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Abstract

Here, we extend the Fisher-Kolmogorov-Petrovsky-Piskunov equation to capture the interplay of multiscale and multiphysics

coupled processes. We use a minimum of two coupled reaction-diffusion equations with additional nonlocal terms that describe

the coupling between scales through mutual cross-diffusivities and regularise the ill-posed reaction-self-diffusion system. Ap-

plying bifurcation theory we suggest that geological patterns can be interpreted as physical representations of two classes of

well-known instabilities: Turing instability, Hopf bifurcation, and a new class of complex soliton-like waves. The new class ap-

pears for small fluid release reactions rates which may, for negligible self-diffusion, lead to an extreme focusing of wave intensity

into a short sharp earthquake-like event. We propose a first step approach for detection of these dissipative waves, expected to

precede a large scale instability.
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Abstract13

Here, we extend the Fisher-Kolmogorov-Petrovsky-Piskunov equation to capture the in-14

terplay of multiscale and multiphysics coupled processes. We use a minimum of two cou-15

pled reaction-diffusion equations with additional nonlocal terms that describe the cou-16

pling between scales through mutual cross-diffusivities and regularise the ill-posed reaction-17

self-diffusion system. Applying bifurcation theory we suggest that geological patterns18

can be interpreted as physical representations of two classes of well-known instabilities:19

Turing instability, Hopf bifurcation, and a new class of complex soliton-like waves. The20

new class appears for small fluid release reactions rates which may, for negligible self-21

diffusion, lead to an extreme focusing of wave intensity into a short sharp earthquake-22

like event. We propose a first step approach for detection of these dissipative waves, ex-23

pected to precede a large scale instability.24

Plain Language Summary25

Regular and irregular patterns of deformation bands and fractures are ubiquitous26

in nature. In this paper, we decipher the patterns in terms of coefficients of a simple set27

of reaction-diffusion equations that can, for given material parameters, describe a tran-28

sition from regular to logarithmically decaying patterns and chaotic instabilities. Sim-29

ilar sets of equations have previously been used to explain phenomena in complex chem-30

istry and pattern formation in epidemiology, but without the multiscale and multiphysics31

consideration for saturated porous media presented here. This work introduces the math-32

ematical formulation and analysis. Quantitative applications to geological observation33

will follow. The new dissipative waves discovered in this contribution opens an avenue34

for earthquake forecasting as under extreme conditions they can focus wave energy from35

the environment into a high intensity localised wave. Immediately before the main event36

occurs there is a reduction of background wave amplitude to feed the sharp instability.37

The typical self-focusing wave shape and the ’calm before the storm’ is suggested to be38

tested as a diagnostic forecasting tool of earthquakes.39

1 Introduction40

Travelling-wave solutions of reaction-diffusion systems are encountered in many fields,41

e.g. in chemistry, epidemiology, biology, medicine, and physics. They were first identi-42

fied in chemistry by R. Luther in 1906 and demonstrated in an experiment where ox-43

alic acid mixed with potassium permanganate led to a wave propagation of the reaction44

made visible by an oscillatory front of decolorization of the mixture. An English trans-45

lation of the transcript of the original lecture has been published much later (Luther,46

1987). Subsequently, the same fundamental partial differential reaction-diffusion equa-47

tion was shown by R.A. Fisher to explain wave-like propagation of mutant genes (Fisher,48

1937), which is widely used in epidemiology for modeling the spread of viruses as well49

as in many other fields of biology (Volpert & Petrovskii, 2009). The equation is now bet-50

ter known as the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation (Kolmogorov51

et al., 1937), recognizing the important early work (Adomian, 1995).52

Although the basic mathematical equation is agnostic of the application, and the53

phenomenon is now well established in the above named disciplines, it has found little54

application in the Earth Science field so far, where reaction-diffusion problems are com-55

mon. Pioneering work was presented in the 1990’s (Dewers & Ortoleva, 1990; Ortoleva,56

1993, 1994). Not much progress has been made on further development of geophysical57

applications to the slow travelling-wave solution. Broader community interest was mainly58

met for the special case of the stationary solution of the system of equations (Ball, 2012).59

The main problem in the application to Earth Sciences is perhaps twofold. The first prob-60

lem is that patterns in nature are mostly observed as frozen in features of the dynamic61

solution. It is difficult to discern from geological observations, whether the rhythmic fea-62
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tures are frozen-in patterns of an oscillating reaction-diffusion equation propagating in63

time (Hopf-bifurcations), or whether they are caused by a standing wave solution (Turing-64

patterns) fixed in space (L’Heureux, 2013). The second problem is that the original FKPP65

equation does not replicate the rich field of observations encountered in nature.66

For geological applications, a generalized power-law reactive source term therefore67

has been proposed as an extension to the FKPP equation (Vardoulakis & Sulem, 1995).68

Using the simple case of a time-independent reaction-diffusion equation with a power-69

law reactive source term and integer-valued exponents, standing solitary wave Korteweg-70

De Vries (KdV)-type solutions were obtained analytically (Regenauer-Lieb et al., 2013;71

Veveakis & Regenauer-Lieb, 2015). The inclusion of the power-law source term unfor-72

tunately leads to an infinite amplitude KdV-type solitary wave. Several attempts have73

been made to overcome this shortcoming with the aim to provide an appropriate appli-74

cation for modelling compaction bands in porous (or multiphase) geomaterials. One so-75

lution proposes, for instance, an additional reaction source term buffering the instabil-76

ities for carefully chosen cases (Alevizos et al., 2017). While the proposed approaches77

manage to achieve a solution to the ill-posed problem of lacking an internal material length78

for some cases, a generalized approach is in absence.79

Here, we develop a theory that has the potential to solve the problem directly for80

all cases by using an approach that is based on internal length scales stemming from the81

physics of the feedbacks of multiple processes operating across multiple characteristic scales.82

