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Abstract

Storms propagate over the ocean and create moving patches of strong winds that generate swell systems. Here, we describe

the dynamics of wave generation under a moving storm by using a simple parametric model of wave development, forced

by a temporally- and spatially-varying moving wind field. This framework reveals how surface winds under moving storms

determine the origin and amplitude of swell events. Swell systems are expected to originate from locations different than the

moving high-wind forcing regions. This is confirmed by a physically-informed optimization method that back-triangulates the

common source locations of swell using their dispersion slopes, simultaneously measured at five wave-buoy locations. Hence,

the parametric moving fetch model forced with reanalysis winds can predict the displacement between the highest winds and

the observed swell source area when forced with reanalysis winds. The model further shows that the storm’s peak wind speed

is the key factor determining swell energy since it determines surface wind gradients that lead to the spatial convergence of

wave energy into a much smaller area than the wind fetch. This spatial wave energy convergence implies enhanced wave energy

dissipation in this focusing area, slightly displaced from the maximum wind locations.

This analysis provides an improved understanding of fetches for extra-tropical swell systems and may help to identify biases in

swell forecast models, air-sea fluxes, and upper-ocean mixing estimations.
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Brest, France8

Key Points:9

• Wave generation by a moving extra-tropical storm is described using a Gaussian10

wind field and a parametric model of wave development11

• A new developed machine-learning algorithm triangulates the space-time evolv-12

ing source point of swell systems from buoy measurements13

• This model describes the distance between swell source and the storm’s maximum14

wind speed and reveals sensitivities to storm’s parameters15
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Abstract16

Storms propagate over the ocean and create moving patches of strong winds that gen-17

erate swell systems. Here, we describe the dynamics of wave generation under a mov-18

ing storm by using a simple parametric model of wave development, forced by a temporally-19

and spatially-varying moving wind field. This framework reveals how surface winds un-20

der moving storms determine the origin and amplitude of swell events. Swell systems are21

expected to originate from locations different than the moving high-wind forcing regions.22

This is confirmed by a physically-informed optimization method that back-triangulates23

the common source locations of swell using their dispersion slopes, simultaneously mea-24

sured at five wave-buoy locations. Hence, the parametric moving fetch model forced with25

reanalysis winds can predict the displacement between the highest winds and the observed26

swell source area when forced with reanalysis winds. The model further shows that the27

storm’s peak wind speed is the key factor determining swell energy since it determines28

surface wind gradients that lead to the spatial convergence of wave energy into a much29

smaller area than the wind fetch. This spatial wave energy convergence implies enhanced30

wave energy dissipation in this focusing area, slightly displaced from the maximum wind31

locations. This analysis provides an improved understanding of fetches for extra-tropical32

swell systems and may help to identify biases in swell forecast models, air-sea fluxes, and33

upper-ocean mixing estimations.34

Plain Language Summary35

Storms generate waves on the ocean surface that can travel across entire ocean basins,36

the so-called swell waves. However, it is unclear how the amplitude and period of these37

surface waves depend on the strength and shape of the storm. One has to consider the38

movement of the storm in addition to its size, lifetime, and wind speeds. This study shows39

how all these parameters control the amplitude and period of swell events reaching the40

coastlines. We find that the storm’s movement and its peak wind speed compress the41

wave energy to a small area, which then appears as a swell source location in the open42

ocean. This study can help improve swell forecasts and understand how long-term changes43

in mid-latitude storms would modify the exchange of momentum and heat between the44

atmosphere and the ocean.45
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1 Introduction46

Swell events are long-crested linear wave systems that propagate across the ocean47

basins (Munk & Snodgrass, 1957; Snodgrass et al., 1966; Ardhuin et al., 2009). Swells48

impact harbor safety, coastal floating, and beach erosion (Wilson, 1957; Morison & Im-49

berger, 1992; Russell, 1993; Hunt, 1961; Ferreira, SPR 2005; Enŕıquez et al., 2017), but50

also modulate sea surface height and affect altimeter and other remote sensing obser-51

vations (like future SWOT or ICESat-2, Morrow et al., 2019; Klotz et al., 2020). Impor-52

tantly, swells play a role in air-sea interactions, possibly altering the sea surface rough-53

ness and subsequent turbulent air-sea fluxes (Makin, 2008). In addition, swell systems54

trace intense air-sea exchanges, and hence can potentially help to better understand air-55

sea fluxes and mixed-layer variability under storms, as well as impacts on global climate.56

The motivation of this study is to provide rapid and robust means of swell generation57

and how swell events are driven by mid-latitude storm variability.58

Swell waves are routinely observed, e.g. along coastlines using the Coastal Data59

Information Program/National Data Buoy Center (CDIP/NDBC, O’Reilly et al., 2016,60

Figure 1b to e), or from space by Synthetic Aperture Radar images (SAR, Chapron et61

al., 2001) and Real Aperture Radar measurements (Hauser et al., 2020). These obser-62

vations can be used to back-track swell to focal points or swell source locations, either63

by utilizing the deep water dispersion relation in spectrograms observed at a point (Munk,64

1947; Barber & Ursell, 1948; Snodgrass et al., 1966; Hell et al., 2019) or by estimating65

the local convergence of the wave ray’s backward trajectories derived from SAR-images66

(Collard et al., 2009; Husson et al., 2012). Both methods assume swell systems to orig-67

inate from an idealized source point. Clearly, the definition of such a source point may68

appear ambiguous, given typical spatial scales O(1000km) and lifetime O(5 days) of a69

extra-tropical storm that moves at about 10 m s−1 (Figure 1a, Eady, 1949; Hodges et70

al., 2011; Neu et al., 2012).71

A path to understand the appearance of such source points and the properties of72

the resulting swell systems, is to analyse the relationship between surface winds and the73

resulting surface wave spectra. This relation can generally be well approximated by a74

set of semi-empirical functions that assume homogeneous wind speeds within an area or75

for a certain duration: the fetch (“fetch laws”, K. Hasselmann et al., 1973, 1976; Elfouhaily76

et al., 1997, and there in). However, these self-similar relations, first established by Kitaigorodskii77
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(1962), do not account for the spatial and temporal variability of the wind forcing. It78

is thus unclear how a continuously varying wind field leads to the generation of one dom-79

inant single wave event that seems to stem from a very small source region, at least an80

order of magnitude smaller than the storm (Munk, 1947; Barber & Ursell, 1948; Collard81

et al., 2009; Husson et al., 2012; Hell et al., 2020).82

Spectral wave models, like Wave Watch III (Tolman, 2009), have also known weak-83

nesses due to their strong dependencies on the wind forcing field (Cavaleri, 1994; Ponce84

& Ocampo-Torres, 1998; Feng et al., 2006; Durrant et al., 2013; Stopa & Cheung, 2014;85

P. A. Janssen & Bidlot, 2018). While parameterizations of the source terms in those nu-86

merical models essentially reproduce the fetch laws, modelled wave arrival times and heights87

are commonly biased compared to in-situ wave-buoy observations. These biases are likely88

related to some lack of precise information to describe storm dynamics. Extreme winds89

may not always be properly described over time and space, and generated swell systems90

cannot always be correctly predicted. This strong dependence of the modelled wave field91

on the wind forcing is also important when wave models are coupled to Earth system92

models to better represent surface fluxes and air-sea exchange (Li et al., 2016; Bourassa93

et al., 2019). In this case, wave model parameters cannot be tuned to compensate for94

biases in the wind forcing, and hence a better dynamical understanding of wave gener-95

ation is still needed to include waves in coupled Earth system models.96

An alternative to the fetch’s scaling laws or spectral wave models is to consider sim-97

ple wave evolution models, directly compared to wind and wave observations. Numer-98

ous studies have used this strategy for moving tropical cyclones (Young, 1988, 2003; Bowyer99

& MacAfee, 2005; Chen et al., 2007; Young & Vinoth, 2013; Kudryavtsev et al., 2015,100

2021), but the relationship between faster moving extra-tropical storms and resulting101

swell events remains largely unexplored (Figure 1, Young et al., 1987; Doyle, 1995, 2002).102

Extra-tropical storms are an integral part of synoptic meteorology with ample theories103

about their dynamics and life cycles (Bjerknes, 1919; Shapiro & Keyser, 1990; Neiman104

& Shapiro, 1993; Neiman et al., 1993; Schultz et al., 1998; Schemm & Wernli, 2014, re-105

view in ; Schultz et al., (2018)) and here we aim to connect these theories with dynam-106

ics of wave generation.107

In this study, we explicitly show how synoptic-scale dynamics can be related to prop-108

erties of the generated sea states and the residual swell systems. We build on develop-109
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ments presented in Kudryavtsev et al. (2015) to derive a simplified model for swell events110

from extra-tropical storm (section 2.1). The goal is to complement full sophisticated spec-111

tral wave models, since a simplified model can rapidly provide large ensembles of solu-112

tions to help retrieve the storm properties. More explicitly, we approximate the mov-113

ing fetch with varying winds under an extra-tropical cyclones as a two-dimensional Gaus-114

sian shape and analyse the dynamics resulting from gradients in the wind forcing field115

(section 2.2). We then use a back-triangulating method to retrieve the swell source lo-116

cation from wave buoy observations (sections 3.1 and 3.2). This allows us to test the ide-117

alized moving wind fetch model for several case studies in the North Pacific (sections 3.3118

and 3.4). Combining an idealized model for swell generation and the optimized model119

of swell propagation finally suggests a three stage life-cycle of swell waves that is sum-120

marized and discussed in section 4.121

2 Wave generation in a moving frame of reference122

In this section, we extend the framework introduced by Kudryavtsev et al. (2015)

to extra-tropical storms. Wave spectra of growing seas are assumed to follow self-similarity,

and dynamical changes of the spectra are described by a single variable, the peak an-

gular frequency ωp (K. Hasselmann et al., 1976; Kudryavtsev et al., 2015). The evolu-

tion of ωp in an Eulerian frame is then described by

∂ωp
∂t

+ cg
∂ωp
∂x

=
( g
u

)2

φ(α), (1)

where cg = ∂kωp = g/2 ωp is the peak group velocity, α = u/cp = uωp/g is the wave

age, the ratio of the 10-m wind speed u and phase velocity of the spectral peak cp =

g/ωp (Equation A8 in Kudryavtsev et al., 2015). The wind-input source term φ is de-

fined as

φ(α) =
q

2

(cα
α

)1/q

(2)

with cα = 15.4, and q = −3/10. Here, and in the following analysis, we use a set of123

parameters for a so-called young sea development (K. Hasselmann et al., 1976; Badulin124

et al., 2007; Kudryavtsev et al., 2015, details in Appendix A3). In the following, outlined125

dynamics remain the same for all possible choices of these parameters. Note that under126

constant winds Equation (1) is reduced to the familiar “fetch relations” (K. Hasselmann127

et al., 1973, 1976; Elfouhaily et al., 1997, and references therein).128
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The above equations solely describe the spectral peak variables (cg, cp and ωp), but

this is sufficient to derive the whole wave energy spectrum following semi-empirical re-

lations (K. Hasselmann et al., 1973; Elfouhaily et al., 1997; Pierson & Moskowitz, 1964).

