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Abstract

The usefulness of satellite multisensor precipitation products such as NASA’s 30-minute, 0.1° Integrated Multi-satellitE Retrie-

vals for the Global Precipitation Mission (IMERG) is hindered by their associated errors. Reliable estimates of uncertainty would

mitigate this limitation, especially in near-real time. Creating such estimates is challenging, however, due both to the complex

discrete-continuous nature of satellite precipitation errors and to the lack of “ground truth” data precisely in the places—

including complex terrain and developing countries—that could benefit most from satellite precipitation estimates. In this work,

we use swath-based precipitation products from the Global Precipitation Mission (GPM) Dual-frequency Precipitation Radar

(DPR) as an alternative to ground-based observations to facilitate IMERG uncertainty estimation. We compare the suitability

of two DPR derived products, 2ADPR and 2BCMB, against higher-fidelity Ground Validation Multi-Radar Multi-Sensor (GV-

MRMS) ground reference data over the contiguous United States. 2BCMB is selected to train mixed discrete-continuous error

models based on Censored Shifted Gamma Distributions. Uncertainty estimates from these error models are compared against

alternative models trained on GV-MRMS. Using information from NASA’s Modern-Era Retrospective analysis for Research

and Applications, Version 2 (MERRA-2) reanalysis, we also demonstrate how IMERG uncertainty estimates can be further

constrained using additional precipitation-related predictors. Though several critical issues remain unresolved, the proposed

method shows promise for yielding robust uncertainty estimates in near-real time for IMERG and other similar precipitation

products at their native resolution across the entire globe.
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Key Points: 31 

• We propose a globally-applicable uncertainty quantification framework for satellite 32 

precipitation products at their native resolution 33 

• The framework performs well over the contiguous United States for according to both 34 

deterministic and probabilistic evaluation metrics 35 

• The framework’s uncertainty estimates can be further constrained using additional 36 

precipitation-related predictors 37 
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Abstract 54 

The usefulness of satellite multisensor precipitation products such as NASA’s 30-minute, 0.1° 55 

Integrated Multi-satellitE Retrievals for the Global Precipitation Mission (IMERG) is hindered by 56 

their associated errors. Reliable estimates of uncertainty would mitigate this limitation, especially 57 

in near-real time. Creating such estimates is challenging, however, due both to the complex 58 

discrete-continuous nature of satellite precipitation errors and to the lack of “ground truth” data 59 

precisely in the places—including complex terrain and developing countries—that could benefit 60 

most from satellite precipitation estimates. In this work, we use swath-based precipitation products 61 

from the Global Precipitation Mission (GPM) Dual-frequency Precipitation Radar (DPR) as an 62 

alternative to ground-based observations to facilitate IMERG uncertainty estimation. We compare 63 

the suitability of two DPR derived products, 2ADPR and 2BCMB, against higher-fidelity Ground 64 

Validation Multi-Radar Multi-Sensor (GV-MRMS) ground reference data over the contiguous 65 

United States. 2BCMB is selected to train mixed discrete-continuous error models based on 66 

Censored Shifted Gamma Distributions. Uncertainty estimates from these error models are 67 

compared against alternative models trained on GV-MRMS. Using information from NASA’s 68 

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 69 

reanalysis, we also demonstrate how IMERG uncertainty estimates can be further constrained 70 

using additional precipitation-related predictors. Though several critical issues remain unresolved, 71 

the proposed method shows promise for yielding robust uncertainty estimates in near-real time for 72 

IMERG and other similar precipitation products at their native resolution across the entire globe. 73 
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1 Introduction 74 

The potential of satellite precipitation estimates to understand and predict global-to-regional 75 

water cycles has been recognized for decades (Kidd et al., 2020; Lettenmaier et al., 2015; 76 

Skofronick‐Jackson et al., 2018). Due to the limited number and uneven distribution of rain gauges 77 

that accurately measure precipitation on the ground (e.g., Kidd et al., 2017), global satellite multi-78 

sensor precipitation (SMP) products have been increasingly applied to support decision-making, 79 

particularly in data-sparse regions such as the oceans, mountainous areas, and developing countries 80 

(e.g., Kirschbaum et al., 2017; Wright, 2018). 81 

SMP products generally merge measurements from passive microwave (PMW) and infrared 82 

(IR) sensors to create consistent high-resolution gridded precipitation estimates (Li et al., 2020; 83 