We introduce the lacking internal material length scale through an integration of non-83

local diffusion and reaction coefficients originating from lower-scale processes. In a sim-84

ple formulation, the feedbacks can be captured mathematically by the interaction be-85

tween at least two reaction-diffusion equations coupled through two sufficiently large cross-86

diffusion coefficients between interweaved dynamic systems, e.g., a saturated porous medium87

in the post-yield regime (Hu et al., 2020).88

The system of equations has been generalized to describe multiphysics couplings89

between multiple scales (Regenauer-Lieb et al., 2021b). In such a formulation, the cross-90

diffusion coefficients are derived through volume integration of diffusion processes that91

are spatially connected to interactions at the lower scale and therefore also called non-92

local diffusion processes. In this sense, the diffusion of a given concentration of species93

does not only depend on its position in space and its gradient, but also on the nonlocal94

effect of the values of concentrations around it and the convolution of the concentration95

with the probability distribution to jump from one location to another (Amdreo-Valle96

et al., 2010). Such nonlocal diffusion processes have recently attracted much attention97

in the mathematics community as the FKPP-equation was found to display unexpected98

wave front accelerations due to the nonlocal terms, as first observed in the invasion of99

cane toads in Australia (Bouin et al., 2017).100

As an innovation in this paper, we also consider nonlocal reactions where the non-101

locality arises from modeling the behavior of one phase interacting with another in its102

immediate environment and vice versa, concurrently - lending itself to a dynamical sys-103

tem approach that captures the multiphysics involved in a tightly coupled fashion. The104

beauty of this new class of nonlocal approaches lies in the fact that it naturally allows105

process coupling across spatial and temporal scales where runaway reactions can be buffered106

via infinite-speed propagation of such perturbations through the nonlocal diffusion pro-107

cess (Amdreo-Valle et al., 2010). In the Supporting Information we perform a linear sta-108

bility analysis of the newly proposed system of equations and provide a systematic anal-109

ysis of the parametric space. In the following we summarize the basic formulation and110

its three fundamentally different types of instabilities and discuss possible applications111

in geology and geophysics.112
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2 Korteweg-De Vries-type standing-wave limit113

The dynamic equation for the momentum balance of the solid skeleton in a hydro-114

poromechanic nonlinear visco-plastic medium is expressed in the Perzyna overstress (Duszek-115

Perzyna & Perzyna, 1996) formulation (describing the viscous material behaviour post116

yield) as a FKPP-type reaction-diffusion equation:117

∂p̄s
∂t

= DM
∂2p̄s
∂x2

+R1, (1)

where in the above 1-D formulation p̄s denotes the Perzyna overpressure for the118

solid skeleton and R1 a nonlinear reactive source pressure term.119

Under the standing-wave assumption, this travelling-wave equation becomes a static120

mechanical viscous overpressure reaction-diffusion equation:121

DM
∂2p̄s
∂x2

+R1 = 0. (2)

The coupled dynamic fluid pressure system can be described by a similar wave equa-122

tion:123

∂pf
∂t

= DH
∂2pf
∂x2

+R2, (3)

which for the static case with a zero source term R2 becomes the Darcy equation:124

DH
∂2pf
∂x2

= 0. (4)

We introduce a dimensionless form125

p̃s =
p̄s
p′ref

, x̃ =
x

l0
, λ =

DM

DH
, (5)

where p′ref and l0 are reference pressure and reference length, respectively. Assuming a126

power-law reactive pressure source term with a power-law exponent m, the coupled sys-127

tem of equations (2) and (4) becomes a Korteweg-De Vries-type standing wave equation:128

∂2p̃s
∂x̃2

− λp̃ms = 0. (6)

Analytical solutions for the practical application to compaction bands with m =129

3 have been suggested (Regenauer-Lieb et al., 2013; Veveakis & Regenauer-Lieb, 2015),130

which feature, for a critical ratio of solid/fluid self-diffusivities λ > 12.7, periodic stand-131

ing waves with infinite-amplitude singularities of the non-dimensional overpressure.132

3 Cross-diffusion equations in geomaterials133

The system of equations can be regularized by extending equations (1) and (3) through134

nonlocal cross-coupling diffusivities between the two dynamic systems considering the135

unique structure of porous media (Hu et al., 2020). Such cross-couplings are well known136

in chemistry as cross-diffusion (Vanag & Epstein, 2009) between chemically reactive con-137

stituents. In our case, cross-diffusion arises as interfacial characteristics (Hu et al., 2020)138

and regularizes the feedbacks between the dynamic evolution of the fluid and solid pres-139

sure. The equations for a fully saturated porous medium post yield can be expressed as:140

∂p̄s
∂t

= DM
∂2p̄s
∂x2

+ dH
∂2pf
∂x2

+R1, (7)
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141

∂pf
∂t

= dM
∂2p̄s
∂x2

+DH
∂2pf
∂x2

+R2, (8)

where R1 and R2 are the reaction terms in the governing equations for solid and fluid142

pressure, respectively. For completeness, we extend the formulation of the crossover dif-143

fusion problem proposed earlier (Hu et al., 2020) by nonlocal reaction terms. This al-144

lows us to explore a more general solution space.145

For expanding the reaction term R2 in Eq.(8), we need to consider the feedback146

between solid and fluid pressure reactions. The reaction term R2 incorporates cross-scale147

coupling to gradients of the pressure in the solid matrix ps in the surrounding pore space,148

which exerts a “nonlocal” effect on the fluid pressure pf inside the pore. For the local149

source term, we assume a simple linear process for the fluid phase, which can be water150

production/depletion due to dehydration/rehydration of minerals. Thus, to take into ac-151

count the above two factors, we assume that the reaction term R2 follows a linear func-152

tion of the fluid pressure and solid overstress, i.e. R2 = a21p̄s + a22pf , where a21 and153

a22 are the corresponding coefficients.154

Likewise, the reaction term R1 in Eq.(7) is translated into a nonlocal reaction for-155

mulation as we expand the power-law assumption in (Veveakis & Regenauer-Lieb, 2015)156

by higher order terms of p̄s to describe the viscoplastic behaviour of the solid skeleton.157