The total wave energy E and significant wave height Hs of the growing wave field are

then related to the peak frequency ωp with

E g2

u4
=
Hs2 g2

16 u4
= ce

(
d g

u2

)p
∼ u g2

2 ω3
p

, (3)

where ce = 4.41×10−7 and p = 1, again following K. Hasselmann et al. (1976), Badulin129

et al. (2007), and Kudryavtsev et al. (2015). For this simple case of stationary wave gen-130

eration, the energy of the generated wave field E travels with the group velocity cg and131

hence can eventually leave the generation area. Over the open ocean, wave generation132

is related to patches of strong winds under storms, called the fetch, that are neither sta-133

tionary nor infinite (Munk, 1947). The standard fetch relations are thus theoretical lim-134

its, and the fetch’s characteristic scales and its propagation must be taken into account.135

For a storm and its fetch that both moving with the translational speed V , the wave-

growth equation Equation (1) must be written in a Lagrangian frame of reference, mov-

ing with the storm as

∂t ωp + (cg − V ) ∂X ωp =
( g
u

)2

φ(α), (4)

where X = x−V t is the along-wind coordinate in the moving reference frame (Kudryavtsev136

et al., 2015). This equation describes the evolution of a growing sea in the moving frame137

with coordinates (X, t), and the forcing φ(u, ωp) that is a function of the local wind speed138

u(X, t). This non-linear 1st-order partial differential equation is used in the following139

two subsections to outline the effects of a moving fetch on growing waves for typical scales140

of extra-tropical storms. First for storms with constant winds for which the equation can141

be solved analytically (section 2.1), and then with temporally and spatially varying winds142

following a Gaussian form (section 2.2).143

2.1 Constant, finite moving wind models144

First, we consider constant steady winds u under a storm of length L and dura-145

tion T , steadily moving with a constant translation velocity V . Constant winds imply146

a constant forcing function φ(ωp), such that Equation 4 can be solved analytically for147

ωp using the method of characteristics (Appendix A). Figure 2 shows these character-148

istic curves of wave energy for typical scales of tropical and extra-tropical storms. The149
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characteristic curves X(t,X0, t0, c0) describe the position of a growing non-linear wave150

packet which has a group speed c0 at position X0 and time t0, as it passes through the151

forcing field. Their 1st derivatives ∂tX ∝ (cg − V ) describe wave energy’s speed cg152

relative to the speed of the moving frame V , and their curvature is proportional to the153

acceleration of this wave field and similarly the intensity of wave energy growth (∂ttX ∝ ċg ∝ Ė).154

The initial sea is assumed to be at rest (c0 = 0) such that the wave energy at the

beginning of the storm (X(t,X0, 0, 0), Figure 2 bottom axis) is slow and propagates back-

ward in the moving frame of the storm (for example in Figure 2a day 0 to 0.3). Even

though these young seas propagate slower than the storm, their energy continues to grow

because they are continuously exposed to the steady wind forcing. With time, the peak

frequency decreases, and the group velocity of the peak wave energy increases (Equa-

tion 3). After a critical time τcrit (dashed black line in Figure 2), the peak wave energy

starts travelling at the same speed as the storm, i.e. cg = V . This timescale from the

wind’s onset until cg = V is

τcrit =
cτ
g
u−q V 1+ 1

q , (5)

and the distance the storm has traveled during this time is

Xcrit =
cτ
g
q u2

( u
V

) 1
q

, (6)

where cτ (cα, q) = 1.23 × 105 and q = −3/10 measuring the efficiency of wave growth155

depending on the sea state (Appendix A).156

While tropical and extra-tropical cyclones may have comparable translation veloc-157

ities, tropical cyclones are smaller in scale, but can create very strong surface wind speeds158

for several days. This leads to a trapping or quasi-resonance of wave energy under trop-159

ical storms (Kudryavtsev et al., 2015). Trapping also appears under extra-tropical storms160

that are large enough (X > Xcrit, Figure 2 red dots), and, more importantly, last long161

enough (t > τcrit, Figure 2 dashed black line). Trapping can create more energetic (i.e.162

faster and longer) swell waves, because the growing sea-state remains longer under the163

forcing wind field than it would under a stationary wind field. Hence, only wave energy164

whose characteristic curves originate at a time larger than τcrit or at a position larger165

than Xcrit can end up propagating to the forefront of the moving fetch and being ex-166

posed to the maximum possible wind forcing (dark blue lines in Figure 2).167
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The trapping conditions are determined by the wind speed and translation veloc-168

ity (Equation 5 and 6). Figure 2 illustrates how these critical scales differ between fetches169

of tropical cyclones (Figure 2a, τcrit ≈ 6 to 10 hours and Xcrit ≈ 50 to 100 km Kudryavt-170

sev et al., 2015) and extra-tropical cyclones (Figure 2b and c, τcrit ≈ 12 to 36 hours171

and Xcrit ≈ 100 to 400km).172

The characteristic curves of wave energy under constant moving winds can then173

be separated into curves that leave the storm from the rear (X0 < Xcrit), curves that174

start further in the front (X0 > Xcrit) and reach the trapping condition, and finally175

curves that start at later time in the storm (t0 > τcrit) and at the rear (X0 = 0). For176

this last situation, the initial group velocity of the waves must be larger or equal to V ,177

otherwise those will not be able to propagate forward in the moving reference system and178

will leave the storm from the rear (Figure 2 light-blue curves, defined as X(t, 0, t0, V )).179

Characteristic curves for the three cases are separated by a special case correspond-180

ing to the longest, most energetic characteristic curve (Figure 2, dark blue line). It de-181

fines the largest generated wave energy for a given moving fetch and indicates if mov-182

ing fetches are either ”length-limited” or ”time-limited”. For length-limited conditions,183

the most energetic waves leave the storm before it terminates, and the swell properties184

are limited by the length scale of the storm (Figure 2a,b, green dot). For time-limited185

conditions, the maximum swell energy is limited by the duration of the storm (Figure 2c).186

For both cases, more than one characteristic curve is associated with the largest possi-187

ble wave energy. Length-limited storms may last long enough such that more than one188

curve reaches the front of the storm. This implies a constant radiation of energetic waves189

from the front of the fetch, starting after a certain time from the onset of the storm (Fig-190

ure 2a,b, green vertical lines). Time-limited cases may not last long enough for the curve191

starting at Xcrti to reach the front of the storm. These cases result in most energetic waves192

leaving the storm in a spatial spread when it ends (Figure 2c, green horizontal line).193

Extra-tropical storms can thus be either length- or time-limited (Figure 2b,c), while194

tropical storms mostly correspond to length-limited wave growth regimes (Figure 2a, Kudryavt-195

sev et al., 2015). To illustrate this expected variability of extra-tropical storms, the ef-196

fect of changes in the length, speed, and wind forcing on the largest generated group ve-197

locity along the longest characteristic curve is shown in Figure 3. For typical scales of198

extra-tropical storms (Figure 3a, green line), the fetches can be either time- or length-199
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limited (Figure 3a, black line). It is also possible that small extra-tropical storms do not200

even reach the trapping condition, as indicated to the left of the the dashed black line201

in Figure 3b.202

This constant-wind model outlines the general dynamics of swell generation un-203

der a moving storm and how its bulk spatio-temporal parameters affect the resulting swell204

systems. However, this conceptual model fails to explain why observed swell events have205

a clear temporal maximum (Figure 1b to e) that seems to originate from a very small206

source location (Munk, 1947). In addition, this model implies that the forcing is con-207

stant within the fetch area and discontinuous at its boundaries.208

2.2 A Gaussian moving wind model209

Hereafter, we relax the assumption of constant wind forcing to better represent the210

storm’s life cycle and to account for the fact that observed winds vary smoothly over space211

and time. We now describe the wind forcing u(X, t) in Equation (4) as a two-dimensional212

Gaussian function in space and time. This two-dimensional Gaussian moving fetch can213

be interpreted as representative of the wind patch typically established behind the cold214

front of a low-pressure system (Figure 4, gray shading) that travels with about the same215

translation velocity V as the storm (Figure 4 orange arrows). This fetch typically estab-216

lishes on the equator-ward side of the storm and is tightly linked to the storm life-cycle217

