡𝑢𝑟𝑒,1 and Δ𝑇𝑛𝑎𝑡𝑢𝑟𝑒,2,
respectively, that is the temperature differences applied for the adiabatic and
the conductive gradient. Therefore, the applied initial adiabatic and conductive
geotherms cause a fundamentally different initial variation of densities and mass
fractions with depth.

3.2 THMC model results: comparison of initial profiles, maximum
melt velocity and evolution over time

We performed 50 simulations with one time step only to determine the initial
profiles of all the involved model variables, because the initial profiles of, for
example, the solid and melt velocities represent already an interesting result
that needs to be calculated iteratively due to the nonlinear coupling of the
model variables. For four of these simulations we also calculate the evolution
with time to investigate the upward melt migration by reactive porosity waves.

Comparison of initial profiles We first compare initial profiles from four
different simulations, namely simulations termed S05 with an initial porosity
perturbation only and simulations S15 with an initial porosity and total silica
mass fraction perturbations, both for the two temperature gradients, namely a
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conductive gradient (Figs 5 and B12) and an adiabatic gradient (Figs B13 and
B14). The four simulations show similar profiles for melt and total pressure
(Fig. 5a), effective pressure, 𝑃𝑒 = 𝑃𝑚 − 𝑃𝑇 (Fig. 5c), temperature (Fig. 5d),
porosity (Fig. 5g) and solid velocity (Fig. 5i). The effective pressure shows
which part of the model is in compression (𝑃𝑒 is negative) and which part is
in dilation (𝑃𝑒 is positive). The main difference between the four simulations
is the maximum magnitudes of the peaks of corresponding profiles. Maximum
magnitudes are larger in the two S15 simulations (Figs 5 and B14), with an
initial perturbation in porosity and in total silica mass fraction, than in the
two S05 simulations (Figs B12 and B13), with an initial perturbation only in
porosity. Differences between the four simulations are visible in the calculated
profiles of densities (Fig. 5b), of magnesium and silica mass fractions (Figs. 5e
and h) and of melt velocity (Fig. 5f). There is a significant difference between
simulations with a conductive gradient (Figs 5 and B12) and simulations with
an adiabatic gradient (Figs B13 and B14). Across the model, density profiles for
the conductive gradient (panel b in Figs. 5 and B12) decrease with increasing
depth, whereas for the adiabatic gradient (panel b in Figs. B13 and B14),
densities increase with increasing depth. This trend is reversed for melt and
solid mass fraction of magnesium and silica (panels e and h in Figs 5, B12-14).
For the conductive gradient, melt and solid mass fraction of magnesium and
silica increase with increasing depth and with the adiabatic gradient, melt and
solid mass fraction of magnesium and silica decrease with increasing depth. The
calculated total magnesium mass fraction (black line in panel e in Fig. 5 and
B12-14) follows the trend of melt and solid mass fractions of magnesium. The
calculated total silica mass fraction (black line in panel h in Fig. 5 and B12-14)
remains constant except in the region of the perturbation where the maximum
value changes according to the applied initial perturbations. The melt velocity
profiles (panel f in Fig. 5 and B12-14) exhibit the maximum melt velocity at
the position where the maximum initial perturbation in porosity and/or total
silica mass fraction is applied. The maximum melt velocity is greater when
both porosity and total silica mass fraction profiles exhibit initial perturbations
(simulation S15, Figs 5 and B14). A difference also exist in the overall slope
of the melt velocity profiles between the two different temperature gradients in
all four simulations. The melt velocity decreases with depth for the conductive
gradient (Figs 5 and B12) and increases with depth for the adiabatic gradient
(Figs B13 and B14). The initial melt velocity profile shows positive values
indicating upward motion of the melt (Figs 5, B12-14 panel e). In the region
where the initial perturbation in porosity and silica mass fraction is applied the
melt velocity is largest. In this region, the solid velocity is negative indicating
compaction in the region where the melt is moving upward, or where melt is
extracted (Figs 5, B12-14 panel i). Also, the absolute magnitudes of the melt
velocities around the maximal initial perturbation are approximately one order
of magnitude larger than absolute magnitudes of the solid velocities.
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Figure 5. Initial profiles of simulation S15 for a conductive gradient. All vari-
ables are dimensionless. Panel (a) shows melt pressure (red diamond) and total
pressure (black line). Panel (b) shows melt density (red line) and solid density
(blue line). Panel (c) shows effective pressure, positive values indicate decom-
paction while negative values indicate compaction. Panel (d) shows temperature.
Panel (e) shows magnesium mass fraction in melt (red line) and in solid (blue
line) and total magnesium mass fraction (black line). Panel (f) shows melt ve-
locity. Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt
(red line) and in the solid (blue line) and total silica mass fraction (black line).

22



Panel (i) shows solid velocity.

Comparison of maximum melt velocity Figure 6 compares maximum
melt velocities of the respective initial profiles for 50 simulations. We made
25 simulations with an adiabatic gradient (Fig. 6a) and 25 simulations with a
conductive gradient (Fig. 6b). For each thermal gradient, we applied 5 pertur-
bation amplitudes for the initial porosity, Δ�, and 5 amplitudes for the initial
total silica mass fraction, Δ𝐶Si𝑂2

𝑇 . The four simulations selected for investigat-
ing the time evolution, i.e. S05 and S15, are represented by the points circled
in red (Fig. 6). The greater the amplitudes of the perturbations, the greater
the maximum melt velocity. The maximum melt velocity occurs when both
perturbation amplitudes are maximal, which applies for both thermal gradients.
The maximal melt velocities are slightly larger for an adiabatic gradient (Fig.
6). The curved velocity contours in figure 6 indicate a nonlinear dependence be-
tween the maximal melt velocity and Δ� and Δ𝐶Si𝑂2