The feedback to the fluid pressure pf is, however, assumed to be linear, for simplicity.158

The generalized reaction term in Eq.(7) is now written in a non-linear form of R1 = a11p̄s+159

a12pf + a13p̄
2
s + a14p̄

3
s. Note that all the coefficients in the reaction terms would also160

evolve according to the in-situ chemo-hydro-mechanical conditions, but here we just give161

the generalized form and regard them as constants to facilitate the analysis.162

By introducing the dimensionless parameters t̃ = ε̇0t, p̃f = p̄f/p
′
ref , where ε̇0163

denotes the reference strain rate, together with the previously defined p̃s = p̄s

p′
ref

,x̃ =164

x
l0

, we arrive at the normalized cross-diffusion equations with normalized reaction terms165

R̃1 and R̃2 expressed as166

∂p̃s

∂t̃
= D̃M

∂2p̃s
∂x̃2

+ d̃H
∂2p̃f
∂x̃2

+ ã11p̃s + ã12p̃f + ã13p̃
2
s + ã14p̃

3
s, (9)

∂p̃f

∂t̃
= d̃M

∂2p̃s
∂x̃2

+ D̃H
∂2p̃f
∂x̃2

+ ã21p̃s + ã22p̃f , (10)

where D̃M = DM

l02ε̇0
, d̃H = dH

l02ε̇0
, ã11 = a11

ε̇0
, ã12 = a12

ε̇0
, ã13 =

a12p
′
ref

ε̇0
, ã14 =

a12p
′
ref

2

ε̇0
,167

d̃M = dM

l02ε̇0
, D̃H = DH

l02ε̇0
, ã21 = a21

ε̇0
, ã22 = a22

ε̇0
.168

In this paper, we describe only two coupled nonlocal reaction-diffusion processes.169

It is straightforward to extend the approach into a higher degree of coupling such as an170

interaction with a thermal nonlocal reaction diffusion equation. Without loss of gener-171

ality, we also limit the higher-order expansion to the order 3 for numerical analysis to172

capture the essential features of the formulation. In our investigation, an order 3 was the173

minimum requirement to obtain the full spectrum of solutions including excitation waves.174

The development of a concise formulation for extension to higher degrees of coupling is175

never a trivial task considering the complexity associated with new spatial and tempo-176

ral scales introduced into the system, and is hence out of the scope of this letter. A sim-177

plified meso-scale formalism is proposed in (Regenauer-Lieb et al., 2021b) by adding ad-178

ditional cross- and self-diffusion coefficients to the system of equations via the fully pop-179

ulated true diffusion matrix.180
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3.1 System constraints and system behaviour181

In what follows, the behaviour of a system of a saturated porous material described182

by Eq.(9) and Eq.(10) for p̃s : Ω→ R1 and p̃f : Ω→ R1, respectively, will be investi-183

gated. We use a classical formulation for modelling wave-propagation problems. Non-184

flux boundary conditions are assumed: n · ∇p̃s = 0 and n · ∇p̃f = 0 for x ∈ ∂Ω.185

Here, Ω ⊂ Rn is a smooth bounded domain with outer unit normal n and total vol-186

ume | Ω |. The initial condition is assumed as p̃s(x, 0) = p̃f (x, 0) = 0 for x ∈ Ω, for187

simplicity.188

In terms of the Perzyna overstress model used in this formulation, the system size189

is considered to correspond to the region where the overstress has been reached due to190

loading from the far field. The non-flux boundary conditions then correspond to the elastic-191

plastic boundary. In what follows, we arbitrarily choose the left boundary as the one where192

the system receives a perturbation from the outside which may lead to material failure193

within or at the boundaries of the system.194

While the addition of a cross-diffusion term allows a fast response to the coupling195

of the two dynamical equations, thus regulating the coupled system by the new cross-196

diffusivities, the equations become no longer tractable in analytical form. The coupling197

terms may also give rise to new instabilities, for which the linear stability analysis (see198

Supporting Information) provides a robust derivation. With sufficiently large perturba-199

tion applied on the left boundary of the domain, three different types of instabilities are200

encountered: (1) Turing instabilities, (2) Hopf-bifurcations, and (3) cross-diffusional waves.201

The corresponding systems are investigated numerically in the following subsections. Se-202

lections of parameters are based on the linear stability analysis presented in the Support-203

ing Information.204

3.2 Turing bifurcations205

When the system undergoes Turing bifurcations, standing waves are generated, lead-206

ing to space-periodic patterns. Turing bifurcations require the system to be stable when207

diffusion is not considered, and an unstable saddle comes into effect when the control208

parameters vary (see Supporting Information). In our formulation, the phase space is209

spanned by the two main variables p̃s and p̃f , and the main control variables for these210

are ã11 snd ã22, scaling the sign and magnitude of the solid and fluid pressure reactive211

source terms, respectively. A saddle point in the p̃s - p̃f phase space is defined as a crit-212

ical point where the phase switches from a stable manifold to an unstable manifold. In213

other words: (I) a stable manifold is achieved via Re(sk) < 0, i.e. the real part of sk214

being negative, when the wavenumber k = 0; (II) an unstable manifold exists with the215

variation of wavenumber k, if a real positive number (no imaginary part) exists for sk,216

which corresponds to the growth rate of the perturbation. To satisfy the above require-217

ments, a sufficient condition for the onset of Turing instabilities is summarized as fol-218

lows:219

(a) tr0 = ã11 + ã22 < 0, where tr0 denotes the value of trk for wavenumber k =220