(Neiman & Shapiro, 1993; Schemm & Wernli, 2014; Schultz et al., 2018). Anticipating218

on the results of the observational analysis in section 3, we assume that the propagation219

direction of the fetch (Figure 4 orange arrows) is aligned with its dominant wind direc-220

tion (Figure 4 blue arrows) and hence also aligned with the direction of the generated221

waves.222

The space-time Gaussian wind forcing is defined by a wind speed maximum, umax,223

a 95%-width, and a 95%-duration, while the 95% corresponds to ±2 standard deviations224

of the Gaussian curve. Solutions of (Equation 4) for two typical extra-tropical storms225

are shown in figure 5 a and d. A storm with a 95%-fetch-width of 1000 km, a 95%-duration226

of 3.6 days and umax = 10 m s−1 shows characteristic curves similar to the length-limited227

case of constant winds (Figure 5a, Figure 2b). The major difference is that character-228

istic curves converge and cross near the storm’s leading edge, at the end of the storm’s229

lifecycle (Figure 5a, day 2.5 to 3). The convergence of characteristic curves in a focus230
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area results from the spatial gradients in the Gaussian wind forcing and does not appear231

with a constant, Heaviside-function wind forcing (section 2.1). Hence, any realistic storm,232

with local wind maximum and smooth wind distribution, will have spatial gradients and233

focus characteristic curves from different parts of the moving storm.234

The convergence of the characteristic curves show a focusing of wave energy by the235

superposition of wave trains and the formation of a convergence region (Figure 5a,d).236

The convergence and crossing of curves indicate that sea states with different genera-237

tion histories (different paths of integration) propagate to the focal area and locally en-238

hance the total wave energy spectrum. Enhanced wave energy will lead to increased dis-239

sipation and more non-linear wave-wave interactions (S. Hasselmann & Hasselmann, 1985;240

Kudryavtsev et al., 2021), i.e. the convergence of wave energy can add another forcing241

term in Equation (4). The largest estimated wave energies on the characteristic curves242

(Figure 5b, light blue to green curves) are thus likely lower-bound estimates, because in-243

dependent solutions along the characteristics do not capture the expected enhanced dis-244

sipation and non-linear wave-wave interactions due to wave energy convergence. Still,245

the proposed model is useful to explain the governing relations between the fetch scales246

and the moving storm, although it might lead to systematic biases for the total wave en-247

ergies and peak wave frequencies.248

The described wave-ray convergence leads to an area with significantly enhanced249

wave energy that can last for about half a day (Figure 5a between day 2-2.5 and Fig-250

ure 5d between day 2.5 and 3). This area encloses the steepest waves of the wave gen-251

eration process and is substantially smaller than the wind fetch that caused it (Figure 5a,d,252

gray shading). In the following, we argue that this small and distinct area acts as the253

source location for linearly propagating swell waves. From a distant location, it can be254

interpreted as a point source of swell waves (section 3.2, Munk, 1947). This source lo-255

cation corresponds to the transition region from a non-linear and very steep sea, mainly256

driven by wave-wave interactions, to a dominantly linear sea. In this transition region,257

the wind forcing decreases and subsequent wave-energy fluxes across frequencies vanish258

as well. The transition results in a linear sea that is dispersive and its wave energy starts259

to travel as the superposition of linear waves. This interpretation of the characteristic260

curves focusing in a transition region predicts that an observable source location of swell261

systems should be displaced ahead of the strongest moving winds, rather than at the the262
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center of the high wind speed region. Observational evidence for this phenomenon is shown263

in section 3.264

2.3 Wave age of mature and old seas under moving fetches265

The Gaussian wind model emphasizes the non-linear behavior of the wave energy266

growth and the importance of the wave field’s generation history under the moving wind267

field. The wind forcing of sea states without a generation history can be solely described268

by the local wave age α = 2 cg/u (right hand side of Equations 4), because the non-269

linear advection term is small and cg is proportional to u (Figure 5c and f day 0 to 2,270

Edson et al., 2013). However, once non-linear advection increases, the wave energy growth271

cannot simply be described by the local wave age parameter (Figure 5c and f day 2 to272

3). These mature or old seas describe a situation where the simple relation between wave273

age, group velocity, and wind speed breaks down. While the group velocity only slowly274

grows, the wave age rapidly increases mainly due to constant or even decreasing local275

wind speeds.276

A comparable wind forcing u on the right-hand side of Equation (4) can thus cor-277

respond to different degrees of wave development, i.e. different cg. When waves start to278

reach a mature state of development, the wind forcing starts to decrease and limit the279

peak frequency downshift. We expect this non-linear behavior to be more important for280

old seas, i.e. when the wave’s peak phase velocity and the local wind velocity approach281

fully developed conditions of α ' 0.85 (P. Janssen, 2004). In addition, wave energy con-282

vergence can counteract the local decay of the wind forcing and maintain a high wave283

steepness (see previous section). These focusing effects, associated with converging wave284

rays, should lead to enhancement and stabilization of the wave energy level. Thus, parametriza-285

tions of the wave’s energy based on the local winds alone (e.g. Bourassa et al., 2013) may286

fall short under moving fetches of synoptic storms. A proper description of the wave en-287

ergy needs to account for the non-local wave dynamics.288

2.4 Scales of extra-tropical storms shape wave events289

The spatio-temporal scales of extra-tropical storms thus govern the focal point of290

wave energy convergence and control resulting peak group velocities and wave energies.291

Using the Gaussian wind model, the spatial gradients are proportional to the ratio of292
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umax and the 95%-width. Since the average storms width is related to the Rossby ra-293

dius and thus hard to change (Eady, 1949), the main control parameters become umax294

and V . To illustrate this resulting sensitivity on umax, Figure 5d shows a moving fetch295

with the same parameters as in Figure 5a, but for a weaker peak wind speed and hence296

a weaker spatial gradient. Compared to strong wind conditions, weaker winds tempo-297

rally delay trapping condition cg = V and the location where the characteristic curves298

cross (Figure 5a day 2-2.5 and b day 2.5 to 3) resulting in an over all lower group ve-299

locity.300

A more systematic assessment is shown in Figure 6. Characteristic curves are cal-301

culated using Equation (4), but now for various combinations of storm sizes, duration,302

speeds, and wind forcing. For each set of storm conditions, we take the largest result-303

ing group velocities to test the sensitivity of cg on the storm scales. Because character-304

istic curves converge and cross, wave energies merge, and the largest cg derived from the305

method of characteristics is likely to be underestimated (section 2.2). However, this is306

still a useful metric to understand how the storm’s scales control regimes of wave gen-307

eration.308

Comparisons between the peak velocity umax and translation velocity V for typ-309

ical scales of extra-tropical cyclones are shown in Figure 6a (95%-width and -duration310

are 1000 km and 3.5 days). The two cases from Figure 5 are indicated by black trian-311

gles and illustrate how solely changes in the peak wind speed lead to different peak wave312

energies. Higher peak velocities umax or faster-moving storms V lead to higher group313

velocities (Figure 6a green shading). However, if a storm moves too fast, wave growth314

is limited because trapping effects are weaker or do not appear at all (Kudryavtsev et315

al., 2015, Figure 6a, to right of the black dashed line). No trapping occurs for fast storms316

with relatively weak winds; a situation that is likely uncommon for extra-tropical storms.317

The fetch length and duration also affect the wave energy generation (Figure 6b).318

For typical but constant translation velocities and peak wind speeds, the wave energy319

increases when the storm is larger or lasts longer. However, more persistent storms are320

more effective in creating large wave energies than larger storms. For example, chang-321

ing the storm size by 20% from 1000 km to about 1200 km has a weaker effect than chang-322

ing the storm’s duration by one day (Figure 6b, starting from the green dot). The im-323
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portance of the storm’s duration is again due to the trapping condition because trap-324

ping will always occur if the storm lasts long enough (section 2.1).325

3 A Case Study of a North Pacific Storm326

In this section, we combine observed surface wave spectra with reanalysis surface327

winds to assess the consistency of the Gaussian moving fetch model for swell generation.328

We analyse the case of a single storm over the North Pacific and explain how dispersed329

swell arrivals in wave buoy observations provide strong evidence for a small swell source330

location. We employ a physically constrained machine learning methodology that heav-331

ily borrows from ideas in Munk (1947); Barber and Ursell (1948); Snodgrass et al. (1966),332

as detailed in (Hell et al., 2019, 2020). This method triangulates the spatio-temporal co-333

ordinates of a single swell source which is simultaneously observed at five wave buoy sta-334

tions. This helps to check wherever or not the hypothesis from Kudryavtsev et al. (2015)335

can be extended to extra-tropical storms with smooth Gaussian winds (section 2, Fig-336

ure 4), and if the swell source location is indeed displaced compared to the strongest ob-337

served wind forcing. We first give a brief overview of the algorithm used to establish the338

source location. A more detailed description of the algorithm and two additional case339

studies can be found in the supplementary material T1 and figures F4 to F6).340

3.1 Physically Constrained Optimization of a Parametric Swell Model341

- In Brief342

We designed a parametric swell propagation model that is optimized on five pre-343

identified wave events. The spectral shape of the parametric model is described by a com-344

monly used shape function (K. Hasselmann et al., 1973; Elfouhaily et al., 1997), it’s time345

component as an Erlang distribution (Hell et al., 2019), and its decay as a function of346

the travel distance (Jiang et al., 2016, suppl. material T1.3).347

The optimization is performed in five steps. First, swell wave events observed by348

the Coastal Data Information Program wave buoy network (CDIP, Behrens et al., 2019)349

are identified in the very long swell band. Second, the parametric model is fitted to each350

swell event at each wave buoy observation, and the uncertainty of its parameters are es-351

timated to evaluate the spectral dispersion slope and the quality of the observation (Hell352

et al., 2019). Third, the swell events are matched by their estimated initial time that can353
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be inferred from the events dispersion slope (Munk, 1947; Barber & Ursell, 1948; Snod-354

grass et al., 1966; Collard et al., 2009). In the fourth step, these sets of matched swell355

events are used to compare with parametric model outputs, but now assuming a com-356

mon isentropic point source origin. Given a resulting hypothetical source point, the para-357

metric model provides dispersion slopes, arrival times, and the wave’s amplitude atten-358

uation for each member in the set of swell observations. A combined cost function is then359

optimized for the common source point as described in the following (section 3.2).360