𝑇 . However, the 25 maximal
melt velocities for each thermal gradient can be collapsed from the two dimen-
sional space (Δ� - Δ𝐶Si𝑂2

𝑇 ) onto a one dimensional space (Fig. 6c and d). The
equations of this data collapse are obtained by a linear best fit of the 25 data
points and are given as label of the horizontal axis. The two best-fit equations
show that the difference in maximal melt velocity for the two thermal gradients
is only due to a different sensitivity to Δ𝐶Si𝑂2

𝑇 , with exponents 1.1 and 1.2,
because the exponents of Δ� are identical for the two thermal gradients (Fig. 6c
and d). Overall, for the chosen parameters, a perturbation in total silica mass
fraction has a similar impact on the maximal melt velocity as a perturbation in
the initial porosity.
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Figure 6. Panels (a) and (b) show maximal initial melt velocities as function of
initial porosity, Δ�, and total silica mass fraction, Δ𝐶Si𝑂2

𝑇 , perturbation ampli-
tudes. (a) for adiabatic gradient and (b) for conductive gradient. Black lines
show the velocity contours and red circles indicate the initial perturbations for
four simulations for which the time evolution has been calculated; respectively
simulations S05 (top left in panels a and b) and S15 (top in the middle in panels
a and b) for both temperature gradients. Panels (c) and (d) show the power
low relationship between melt velocity and a combination of porosity and total
silica mass fraction perturbation amplitude, (c) for adiabatic gradient and (d)
for conductive gradient. In each panel, blue points represent the 25 systematic
simulations and the blue line the linear regression line.

Time evolution and reactive porosity wave propagation Figure 7 shows
the time evolution of the S15 simulation with a conductive gradient. The addi-
tional figures B15 to B17 show the three other simulations, namely S05 with a
conductive gradient, and S05 and S15 with an adiabatic gradient. The evolution
of porosity (Fig. 7a) and of effective pressure (Fig. 7b) corresponds to the typi-
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cal evolution of 1D porosity waves (e.g. Connolly & Podladchikov 2013; Jordan
et al. 2018). During porosity wave propagation, the maximum porosity always
corresponds to an effective pressure of zero (Fig. 7a and b). The compaction
at the base of the high porosity region (where 𝑃𝑒 is minimum) allows the melt
to rise upward into the high porosity region under decompaction (where 𝑃𝑒 is
maximum). Comparing all porosity profiles (panel a in Fig. 7 and B15-B17), for
the two S05 simulations (Figs B15 and B16), the maximum porosity decreases
slightly with progressive time and then remains constant, whereas for the two
S15 simulations (Figs 7 and B17), the maximum porosity increases and then
decreases slightly. The two simulations with an adiabatic gradient (Figs B16
for S05 and B17 for S15) show a stabilisation of the maximum melt velocity
over time, while the two simulations with a conductive gradient (Figs B15 for
S05 and 7 for S15) show a slight increase in melt velocity over time. For the
four simulations (Figs 7 and B15-B17), the variations of melt density and total
silica mass fraction are small over time compared to the total magnesium mass
fraction which show a slightly greater variation, especially for simulations with
an adiabatic gradient (Figs B16 and B17).
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Figure 7. Time evolution of six variables in simulation S15 Conductive gradient;
all variables are dimensionless. Panel (a) shows porosity, panel (b) shows effec-
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tive pressure, panel (c) shows melt velocity, panel (d) shows melt density, panel
(e) shows total magnesium mass fraction and panel (f) shows total silica mass
fraction. Four time steps are chosen at different dimensional times: t = 0 with
dashed line (corresponding to the initial profiles in figure 5 for each variables),
t = 1.05 with black line, t = 2.10 with light blue and t = 3.15 with dark blue
(see legend).

Figure 8 shows the time evolution of the melt density (panel a), the total mag-
nesium mass fraction (panel b) and the total silica mass fraction (panel c) at
depth 𝑥 = 10 [ ] for the four simulations. The variation in melt density (Fig.
8a) for the two S05 simulations (conductive in light blue and adiabatic in grey)
and the two S15 simulations (conductive in dark blue and adiabatic in black)
is very similar. The main difference is the magnitude of the initial value at
time 𝑡 = 0 for the two different thermal gradients. The initial value for the
conductive gradient is larger than the initial value for the adiabatic gradient
(𝜌𝑚 of S05 and S15 conductive > 𝜌𝑚 of S05 and S15 adiabatic). Similar varia-
tions are observed for total magnesium mass fraction (panel b) for the two S05
simulations (conductive in light blue and adiabatic in grey) and the two S15
simulations (conductive in dark blue and adiabatic in black). For melt density,
the magnitude of the initial value at time 𝑡 = 0 between the two thermal gra-
dients are different. The initial value for the adiabatic gradient is larger than
the initial value for the conductive gradient (𝐶MgO

𝑇 of S05 and S15 adiabatic
> 𝐶MgO

𝑇 of S05 and S15 conductive). For the variation of the total silica mass
fraction (panel c), the initial value is identical for all four simulations since this
value is specified as initial condition. The local variation of the total silica mass
fraction over time is larger than the initial value (at 𝑡 = 0) for the simulations
with an adiabatic gradient (black and grey lines) and is smaller for the simu-
lations with a conductive gradient (dark and light blue lines). The maximum
peaks of the two S15 simulations (black and dark blue lines) arrive before the
maximum peaks of the two S05 simulations (grey and light blue lines). This is
consistent with the fact that S15 simulations have a greater initial perturbation,
hence the melt velocity is larger and the maximum peaks arrive first.
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Figure 8. Time evolution, at a fixed depth of x = 10, of three variables for the
four simulations indicated by red circles in figure 6: simulation S05 for adiabatic
gradient in grey, simulation S15 for adiabatic gradient in black, simulation S05
for conductive gradient in light blue and simulation S15 for conductive gradient
in dark blue. All variables are dimensionless. Panel (a) shows melt density.
Panel (b) shows total magnesium mass fraction and panel (c) shows total silica
mass fraction.
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4 Discussion
4.1 Mobility and mass transport