0.221

(b) ∆0 = ã11ã22 − ã12ã21 > 0, where ∆0 denotes the value of ∆k for wavenum-222

ber k = 0.223

Here, trk and ∆k are coefficients in the characteristic polynomial of sk as defined224

in the Supporting Information.225

(c) At the critical wavenumber kc,226

k2
c = ã11D̃H+ã22D̃M−ã21d̃H−ã12d̃M

2(D̃M D̃H−d̃M d̃H)
,227

–6–
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∆kc
= ∆0 − (ã11D̃H+ã22D̃M−ã21d̃H−ã12d̃M )

2

4(D̃M D̃H−d̃M d̃H)
< 0.228

Since the current cross-diffusion formulation is essentially a mass balance based ap-229

proach, it is expected that the two self-diffusion coefficients D̃M and D̃H are positive and230

that the two cross-diffusion coefficients d̃M and d̃H are of opposite sign. Hence, (D̃M D̃H−231

d̃M d̃H) > 0 is naturally satisfied, i.e. ∆k at the critical wavenumber corresponds to a232

local minimum. This criterion combines the self- and cross-diffusion coefficients and ex-233

tends the original formulation for Turing instabilities in a hydromechanically coupled 1-234

D system (Regenauer-Lieb et al., 2013; Veveakis & Regenauer-Lieb, 2015).235

It is worth noting that the characteristic Turing wavelength is an intrinsic char-236

acteristic for the reaction-diffusion equation. It is λ = 2π/kc, which shows that the wave237

length is determined by the material coefficients and the system properties comprising238

the diffusivities and the size of the system (plastic zone) considered (Regenauer-Lieb et239

al., 2013). This implies that, if the size of the plastic zone is known, the diffusive ma-240

terial properties can directly be derived from the observation of the localisation pattern,241

e.g., the spacing of fractures or deformation bands (Elphick et al., 2021; Hu et al., 2020),242

since the diffusion properties also control the spacing of the pattern.243

To illustrate the Turing bifurcation solution, we plot numerical results obtained with244

the Finite Difference Method (FDM) in Fig. (1a) and Fig. (1b). The Turing-style in-245

stabilities lead to an equally spaced segmentation of the plastic zone with a distinct striped246

pattern of localisation (Fig. 1b). Upon continued deformation, the system size and the247

diffusivities change because inelastic strain localisation modifies the material properties,248

strain, and the local state of stress. For example in the case of compaction of the plas-249

tic zone, the entire zone shrinks continuously, accommodated by discrete Turing-patterned250

compaction bands. Compaction also changes the diffusivities because permeability is com-251

monly reduced due to inelastic porosity loss through, e.g., grain crushing in the bands252

(Elphick et al., 2021). Finally, low-porosity compaction bands are also expected to cause253

local elastic stress amplification, facilitating further strain localisation (Elphick et al.,254

2021). These effects are not considered in our current calculation. However, for cases where255

only small deformations are encountered, we expect preservation of Turing-style defor-256

mation since the Turing standing wave is essentially a stationary solution.257

3.3 Hopf bifurcations258

When the system undergoes Hopf bifurcations, travelling waves are generated, and259

temporally periodic (oscillation) patterns can be found (see Fig. 2). The Hopf bifurca-260

tion changes a stable focus (Re(sk) < 0) into an unstable one (Re(sk) > 0) with the261

change of control parameters. This requires the existence of certain complex number sk262

with the real part (i.e., 1
2 trk) no less than zero when the wavenumber k varies. Given263

that the maximum value of trk is always obtained when k = 0, the above requirement264

for Hopf instability can be translated to tr0 = ã11+ã22 ≥ 0, tr0
2−4∆0 = (ã11 + ã22)

2−265

4(ã11ã22 − ã12ã21) < 0.266

The characteristics of Hopf bifurcations are illustrated with numerical solutions ob-267

tained with FDM in Fig. (1c) and Fig. (1d). The periodic solutions are similar to Tur-268

ing bifurcations, replacing a singular frequency spectrum with an exponentially decay-269

ing frequency spectrum (Fig. 1c). The oscillation frequency f of the Hopf bifurcation270

is an intrinsic material property of the reaction-diffusion equation and is defined by f =271

1/T =
√
ã11ã22 − ã12ã21/2π. Inversion of material properties from temporal observa-272

tion thus appears to be possible.273

In our example calculation shown in Fig. (1c) and Fig. (1d), the frequency spec-274

trum has distinct gaps between the longest waves and the shortest wavelength at the zero-275

flux (reflecting) opposite boundary of the plastic zone. As the waves are dissipative, they276

act like damage waves that continuously change the mechanical properties of the medium277

–7–
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they traverse. An important observation is that the travelling Hopf wave does not re-278

flect from the system boundary but dumps its energy into the boundary.279

3.4 Cross-diffusion waves for the excitable system280

With the variation of parameters in reaction terms R̃1 and R̃2, we encounter a slow281

reaction case where the coefficients in R̃2 are much smaller than those in R̃1. In this case,282

the whole system would become excitable, and soliton-like behaviours can be observed.283