Maggioni et al., 2016; Sun et al., 2018). A number of global SMP products have been developed 84 

based on different merging techniques, including the NASA’s Integrated Multisatellite Retrievals 85 

for Global Precipitation Measurements (IMERG; Huffman et al., 2019), and its predecessor—the 86 

Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA; Huffman et al., 87 

2007), the Climate Prediction Center morphing technique (CMORPH; Joyce et al., 2004; Joyce & 88 

Xie, 2011), and the Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) 89 

family (Nguyen et al., 2018; Sorooshian et al., 2000). 90 

Despite continual improvements, the usefulness of SMP products remains limited due to their 91 

oftentimes poor accuracy (e.g., Foufoula-Georgiou et al., 2020; Massari & Maggioni, 2020). These 92 

errors stem from a variety of sources, including heterogeneous sensor properties (Guilloteau et al., 93 

2017; Tan et al., 2016), retrieval algorithm deficiencies (Kirstetter et al., 2020), and insufficient 94 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

LI ET AL.   5 

spatial and temporal sampling (Behrangi & Wen, 2017; Kidd & Maggioni, 2020). The absolute 95 

and relative roles of these error sources can depend on season, precipitation intensity, storm type, 96 

geophysical features such as latitude and land surface type, and other factors (Ebert et al., 2007; 97 

Gebregiorgis & Hossain, 2014; Gebregiorgis et al., 2017; Kirstetter et al., 2018). 98 

A large number of existing studies have presented empirical characterizations of SMP error 99 

using “ground truth”, i.e., more reliable reference observations (typically rain gauges or gauge-100 

corrected weather radar; see Kirstetter et al., 2012; Massari & Maggioni, 2020 for a discussion). 101 

Errors are often separated into systematic (i.e., bias) and random error components (AghaKouchak 102 

et al., 2012; Tang, 2020; Tian et al., 2013). These errors typically depend on precipitation 103 

magnitude via conditional bias (heteroscedasticity) in the case of systematic (random) error (e.g., 104 

Massari & Maggioni, 2020). Other approaches have considered additional terms to characterize 105 

errors in both detection and magnitude estimation, distinguishing between “false alarm” 106 

precipitation, missed precipitation, and hit bias (e.g., Tian et al., 2009). These studies have always 107 

been undertaken at local to regional scales due to the lack of sufficient ground reference globally 108 

(e.g., Beck et al., 2019; Li et al., 2013; O et al., 2017; Tang et al., 2016). Unfortunately, however, 109 

lessons learned in such studies cannot be easily transferred to other places due to the complexity 110 

of satellite precipitation uncertainties (Kidd & Maggioni, 2020; Tang & Hossain, 2012). 111 

Furthermore, ex-post SMP error studies are not sufficient to meet uncertainty characterization 112 

requirements for applications, particularly those in near-realtime. Such a requirement has recently 113 

been prioritized by the IMERG development team—specifically, to provide uncertainty estimates 114 
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at IMERG’s native 30-minute, 0.1° resolution and at the time of creating IMERG data files 115 

(Huffman et al., 2019; Jackson Tan, personal communication, 30 December 2020). 116 

A more limited number of studies have sought to develop so-called error models that attempt 117 

to characterize the uncertainty associated with any particular SMP product, generally expressed in 118 

the form of a probability distribution of “true precipitation” (e.g., Sarachi et al., 2015; Wright et 119 

al., 2017). Error model development is challenging due in part to the mixed discrete-continuous 120 

nature of intermittent precipitation, an issue that becomes increasingly important to address as 121 

SMP products advance to higher spatial and temporal resolutions. Some error models just ignore 122 

intermittency altogether to focus on hit biases and random errors (e.g., Sarachi et al., 2015; Tian 123 

et al., 2013), while others have attempted to address it (e.g., Gebremichael et al., 2011; Hossain & 124 

Anagnostou, 2006; Maggioni et al., 2014a), but arguably at the expense of relatively complicated 125 

formulations and limited flexibility (Wright et al., 2017). An alternative approach has been also 126 

proposed to characterize uncertainty as an integral part of SMP retrieval algorithms, and to 127 

subsequently yield probabilistic precipitation estimates (Kirstetter et al., 2018). 128 