The algorithm’s robustness largely builds from the fact that swell observations carry361

information about their source location. The radial distance to a source location is in-362

directly measured by the dispersion slopes of the wave events spectrograms (Munk, 1947;363

Barber & Ursell, 1948; Snodgrass et al., 1966; Collard et al., 2009). The combination of364

three or more buoy observations generally provides sufficient means to retrieve a com-365

mon source location of the swell. Here we use observations at five locations to reduce366

errors due to the spherical geometry and potential distorted observations at one or more367

location (see next section). Details about this algorithm, the parametric swell model and368

the cost-function design are given in the suppl. material T1.369

3.2 Triangulation of Swell Origins370

The cost function between the parametric model and the data helps to quantify371

the performance of the model fit. A map in longitude, latitude and time of most likely372

wave origins is derived to define a measure on the model fit. A likelihood Lef = 1 in-373

dicates a perfect model fit and implies that all data variance is explained by the model,374

while Lef = 0 indicates total model failure (Equation 11 in Supporting Information T1.5).375

The result of the optimization is shown Figure 7 for a storm between the January376

4th and 8th, 2016 (suppl. material F4 and F6 for other examples). The green hexagon377

in Figure 7a indicates the most likely common source location for the swell events de-378

tected at five buoys (Figs. 7b to f). The identified source location on January 4th, 2016379

at 6:30 is identical for either a brute-force search in the parameter space, or a global cost380

minimization (within a 25-km radius and 1 hour, suppl. material F1). Even though both381

methods return a source location close to ocean station PAPA (CDIP 166), they some-382

how lead to different interpretations of the process of swell generation. While the global383

optimization returns a single optimum that would indicate a common point source for384
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the wave’s energy (Munk, 1947), the brute force method is in principle less precise but385

can hint at multiple areas of similar likelihood. It samples a broader parameter space386

and hence can provide a likelihood map of swell origins (Figure 7a green shading).387

Note that the assumption of a single optimum essentially follows the idea of a lin-388

ear inversion of the observed dispersion slopes in observations (Figure 1b to e, Figure 7b389

to f, Munk, 1947), which in turn directly implies the existence of a point source (Fig-390

ure 7a, green hexagon). However, the brute force method optimizes a cost function de-391

signed under the assumption of this point source, but it returns a multitude of location392

with similar likelihood (Figure 7a green shading). The assumption of an idealized point393

source is still a reasonable interpretation for a single distant observer of swell, but some394

refinement is needed in the context of the transient wave generation and decay (section 3.4).395

The brute force sampling shows how the maximum of Lef shifts in space for a se-396

quence of time steps (Figure 7a green dots). It means that observed waves either orig-397

inate earlier from a position west of the most likely source location, or later from a po-398

sition east of the most likely source location (Figure 7a green dots). This trace of local399

maxima in Lef can be interpreted as a progression of wave origins rather than a single400

point, as suggested by the constant or Gaussian wind models (Figure 2b,c, Figure 5).401

This trace of local maxima in Lef is used in the next section to combine the observed402

wave events with observed wind patterns that are related to propagating storms.403

Note that a successful optimization of the multi-station cost function may not al-404

ways be straightforward. Indeed, local wind swell and wave-current interactions on the405

swell travel paths are able to distort the wave buoys observations (Gallet & Young, 2014;406

Villas Bôas et al., 2017), and possibly alter the optimization procedure (Hell et al., 2020).407

Figure 7 b to f compares instances of the parametric wave model (colored contours) for408

the most likely source location (green hexagon in panel a) to the respective observations409

(colored shading). The parametric model captures the observed dispersion slopes in four410

out of five cases. Comparison between the model and data from CDIP 106, close to Hawaii411

(Figure 7e and red dot in Figure 7a), indicates a modeled wave arrival about one day412

later and further away than the observation. Hence, the observed wave event close to413

Hawaii could result from a closer source than suggested by the best model fit, and still414

be related to the same storm system. In such a case, a different growth history, i.e. a415

different effective fetch, would be necessary. This case study shows that a more holis-416
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tic understanding of the optimization hints at the complexity of wave generation in the417

real world, but also shows that even imperfect and distorted data can support the hy-418

pothesis in section 2.2.419

3.3 Comparing observed swell origins to reanalysis winds420

To interpret the relation between possible wave origins and the wind pattern that421

creates them, we show three snapshots of surface winds and sea level pressure from hourly422

ERA5 reanalysis on a 0.25◦-grid in the North East Pacific (Figure 8, European Centre423

for Medium-Range Weather Forecasts fifth-generation reanalysis for the global climate424

and weather (CDS), 2017). The storm propagates eastward, and its associated strong425

surface winds, the fetch, move eastward as well (red area at about 160◦W and 40◦N in426

Figure 8a moves to about 150◦W and 50◦N in Figure 8c). The same propagation can427

be seen for the local maxima of Lef and hence for the source location of swell (Figure 7a428

green dots). Interestingly, the swell origins appear systematically ahead of the highest429

wind speeds (Figure 8a,b,c). This displacement between the swell origins, estimated from430

wave buoys, and the highest wind forcing, estimated from reanalysis, is the same as pre-431

dicted for swell generation by a moving fetch (section 2.2). Hence the physically informed432

brute-force optimization shows how the trace of most likely swell origins, i.e. a trace in433

the local maximum of Lef , co-travels with the patch of highest wind speeds under a mov-434

ing storm.435

3.4 Computing waves growth from realistic moving winds436

We can now compare the propagating, co-located winds patches and swell origins437

to the moving Gaussian wind model. To do so, we transform the surface winds in a La-438

grangian frame using its average propagation speed.439

We first define a transect line for the wind data using a least-square fit to the trace440

of Lef (Figure 8 a to c, straight black lines between A and B). Next, we take data along441

this transect over a width of 440km from the wind reanalysis between the points A and442

B. The wind is rotated to along- and across- transect velocities and then averaged or-443

thogonal to the transect (suppl. material F2). The resulting time evolution of the along-444

and across-track averaged winds as well as contours of Lef are shown in Figure 8 d and445

e. Finally, we estimate the average propagation speed V of the along-transect wind patch446
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using again a least square fit (Figure 8d and e, black sloped line, suppl. material F3).447

The estimated propagation speed V of 14.1 m s−1s then used to shift the data in the frame448

of reference of the moving wind patch.449

The resulting along-transect velocities and the contours of Lef are shown in the450

moving frame of reference in figure 9a. The area of most likely swell origin is clearly dis-451

placed in space and time compared to the highest wind speeds (Figure 9a green contours452

and red shading). The most likely swell origin is about one day delayed compared to the453

strongest winds. It is thus unlikely that the observed swell waves originate from the area454

of highest wind speeds. Instead, swell waves are delayed in the moving frame of refer-455

ence. A temporal delay in the moving frame implies also a spatial displacement in the456

Eulerian frame, as already observed in Figure 8. This space-time displacement cannot457

be explained by the stationary fetch laws, which only describe swell properties away from458

a constant-wind “fetch” area (section 2 Kitaigorodskii, 1962; K. Hasselmann et al., 1973;459

Elfouhaily et al., 1997). This space-time displacement is in line with the predicted de-460

lay in the moving frame of reference between strongest wave growth and linear swell prop-461

agation dispersion (section 2.2).462

The spatial-temporal delay of the estimated wave origins can be explained by analysing463

the characteristic curves of wave growth forced with the transformed wind data. As in464

section 2.2, we use the method of characteristics to solve Equation (4) but now using the465

along-transect reanalysis winds in the moving frame of reference (Figure 9a and b shad-466

ing). The characteristic curves are initialized from a sea at rest (ωp ≈ 20π s−1, Appendix467

A) where the winds are zero (u = 0) and represent paths of wave energy growth that468

propagate in the moving reference frame (Figure 9b black and blue contours). As in the469

idealized model (section 2.2), the line thickness shows that wave energy and group ve-470

locity increase along the path while ωp decreases. Several characteristic curves reach the471

trapping condition (V = cg) and some paths converge and cross due to large-scale gra-472

dients in the wind forcing (Figure 9b, day 2.5-3.5, see also supp. Figure F5 for another473

case study).474

The path with the largest final wave energy is shown in blue in figure 9b. This char-475

acteristic curve is terminated, where the wind forcing reaches zero (Figure 9b, green hexagon),476

indicating the last space-time location of possible active wave growth. While this is a477

practical definition of where wave growth decays, because Equation 4 only captures wave478
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growth, it is remarkable that the longest characteristic curve overlaps with the area of479

most likely swell origin and crosses its peak (Figure 9b, green dot and contours). Even480

though this area of most likely origins is transformed in the moving frame of reference,481

it is derived independently from the solutions of the characteristic curves. And, while482

the wind forcing of the characteristic curves is taken along the trace of the triangulated483

swell origins (section 3.2), there is no need for the longest characteristic curve to match484

the independent buoy observation. This match between the forward calculation of the485

wave growth model forced by reanalysis winds (Equation 4) and the back triangulation486

of linear swell propagation (Figure 7) provides evidence that the conceptual idea of a Gaus-487

sian wind model (section 2.2) is sufficient to capture the necessary dynamics of wave growth488

and swell generation by a moving storm. This is, to some extent, surprising given the489

non-linear nature of Equation 4 and potential biases in the surface winds (Gille, 2005;490