This situation differs significantly from the above solutions. Upon initiation, the wave284

does not contain information of the system size but constitutes a pure material insta-285

bility, carrying only information on the material defining the cross-diffusion matrix (Tsyganov286

et al., 2007). Upon reflection on the opposite boundaries of the plastic zone, the wave287

can, however, ’sense’ the system size and alter its behaviour accordingly. A special char-288

acteristic of a quasi-soliton is that it does not depend on initial conditions but its prop-289

agation velocity is a material constant which does not alter after reflection (Tsyganov290

et al., 2007).291

Fig. (1e) and Fig. (1f) illustrate the behaviour of quasi-soliton travelling waves in292

an excitable system prior to collision or reflection on boundaries with numerical simu-293

lations. Our results show that the frequency content changes after interaction with bound-294

aries. Fig. (1e) shows the frequency spectrum after first collision with the boundary where295

the wave picks up its first information of the system size. Prior to collision with the right296

boundary, the wave is unaffected by the system size, which is an important difference297

to the Turing- and Hopf-style instability. The speed of the dominant wave group of the298

quasisoliton is a material property and independent of initial conditions (Tsyganov et299

al., 2007). An important aspect is the maximum amplitude at zero frequency, or ’infi-300

nite’ wavelength, which suggests that relativistic considerations may need to be intro-301

duced for high wave speeds which are not expected to be encountered in geological ap-302

plications. In our case the speed of the wave is limited by the Hadamard jump condi-303

tion (Regenauer-Lieb et al., 2021b). We show in Fig (1e) a frequency plot after inter-304

action with the opposite boundary which moves the zero frequency maximum to a low305

frequency maximum.306

The frequency spectrum and the behaviour of these waves are complex. Our nu-307

merical results show that the cross-diffusion waves can behave like solitons, i.e., they can308

penetrate through each other or reflect from boundaries. However, there are a number309

of significant differences (Tsyganov & Biktashev, 2014): (1) their amplitude and speed310

depend entirely on material parameters whereas those of true solitons depend on initial311

conditions, (2) true solitons do not change after interpenetration or reflection from bound-312

aries while quasi-soliton waves change frequency spectrum and amplitudes after inter-313

action, and (3) their peculiar behaviour upon collision/reflection classifies them as quasi-314

solitons encountered in particle physics as they behave like unstable particles (Lioubashevski315

et al., 1996) and in the extreme case can lead to catastrophic instabilities (Eberhard et316

al., 2017) sampling wave energy over multiple length scales to release it as a damaging317

rogue wave.318

4 Discussion319

Turing and Hopf-bifurcations are well-known in geological applications particularly320

as interpretations of patterns in deformed metamorphic rocks (Hobbs et al., 2011; Hobbs321

& Ord, 2015; L’Heureux, 2013, 2018). Turing patterns as dissipative structures of reaction-322

diffusion systems have been claimed to underpin the common principles for the univer-323

sality of certain basic forms encountered in nature such as hexagons, stripes, fractal shapes324

and spirals (Ball, 2012). Accordingly, Hopf- and Turing bifurcations are postulated to325

be encountered in many guises in material- and geoscience applications. Propagating zones326

of localised deformation have been encountered in metals, polymers and rocks. In the327
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latter application they are known as ’deformation bands’ (Aydin & Johnson, 1978). The328

similarity of wave-like deformation bands in material science and multiscale patterns in329

fault damage zones has been highlighted (Makarov & Peryshkin, 2017). It is therefore330

an attractive proposition to quantify fundamental pattern forming processes in terms331

of dynamic coefficients of simple reaction-diffusion equations and establish a material database332

of these coefficients for detection and prediction of material and chemical instabilities333

that cause emergence of these patterns.334

There exists, however, to date no commonly accepted technique to derive the nec-335

essary dynamic coefficients as material parameters that control dynamic and static evo-336

lution of these patterns. While Hopf- and Turing patterns appear to be frequently en-337

countered in nature the simple reaction-diffusion equation may just not explain the rich338

solution space. Some elementary ingredient may be missing. We have pointed out that339

known analytical and numerical solutions to the reaction-diffusion equations often do not340

converge to physical meaningful solutions as they generally lack an internal length scale341

that controls the width of pattern forming processes. A good illustration for this is the342

analytical solution of a simple reaction-diffusion equation (equation 6) with a power law343

reaction term which has been used for the interpretation of Turing-style instabilities in344

compacted rocks (Regenauer-Lieb et al., 2013; Veveakis & Regenauer-Lieb, 2015). The345

solution predicts an infinite wave amplitude on the wave crest singularities. We have there-346

fore proposed that the missing ingredient is indeed the cross-diffusion term which con-347

trols the width of instabilities and reduces runaway reactions on wave crests to finite am-348

plitude instabilities (Hu et al., 2020; Regenauer-Lieb et al., 2021a).349

Our approach provides a simple and concise mathematical formula to capture the350

above-described natural phenomena in geology and geophysics. It has been proposed as351

a system of equations with the lowest degrees of freedom to describe the many intrigu-352

ing features of reaction-diffusion systems. This approach offers a reaction-diffusion-based353

process interpretation of patterns observed in nature. The new equations encapsulate354

an internal material length scale providing a generic regularisation of boundless ampli-355

tudes of instabilities for all reaction-diffusion cases considered. This avoids the design356

of specialised solutions with carefully chosen added reaction or self-diffusion terms as dis-357

cussed in the introduction. However, they are not merely mathematically convenient for358

stabilising numerical modelling and interpretation of patterns in nature but they open359

a new avenue for forecasting instabilities as they propose a new class of waves which pro-360

vide a testable prediction for the validity of the approach. Moreover, these quasi-soliton361

(cross-diffusion) waves are expected to precede and lead to the formation of Hopf- and362