Regardless of the specific error model formulation, the availability of ground reference data 129 

to train these models has posed a fundamental limitation, since reference measurements are lacking 130 

precisely in the locations (i.e., data-sparse regions) that could benefit most from spaceborne remote 131 

sensing (e.g., Gebregiorgis & Hossain, 2014). It is thus highly desired to explore universal 132 

uncertainty quantification approaches that can perform anywhere, even in the total absence of local 133 

or regional ground reference observations. 134 
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In this study, we explore the idea that the Dual-frequency Precipitation Radar (DPR) on board 135 

the Global Precipitation Measurement (GPM) core observatory—the most accurate spaceborne 136 

precipitation measurement instrument to date—can be utilized in place of ground reference data. 137 

If valid, this facilitates the development of worldwide native-resolution error estimates of IMERG. 138 

Recent studies have explored the potential for DPR as an alternative reference to evaluate PMW-139 

only precipitation estimates (e.g., Adhikari et al., 2019; You et al., 2020), and merged precipitation 140 

products (Khan et al., 2018). This study advances that concept to propose a prototype uncertainty 141 

quantification framework for IMERG. We use two DPR derived products and co-located IMERG 142 

estimates to train a parsimonious mixed discrete-continuous error model. These DPR-trained error 143 

models are evaluated against alternative models trained on ground reference observations over the 144 

contiguous United States (CONUS). The error model can also incorporate additional predictors. 145 

We examine whether a NASA reanalysis dataset can further constrain IMERG uncertainties. As 146 

far as we are aware, this is the first study to explore the feasibility of a globally-applicable 147 

prototype framework for quantification at the IMERG native resolution, though we leave global 148 

validation and several other important details to future work. 149 

The datasets used in this study are described in Section 2. The data resampling and matching 150 

algorithm, the error model, and evaluation metrics are introduced in Section 3. Section 4 presents 151 

the results; discussion follows in Section 5. A summary and conclusions are provided in Section 152 

6. 153 
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2 Data 154 

We selected CONUS as the study area (Figure 1) for two reasons: firstly, it is covered by a 155 

high-quality, high-resolution NASA-sanctioned ground reference precipitation product that allows 156 

us to validate the proposed approach; secondly, its large geographic extent and climatic diversity 157 

allows a relatively comprehensive assessment of the approach’s robustness. The study period is 158 

June 2014 to April 2019 (~ 5years). No attempt is made to address seasonally-varying uncertainty, 159 

nor to discriminate by precipitation phase. Prior studies have argued that the former may not be 160 

critical (Maggioni et al., 2014b; Wright et al., 2017), while the latter certainly is. 161 

2.1 IMERG 162 

IMERG merges all available PMW estimates with IR observations to produce 30-minute, 0.1° 163 

gridded precipitation estimates over the entire globe (Huffman et al., 2020; Tan et al., 2016). Three 164 

variants—Early (hereafter IMERG-E), Late and Final—address different user requirements for 165 

latency and accuracy. This study focuses on version 06B IMERG-E (Huffman et al., 2019), which 166 

is arguably the most useful for realtime applications due to its short latency (4 hours for IMERG-167 

E, compared to 12 hours and 2 months for Late and Final, respectively) but features the largest 168 

errors due to the more limited availability of short-latency satellite and ground observations. 169 

While the IMERG processing algorithm consists of many elements beyond the scope of this 170 

study, it is worth mentioning that it uses observations from the DPR and GPM Microwave Imager 171 

(GMI) on board the GPM core observatory. Microwave radiances from all partner constellation 172 

PMW sensors are calibrated to GMI for a bias-corrected, consistent radiometric dataset before 173 

retrieving precipitation rates (Hou et al., 2014). Then, the combined DPR and GMI data product 174 
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from the GPM Combined Radar–Radiometer algorithm (CORRA; Grecu et al., 2016) contributes 175 

to IMERG in terms of its derived hydrometeor profiles and surface precipitation. The former is 176 

used to construct a-priori hydrometeor databases in the Goddard profiling algorithm (GPROF; 177 

Kummerow et al., 2015; Randel et al., 2020) to convert the calibrated PMW radiances into 178 

precipitation, while the latter is used to calibrate those PMW-only precipitation estimates on a 179 

rolling 45-day basis over ocean (the calibration is based on the Global Precipitation Climatology 180 