Wentz et al., 2015; Ribal & Young, 2019; Trindade et al., 2020; Allen et al., 2020; Hell491

et al., 2020).492

To further explain why wave growth from transformed reanalysis winds is able to493

match the triangulated swell origins, we use the Gaussian wind model from section 2.2,494

for parameters that match the scales of the observed wind forcing (V = 14.1 m s−1,495

umax = 22 m s−1, a 95%-duration of 4 days and 95%-width of 2800 km, Figure 9c). The496

Gaussian wind model is able to reproduce and predict a trajectory of the largest wave497

energy align with the observed source locations (compare Figure 9b,c blue line and green498

dot). It captures the observed larger-scale spatial and temporal wind gradients that are499

needed to create the convergence of the characteristic curves (Figure 9 b and c). This500

provides evidence that a Gaussian moving fetch is a sufficient model to understand swell501

generation by extra-tropical cyclones (see supplementary material F4 to F6 for additional502

examples).503

4 Discussion and Conclusion504

Swell wave generation from extra-tropical storms is a long-standing problem (Munk,505

1947). Here, we presented a comprehensive explanation of why swell systems likely orig-506

inate from small locations that do not necessarily match the high wind forcing regions.507

This explanation points to aspects in the process of swell generation that need to be bet-508

ter captured to improve wave forecast models but are also relevant for estimating air-509

sea fluxes and ocean mixed-layer variability.510
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A two-dimensional Gaussian wind model is found to be sufficient to represent the511

wave generation under a moving storm and to improve upon constant wind forcing con-512

ditions (sections 2.1 and 2.2). The storm and its cold sector are assumed to travel with513

a constant translation velocity (Figure 4), even though in reality, the storm’s fetch prop-514

agation might likely vary in speed and direction. The proposed model is highly ideal-515

ized but is still detailed enough to capture the main wave-generation mechanism dur-516

ing the life-cycle of an extra-tropical storm as for example described in Neiman and Shapiro517

(1993), Neiman et al. (1993), Schemm and Wernli (2014), and Schultz et al. (2018). It518

is also found to be a sufficient minimal model to explain observed displacements of es-519

timated swell source location compared to the highest wind forcing locations (section 3.3,520

Figure 9b and c, Hell et al., 2020). The combination of a Lagrangian wave-growth model521

with an optimized swell propagation model suggests three stages in the life cycle of swell522

wave energy:523

• Stage 1: Wave growth under a moving fetch in a young and growing sea524

Starting from a sea at rest, wind forcing creates short waves as a result of wave-525

wave interactions, wave growth and dissipation. Wave-wave interactions lead to526

a continuous decrease of the peak frequency ωp, while the total wave’s energy and527

significant wave height increase (Equation 3). For an actively growing wave field,528

the wave energies in different frequency bands are strongly coupled through wave-529

wave interactions. This coupling likely inhibits frequency dispersion and let us uniquely530

describe the wave spectra by its peak parameters. The energy of the non-linear531

sea state thus mainly travels with the group velocity of its dominant frequency532

cg(ωp) shown by characteristic curves in Figure 10.533

At first, waves are slower than the storm and propagate backwards in the mov-534

ing frame of reference. With time this young sea continues to grow, its peak fre-535

quency decreases, and the associated group velocity accelerates (Figure 10). Even-536

tually, the wave’s energy starts to propagate with a speed comparable to the storm,537

such that the wave energy is trapped under the storm (cg = V , section 2.1). The538

wave’s energy is now strongly growing because the previously established non-linear539

sea is exposed to the strongest winds of the moving fetch (growing sea in the cen-540

ter of Figure 10). This process ends when the wave energy leaves the storm or when541

the wind forcing vanishes.542

–19–



manuscript submitted to JGR: Oceans

This strong wave energy growth depends on if the wave’s energy is trapped (cg =543

V ) or not. This trapping, or quasi resonance (Dysthe & Harbitz, 1987; Young, 1988;544

Bowyer & MacAfee, 2005; Young & Vinoth, 2013; Kudryavtsev et al., 2015), mainly545

depends on the ratio of the wind speed to the translation velocity (Equation 5 and546

6). Wave energy is more easily trapped if the translation velocity of the storm is547

small or the wind speed is high (Figure 3b and 6a).548

• Stage 2: Decay of non-linear terms in an old sea549

When the wind forcing decays, the wave energy does not immediately turn into550

linearly propagating swell. Instead, dissipation may remain active, with the wave-551

wave interactions counteracting the wind forcing decay. The peak frequency down-552

shift ceases and the waves’s steepness starts to decrease. Hence, the still steep non-553

linear sea decays (Kudryavtsev et al., 2021). This results in a transformation to554

progressively more linear sea (old sea, Figure 10). Timescales on which the non-555

linear terms in the wave-action equation decay are inversely proportional to the556

fourth power of the wave steepness and are typically about three hours (Zakharov557

& Badulin, 2011; Zakharov et al., 2019). During this time, the wave field trans-558

forms from a non-linear (steep wave spectrum) to a dominantly linear sea state559

(broader wave spectrum). Because the wave field still propagates during this re-560

laxation time, the location where the wave spectrum is dominantly linear differs561

from the last location where the wind was still substantially growing waves.562

• Stage 3: Linear propagation of swell563

Once the wave field becomes linear, the wave energy in each frequency band prop-564

agates following the deep water wave dispersion relation as a linear sea (Figure 10565

and radial propagation in Figure4). At this stage, almost no interaction occurs566

between the different frequency bands. From this point on, the travel distance and567

energy attenuation are proportional to the amount of dispersion, which in turn568

is the difference in the arrival time between waves of different frequencies (suppl.569

material T1.4, Munk, 1947; Barber & Ursell, 1948; Ardhuin et al., 2009). A back-570

ward triangulation based on linear propagation as in section 3 can then be applied571

successfully, as long as the swell’s interactions with currents, eddies, and other wind572

forcing remain weak along its great circle path.573
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The Gaussian wind model is a smooth forcing field that can also be related to the574

scales of extra-tropical storms (Figure 6 and 11). Four parameters characterize the mov-575

ing fetch; its translation velocity V , its length-scale along the peak wind direction (95%-576

width), its lifetime (95%-duration), and its peak wind speed umax. All of them are de-577

termined by synoptic-scale dynamics. It follows that processes that influence the storm’s578

intensity may also influence the shape, amplitude, and peak period of the observed swell579

events (Figure 11). This analysis provides a practical means to connect observed swell580

events to storm characteristics and confirms that non-local swell measurements can be581

used to quantify storms over the open ocean (Hell et al., 2020). This can further link the582

current and future swell wave climate to common diagnostics of extra-tropical storms583

(Figure 11, Schultz et al., 2018; Hoskins et al., 1985; Schemm & Wernli, 2014) and their584

statistics (Charney, 1947; Eady, 1949; Andrews & McIntyre, 1976; Bengtsson et al., 2006;585

Mbengue & Schneider, 2016; Shaw et al., 2016, and others)586

The idealized model of a moving fetch suggests that wave event intensities are most587

sensitive to spatial gradients in the wind forcing fields (Figure 6a). Since the average size588

of storms, and their fetch (1000 km), are constrained by basic properties of Earth’s mid-589

latitudes flow (Eady, 1949; Bengtsson et al., 2009; Hodges et al., 2011; Catto, 2018; Sin-590

clair et al., 2020), the spatial wind gradient is mainly determined by the peak wind speed591

umax. A larger peak wind speed and a stronger spatial wind gradient lead to more ef-592

ficient trapping of the wave energy, with the consequence of larger swell waves. Note that593

at the leading edge of the moving fetch, the spatial wind gradient is related to the com-594

plex dynamics at the storm’s cold front. The Gaussian wind model (section 2.2) may not595

fully capture these smaller-scale wind gradients but can be easily extended by introduc-596

ing non-Gaussian corrections to the spatial wind distribution.597

Intensities of wave events are also sensitive to the ratio of the peak wind speed umax598

and storm propagation speed V because they are key to determine the trapping condi-599

tions (Equation 6). If their ratio, umax/V , is relatively large, the trapped wave energy600

leaves the wind forcing at its leading edge, co-located with the storm’s cold front (Fig-601

ure 4 and Figure 7e). This can be interpreted as a “length-limited” fetch (Figure 2b and602

Figure 5a). In contrast, if umax/V is small the trapping is less intense and the wind forc-603

ing may decay before the wave energy reaches the leading edge of the fetch. This is bet-604

ter interpreted as a “time-limited” fetch (Figure 2c, Figure 5d). Length- or time-limited605

fetches may frequently occur under extra-tropical storms (Figure 3, 6, and 11), while trop-606
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ical storms usually reach a length-limited situation that constantly radiates waves (Fig-607

ure 2a). Under such a condition, the generated wave field would depend only on the storm’s608

propagation velocity (Kudryavtsev et al., 2015).609

Reanalysis products have biases in their representation of wind extremes (Gille, 2005;610

Hell et al., 2021). These wind extremes are represented in the Gaussian model as the peak611

wind speed. The sensitivity of the resulting swell peak period to the peak wind speed612

(section 2.4) indicates that biases in wind extremes can cause biases in wave models by613

altering the processes of wave growth (Aouf et al., 2021). Errors in the peak wind speed614

of a few meters per second change the spatial wind gradients, alter the location of the615

highest energy convergence, and consequently the location where the swell energy starts616

to travel as linear waves. This might result in biases in arrival times of swell events. The617

present analysis suggests that swell analysis will lead to a better representation of ex-618

treme surface wind speeds and hence also improve surface wave models (Cavaleri, 2009;619

Cardone et al., 1996; Ponce & Ocampo-Torres, 1998; Feng et al., 2006; Durrant et al.,620

