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Abstract

The increase of vegetation greenness in the Northern latitudes suggests a rise in the fixation of CO2 by photosynthesis, but the

observed upward trends in respiration could compensate for elevated uptake by photosynthesis, necessitating the monitoring

of variation in vegetation structure and carbon (C) storage at very high spatio-temporal resolution. Compared to passive

optical remote sensing, Light Detection and Ranging (Lidar) scanners may improve the quantification of C sink by providing

3D information of plant structures without apparent sign of saturation of spectral response over dense canopies. We evaluate a

novel approach to precisely map C sequestration and key metrics describing the 3D canopy structure of a temperate agricultural

expanse by implementing drone-borne Lidar scanner technology and deep learning (DL) architectures potentially capable of

detecting individual plants and associated geometrical properties while deriving their above ground biomass (AGB) from point

cloud datasets originating from the scanner. An intensive aerial and field campaign was carried out over an Integrated Carbon

Observation System (ICOS) class 1 station site (60 ha) in Denmark to remotely measure the horizontal and vertical canopy

structure at 15-day intervals during the vegetation growing period, and to collect ground truth data of crop growth in terms

of height, density, AGB and green area index of more than 1200 plants. The point cloud data are processed using pattern

recognition tools to remove noise and classify them to ground and non-ground points. Two DL models specifically designed to

handle the irregular structure of raw point clouds are trained to extract features of vegetation by labeling the processed point

cloud data; DL’s suitability for assigning semantic information on 3D data representing cropland is assessed by validating them

with the field-based observations. In combination with tower-based flux data, the application of Lidar and DL technologies

appear to offer a characterization of the dynamic interaction between climatic conditions, vegetation growth, C sink, water and

CO2 fluxes suitable to the challenge of assessing the rapidly changing northern landscapes.
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ABSTRACT 

The increase of vegetation greenness in the Northern latitudes suggests a rise in the fixation of 

CO2 by photosynthesis, but the observed upward trends in respiration could compensate for 

elevated uptake by photosynthesis, necessitating the monitoring of variation in vegetation 

structure and carbon (C) storage at very high spatio-temporal resolution. Compared to passive 

optical remote sensing, Light Detection and Ranging (Lidar) scanners may improve the 

quantification of C sink by providing 3D information of plant structures without apparent sign 

of saturation of spectral response over dense canopies. We evaluate a novel approach to 

precisely map C sequestration and key metrics describing the 3D canopy structure of a 

temperate agricultural expanse by implementing drone-borne Lidar scanner technology and 

deep learning (DL) architectures potentially capable of detecting individual plants and 

associated geometrical properties while deriving their above ground biomass (AGB) from point 

cloud datasets originated from the scanner. An intensive aerial and field campaign was carried 

out over an Integrated Carbon Observation System (ICOS) class 1 station site (60 ha) in 

Denmark to remotely measure the horizontal and vertical canopy structure at 15-day intervals 

during the vegetation growing period, and to collect ground truth data of crop growth in terms 

of height, density, AGB and green area index of more than 1200 plants. The point cloud data 

are pre-processed using pattern recognition tools to remove noise. Then, several regression 

models are implemented for AGB prediction.  Two DL models  (PointNet-based methods) 

specifically designed to handle the irregular structure of raw point clouds are trained to extract 

features of vegetation by labeling the processed point cloud data; DL’s suitability for assigning 

semantic information on 3D data representing cropland is assessed by validating them with the 

field-based observations. In combination with tower-based flux data, the application of Lidar 

and DL technologies appear to offer a characterization of the dynamic interaction between 
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climatic conditions, vegetation growth, C sink, water and CO2 fluxes suitable to the challenge 

of assessing the rapidly changing northern landscapes. 

 

OBJECTIVE & APPROACH 

Objective  

 We aim at developing a new method to assess above-ground biomass (AGB) and 

estimate carbon (C) storage in agricultural fields. 

Why using this approach? 

 Changes in AGB are a strong indicator for plant growth, water and nutrient status, as 

well as C-storage under given climatic and management conditions. 

 High-density lidar point cloud data (PCD) provide accurate estimates of canopy 

volume and development stage. 

 Machine learning (ML) and in particular deep learning (DL) methods are successfully 

used in other domains [1, 2] for automated interpretation of 3D point cloud data.  

  

STUDY SITE & INSTRUMENTATION 

[VIDEO] https://www.youtube.com/embed/B8-

d0rU7GDY?rel=0&fs=1&modestbranding=1&rel=0&showinfo=0 

 

Video 1: UAV in operation at study site.  

Study site 

 We study an agricultural field (13 ha of extension), where the cultivated crops 

(Hordeum Vulgare L.) are subject to conventional management practice. 

 

Fig 1. Location of the study site (A symbol on the map, Mid Jutland, Denmark). Source: icos-

cp.eu 

Instrumentation 

https://www.youtube.com/embed/B8-d0rU7GDY?rel=0&fs=1&modestbranding=1&rel=0&showinfo=0
https://www.youtube.com/embed/B8-d0rU7GDY?rel=0&fs=1&modestbranding=1&rel=0&showinfo=0


 Unmanned aerial vehicle (UAV) with mounted lidar sensor (LidarSwiss Nano M8). 

 

Fig 2. UAV-lidar. 

 Eddy-covariance (EC) ecosystem station (ICOS class-1), located at the center of the 

study site (56º, 02' N; 9º, 09' E). 

 

Fig 3. Eddy-covariance station. 

  

METHODS & CURRENT WORKFLOW 

Current workflow 

 

Fig. 4. Flowchart of current work. 