Project data over land; Huffman et al., 2019). We mention this because it constitutes a potential 181 

objection to the usage of DPR (and, as the reader will see, GMI) as the reference for uncertainty 182 

estimation due to a possible lack of independence between IMERG and those instruments. This 183 

issue is discussed further in Section 5.1. 184 

2.2 Ground Reference: GV-MRMS 185 

The Ground Validation Multi-radar/Multi-Sensor (GV-MRMS; Kirstetter et al., 2012, 2018) 186 

dataset is derived from the MRMS system that combines the polarimetric WSR-88D CONUS radar 187 

network with rain gauges and other auxiliary information to generate high-resolution quantitative 188 

precipitation estimates (QPE) over CONUS (Zhang et al., 2016). GV-MRMS QPE has been used 189 

as a ground reference for evaluation of various satellite precipitation products (Gebregiorgis et al., 190 

2018; Kirstetter et al., 2012, 2014, 2020; O & Kirstetter, 2018). In this study, we use the Level-3 191 

regridded GV-MRMS QPE product, which was created specifically to support GPM ground 192 

validation (Kirstetter et al., 2020). This product includes a 30-minute, 0.01º gauge-corrected 193 
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precipitation rate (GCP) as well as a radar quality index (RQI) which ranges from 0 to 100, with 194 

100 representing the best quality. 195 

2.3 DPR-based Reference Datasets 196 

We consider two recent (version 06) GPM Level-2 DPR products as potential alternatives to 197 

a ground-based reference: 2ADPR and 2BCMB. Both provide high-resolution (approximately 5 198 

km DPR footprint diameter at nadir) precipitation estimates on an instantaneous field of view basis 199 

between 65ºN and 65ºS. 2ADPR is derived based on Ku (13.6 GHz) and Ka (35.5 GHz) band DPR 200 

measurements and it uses dual-frequency observations to infer precipitation phase and reconstruct 201 

three-dimensional hydrometeor and precipitation fields (Iguchi, 2020; Iguchi et al., 2018). This 202 

study uses the 2ADPR data field “precipRateESurface”, which is extrapolated from the lowest 203 

clutter-free DPR bin to estimate surface precipitation rate (Petracca et al., 2018). 2BCMB, on the 204 

other hand, combines DPR reflectivities and GMI radiances using the CORRA algorithm to offer 205 

the highest-quality precipitation estimates from spaceborne sensors (Hou et al., 2014). We use the 206 

2BCMB data field “surfPrecipTotRate” in the following analysis. 207 

Both 2ADPR and 2BCMB data fields are obtained from normal scans (i.e., the widest swath 208 

scans from DPR; Iguchi et al., 2018) to maximize sample size. While 2BCMB and 2ADPR present 209 

different error structures (Gatlin et al., 2020), post-launch evaluations showed that DPR and GMI 210 

can detect precipitation rates down to 0.1 mm h-1 (e.g., Adhikari et al., 2019; Hamada & Takayabu, 211 

2016). This precipitation rate was thus selected as the rain/no-rain detection threshold in this study 212 

for all datasets. 213 
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2.4 Additional Predictors: MERRA-2 214 

We also examine the potential to further constrain the uncertainty estimates by incorporating 215 

additional predictors such as the total precipitable water vapor (TQV), topmost soil layer’s ground 216 

wetness index (GWETTOP), and 2-m air temperature (T2M) from NASA’s MERRA-2 reanalysis 217 

product (Gelaro et al., 2017). To match with the above datasets, this study uses 0.5° (latitude) 218 

×0.625° (longitude), hourly MERRA-2 outputs. GWETTOP is a dimensionless relative saturation 219 

index for the upper 5 cm of soil. Based on previous studies showing that soil moisture changes can 220 

enhance satellite precipitation estimation (e.g., Brocca et al., 2014; Crow et al., 2011), we also 221 

derive a variable we call GWETDTOP, which is the difference between the current and preceding 222 

value of GWETTOP. Negative values of GWETDTOP correspond to soil evaporation, while positive 223 

values indicate precipitation occurrence. We transform all the negative GWETDTOP values to zero 224 

before including it as a predictor in the uncertainty framework. 225 

It should be emphasized here that our goal was not to identify the best possible additional 226 

predictors, but rather to simply illustrate that such predictors could be utilized to constrain IMERG 227 

uncertainty estimates. This issue is discussed further in Section 5.3. 228 

 229 

3 Methodology 230 

3.1 Matching and Preprocessing of Multiple Datasets 231 

Following the approach of Khan et al. (2018), IMERG-E, GV-MRMS, DPR, and MERRA-2 232 

data are matched in space and time to a consistent 0.1° 30-minute grid. GV-MRMS is upscaled by 233 

averaging all grid cells in a 10×10 window, provided that the RQI for at least 90% of these pixels 234 
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is 100. The two DPR derived products are regridded by averaging all the DPR footprint scale (~5 235 

km) estimates falling within a 0.1° grid cell, and then matched into the nearest 30-minute IMERG 236 

observation interval. MERRA-2 is mapped into the IMERG grid using nearest neighbor 237 

interpolation, and also matched to the nearest 30-minute IMERG observation interval. Figure 1 238 