In the modelled chemical system, the mass fractions of MgO and Si𝑂2 in the
melt and solid are variable and are functions of pressure, temperature and total
silica content. Our model can be considered as fully mobile since there are no
restrictions on the mobility of MgO and Si𝑂2 so that MgO and Si𝑂2 can be
freely exchanged between solid and melt. This full mobility is an elaboration
compared to existing studies on reactive transport with fluid-rock interactions,
who assume that some chemical components are immobile and fixed to the solid
phase (e.g. Plümper et al. 2016, Beinlich et al., 2020). Furthermore, in our
model the total mass of MgO and Si𝑂2 can locally change permanently due
to mass transport by melt migration since the total mass of Si𝑂2 can locally
change permanently. In contrast, other studies on melt migration with chemical
differentiation consider the silica mass fraction as a function of temperature only
(e.g. Jackson et al., 2018). Therefore, for a given temperature the silica mass
fraction cannot change by transport. In our model, the mobility and mass
transport are enabled by a freely evolving porosity, which is calculated from
the conservation equation for the total mass of MgO. For example, inside the
considered partial melting region of the olivine phase diagram (Fig. 1), the
densities (Fig. 1b) and mass fractions of MgO of solid and melt (Fig.1c) are
fixed for a given temperature and pressure, independent on the composition 𝑋
(Gibbs phase rule). The total mass of MgO is calculated by the mass fractions,
densities and porosity. If the total mass of MgO is locally modified due to an
advective melt flux, and densities and mass fractions of MgO are fixed, then the
porosity of the system must change to enable and balance the mass transport.

4.2 Magnesium in melt

For the applied simple chemistry, our thermodynamic model predicts an increase
of the magnesium mass fraction in the melt, 𝐶MgO

𝑚 , with increasing pressure
(Figs. 5 and B12). Partial melting experiments of peridotite have shown also
that the MgO mass fraction in the melt increases with pressure (Fig. 9). The
black line in figure 9 represents the numerically modelled profile of 𝐶MgO

𝑚 for
a conductive thermal gradient (simulation S15). Therefore, despite the applied
simplified chemistry for the mantle composition, the modelled gradient of 𝐶MgO

𝑚
shows a similar trend than the experimental data. Our model shows smaller
absolute values of 𝐶MgO

𝑚 than the experiments, which is due to the applied
simplified chemistry.
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Figure 9. Magnesium melt mass fractions of five partial melting experiments of
peridotite vs. pressure. Filled blue circles are data from Hirose & Kushiro (1993).
Filled grey circles are data from Kushiro (1996). Filled orange triangles are data
from Walter (1998). Filled white circles are data from Wasylenki et al. (2003).
The filled red diamond is 0% melt from Davis et al. (2011). The horizontal
evolution of MgO at each pressure correspond to the increase in partial melting
rate. The black line shows the overall gradient of MgO mass fraction in the melt
resulting from our study without the perturbation (corresponding to the 𝐶MgO

𝑚
profile in Figure 5e).

4.3 2D reactive porosity wave model, channelization and melt-rock interaction

A characteristic feature of porosity wave propagation in 2D and 3D is the possi-
bility to change the shape of the propagating wave, which can be either blob-like
(Fig. 10 a-h) or channel-like (Fig. 10 i-p) (e.g. Connolly & Podladchikov, 2007;
Räss et al., 2019). The shape of the propagating wave is controlled by the ratio
of shear to bulk viscosity ( 𝜂𝑠

𝜂𝑣
) and the ratio of decompaction to compaction

bulk viscosity ( 𝜂𝑑
𝜂𝑣

) (e.g. Räss et al., 2019). A value of 𝜂𝑑
𝜂𝑣

< 1 is termed decom-
paction weakening. If both viscosity ratios are equal to one, the propagation
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is a blob-like for a circular initial perturbation in porosity. If decompaction
weakening is significant, then the propagating porosity wave forms a channel
(e.g. Connolly & Podladchikov, 2007; Räss et al., 2019). 2D and 3D models of
porosity waves are important to study the mass transport of melt because the
effective mass transport predicted by 1D models is less compared to predictions
of 2D models (Jordan et al., 2018). The presented 1D THMC transport model
is straightforward expandable to 2D and 3D. The main difference compared to
the 1D model is that the deformation of the viscous solid must be calculated
with a 2D model for viscous flow including both shear and normal deviatoric
stresses. For all other conservation equations simply the 2D advective and dif-
fusive fluxes must be added. We present here first results of two 2D models to
show the localization of flow from a blob-like (Fig. 10 a-d) to a channel-like
geometry (Fig. 10 i-l) and associated evolutions of the total silica content (Fig.
10 e-h and m-p). The 2D models employ mostly the same parameters as the 1D
model, but, for example, the initial perturbation of the porosity has the form
of a 2D Gaussian. For the model with blob-like geometry, we apply 𝜂𝑠

𝜂𝑣
= 1 and

𝜂𝑑
𝜂𝑣

= 1 and for the model with channel-like geometry 𝜂𝑠
𝜂𝑣

= 25 and 𝜂𝑑
𝜂𝑣

= 0.1.
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Figure 10. Time evolution of two 2D melt migration models by reactive porosity
waves. Panels (a-d) show the porosity and panels (e-h) the total silica mass frac-
tion for the blob-like simulation at four time steps (0.005, 1, 2 and 3). (𝜂𝑠/𝜂𝑣)=
1 and (𝜂𝑑/𝜂𝑣)= 1 for the blob-like simulation. Panels (i-l) show the porosity
and panels (m-p) the total silica mass fraction for the channel-like simulation at
four time steps (0.005, 5, 15 and 20). (𝜂𝑠/𝜂𝑣)= 25 and (𝜂𝑑/𝜂𝑣)= 𝜂𝑣/100= 0.1 for
the channel-like simulation. Orange arrows show melt velocity, yellow arrows
show solid velocity and dashed circles the position of initial perturbations. All
variables are dimensionless.