2013; Stopa & Cheung, 2014; P. A. Janssen & Bidlot, 2018; Osinski & Radtke, 2020).621

Any moving fetch with non-constant winds will have spatial wind gradients lead-622

ing to convergence of wave energy (section 2.2). A convergence of the characteristic curves623

from different regions of the moving fetch can create wave-energy hot spots, indicated624

by crossing characteristic curves (Figure 5). This convergence of wave energy may lead625

to additional dissipation and/or additional wave-wave interactions, which intensify swell626

wave growth and the down-shifting of the peak frequency. Hence, it could be modelled627

as another forcing term in Equation 4, to which the wave spectrum can adjust rather628

quickly. It also implies that these local wave energy convergences correspond to enhanced629

breaking, which dissipates part of the wave energy in the upper ocean. Accordingly, we630

speculate that the location of the strongest winds may not necessarily be the location631

of the largest momentum transfers to the ocean, nor the location of the observable ori-632

gin of swell (Figure 4). Instead, swell source locations can be interpreted as markers for633

intense momentum flux from the wave field to the ocean.634

Finally, air-sea fluxes of heat, momentum, and CO2 are currently parameterized635

by the standard bulk flux formulae (Fairall et al., 2003; Edson et al., 2013). The wave636

field’s contribution to these fluxes is often described by wave age α = 2u c−1
g . We sug-637

gest that the sea state at many locations under a moving storm cannot be explained solely638
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by local parameters, like wave age (Figure 5 c and f). Because the local sea state results639

from the moving wind fetch, its group velocity is constrained by wind forcing to which640

the wave energy was previously exposed. This introduces a non-local condition on the641

momentum transfer between the atmosphere and ocean. This means that feedbacks be-642

tween the wave spectrum and the turbulent spectrum of the atmosphere (Ayet et al., 2020;643

Zou et al., 2020), or feedbacks of surface waves and the upper ocean (Li et al., 2016, 2019),644

can only capture these wave-induced non-local conditions when the wave spectra are com-645

puted, i.e. advected, rather than assumed by local conditions. Alternatively, the wave646

spectra could be characterised by metrics that account for non-local wave history that647

goes beyond wave age.648

Here we have used standard wave buoy observations of ocean swell in the eastern649

Pacific to identify storm systems that generate wave events. We defined a parametric650

swell model that combines standard swell spectra, a prescribed time decay, and the deep651

water wave dispersion (suppl. Material T1). The novelty in this approach is that swell652

events from storms are treated as objects whose shapes and origins are learned from the653

data. This allows us to a) reevaluate common models of wave spectra, b) classify and654

match swell observations in a diverse set of existing data sets, and c) use deviation from655

this parametric model to learn about other phenomena, for example wave-current inter-656

action (Gallet & Young, 2014; Villas Bôas & Young, 2020; Quilfen & Chapron, 2019).657

We have outlined how choices in the design of a supervised learning algorithm are658

linked to the understanding of the physics we wish to investigate. Wave generation is659

a stochastic process that involves non-linear physics, such that a single point source of660

swell is not realistic, even though it is assumed in the parametric model (section 3.2, suppl.661

Material T1). We account for this paradox by letting the optimization be imprecise (brute-662

force method), rather then precise (global optimization). The latter would likely over-663

fit the model, which could be corrected by an extensive posterior uncertainty exploration664

around a prior defined optimum. In either case, imprecise optimization and uncertainty665

estimates of the most likely swell origins play an important part in this analysis (Fig-666

ure 7). This approach suggests that observed swell arrivals could be modeled by a su-667

perposition of swell source points using ordinary fetch laws and Green’s functions along668

the trace (Fig. 7a, green dots). However, that kind of model would still fall short in de-669

scribing the non-linear dynamics prior the linear swell propagation (section 2).670

–23–



manuscript submitted to JGR: Oceans

Appendix A Solution of the Lagrangian advection equation in the (X, t)671

plane672

A1 Method of characteristics for constant wind forcing673

We follow Kudryavtsev et al. (2015) and solve the advection equation Equation (4)674

in the moving frame of reference for constant winds u, a constant advection speed V along675

a characteristic line (t(s), X(s), cg(s)), and with initial conditions t0, X(t0) and cg(t0))676

at s = 0. The set of equations to be solved is677

dt
ds = 1 (A1)

dωp

ds =
(
g
u

)2
φ(α) (A2)

dX
ds = cg − V , (A3)

where the peak period ωp is related to the peak group velocity via the deep water dis-678

persion relation cg = 1
2
g
ωp
. The equations A1 to A3 are solved numerically in section679

2.2 and there after. The characteristics curves are initialized for numerical reason the680

from ωp ≈ 20 π s−1. This corresponds to cg of about 7.8× 10−2 m s−1 and its differ-681

ence from zero has no effects on the overall results.682

Equation (A1) reduces to s = t − t0 and hence gives the characteristic coordi-

nate as a function of time. Equation (A2) is the temporal fetch relation which reads in

dimensional coordinates

ωp(t) = cαt
g

u

( g
u

)qt
(t− t0)qt + Cω, (A4)

with Cω is the integration constant, and qt and cα are defined in appendix A3 or Kudryavtsev

et al. (2015). Equation (A2) can also be solved for the group velocity cg, and yields

cg(t) = cqtτ u
( g
u

)−qt
(t− t0)−qt + cg(t0). (A5)

with cτ again defined in appendix A3. Finally, the position X along the characteristic

reads, from equation (A3)

X(t) =
1

−qt + 1
cqtτ u

( g
u

)−qt
(t− t0)−qt+1 + (t− t0)[cg(t0)− V ] +X(t0). (A6)

A2 Derivation of the critical time and length scale for constant mov-683

ing wind forcing684

Waves generated at the beginning of the storm (t0 = 0) follow characteristic curves685

with initial conditions X(0) = X0 and cg(0) = 0, assuming the sea initially at rest.686
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The time scale tcrit at which the trapping of wave every appears is when Equation (A5)

equals the speed of the storm V , such that

V = cqtτ u
( g
u

)−qt
t−qtcrit, (A7)

which yields

tcrit =
cτ
g
u−q V 1+ 1

q . (A8)

At tcrit, waves that have started at Xcrit should be exactly at the rear boundary of the

storm, i.e. at X = 0. From equation (A6), this yields

Xcrit =
−1

−qt + 1
cqtτ u

( g
u

)−qt
t−qt+1
crit + tcrit V, (A9)

Xcrit =
cτ
g
u1+

1
qt V 1− 1

qt

[
qt

1− qt

]
, (A10)

Xcrit =
cτ
g
q u2

( u
V

) 1
q

, (A11)

with using Equation (A8) and qt defined in Equation (A13). Waves with an initial con-687

dition X0 > Xcrit will eventually move faster than the storm and will all have the same688

group velocity at a given time, following the temporal fetch law Equation (A5).689

A3 Choice of constants690

Wave growth estimated by the Lagrangian advection equation (Equation 4) and

subsequent quantities depend on a set of semi-empirical parameters (Badulin et al., 2007).

Here we choose parameters based on K. Hasselmann et al. (1976), for the case of a “young

sea”. With the choice of q = −3/10 and a wave growth parameter cα = 15.4, the other

parameters follow as

p = −5 q − 1

2
= 1, (A12)

qt =
q

1 + q
= −0.43, (A13)

cαt =

[
c

1
q
α

1 + q

2

]qt
≈ 76.08, (A14)

ce ≈ 4.41× 10−7, (A15)

and

cτ = 2(1−
1
qt

) c
− 1

q
α (1 + q)−1 ≈ 1.23× 105. (A16)

Note that, Kudryavtsev et al. (2015) used a slightly different q (see their appendix A1),691

but the results are comparable.692
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Figure 1. a) Example synoptic situation on February 2nd, 2016 with the surface wind speed

(shading) and negative anomalies of Sea level Pressure (SLP) in dark blue with 5 hPa incre-

ments. The arrows indicate the surface wind direction and intensity. The position of the CDIP

wave buoy stations in panel b to e are shown as colored dots. The 10-meter winds and SLP fields

are taken from the hourly ERA5 analysis on a 0.25 ◦-grid (European Centre for Medium-Range

Weather Forecasts fifth-generation reanalysis for the global climate and weather (CDS), 2017).

(b to e) Observed spectrograms between mid-January and mid-February 2016 for CDIP029,

CDIP067, CDIP106 and CDIP166 (Behrens et al., 2019). The black dots indicate individual swell

events identified by their long-period forerunner (suppl. material T1).
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Figure 2. Characteristic wave energy curves for an idealized fetch model with constant and

translating wind. a) Characteristic curves for typical scales of a tropical cyclone (V= 10 m s−1,

u= 30 m s−1, duration T= 4 days, length scale is 200 km, same parameters as in Kudryavtsev et

al., 2015). The characteristic curves with lowest ωp and the highest wave energy, i.e. the longest

characteristic curve (dark blue) start at the red dot (Xcrit) and goes to its exit location (green

dot). The green line indicates exit locations that have the same value of ωp as the green dot, but

in this case the wave energy was generated along the light blue lines starting after τcrit (dashed

black line). Orange lines indicate characteristic curves that start at t0 but don’t grow as long as

the longest characteristic curve and result in smaller wave energy. The thickness of the character-

istic curves is proportional to the wave’s energy, or ω−1
p . b) Same as a) but for a length-limited

extra-tropical storm with strong winds (V= 10 m s−1, u= 20 m s−1, duration T= 5 days, length

scale is 1000 km). c) Same as b) but for a time-limited extra-tropical storm with weak winds u=