(upper panels) shows an example of the regridded coincident precipitation estimates from 2BCMB, 239 

GV-MRMS and IMERG-E.  240 

 241 
Figure 1. Coincident precipitation estimates from regridded (a) 2BCMB (2ADPR is similar; see Supplemental 242 
Figure S1), (b) GV-MRMS, and (c) IMERG-E for 02:00–03:00 UTC 17 June 2014, with the maps for the total 243 
sample size of (d) 2BCMB (also 2ADPR), (e) GV-MRMS, and (f) the coincident sample size—the minimum 244 
from (d) and (e)—within 0.1°×0.1° boxes during the study period. 245 

The sample size of DPR products generally decreases from north to south due to the inclined 246 

orbit of GPM (Figure 1d), while GV-MRMS data is limited in western CONUS because of radar 247 

beam blockage (Figure 1e). The coincident data sample size thus depends on location and is 248 

generally less than 600 in each 0.1° grid cell (Figure 1f). To ensure a sufficiently large sample 249 
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size, error models are trained and validated by pooling all coincident 0.1° data samples within 250 

1°×1° spatial windows. In some parts of western CONUS this pooling is insufficient; in windows 251 

where the sample size is less than 5,000, we further pool data from the adjacent four windows in 252 

the east–west and north–south directions. 253 

3.2 CSGD-based Uncertainty Quantification Framework 254 

The uncertainty quantification framework selected in this study follows the censored shifted 255 

gamma distribution (CSGD) method developed by Scheuerer & Hamill (2015) for postprocessing 256 

ensemble numerical precipitation forecasts. It was adapted by Wright et al., (2017) to characterize 257 

the uncertainty for daily-scale satellite precipitation estimates. The CSGD is able to simultaneously 258 

depict precipitation occurrence and magnitude by introducing a “shift” parameter δ (δ<0) into the 259 

conventional two-parameter gamma distribution Fμ,σ (parameterized here by its mean μ and 260 

standard deviation σ, rather than shape and scale/rate parameters). The cumulative distribution 261 

function (CDF) of the CSGD is left-censored at zero: 262 

 ( ) ( ),
, ,

, 0
0, 0
F x for x

F x
for x

µ σ
µ σ δ

δ − ≥
= 

<

    
                     

 (1) 

where x is precipitation rate (mm h-1). The vertical intercept Fμ,σ,δ (0) is one minus the probability 263 

of precipitation (POP), and the CDF to the right of zero represents the nonexceedance probabilities 264 

associated with nonzero precipitation rates.  265 

The CSGD-based error model consists of two main pieces: 1.) a “climatological CSGD” with 266 

parameters μ, σ, δ [i.e., Eqn. (1)]; and 2.) a regression system that comprises the error model. Once 267 

trained, this regression system can produce an estimated “conditional” CSGD with parameters μ(t), 268 
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σ(t), and δ(t) that represents the possible true precipitation rate and POP conditioned on an IMERG 269 

retrieval at time t (and other optional predictors). This regression system can capture both 270 

conditional bias and heteroscedasticity, as well as the discrete-continuous nature of precipitation 271 

and associated errors. The most basic regression system lets μ(t) increase linearly with IMERG 272 

magnitude PI(t), and all models used here assume that σ(t) is proportional to the square root of μ(t) 273 

(see Scheuerer & Hamill, 2015). We will refer to this most basic variant as the “linear model”: 274 

 ( ) ( )
2 3

I

I

P t
t

P
µ µ α α

 
= + 

 
 (2) 

 ( ) ( )
4

t
t

µ
σ α σ

µ
=  (3) 