Panels (d), (h), (l) and (p) in figure 10 show the chemical exchange between
melt and solid in both simulations by the different evolution of the porosity
and the total silica mass fraction. This exchange enables an enrichment of total
silica in the solid and a differentiation of the melt in the pores.

Figure 11. Schematic illustration showing the various degrees of channelizing of
the melt flow in function of the distribution of melt flux. Redrawn form Harte
et al. 1993.

The migration of melt by either blob-like or by channelized flow is an important
process to consider for understanding metasomatism in a ductile region. Fol-
lowing the schematic illustration of Harte et al. (1993) (Fig. 11), the focusing
of melt arriving in a rock to be eventually metasomatised (indicated by black
arrows) has an impact on the type of metasomatism; from a pervasive metaso-
matism (Fig. 11a), through the formation of veins (Fig. 11b) to channels (Fig.
11c). Another important aspect is the melt-rock equilibration at every time step
in the model. In the 2D simulation presented in figure 10, blob-like migration
shows the importance of reaction as the chemical anomaly doesn’t rise with
the porosity but is accommodated by the solid via melt-rock reaction. This is
illustrated by the comparison between the location of the porosity perturbation
in figure 10d and the zone with higher total Si𝑂2 mass fraction, which is still
close to the initial perturbation indicated by the dashed circle. In contrast, in
the channel-like migration the porosity is focusing and allows the chemical per-
turbation to rise (Fig. 10l and p). The combination of melt-rock reaction with
the type of melt migration seems therefore fundamental to understand the type
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of metasomatism recorded in the lithospheric mantle.

An example of melt-rock reaction has been recently considered by Tomlinson
& Kamber (2021) to explain the formation and evolution of the subcontinental
cratonic lithospheric mantle. Xenoliths sampled by kimberlites have revealed
that the cratonic lithosphere is heterogeneous and contains olivine with high
magnesium content (𝐹𝑜92 − 94), which requires extensive melting (Boyd &
Mertzman, 1987; Herzberg, 1993). One interesting feature of this peridotitite
xenolith suite is the lower MgO / Si𝑂2 ratio for a given magnesium number
(𝑀𝑔#) of Archean subcontinental cratonic lithosphere regarding younger sub-
continental lithospheric mantle. While various hypotheses have been proposed
to explain this feature (e.g. Boyd & Mertzman, 1987; Herzberg, 1993), Tomlin-
son & Kamber (2021) suggest that silica enrichment in cratonic lithosphere could
be associated to the migration of komatiite magma produced in episodic hot
asthenospheric upwellings, which interact with previously depleted peridotite.
Their melt-peridotite interaction is supported by THERMOCALC calculations,
but no physical aspect on melt migration is considered. Although our thermody-
namic calculation does not yet allow to predict natural melt-peridote chemical
interactions due to our simplified chemical system, which does not take into
account pyroxene crystallization or dissolution, the mechanical aspects of our
model provide some new insights of melt-percolation within the ductile litho-
spheric mantle, supporting potential channelization of melt passing through a
cratonic lithosphere.

4.4 Estimates of melt velocity

We can use the characteristic values of 𝐿𝑐 and 𝑡𝑐 to calculate a dimensional melt
velocity from the numerically calculated melt velocity, by applying representa-
tive values for melt viscosity, volumetric viscosity and porosity. Using a porosity
𝜑 of 2%, the effective permeability is in the order of 𝑘 = 10−7 ⋅ 𝜑3 = 8 ⋅ 10−13

[m2] (e.g. Connolly and Podladchikov, 2007). We assume values for melt viscos-
ity 𝜂𝑚 between 0.1 and 10 [Pa·s] (e.g. McKenzie, 1989). We further assume
that the volumetric viscosity 𝜂𝑣 is identical to the shear viscosity around the
LAB and use 1019 [Pa·s], in agreement with numerical lithosphere subduction
simulations of Bessat et al. (2020). The applied melt density is the reference
density (𝜌𝑚,0 = 3863 [kg m-3]). Taking a typical velocity of 12 from the two
simulations S15 (red dots in the top middle in Fig. 6a and b), we obtain a di-
mensional melt velocity between 1 to 115 [m·yr-1]. Modifying the porosity 𝜑 to
1 and 0.5%, and the associated permeability, and using a melt viscosity 𝜂𝑚of 0.1
[Pa·s], which seems more realistic for low degree melts rising in the lithosphere,
we obtain velocities between 14.3 [m·yr-1] and 1.8 [m·yr-1] for a porosity of 1
and 0.5%, respectively. Using a larger melt viscosity 𝜂𝑚of 10 [Pa·s], as used
by Connolly et al. (2009) to estimate melt velocity at mid ocean ridges, we
obtain 14 [cm·yr-1] and 1.8 [cm·yr-1], respectively. The melt velocities esti-
mated above agree to first order with melt transport velocities deduced from
centrifuge experiments by Connolly et al. (2009), which are 2 to 150 [m·yr-1]
and considered applicable for melt rising at mid-ocean-ridges.
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5 Conclusions
We present a new numerical model for two-phase melt migration in a deformable
viscous solid coupled to chemical differentiation. The model is based on the cou-
pling of a thermo-hydro-mechanical-chemical (THMC) transport model with
thermodynamic results that have been precomputed by Gibbs energy minimiza-
tion. For the considered system of forsterite-fayalite-silica, the solid and melt
densities and the mass fractions of MgO and Si𝑂2 in both solid and melt are
fully mobile, and all densities and mass fractions vary with temperature, pres-
sure and total silica content. Therefore, the model is suitable to investigate
chemical differentiation, metasomatism and melt-rock interaction during melt
migration. The developed 1D and 2D THMC transport model can generate
porosity waves. The initial variation of porosity and total silica content has a
strong impact on the melt velocity. Also, the employed thermal gradient in the
model, either adiabatic or conductive, has an impact on the melt velocity, and
higher velocities result from an adiabatic gradient. For conditions applicable to
the lithosphere-asthenosphere boundary, the densities for an adiabatic gradient
generally increase with depth and increasing pressure, while for a conductive
gradient the densities decrease with increasing depth. The thermal gradient,
therefore, has a considerable impact on the vertical variation of solid and melt
densities and mass fractions and, hence, on the chemical differentiation during
melt migration. Application of a range of typical lithosphere values for porosity,
permeability, melt and compaction viscosities provides reasonable melt veloci-
ties between 10 [cm·yr-1] and 100 [m·yr-1].