10 m s−1.
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Figure 3. a) Travel time of the longest characteristic divided by the fetch duration (5 days)

for constant moving wind model with a propagation speed V= 10 m s−1 (as in Figure 2b,c). Blue

shading indicates length-limited fetches, red shading indicates time-limited fetches and the black

line shows cases with a travel time along the longest characteristic curve equal to the duration of

the fetch. The green line indicates the parameter space in b). b) Group velocity of the longest

characteristic curves of fetches with L= 1000 km, translational speed of V= 10 m s−1, but vary-

ing wind speed and duration. The trapping condition (cg = V ) is shown as black dashed line,

while the fetch- and time-limited cases are shown as red and blue lines.
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Figure 4. A moving fetch embedded in an Northern Hemisphere extra-tropical storm. The

storms center L is adjacent by a warm and cold front (thick gray lines with half circles or tri-

angles). The moving fetch is located behind the cold front (gray shading with blue arrows) and

moves with the same translational velocity V as the cyclone center L (orange arrows) to the

bottom right. The green area indicated the source region as suggested by a Gaussian moving

wind model (section 2.2) and observations (section 3). Swell waves radiate away from this source

region (small gray arrows).
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Figure 5. Characteristic curves from two-dimensional Gaussian winds in the moving frame

of reference. a) two-dimensional Gaussian wind forcing (gray shading) with characteristic curves

(colored lines) within the 95%-extension of the winds (black dashed lines). The wind forcing is

defined by a 95%-width of 1000 km, a 95%-duration of 3.6 days, a translational velocity V of

10 m s−1 and peak wind speed umax of 20 m s−1. b) Group velocity along the characteristic

curves as a function of time with colors same as in a). The translational velocity V= 10 m s−1 is

shown as black dashed line. c) Same as in b) but for wave age α = 2 cg / u10. The dashed-dotted

and dashed line indicate α=1 or 10 respectively. d) to f) as as a) to c) but for peak wind speed

umax=10 m s−1 rather then umax=20 m s−1.
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Figure 6. The dependences of the largest generated group velocity from the two-dimensional

Gaussian wind model on the storm’s scales. a) Largest generated group velocities for varying

translational velocity V and peak wind speed umax. The dashed black line separates fetch- and

time-limited cases. Case 1 and 2 from Figure 5 are shown as the black upward- and downward

pointing triangles. b) Same as a) but for changes in the 95%-width and 95%-duration. The pa-

rameter space of a) and b) are represented as green or blue dot in the respective other panel. The

observational case from section 3 (Figure 9c) is shown as red dot in a) and b).
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Figure 7. Results for the source point optimization for the case study in January 2016. a)

The colored circles show the best fit great-circle distanced for the respective stations (colored

dots). The great-circle radii correspond to the sloped lines in panel b to f and the green hexagon

is the position of the most likely common origin on January 4th 2016 at 06:00 UTC. The green

shading shows the the likelihood measure Lef > 0.5 for this time step and the black contour

the corresponding likelihood of Lef = 0.6. (b) to (f) The fitted parametric models (contours)

compared to the station data (colored shading). The gray shadings in panel (b) to (f) is the

weighting on the data during the optimization, and the weight in the sub-titles is the data’s

weight in the multi-station cost function (Suppl. Material T1).
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Figure 8. Optimized source locations compared to reanalysis winds (shading and vectors as

in Figure 1) and negative SLP anomaly (dark blue contours as in Figure 1) for a date early in

the event (a, 2016-01-03 10:00), the most likely origin time (b, 2016-01-04 04:00), and late in

the event (c, 2016-01-04 14:00). The light green dots or the hexagon represent the most likely

swell wave origin for the respective time step and the dark green dots are most likely swell wave

origins for all time steps. The black line between the point A and B is a least-square fit to these

dots of most likely origin and defines the transect through the wind data in panel d) and e).

The transect through the wind data between point A and B is shown for along-transect (d) and

across transect (e) winds. The wind data is indicated in red and blue shading, the area observed

of most likely wave origin as green contours (Lef ≥ 0.6), and its maximum as green hexagon.

The estimated translational velocity along the transect is shown as black line (see suppl. Material

F2).
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Figure 9. Observed winds in the moving frame of reference. a) Same as figure 8d but in the

moving frame of reference. The black line figure 8d would be here a vertical line. b) Same as a)

but with characteristic curves of ωp solving Equation 4 with the method of characteristics. c)

Same as Figure 5a but for scale estimated from (b): 95%-width = 2800 km, 95%-duration = 4

days, umax= 22 m s−1, and V= 14.1 m s−1. The characteristic curves with the highest wave en-

ergy are marked as blue line in panel b and c and the green hexagon indicates the position where

wave growth can terminate the latest. The dashed black line in (c) is the 95%-boundary of the

forcing field.
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Figure 10. Schematic of wave growth under a moving storm with Gaussian wind. The gray

shading shows the wind forcing and the dashed gray line marks the 95%-boundary of the Gaus-

sian wind forcing. The colored lines are characteristic curves of wave generation in the reference

system of moving extra-tropical storm. Wave growth starts with a young sea from rest and a

small peak group speed. It develops into a growing sea that travels at the speed of the storm,

until the wind forcing retires such that the sea state eventually stops growing and the non-linear

wave-growth terms decay. Once the wave energy in each frequency band is dominantly linear the

wave energy disperses and travel as linear sea, i.e. swell.
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Figure 11. Peak group velocity cg of wave events from a Gaussian wind forcing of different

velocity V and duration. The given peak wind speed and 95%-width are predefined as umax = 10

m s−1 and 1000 km. The joint distributions of storm track speeds and lifetime are shown for the

Northern Hemisphere (red) and Southern Hemisphere (black) as contours and their maxima as

colored dots. The results for scales of a Gaussian wind forcing as in Figure 5d to f are shown as

blue triangle. The storm track statistics are derived from reanalysis sea level pressure fields using

Murray and Simmonds (1991a) and Murray and Simmonds (1991b). Note that this algorithm

does not provide a peak wind speed umax such that we assume 10 m s−1, even though we point

out that umax is an important parameter for the resulting peak group velocity.
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This supplementary document contains additional material for a simple model of swell

generation under extra-tropical storms.

Text T1: Physically informed Optimization of a common Focal Point

T1.1. Wave buoy observations and initial event identification

Each of the chosen wave buoys (CDIP 166, CDIP 179, CDIP 029, CDIP 067, CDIP

106) samples the directional wave spectrum in 30-minute averages. The wave buoy spec-

trograms and their directional information are retrieved from the CDIP datawell (Behrens

et al., 2019).

Local swell maxima are identified in the spectrograms by averaging over the first three

frequency bins whose spectral amplitude exceeds a noise threshold of e−1 m2 Hz−1. This

results in a time series of the amplitude of the longest swell waves that is sensitive to the

amplitude and frequency slope of the swell and. This time series is band-pass filtered for

timescales between 18 hours and 7.5 days using a Lanczos filter to retain variability that

is mainly related to atmospheric synoptic scales. Examples of the identified swell maxima

are shown in main-text figure 1b to e (black dots).

T1.2. Data pre-handling

First, we apply an adaptive directional filter on the wave buoy observations to filter

out local wind waves and focus on dispered swell. The incident directions of the swell

forerunners are used to weight the observed spectrograms. The directional component of

the wave spectrum Dθ(θ, f, t) is used to create a weight for the omni-directional spectral

amplitude Damp(f, t) (here, f is the wave frequency and t is time). Frequency bands

with wave energy in the same direction as the swell forerunners have a weight of one,
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while frequency bands that contain energy from a different direction have a weight close

to zero. This selects wave energy in a ±15◦-angle around the peak direction of the swell

forerunners and filters out secondary swell systems or locally generated higher frequency

waves if they come from a different direction.

In a second step, the pre-identifies wave events are isolated for the optimization pro-

cedure. The initial dispersion slope of each swell event is estimated by the difference

between the prior identified local maxima (main-text figure 1b to e, black dots) and a

local maxima on a frequency band that is 0.01Hz higher compared to the prior identified

local maximum. This slope between the two local maxima on different frequency bands

is used to select and initialize each wave event following (Hell et al., 2019).

T1.3. Initial model fit

The pre-identified single wave events are then used to fit a model of swell arrival to each

case individual. Based on the algorithm in Hell et al. (2019), the two-dimensional model

function for the individual events M k is defined as

M k(t̃, f) = A(mt, µ)K(t̃, t̃0,mt, σK) S(f, U, fm, γpar), (T1.1)

where A describes the amplitude attenuation, K̃(t̃) = K(t̃)/max(K) describes the peak-

normalized and time-normalized time component, and S(f) the frequency dependent

power spectra. The amplitude of M k is defined by the initial spectral power of S and the

attenuation A.
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The power spectra S(f) is modelled by the standard JONSWAP spectrum

S(f) =
αSg

2

(2πf)5
exp

[
−5

4

(
f

fm

)−4
]
γδ,

αS = 0.076

(
fmU

3.5g

)2/3

,

δ = exp

[
−1

2

(
f − fm
σSfm

)2
]
, (T1.2)

with fm as the peak frequency of the spectra, σS = 0.07 for f ≤ fm and σS = 0.09 for

f > fm, and γpar as the amplitude of the peak-enhancement factor (Hasselmann et al.,

1973).

In time, the model is defined as a form of a χ2- or Erlang distribution such that

K(t̃, t̃m) =
t̃m
σK

e−t̃m ,

t̃m =
t̃− t̃0 + fmt

σK
(T1.3)

where t̃ is the non-dimensional time, the relative time of the selected data divided by its

time span ∆t, t̃0 is the non-dimensional initial time, mt is the slope of the peak frequency

in the spectrogram in units of Hz−1, and σK a parameter that controls the width of the

distribution (Hell et al., 2019).