 ( )tδ δ=  (4) 

where IP denotes the climatological IMERG mean. 275 

The linearity assumption can be further relaxed to account for nonlinear conditional bias. This 276 

version (hereafter “nonlinear model”) replaces Eqn. (2) with:  277 

 ( ) ( ) ( )
1 2 3

1

log1p expm1 I

I

P t
t

P
µµ α α α
α

   = +  
   

 (5) 

where log1p(x) = log(1+x), and expm1(x) = exp(x) −1.  278 

Both the linear and nonlinear models can also accommodate extra time-varying predictors or 279 

covariates C(t), potentially further constraining (i.e., narrowing) uncertainty estimates. To this end, 280 

Eqns. (2) and (5) can be replaced with:  281 
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 ( ) ( ) ( )
2 3 5

I

I

P t C t
t

P C
µ µ α α α

 
= + + 

 
 (6) 

 ( ) ( ) ( ) ( )
1 2 3 5

1

log1p expm1 I

I

P t C t
t

P C
µµ α α α α
α

   = + +  
   

, (7) 

respectively, whereC is the climatological mean of the covariate. While multiple covariates can be 282 

used simultaneously (not depicted in Eqns. 6–7; Scheuerer & Hamill, 2015 and Wright et al., 2017), 283 

this study only considers covariates individually.  284 

All of the above regression coefficients (α1–α5) as well as the three CSGD parameters are 285 

optimally estimated using the techniques detailed in Scheuerer & Hamill (2015), which minimize 286 

the continuous ranked probability score (CRPS) between empirical and theoretical CDFs. 287 

3.3 Error Model Training and Validation 288 

2ADPR and 2BCMB are first compared against coincident GV-MRMS observations over 289 

CONUS. This comparison considers the ability to correctly detect precipitation occurrence and to 290 

estimate precipitation rates of hit cases. To evaluate precipitation occurrence, we create 291 

contingency tables showing the numbers and rates of hits, misses, false alarms, and correct non-292 

detects (Wilks, 2019) using 0.1 mm h-1 as the detection threshold (see Section 2.3). Precipitation 293 

rates for hits are then assessed for every 1°×1° spatial window in terms of three evaluation metrics: 294 

relative bias (RB), root mean squared error (RMSE), and Pearson’s correlation coefficient (CC), 295 

which have been widely used in previous studies (e.g., Tan et al., 2018; Khan et al., 2018). 296 

The regridded coincident datasets are randomly divided with 80% of observations used for 297 

CSGD-based error model training and 20% for validating model performance. A range of error 298 
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model complexities are explored: linear models [Eqns. (1)–(4)], nonlinear models [Eqns. (1), (3)–299 

(5)], linear models with a single covariate [Eqns. (1), (3), (4), (6)], and nonlinear models with a 300 

single covariate [Eqns. (1), (3), (4), (7)]. All the error models are trained using both the selected 301 

DPR data and GV-MRMS, while the latter are used as performance benchmarks to evaluate if the 302 

proposed DPR-based model appears reasonable. 303 

DPR- and GV-MRMS-trained error models are then applied to the validation dataset, and 304 

their conditional CSGD estimates of reference precipitation are evaluated against GV-MRMS 305 

observations from that dataset using both deterministic and probabilistic metrics. To examine if 306 

the model can effectively characterize the central tendency of IMERG error, we compare the 307 

conditional CSGD median with GV-MRMS using mean absolute error (MAE):   308 

 
1

1MAE
n

t t
t

y o
n =

= −∑  (8) 

where yt is either the CSGD median or IMERG, ot is the coincident GV-MRMS observation at 309 

time t, and n is the number of (yt, ot) pairs. 310 

Similar to other deterministic evaluation metrics (e.g., RB, RMSE, CC), MAE is insufficient 311 

for fully characterizing the predicted (probabilistic) distributions from CSGD error models. CRPS, 312 

on the other hand, measures the dispersion of these distributions around a GV-MRMS observation. 313 

CRPS thus offers a probabilistic performance measure of the error models: 314 

 
2

( ), ( ), ( ) ( ), ( ), ( )CRPS( , ) ( ) I( )t t t t t t t tF o F x o x dxµ σ δ µ σ δ

∞

−∞
 = − ≤ ∫  (9) 

where Fμ(t),σ(t),δ(t) denotes the CDF of the conditional CSGD model at time t, and I(·) is a step 315 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

LI ET AL.   17 

function that takes the value of 1 if x ≥ ot (i.e., GV-MRMS observation at time t) and 0 elsewhere. 316 