Turing instabilities as shown in the parametric study provided in the Supporting Infor-363

mation. We propose that they constitute the missing physics for the emergence of these364

instabilities. The new class of waves only occur in excitable systems when sufficiently365

large fluxes of cross diffusion are encountered (Tsyganov et al., 2007).366

The relationship between the three types of instabilities is argued to be of evolu-367

tionary type. A material point should change properties after the propagation of a cross-368

diffusion wave, and the geological structures formed by either Hopf- or Turing style in-369

stabilities are generating internal material interfaces. Therefore, while we predict (see370

the parametric space in the Supporting Information) strictly defined interfaces between371

the three types of instabilities, in reality evolutionary crossovers between the instabil-372

ity regimes are expected from cross-diffusion waves to Hopf- or Turing instabilities be-373

cause the material properties evolve dissipatively. Obviously, natural phenomena are re-374

stricted in the parameter range, and it is possible that only specific classes of instabil-375

ities can be observed due to the material properties and boundary conditions of the en-376

countered scenario per se.377

While the postulate of the existence of cross-diffusion waves in geoscience appli-378

cations is relatively new (Hu et al., 2020) they are well documented in analogous reaction-379

cross-diffusion systems encountered in mathematical biology (Biktashev & Tsyganov, 2016)380
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hydrodynamics (Schimpf & Semenov, 2004) and photonics (Paschotta, 2008). In our study381

they constitute the most elementary solution for low reaction rates (please refer to the382

parametric study in the Supporting Information). The low rates unfortunately also im-383

ply low amplitudes and low speeds of propagation. This poses challenges to how they384

can be detected by geological applications - are they possibly detectable with the exist-385

ing methods, e.g. high sensitive pressure sensors such as pressure sensitive paints, dis-386

tributed fibre-optics sensors, digital image correlation of particle image velocimetry, fi-387

bre Bragg gratings for temperature, strain gauges or acoustic emission sensors. In par-388

allel, the premise of proposing a plausible detection system for cross-diffusion waves lies389

in a sound understanding of how cross-diffusion waves can manifest themselves in hy-390

dromechanically coupled problems and what we can expect in terms of detectable am-391

plitude, spectral content and wave velocity.392

In our formulation quasi-soliton (cross-diffusion) waves are a coupled set of solid393

and fluid pressure waves that are expected to propagate as an ensemble of self-excitation394

waves prior to the failure of the material. We noted earlier that they exhibit complicated395

wave patterns which may be difficult to distinguish from noise, partially also due to their396

low amplitude. In our particular formulation an instantaneous overpressure in the solid397

matrix generates an excess fluid pressure in the pore space which in turn promotes self-398

excitation of the following solid overpressure pulse triggering the next cycle. While a di-399

rect detection of both solid and fluid pressure waves is challenging in the field owing to400

the complex system constraints as well as the low amplitude and the complicated wave401

packet solutions, we found encouraging laboratory evidence on the integrated effect in402

recent literature. Macroscopically, the waves discussed here are dissipative P- waves which403

are expected to appear as propagating compaction bands. Observation of propagating404

compaction bands in porous media has been recorded in controlled laboratory experi-405

ments of crushed snow (Barraclough et al., 2017) and compression of puffed rice (Guillard406

et al., 2015). Controlled laboratory compression experiments of natural limestones have407

also been performed in our laboratory but convincing experimental proof is still outstand-408

ing, perhaps due to the fact that propagating cross-diffusional waves are close to the de-409

tection limit of the particle image velocimetry (PIV) apparatus.410

The problem of detection of low amplitudes of cross-diffusion waves may, however,411

be overcome when pushing to an extreme scenario, i.e. setting the self-diffusion coeffi-412

cients to zero and only considering the coupled reaction-cross-diffusion equations. For413

instance, the fluid and solid pressure cross-diffusion coefficients are assumed to be of op-414

posite sign and set to unity for simplicity. For these coefficients and a specific set of re-415

action terms as illustrated in Regenauer-Lieb et al. (2021a) our formulation simplifies416

to the 1-D nonlinear Schrödinger equation. This equation has a fundamental soliton so-417

lution which in its lowest mode is known as the Peregrine soliton (Peregrine, 1983). The418

Peregrine soliton features a peculiar space-time focusing of wave energy such that dur-419

ing its peak the soliton amplifies to nearly an order of magnitude higher intensity (see420

Fig. 3).421

A particular exciting avenue of testing the cross-diffusion wave hypothesis in ge-422

ology and geophysics applications is therefore offered by trying to tackle the long-standing423

problem of extending empirical laboratory-based constitutive laws (e.g. rate-and-state424

variable friction) by insights from fundamental physics-based processes. Dynamic coef-425

ficients for the modeling of earthquake source instabilities (Tse & Rice, 1986) could e.g.426

be derived from a reaction-cross-diffusion formulation. This could be progressed both427

by controlled laboratory experiments and seismological analysis such as the interpreta-428

tion of slow self-focusing Peregrine soliton-like signals prior to an earthquake. The infra-429

to sonic frequency gravity-seismic soliton wave (KaY-wave) that has been recorded to430

move toward the epicenter of a future earthquake (Koronovsky et al., 2019) may be a431

suitable candidate for analysis. For this investigation it is necessary to consider the com-432

plete elasto-dynamic variant (Regenauer-Lieb et al., 2021b) of the equations proposed433

–10–



manuscript submitted to GRL

here. We have been able to show only that the newly discovered quasi-soliton (cross-diffusion)434

waves can under certain circumstances deliver a high intensity fluid pressure pulse which435

may be considered the physical trigger for earthquake instabilities, which suggests that436

exploring the elastodynamic variant should be a theme of future work.437

5 Conclusions438

In this contribution, we derived a multiphysics and multiscale approach to local-439

isation phenomena in geomaterials by considering explicitly the feedbacks between mul-440

tiple reaction-diffusion dynamic regimes regularized by considering nonlocal effect of cross-441

diffusional coupling. This analysis has enriched the classes of stress waves in solids (Kolsky,442

1964) by three well defined domains of instability: (1) a narrow domain of Turing insta-443

bilities, (2) a broader Hopf domain instability and (3) a new domain of cross-diffusion444

waves. Both Turing and Hopf instabilities are here proposed to cause geological local-445

isation structures of either brittle or ductile nature. We identified diagnostic signatures446

of these waves, which may be used to test their existence in nature. Turing instabilities447

have a characteristic wavelength λ = 2π/kc, Hopf-waves show a characteristic frequency448

f = 1/T =
√
ã11ã22 − ã12ã21/2π, and cross-diffusional quasisolitons have a charac-449

teristic FKPP wave velocity which is a material constant (Tsyganov et al., 2007).450