Point cloud data (PCD) derived from UAV-lidar 



[VIDEO] 

https://www.youtube.com/embed/WIf7CG-

w3aI?rel=0&fs=1&modestbranding=1&rel=0&showinfo=0 

Video 2. Extraction of individual lidar samples from PCD scene. Software: Lidar360. 

 

 

Fig. 5.  Location of sampling points (n=104) in the study site. Several samples were taken close 

to each location shown on the map (+ symbols). 

 

Fig. 6. Example of a biomass sampling point. 

  

AGB and C content 

 



Fig. 7. AGB of all biomass samples in each campaign. 

  

 

Fig. 8. Carbon concentration sampled at 30 locations. The solid line (kernel density est.) is 

inferred from the histogram for probability density estimation.  Sampling date: 18/06/2020.  

  

Data collection 

 The data collection was conducted during the crops' growing period: April-July 

2020. Random georeferenced locations were selected, in 6 sampling campaigns. 

 Two simultaneous sampling methods:  (i) UAV-lidar scanning, and (ii) destructive 

biomass sampling. 

 The simultaneous sampling allowed the comparative analysis between AGB and 

extracted features from the PCD. 

UAV-lidar scanning 

 The study site was scanned at every campaign in 6 individual flights, flying at 40m of 

altitude. 

Biomass sampling 

 1 m long AGB samples were taken at random locations in the direction of the sowing 

lines and later oven-dried (65 °C for 72 h.) 

AGB PREDICTION: ML REGRESSION MODELS 

Comparison of different models 



 

Fig. 9. Boxplot: comparative of performance of models using R2 (test data) on nat. log(AGB), 

after 10 runs per model. 

  

Best biomass prediction model 

  

 

Fig. 10.Prediction by ExtraTrees regression. 

Prediction of log(AGB), R2 test :0.92 

Prediction of AGB, R2 test : 0.76 

Data preparation 

  

 Split of training (70%) and test data (30%). 

 Stratification of data (6 subsets, equal to the number of sampling campaigns). 

 All data was normalized according to training distribution. 

Data specifications 



  

 The total dataset contains 104 data points, each corresponding to an individual 

sampling location. 

 Each data point is characterized by a group of features extracted from the plant 

development stage as well as lidar points' reflectances and heights. The feature 

importances (i) for the best model are shown in brackets: 

o Days after sowing; the age of crops in days [i: 0.330]. 

o Growing degree days (°C) [3,4] [i:0.066]. 

o Mean intensity of reflectance [i:0.014]. 

o The standard deviation of reflectance [i:0.006]. 

o Mean of lidar points' height distribution [i:0.15]. 

o Median of height distribution [i:0.143 ]. 

o Percentile 75 of height distribution [i:0.227]. 

o The standard deviation of height distribution [i:0.059]. 

o Kurtosis of height distribution [i:0.006]. 

  

Training and evaluation 

  

 For each model, we performed a search of optimal parameters on the training 

data set (cross-validation). 

 We evaluated the predictive performance with all available features. 

 Iteratively,  the features with the lowest importance with respect to the prediction were 

removed. 

Which models have been tested? 

  

 ExtraTrees regression 

 Random Forest regression 

 Support Vector regression 

 Nearest Neighbor regression 

 AdaBoost regression. 



 Elastic Net regression. 

 Linear regression 

  

Other models tested 

  

 The performance of other models is described based on mean R2 (on test data) after 10 

runs. 

 

Fig. 11. Linear regression. 

Prediction of log(AGB), R2 test: 0.87 

Prediction of AGB, R2 test: 0.69 

  

 

Fig. 12. Elastic Net regression. 

Prediction of log(AGB), R2 test: 0.87 

Prediction of AGB, R2 test: 0.69 



  

 

Fig. 13. AdaBoost regression 

Prediction of log(AGB), R2 test:0.90 

Prediction of AGB, R2 test: 0.65 

  

 

Fig. 14.Nearest Neighbor regression 

Prediction of log(AGB), R2 test: 0.82 

Prediction of AGB, R2 test: 0.55 

  

 

Fig. 15. Support Vector regression. 

Prediction of log(AGB), R2 test: 0.87 



Prediction of AGB, R2 test: 0.69 

  

 

Fig. 16.Random Forest regression. 

Prediction of log(AGB), R2 test: 0.91 

Prediction of AGB, R2 test: 0.72 

  

DL APPLIED TO AGB PREDICTION & SEGMENTATION OF LIDAR-PCD 

 

Fig. 17. DL approach to AGB prediction and plant segmentation. 

  

Current work focuses on the implementation of DL models for the task of biomass prediction 

and plant segmentation. Two models are currently being evaluated: 

i) PointNet [5]. 

ii) PointNet++ [6]. 



  

The implementation of these models seems a promising option for outperforming ML models 

[*]. 

CONCLUSIONS & OUTLOOK,  

ACKNOWLEDGMENTS & REFERENCES 

Conclusions 

 The predictive performance of the ML models is satisfactory at this stage of the project. 

However, enhancements are expected by further tuning and adding  features such 

as classic vegetation indices (e.g. NDVI, LAI) derived from multispectral imagery. 

 Best performance is found when including some background meteorological and 

growth stage parameters (e.g. growing degree days). 

  

 Among the ML regression models evaluated, the best predicting performance was 

achieved with Extra Trees regression (R2 on test data ln(AGB): 0.92 and AGB: 0.76). 

Outlook 

 In the next step, we will evaluate the development of AGB against NPP values from 

eddy covariance-based flux measurements of CO2. 

 The overarching objective is to obtain a time-series map of C-storage, as well as 

CO2 fluxes of ecosystems based on UAV-lidar technology. 

 DL approach seems to be the way ahead to analyze and interpret large amounts of 

LiDAR data. 
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