The swell’s attenuation A along the travel path is modeled with a simple exponential

decay that does not depend on direction or frequency (Ardhuin et al., 2009). That means

the decay only depends on the distance traveled along a great circle path r0 such that it

can be directly related to the spectral slope mt (Munk, 1947). The attenuation model is

defined as

A(mt, µ) = exp

(
−µgmt∆t

4π

)
, (T1.4)
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where µ ≈ 3.7 ± 0.210−7 m−1 (Jiang et al., 2016). This simple attenuation model allows

the spectral power at the origin to be estimated from the observed swell spectrogram

alone, assuming that distortions by other processes are small.

The to-be-optimized parameters for each event k are summarized as

pk = {mt, µ, t̃0, U, fm, γpar, σt}T . (T1.5)

They are optimized to find the best fit of the model M k(pk, t̃, f) to the data Dk by

minimizing the the cost function

Jk =
∥∥(Dk −M k)wk

∥∥2 +

∥∥∥∥p0 − p

pσ

∥∥∥∥2 , (T1.6)

for a wave event k individually (adapted from (Hell et al., 2019)). The initial guess of the

parameters p0 was derived from the data, and the priors of the model parameters pσ are

taken from (Hell et al., 2019). The data weighting function wk describes 2D-Gaussian

weight around the center of the event such that noise at the corner of the data is excluded

(dark shading in main-text figure 7 b to f, also F4 and F6, Hell et al., 2019, sec. 6.d).

The cost function Jk is optimized with three-stage optimization procedure. An initial

semi-random ‘basinhopping’ search finds the minimal cost varying only mf and t̃0 to

determine the best model slope that goes through the pre-identified forerunner point

(Wales & Doye, 1997). In a second step, the cost function is minimized by varying

all parameters using the Levenberg-Marquardt Algorithm (LM, damped least-squares,

Newville et al., 2014) and finally, a posteriori error distribution is derived with a Parallel

Tempering Markov-Chain-Monte-Carlo (PTMCMC, Goodman & Weare, 2010; Foreman-

Mackey et al., 2013; Earl & Deem, 2005).
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This procedure is applied to all pre-identified swell events at five stations between the

year 2014 to 2018 resulted in about 77 successfully fitted wave events per station per year.

After quality control, only about 56% of these cases can be bundled to sets of observed

events with a common source (see next section).

T1.4. Identifying and optimizing common swell source

To derive a common source location we combine the identified wave events from the

previous step from the five wave buoys. The initial fitting acts here as a quality control,

such that we only use events that provide a reasonable radial distance (> 200 km), a small

fractional error (−werr + 1 < 0.6, eq. T1.9), and have a σK < 0.2 to sort out short local

events.

The matching of events between the five wave buoy stations are done using the fitted

initial time and their uncertainty estimates (Figure F7 for the year 2016). Blue lines

are two-standard deviation uncertainty ranges around estimated initial times that pass a

quality criterion of good model fit (Hell et al., 2019), while light green lines show the initial

time uncertainties that do not pass this criterion. Red blocks indicate time ranges where

two or more initial time estimates overlap. These events are used to triangulate the source

locations in the north pacific (longitude and latitude) from the radial distance estimates

of the identified overlapping subset. Figure F7 illustrates that by far not all initial time

estimates are good enough and the not all initial time estimates coincide. To account for

this, the triangulated location and time from the identified subset of wave buoys are used

to re-select data from the not identified wave buoys by forward propagating the model M

and estimating the slope and model shape at the buoy location. The now selected data

in the additional wave buoys is then again fed in to the parameter estimation described
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in sec. T1.3. This results in a data array from each wave buoy and these five data arrays

likely contain observations from the same swell event.

Using this procedure, only about 7.5 events per year are well observed at 2 or more

wave buoys, while about 50-70 event per year are identified in each wave buoy. That

low matching rate by the initial time only is due to a) an insufficient initial detection

algorithm based on the forerunners of swell (sec. T1.1), b) noise by local wind swell at

buoy locations, c) deflection of waves by currents, and finally d) the fact that not all wave

events propagate across the north pacific such that they are detected by multiple wave

buoys.

T1.5. Multiple-stations cost function

The identification of a common swell source by their initial time t0 described in the

previous section results in 31 sets of swell events that had a common t0. Many other

events are distorted by noise at the station or the wave ray refraction on their path

through the ocean (Gallet & Young, 2014; Villas Bôas & Young, 2020).

The sets of swell event observations were then used to reassess the model parameters by

adding the constraint of a common source. The optimization problem was reformulated

in terms of parameters describing a common swell event from a single location

pm = {λ, φ, t}, (T1.7)

with the longitude λ, latitude φ, and time t define the source location. The slope parameter

mt and attenuation µ at each station k were calculated based on the common source

position (Munk, 1947; Barber & Ursell, 1948). Other parameters of the model M k were

set to the five-station mean of the individual fitted parameters and do not vary during the
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multi-station optimization. This reduces the search space of the optimization procedure

and allows for faster optimization. Alternatively, the parameter space pm (eq. T1.5) could

have been extended with parameters that describe the spectral shape as well. However

a larger parameter space required larger computational efforts and here we focused on

the source location and time, which only requires changes of the dispersion slope, timing,

and amplitude. Tests where more parameters are optimized resulted in a lower total

fractional error (eq. T1.10), but did not change the results in the optimization of the

position. Hence, the reduction of the parameter space leads to larger systematic error in

the cost function, but its physical interpretation remains the same.

The parameters for each station pk(pm) are calculated at each function evaluation of the

multi-station optimization. The cost function for optimization over N stations is defined

as

Jm =
N∑
k

wkerr∑N
i w

i
err

Jk, (T1.8)

where Jk is the regularized cost function for each individual event k (eq.T1.6) and wkerr is

the measure of the fit derived from the individual fitting procedure. It is defined for each

event at a station k as

wkerr = 1−
∥∥(Dk −M k)wk

∥∥2∥∥Dkwk
∥∥2 , (T1.9)

where w is again the geometric weight of the event (dark shading in main-text figure 7

b to f, also F4 and F6, Hell et al., 2019, sec. 6.d). A wkerr = 1 expresses a perfect model

fit, while a wkerr = 0 describes a complete failure of the optimization at the individual

station. The weighting emphasizes station data with a high signal-to-noise ratio rather
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than uncorrelated noisy data that might appear in some cases. This methodology can be

easily extended to incorporate more data from other observations.

The parameters pm are not regularized to allow a more unbiased search of the source

location. However, the search space is limited to the North Pacific (20◦N to 60◦N, 140◦E

to 120◦ W) and ±2 days around the 5-station mean of the individual fits.

The error of the model model fit for the multi-station cost function is than defined as

the sum of the individual weighted cost functions (T1.8) normalized by the sum of the

(geometrically) weighted data such that

ef =
Jm∑N

k (Dkwk)2
, (T1.10)

for a given set of N stations. The fractional error ef can be interpreted as a likelihood

Lef = 1− ef = 1− Jm∑N
k (Dkwk)2

, (T1.11)

such that a perfect match (ef = 0) results in a likelihood of 1 and a failure of the model

results in a likelihood of zero.

The 31 sets of matched observations are used to explore the multi-station cost function

Jm (eq. T1.8) with two different procedures to explore the cost function. The first

procedure is a brute-force sampling in the 3-dimensional parameter space of pm on the

same grid as the wind data was provided (hourly and 25km). This creates a time-varying

map of model fit using eq. T1.8 that is transformed to a map of likely wave origins using

eq. T1.11 (see main-text section 3.2 and main-text figure 7a, F4 a and F6 a). The second

procedure uses a sequence of two gradient decent methods; First simplicial homology

global optimization (SHGO, Endres et al., 2018), and then a dual annealing method (DA

Tsallis, 1988; Tsallis & Stariolo, 1996; Xiang et al., 1997). Both methods are developed
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for fast convergence to a single global optimum of a complex cost-function. Regardless

of the method, or procedure all optimizations return a focal points that are the same, as

least on scales that are relevant for this study (figure F1).

June 3, 2021, 6:00pm



HELL ET AL. 2021: SWELL GENERATION UNDER EXTRA-TROPICAL STORMS X - 11

Figures F1 Comparison of the brute force (green dot) and SHGO (red hexagon) opti-

mization, while the optimized location and time are indicated next to them. The dark

green dots are positions of minimal fractional error from the brute force method before

and after the best smallest fractional error on hourly intervals. The gray circle lines are

the great circle distances centered around the stations in main-text figure 1a according to

their radial distance through the SHGO point.
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Figures F2 Illustration of transects through wind data along the trace of most likely

wind origins. The black line in (a) indicates the estimated great-circle line (see section 3.2

in the main text), and the gray, light blue, or dark blue patches are the group grid points

used for each transformed wind vector (black thin line). The wind speed is shown as red

shading an the likelihood map of wave origin as green lines. The zonal and meridional

wind, wind speed, as well as the transformed along- and across-track velocities are shown

in panel (b). The vectors again show the zonal and meridional wind direction for each of

the along-track averages bins indicated in panel (a).
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Figures F3 Least square fit (black line) to the points of maximum along track wind at

each time step (green dots). These local maxima are determined within the centered wind

event (green contours). The along track wind is shown are red and blue shading. The

wind data is transformed according to the black line (see section 3.3. in the main text)

while the left boundary is defined by the parallel shifted red line.
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Figures F4 Same as main-text Figure 7 but for a case storm around February 10th 2016.
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Figures F5 Same as main-text figure 9b, but now for the case in figure F4. See figure

caption of figure F4.
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Figures F6 Same as main-text Figure 7 but for a case storm around January 17th 2014.
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Figures F7 Simplified time series for one year of fitted initial times uncertainty estimates.

Each green or dark blue line shows t0 ± 2σt0 for events identified at one of the stations.

Green bars indicate events that have fractional error ef < 0.4, while blue bars are events

with ef ≥ 0.4. The red areas show time spans where at least 3 or more events have

overlapping estimated initial times.
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