In this work, we substantiated the hypothesis that slow waves propagating as dis-451

sipative stress/strain perturbations are a common feature in solids as a result of hier-452

archically organised multiscale system dynamics (Makarov & Peryshkin, 2017). Seismo-453

genic instabilities themselves are required to couple across the entire range of length scales,454

from crystal-lattice (chemical) to plate-tectonic scale. This long range multiscale cou-455

pling has been proposed (Regenauer-Lieb et al., 2021b) to be facilitated by cross-diffusion456

waves because of their multiscale frequency spectrum. Future work invites the develop-457

ment of new diagnostic geological and geophysical tools to detect these new types of slow458

stress waves in solids.459

Supplementary material list:460

(1) a linear stability analysis, (2) parametric space analysis, and supplementary movies.461

Movie S1 = Turing Instability;462

Movie S2 = Hopf Bifurcation;463

Movie S3 = Quasi-Soliton.464
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Figure 1. Three types of instabilities. Type-I bifurcation (Turing instability): a) propagating

standing wave before reaching the boundary; b) final standing-wave pattern. The dimensionless

group of parameters used: ã11 = 1.5, ã12 = −1.3, ã13 = 1, ã14 = −1, ã21 = 2, ã22 = −1.6, D̃M =

1, D̃H = 3, d̃M = 2, d̃H = −1.5. Type-II (Hopf) bifurcation: c) Hopf waves in frequency domain;

d) travelling Hopf waves in space domain. The dimensionless group of parameters used: ã11 =

0.3, ã12 = −3, ã13 = 0.5, ã14 = −0.5, ã21 = 0.1, ã22 = −0.1, D̃M = 0.1, D̃H = 0.1, d̃M = −1, d̃H = 1.

Type-III bifurcation (Quasi-soliton wave): e) Quasi-soliton waves in frequency domain; f) travel-

ling Quasi-soliton waves before and after reflection in space domain. The dimensionless group of

parameters used: ã11 = −0.05, ã12 = −3, ã13 = 1, ã14 = −1, ã21 = 0.01, ã22 = 0, D̃M = 0.01, D̃H =

0.01, d̃M = −1, d̃H = 1.
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Figure 2. Phase diagram of Hopf bifurcation upon reaching stable orbits (clockwise oscilla-

tion).

Figure 3. The Peregrine soliton compresses wave energy from the environment into a singular

rogue wave event. Note that just before the emergence of the soliton at x=0 and t=3.07 (middle

right panel) the background oscillations are smoothed.
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1. Linear stability analysis

The proposed system of reaction-cross-diffusion equations (equation 9 and 10 in the main text) describing the
porous material behavior post yield are high-order nonlinear partial differential equations, for which no analytical
solutions can be obtained. To conduct the linear stability analysis, we first consider a set of solutions described
by a small perturbation (denoted with *) around the steady state (p̃s0, p̃f0)=(0, 0):

p̃s(x̃, t̃) = p̃s0(x̃, t̃) + p̃∗s(x̃, t̃), (1)

p̃f (x̃, t̃) = p̃f0(x̃, t̃) + p̃∗f (x̃, t̃), (2)

The perturbation satisfies the following linearized version of the cross-diffusion equations given by:

∂p̃∗s
∂t̃

= D̃M
∂2p̃∗s
∂x̃2

+ d̃H
∂2p̃∗s
∂x̃2

+ ã11p̃
∗
s + ã12p̃

∗
f (3)

∂p̃∗f

∂t̃
= d̃M

∂2p̃∗s
∂x̃2

+ D̃H
∂2p̃∗s
∂x̃2

+ ã21p̃
∗
s + ã22p̃

∗
f (4)

where ã11 = ∂R̃1

∂p̃s

∣∣∣
p̃s=p̃s0

, ã12 = ∂R̃1

∂p̃f

∣∣∣
p̃f=p̃f0

, ã21 = ∂R̃2

∂p̃s

∣∣∣
p̃s=p̃s0

, ã22 = ∂R̃2

∂p̃f

∣∣∣
p̃f=p̃f0

are the first order derivatives of

the normalized reaction terms.
By applying a space Fourier transform to the above equations, the perturbation can be expressed as:

p̃∗s(x̃, t̃) = p̃?s exp(ikx̃ + sk t̃) (5)

p̃∗f (x̃, t̃) = p̃?f exp(ikx̃ + sk t̃) (6)

where k denotes the wavenumber in space while sk is the growth rate of the perturbation. By substituting Eq.
(5) and Eq. (6) into Eq. (3) and Eq. (4), the applied perturbation translates into:[

sk + k2D̃M − ã11 k2d̃H − ã12
k2d̃M − ã21 sk + k2D̃H − ã22

] [
p̃?s
p̃?f

]
=

[
0
0

]
(7)

which leads to the following condition:

det

[
sk + k2D̃M − ã11 k2d̃H − ã12

k2d̃M − ã21 sk + k2D̃H − ã22

]
= 0 (8)

1



X - 2 :

From Eq. (8), we derive a characteristic equation of sk:

sk
2 − trksk + ∆k = 0 (9)

where trk = (ã11 + ã22)−k2(D̃M + D̃H) and ∆k = ã11ã22− ã12ã21 +k4(D̃M D̃H − d̃M d̃H)−k2(ã11D̃H + ã22D̃M −
ã21d̃H − ã12d̃M ). Thus, the solution of Eq. (8) is expressed as

sk =
trk ±

√
trk

2 − 4∆k

2
(10)

Based on material stability theory, the system becomes unstable in the Lyapunov sense if there exists Re(sk) > 0
since the perturbation would increase with time in this case. Moreover, if skc

is a real number upon the occurrence
of an instability (i.e. skc

≥ 0 for the critical wavenumber kc), the system undergoes a saddle-node bifurcation or
the so-called Turing bifurcation, along with the previous stable nodes in the phase space changing to the unstable
saddle. However, if skc is a pure complex number upon the occurrence of instability, the system undergoes a
Hopf bifurcation as the previous stable focus in the phase space changes to an unstable one. Based on the above
derivation, we present in the main manuscript a detailed discussion of these typical types of instabilities as well as
a newly discovered quasisoliton wave type in relation to reaction-diffusion waves in the context of poromechanics.