The preliminary 2D version of the model can generate blob-like and channel-
like porosity waves. First 2D results show that the total silica mass transport is
more efficient by channel-like porosity waves than by blob-like porosity waves,
which has important implications for understanding metasomatism during melt
migration across the ductile lithosphere.

The thermodynamic results show that the sensitivity of solid and melt densities
to variations in 𝑃 , 𝑇 and 𝐶Si𝑂2

𝑇 , expressed by the coefficients 𝛼, 𝛽 and 𝛾, can
be considerably different. The same applies for the solid and melt mass frac-
tions of MgO and Si𝑂2. Particularly, the sensitivity to chemical variations in
𝐶Si𝑂2

𝑇 is considerably different for the corresponding densities and considered
mass fractions of the solid and melt phases. Hence, it is important to treat the
dependencies of densities and mass fractions of solid and melt phase on varia-
tions in 𝑃 , 𝑇 and 𝐶Si𝑂2

𝑇 independently in a THMC melt migration model and
to determine these dependencies with thermodynamic calculations.
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Appendix A. THMC model equations
A general conservation equation without a source term in 1D for any variable,
here named 𝐵 (per unit volume), has the form:

𝜕𝐵
𝜕𝑡 = − 𝜕

𝜕𝑥 𝑞𝐴 − 𝜕
𝜕𝑥 𝑞𝐷 (A1)

where 𝑡 is the time, 𝑞𝐴 is the advective flux and 𝑞𝐷 is the diffusive flux. The
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advective flux corresponds to the transport of 𝐵 with its velocity 𝑣𝑏:

𝑞𝐴 = 𝐵𝑣𝑏 (A2)

A porous medium, with porosity 𝜑, is composed of a solid skeleton (solid phase)
with density 𝜌𝑠 and a melt phase in the pores with density 𝜌𝑚. The total mass
of the medium, having total density 𝜌𝑇 , is the sum of the mass of melt in pores
and the mass of the solid:

𝐵 = 𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑) = 𝜌𝑇 (A3)

The advective flux for the total mass is:

𝑞𝐴 = 𝜌𝑚𝜑𝑣𝑚 + 𝜌𝑠(1 − 𝜑)𝑣𝑠 (A4)

where 𝑣𝑚 and 𝑣𝑠 are the melt and solid velocities, respectively. There is no
diffusive flux in the conservation of the total mass, hence:

𝑞𝐷 = 0 (A5)

Therefore, the conservation equation for total mass is:

𝜕
𝜕𝑡 (𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝜌𝑚𝜑𝑣𝑚 + 𝜌𝑠(1 − 𝜑)𝑣𝑠) (A6)

The force balance for the melt follows Darcy’s law:

𝜑 (𝑣𝑚 − 𝑣𝑠) = − 𝑘𝜑3

𝜂𝑚
( 𝜕𝑃𝑚

𝜕𝑥 + 𝜌𝑚𝑔) (A7)

where 𝑘 is the permeability, 𝜂𝑚 is the melt viscosity, 𝑃𝑚 is the melt pressure
and 𝑔 is the gravitational acceleration. To introduce the Darcy’s force balance
in the total mass conservation equation, it is useful to modify equation (A6) by
subtracting and adding 𝑣𝑠 to 𝑣𝑚:

𝜕
𝜕𝑡 (𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝜌𝑚𝜑(𝑣𝑚 − 𝑣𝑠 + 𝑣𝑠) + 𝜌𝑠(1 − 𝜑)𝑣𝑠) (A8)
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Equation (A8) can be rewritten as:

𝜕
𝜕𝑡 (𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (−𝜌𝑚
𝑘𝜑3

𝜂𝑚
( 𝜕𝑃𝑚

𝜕𝑥 + 𝜌𝑚𝑔) + 𝜌𝑚𝜑𝑣𝑠 + 𝜌𝑠(1 − 𝜑)𝑣𝑠) (A9)

Equation (A9) can be simplified by collecting terms in front of 𝑣𝑠:

𝜕
𝜕𝑡 (𝜌𝑚𝜑 + 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (−𝜌𝑚
𝑘𝜑3

𝜂𝑚
( 𝜕𝑃𝑚

𝜕𝑥 + 𝜌𝑚𝑔) + 𝜌𝑇 𝑣𝑠) (A10)