2. Parametric space and its possible application

To discuss the geoscientific implications of our newly proposed nonlocal reaction-diffusion equation, we map
the three fundamental classes of instabilities - Turing-, Hopf-, and cross-diffusion waves - in the parametric space
ã11− ã22 (Fig. S1). The control parameters ã11 and ã22 represent the first-order coefficients of the solid and fluid
pressure reaction rates R̃1 and R̃2. Although we need an order 3 expansion for the mechanical reaction term to
obtain cross-diffusion waves, these first-order terms fully control the onset of cross-diffusion wave instabilities. We
find that the appearance of the cross-diffusion wave corresponds to a narrow domain (highlighted polygon in Fig.
S1) where ã11 is negative and the magnitude of the coefficient for fluid pressure rate ã22 is small. Interestingly,
cross-diffusion waves are even possible for very small negative ã11, corresponding to very small values of solid
overstress rate (low tectonic loads).

The fact that in our stability analysis cross-diffusion waves are expected for such low values in mechanical
reaction rates R̃1 coupled with low reaction rate R̃2 (slow production of fluid pressure source from chemical
reactions) implies that such cross-diffusion waves are common features. An example for such low fluid pressure
source terms is the dissolution-precipitation reaction during diagenesis or metamorphic breakdown which occurs
on long time scales. These reactions are therefore expected to trigger slow cross-diffusion waves which may be
interpreted geologically as the first step in a long road to failure.

Figure S1. Parametric ã11 versus ã22 space of three fundamental instabilities: Turing-, Hopf-, and cross-diffusion waves

The modification of an originally homogeneous material into a structured one may, under continued geo-
dynamic loading, lead to further amplification of the applied stress, resulting in the activation of high-stress
micro-deformation processes such as crystal-plastic dislocation creep. Zaiser and Hähner (1997) describe a range
of processes in this dislocation regime which can lead to an oscillatory response. These oscillatory phenomena en-
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countered in metals and alkali halides have been identified as an excitable wave phenomenon (Zuev & Barannikova,
2010) based on the particle-like discrete foundation of their slip systems.

Similar to the self-cross-diffusion waves, the Turing instability occupies only a narrow domain of parameters
while the Hopf instability covers the largest section of the mapped space (Fig. S1). One would therefore expect
Hopf bifurcations to be most common in nature because they cover the largest parameter space. Hopf waves occur
for either a positive ã11 or a sufficiently large ã22 in the case of a negative ã11. Hopf and Turing bifurcations
have been applied to explain the rhythmic layering observed in many geological/chemical systems as found in
experiments where oscillatory reactions occur in solid solutions grown from aqueous solutions (L’Heureux, 2013).

Hopf- and Turing-style instabilities in geomaterials have first been described by Dewers and Ortoleva (1990).
The authors formulate a mathematical model for interaction between chemical and mechanical thermodynamic
forces and fluxes that appear in randomly varying mixtures of mechanically strong and weak reacting minerals
in the presence of an applied stress field. Stress concentrations in the stronger phase were described to increase
the chemical potential and lead to transport down chemical potential gradients into regions initially depleted
in the strong phase. This positive feedback between chemical and mechanical thermodynamic forces leads to
chemo-mechanical oscillations where textural variations become amplified. In their introduction, Dewers and
Ortoleva (1990) describe many observations of metamorphic patterns, resulting from a change in the structure of
an initially random material into a strongly layered medium.

In our analysis, we found that Hopf waves do not reflect from boundaries but dump their energy into them.
This property could become important as a potential mechanism for pre-seismic slip on a future major fault.
While in this simulation the Hopf waves focus cumulative damage on the opposite boundary, in a more realistic
geological scenario damage accumulation can occur on pre-existing faults or fractures, which can act as internal
elastic-plastic system boundaries embedded in the large-scale plastic zone. The Hopf bifurcation is therefore here
interpreted to prepare a given internal structure for failure. In this sense, we may speculate that, in terms of
geological interpretation, Hopf bifurcations could be a mechanism for generating distributed fault damage zones
as defined in Table 1 in (Peacock et al., 2017).

For the Hopf bifurcation, our simulations show two regimes with an irregular pattern: a transient regime prior
to the wave reaching the opposite boundary with exponentially decaying frequency-amplitude relationships, and
a post-boundary interaction regime with a stable orbit (Fig. 2 of the main manuscript), also with an exponential
frequency-magnitude relationship (Fig. 1c of the main manuscript). Similar patterns have been reported in the
geological literature (Elphick et al., 2021). For the application of the approach to geology, L’Heureux (2013)
emphasizes the caveat that it is impossible to differentiate between the dynamic or stable-orbit type of solution.
The time sequence of the pattern development requires careful microstructural and field geological analysis which
is beyond the scope of this contribution.

The quasi-soliton (cross-diffusion) wave solution has the interesting property that the velocity of the wave is a
material property and not affected by initial conditions. Once the wave is triggered by perturbations, it continues
and sustains itself (at perpetuity if the coefficients do not change) as a self cross-diffusion wave. The quasi-soliton
wave is argued here to be the most often encountered in nature as chemical fluid-release reactions are often very
slow, thus favouring the nucleation of cross-diffusion waves. It may be seen to prepare the material for Hopf- or
Turing bifurcations or directly lead to catastrophic instabilities.
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