The total mass of magnesium (MgO) considers the concentration of MgO in the
melt and in the solid:

𝐵 = 𝐶MgO
𝑚 𝜌𝑚𝜑 + 𝐶MgO

𝑠 𝜌𝑠(1 − 𝜑) = 𝑀MgO
𝑇 (A11)

where 𝐶MgO
𝑚 and 𝐶MgO

𝑠 are, respectively, the mass fractions (𝐶MgO
𝑚 = mass of

MgO in the melt / total mass of melt; 𝐶MgO
𝑠 = mass of MgO in the solid / total

mass of solid) of MgO in the melt and in the solid. The advective flux for the
total mass of MgO is:

𝑞𝐴 = 𝐶MgO
𝑚 𝜌𝑚𝜑𝑣𝑚+𝐶MgO

𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠 (A12)

Assuming an ideal solution, the diffusive flux is described by Fick’s law that
describes the molecular diffusion of MgO in the melt and in the solid:

𝑞𝐷 = −𝐷MgO
𝑚 𝜌𝑚𝜑 𝜕𝐶MgO

𝑚
𝜕𝑥 − 𝐷MgO

𝑠 𝜌𝑠(1 − 𝜑) 𝜕𝐶MgO
𝑠

𝜕𝑥 (A13)

where 𝐷MgO
𝑚 and 𝐷MgO

𝑠 are the effective diffusivities of MgO in the melt and in
the solid (e.g. Naumann and He, 2001). Therefore, the conservation equation
for total mass of MgO is:

𝜕
𝜕𝑡 (𝐶MgO

𝑚 𝜌𝑚𝜑 + 𝐶Mg𝑂
𝑠 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝐶Mg𝑂
𝑚 𝜌𝑚𝜑𝑣𝑚 + 𝐶Mg𝑂

𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠 − 𝐷MgO
𝑚 𝜌𝑚𝜑 𝜕𝐶MgO

𝑚
𝜕𝑥 − 𝐷MgO

𝑠 𝜌𝑠(1 − 𝜑) 𝜕𝐶MgO
𝑠

𝜕𝑥 ) (A14)

The total mass per unit of volume Si𝑂2 considers the concentration of Si𝑂2 in
the melt and in the solid:
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𝐵 = 𝐶Si𝑂2𝑚 𝜌𝑚𝜑 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑) = 𝑀Si𝑂2
𝑇 (A15)

where 𝐶Si𝑂2𝑚 and 𝐶Si𝑂2𝑠 are respectively the mass fractions (𝐶Si𝑂2𝑚 = mass of
Si𝑂2 in the melt / total mass of melt; 𝐶Si𝑂2𝑠 = mass of Si𝑂2 in the solid / total
mass of solid) of Si𝑂2 in the melt and in the solid. The advective flux for the
total mass of Si𝑂2 is:

𝑞𝐴 = 𝐶Si𝑂2𝑚 𝜌𝑚𝜑𝑣𝑚 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠 (A16)

For an ideal solution, the diffusive flux is described by Fick’s law that describes
the molecular diffusion of Si𝑂2 in the melt and in the solid:

𝑞𝐷 = −𝐷Si𝑂2𝑚 𝜌𝑚𝜑 𝜕𝐶Si𝑂2𝑚
𝜕𝑥 − 𝐷Si𝑂2𝑠 𝜌𝑠(1 − 𝜑) 𝜕𝐶Si𝑂2𝑠

𝜕𝑥 (A17)

where 𝐷Si𝑂2𝑚 and 𝐷Si𝑂2𝑠 are the effective diffusivities of Si𝑂2 in the melt and in
the solid (e.g. Naumann and He, 2001). Therefore, conservation equation for
total mass of Si𝑂2 is:

𝜕
𝜕𝑡 (𝐶Si𝑂2𝑚 𝜌𝑚𝜑 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝐶Si𝑂2𝑚 𝜌𝑚𝜑𝑣𝑚 + 𝐶Si𝑂2𝑠 𝜌𝑠(1 − 𝜑)𝑣𝑠 − 𝐷Si𝑂2𝑚 𝜌𝑚𝜑 𝜕𝐶Si𝑂2𝑚
𝜕𝑥 − 𝐷Si𝑂2𝑠 𝜌𝑠(1 − 𝜑) 𝜕𝐶Si𝑂2𝑠

𝜕𝑥 ) (A18)

The total thermal energy of the medium is:

𝑈𝑚(𝑃 , 𝑇 ) =
∫𝑇
𝑇ref

(𝑐𝑝𝑚 (𝑃 , 𝑇 ′) 𝜌𝑚 (𝑃 , 𝑇 ′)) 𝑑𝑇 ′

𝑈𝑠(𝑃 , 𝑇 ) =
∫𝑇
𝑇ref

(𝑐𝑝𝑠 (𝑃 , 𝑇 ′) 𝜌
𝑠

(𝑃 , 𝑇 ′)) 𝑑𝑇 ′

𝐵 = 𝑈𝑚𝜑 + 𝑈𝑠(1 − 𝜑) = 𝑈𝑇

(A19)

where 𝑐𝑝𝑚 and 𝑐𝑝𝑠 are specific heat capacity of the melt and the solid and 𝑇 is
the temperature. The advective flux for thermal energy is:

𝑞𝐴 = 𝑈𝑚𝜑𝑣𝑚 + 𝑈𝑠(1 − 𝜑)𝑣𝑠 (A20)

Assuming that the temperature in the solid and fluid is identical, the diffusive
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flux is described by Fourier’law:

𝑞𝐷 = −𝜆𝑇
𝜕𝑇
𝜕𝑥 (A21)

where 𝜆𝑇 = (𝜆𝑚𝜑 + 𝜆𝑠(1 − 𝜑)) and 𝜆𝑚 and 𝜆𝑠 are the thermal conductivity of
melt and solid, respectively. The conservation equation for the energy takes the
form of:

𝜕
𝜕𝑡 (𝑈𝑚𝜑 + 𝑈𝑠(1 − 𝜑)) = − 𝜕

𝜕𝑥 (𝑈𝑚𝜑𝑣𝑚 + 𝑈𝑠(1 − 𝜑)𝑣𝑠 − 𝜆𝑇
𝜕𝑇
𝜕𝑥 ) (A22)

The other mechanical equations that close the system of equations are presented
in section 2.2, equations 12, 13, 15 and 16.
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Appendix B. Additional figures and tables

Figure B12. Initial profiles of simulation S05 Conductive gradient, all variables
are dimensionless. Panel (a) shows melt pressure (red diamond) and total pres-
sure (black line). Panel (b) shows melt density (red line) and solid density (blue
line). Panel (c) shows effective pressure, positive values indicate decompaction
while negative values indicate compaction. Panel (d) shows temperature. Panel
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(e) shows magnesium mass fraction in melt (red line) and in solid (blue line)
and total magnesium mass fraction (black line). Panel (f) shows melt velocity.
Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt (red line)
and in the solid (blue line) and total silica mass fraction (black line). Panel (i)
shows solid velocity.

Figure B13. Initial profiles of simulation S05 Adiabatic gradient, all variables are
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dimensionless. Panel (a) shows melt pressure (red diamond) and total pressure
(black line). Panel (b) shows melt density (red line) and solid density (blue
line). Panel (c) shows effective pressure, positive values indicate decompaction
while negative values indicate compaction. Panel (d) shows temperature. Panel
(e) shows magnesium mass fraction in melt (red line) and in solid (blue line)
and total magnesium mass fraction (black line). Panel (f) shows melt velocity.
Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt (red line)
and in the solid (blue line) and total silica mass fraction (black line). Panel (i)
shows solid velocity.
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Figure B14. Initial profiles of simulation S15 Adiabatic gradient, all variables are
dimensionless. Panel (a) shows melt pressure (red diamond) and total pressure
(black line). Panel (b) shows melt density (red line) and solid density (blue
line). Panel (c) shows effective pressure, positive values indicate decompaction
while negative values indicate compaction. Panel (d) shows temperature. Panel
(e) shows magnesium mass fraction in melt (red line) and in solid (blue line)
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and total magnesium mass fraction (black line). Panel (f) shows melt velocity.
Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt (red line)
and in the solid (blue line) and total silica mass fraction (black line). Panel (i)
shows solid velocity.
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Figure B15. Evolution in time of six variables in simulation S05 Conductive
gradient, all variables are dimensionless. Panel (a) shows porosity, panel (b)
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shows effective pressure, panel (c) shows melt velocity, panel (d) shows melt
density, panel (e) shows total magnesium mass fraction and panel (f) shows
total silica mass fraction. Four time steps are chosen at different dimensional
times: t = 0 with dashed line (corresponding to the initial profiles in figure B12
for each variables), t = 1.05 with black line, t = 2.10 with light blue and t =
3.15 with dark blue (see legend).
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Figure B16. Evolution in time of six variables in simulation S05 Adiabatic
gradient, all variables are dimensionless Panel (a) shows porosity, panel (b)
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shows effective pressure, panel (c) shows melt velocity, panel (d) shows melt
density, panel (e) shows total magnesium mass fraction and panel (f) shows
total silica mass fraction. Four time steps are chosen at different dimensional
times: t = 0 with dashed line (corresponding to the initial profiles in figure B13
for each variables), t = 1.05 with black line, t = 2.10 with light blue and t =
3.15 with dark blue (see legend).
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Figure B17. Evolution in time of six variables in simulation S15 Adiabatic
gradient, all variables are dimensionless. Panel (a) shows porosity, panel (b)
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shows effective pressure, panel (c) shows melt velocity, panel (d) shows melt
density, panel (e) shows total magnesium mass fraction and panel (f) shows
total silica mass fraction. Four time steps are chosen at different dimensional
times: t = 0 with dashed line (corresponding to the initial profiles in figure B14
for each variables), t = 1.05 with black line, t = 2.10 with light blue and t =
3.15 with dark blue (see legend).

Table B3. Numerical pseudo-transient time step used in the THMC simulations

Pseudo-transient time step

for the melt pressure �𝑡𝑃
TP = 1

2
dx2

max( 𝑘
𝜂𝑚 ⋅( 𝜑

𝜑0 )
3
)

for the porosity �𝑡𝜑
TP = dt

for the total silica content �𝑡𝐶Si𝑂2
𝑇

TP = dt
for the temperature �𝑡𝑇

TP = 1
4.1

dx2

max( 𝜆𝑚
𝜌𝑇 𝑐𝑝𝑇

)

for the solid velocity �𝑡𝑣𝑠
TP = 1

6
dx2

𝜂𝑠

Appendix C. Thermodynamic calculations
Transformation from molar fractions into mass fractions

To use molar concentrations in the mass conservation equations of the THMC
transport model, we first transform these concentrations into olivine phase mass
fractions:

𝐶foL
𝑚 = 𝐶foL

𝑚,[mol]⋅𝑚foL
𝑚

(𝐶foL
𝑚, [mol]⋅𝑚foL𝑚 )+(𝐶faL

𝑚,[mol]⋅𝑚faL𝑚 ) (C1a)

𝐶faL
𝑚 = 𝐶faL

𝑚,[𝑚𝑜𝑙]⋅𝑚faL
𝑚

(𝐶foL
𝑚,[mol]⋅𝑚foL𝑚 )+(𝐶faL

𝑚,[mol]⋅𝑚faL𝑚 ) (C1b)

𝐶fo
𝑠 = 𝐶fo

𝑠,[𝑚𝑜𝑙]⋅𝑚fo
𝑠

(𝐶fo
𝑠,[mol]⋅𝑚fo𝑠 )+(𝐶fa

𝑠,[mol]⋅𝑚fa𝑠 ) (C1c)

𝐶fa
𝑠 = 𝐶fa

𝑠,[𝑚𝑜𝑙]⋅𝑚fa
𝑠

(𝐶fo
𝑠,[mol]⋅𝑚fo𝑠 )+(𝐶fa

𝑠,[mol]⋅𝑚fa𝑠 ) (C1d)

where 𝑚foL
𝑚 , 𝑚faL

𝑚 , 𝑚fo
𝑠 and 𝑚fa

𝑠 are, respectively, the molar mass of forsterite
and fayalite liquid for the melt part and forsterite and fayalite for the solid part.
We transform these olivine phase mass fractions into oxide mass fractions of
MgO, FeO and Si𝑂2:

𝐶MgO
𝑚,𝑖 = 𝐶foL

𝑚 ⋅ 𝑀MgO
𝑟 ⋅ nbMgO (C2a)

𝐶FeO
𝑚,𝑖 = (1 − 𝐶foL

𝑚 ) ⋅ 𝑀FeO
𝑟 ⋅ nbFeO (C2b)

𝐶Si𝑂2
𝑚,𝑖 = (𝐶foL

𝑚 + 1 − 𝐶foL
𝑚 ) ⋅ 𝑀Si𝑂2𝑟 ⋅ nbSi𝑂2 (C2c)
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where 𝑀MgO
𝑟 , 𝑀FeO

𝑟 and 𝑀Si𝑂2𝑟 are molecular weight (i.e. relative molecular
mass) of oxides (𝑀MgO

𝑟 = 0.0403 [kg·mol-1], 𝑀FeO
𝑟 = 0.0708 [kg·mol-1] and

𝑀Si𝑂2𝑟 = 0.0601 [kg·mol-1]), nbMgO, nbFeO and nbSi𝑂2 correspond to the num-
ber of times each oxide is in the olivine formula (nbMgO = nbFeO = 2 and
nbSi𝑂2= 1), subscript 𝑖 indicates that the oxide mass fractions 𝐶MgO

𝑚,𝑖 , 𝐶FeO
𝑚,𝑖 and

𝐶Si𝑂2
𝑚,𝑖 are not normalised. For the normalization, each oxide mass fraction is

divided by the sum of these three oxide mass fractions:

𝐶MgO
𝑚 = 𝐶MgO

𝑚,𝑖
𝐶MgO

𝑚,𝑖 +𝐶FeO
𝑚,𝑖 +𝐶Si𝑂2

𝑚,𝑖
(C3a)

𝐶FeO
𝑚 = 𝐶FeO

𝑚,𝑖
𝐶MgO

𝑚,𝑖 +𝐶FeO
𝑚,𝑖 +𝐶Si𝑂2

𝑚,𝑖
(C3b)

𝐶Si𝑂2𝑚 = 𝐶Si𝑂2
𝑚,𝑖

𝐶MgO
𝑚,𝑖 +𝐶FeO

𝑚,𝑖 +𝐶Si𝑂2
𝑚,𝑖

(C3c)

𝐶MgO
𝑚 , 𝐶FeO

𝑚 and 𝐶Si𝑂2𝑚 are the oxide mass fractions that we use in the THMC
model. We proceed with the same approach to calculate the values for the solid
part, 𝐶MgO

𝑠 , 𝐶FeO
𝑠 and 𝐶Si𝑂2𝑠 .

Calculation of 𝛾
We calculate the 𝛾 for 𝐶Si𝑂2𝑚 and 𝐶Si𝑂2𝑠 as follow :

𝛾𝐶Si𝑂2𝑚
=

( 𝐶Si𝑂2𝑚,𝑒𝑥𝑝−𝐶Si𝑂2
𝑚,0

𝐶Si𝑂2
𝑇,𝑒𝑥𝑝−𝐶Si𝑂2

𝑇,0
)

𝐶Si𝑂2
𝑚,0

(C4a)

𝛾𝐶Si𝑂2𝑠
=

( 𝐶Si𝑂2𝑠,𝑒𝑥𝑝−𝐶Si𝑂2
𝑠,0

𝐶Si𝑂2
𝑇,𝑒𝑥𝑝−𝐶Si𝑂2

𝑇,0
)

𝐶Si𝑂2
𝑠,0

(C4b)

For the density calculation, we use the thermodynamic data of Holland & Powell
(1998) and the different minerals and liquids 𝑀𝑔‐𝐹𝑒 end-members are recalcu-
lated from experimental data of Davis et al. (2011). In these calculations, we
use the following end-members: for the solid part, forsterite (fo) (Mg2Si𝑂4)
and fayalite (fa) (Fe2Si𝑂4) for olivine; enstatite (en) (Mg2Si2𝑂6) and ferrosilite
(fs) (Fe2Si2𝑂6) for orthopyroxene; diopside (di) (CaMgSi2𝑂6) and hedenbergite
(hed) (CaFeSi2𝑂6) for clinopyroxene; pyrope (py) (Mg3Al2Si3𝑂12) and alman-
dine (alm) (Fe3Al2Si3𝑂12) for garnet. We consider also quartz (𝑞) (Si𝑂2). For
the melt part, we consider forsterite liquid (foL), fayalite liquid (faL) and quartz
liquid (qL). The abbreviations in brackets correspond to the nomenclature of
Holland & Powell (1998).
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