Low CRPS indicates that the predicted CSGD’s density is concentrated relatively close to the 317 

reference, while high CRPS implies either a very “wide” distribution or one that is heavily biased. 318 

Note that CRPS is mathematically identical to MAE for deterministic—as opposed to 319 

probabilistic—predictions. 320 

Heteroscedasticity in IMERG errors means that we should not simply compare or combine 321 

CRPS values across various locations, since, like MAE or RMSE, CRPS will tend to be larger for 322 

heavier precipitation regimes. This has three implications for our model validation. First of all, we 323 

apply “reduction CRPS” (RCRPS; Trinh et al., 2013) for comparing model performance across 324 

different locations (i.e., 1°×1° boxes). It is normalized by the standard deviation of GV-MRMS 325 

observations at that location (denoted as σM) and thus is dimensionless: 326 

 
CRPSRCRPS

Mσ
=  (10) 

Second, the validation dataset is then grouped into four categories: hits, misses, false alarms, 327 

and correct non-detects, by comparing the coincident IMERG and GV-MRMS data (using the 328 

same 0.1 mm h-1 threshold). CRPS is then calculated for each group to evaluate model performance 329 

under different cases. In addition, the calculated CRPSs of hit cases are further grouped by the 330 

magnitude of IMERG, to investigate the magnitude-dependent performance of the uncertainty 331 

estimates from different error models. 332 

Finally, we further examine the performance of the error models’ probabilistic estimates of 333 
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precipitation events given a number of thresholds using reliability diagrams (see Wilks, 2019 for 334 

details). Considering GV-MRMS observation ot and the CDF of CSGD error model Fμ(t),σ(t),δ(t) at 335 

time t, the observed and predicted probability that an “event” occurred can be defined: 336 

 ,

1,
0,

       
      

t
e t

t

for o TH
X

for o TH
>

=  ≤
 (11) 

 , ( ), ( ), ( )1 ( )e t t t tY F THµ σ δ= −  (12) 

where TH is the threshold (mm h-1). Xe,t denotes the observed probability of threshold exceedance 337 

(either 0 or 1), while Ye,t is the predicted probability of threshold exceedance (between 0 and 1) 338 

from the error model. Following previous studies (e.g., Clark & Slater, 2006; Ghazvinian et al., 339 

2020), we sort and group all predicted probabilities Ye,t (e.g., t =1, 2, … N for validation dataset) 340 

into ten equally-sized bins (0–10%, 10%–20%, …, 90%–100%). For each group, both the average 341 

predicted probability and the average observed probability are calculated. In a reliability diagram, 342 

a perfect prediction model would yield results that fall along the 1:1 line. For example, when Ye,t 343 

= 0.90, we expect the event to occur 90% of the time in reality. All coincident samples across 344 

CONUS are pooled for this analysis. 345 
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 346 

Figure 2. The spatial maps of (a-b) relative bias, (c-d) correlation coefficient, and (e-f) density scatterplots by 347 
comparing the coincident precipitation estimates from 2ADPR and 2BCMB versus GV-MRMS during the study 348 
period. Only precipitation estimates greater than 0.1 mm h-1 are considered. Inset values in (a)-(d) are the mean 349 
across all grid boxes (1°×1°) over CONUS. 350 

 351 

4 Results 352 

4.1 DPR Products as Reference Precipitation 353 

Figure 2 shows CONUS-wide evaluation “hits only” results of DPR derived products against 354 

coincident GV-MRMS observations. 2ADPR underestimates precipitation almost everywhere, 355 

particularly in the western parts of the country leading to a CONUS-wide average underestimation 356 

of 16% (Figure 2a). 2BCMB, on the other hand, varies geographically with overestimation (e.g., 357 

the Rockies and Great Plains) and modest underestimation (e.g., the West and East Coasts) leading 358 

to a CONUS-wide average within 1% of GV-MRMS (Figure 2b). Moreover, 2BCMB is better 359 

correlated with GV-MRMS observations over most of CONUS (Figures 2c–d). Scatterplots and 360 

three summary statistics (RB, RMSE, and CC) again indicate that 2BCMB generally outperforms 361 
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2ADPR (Figures 2e–f). 2ADPR, however, shows somewhat better detection skills—lower 362 

numbers of false alarms and missed precipitation (Table 1). From Table 1, however, it can be seen 363 

that hits are more common than false alarms and missed precipitation. They are also probably more 364 

important in the context of applications, which tend to focus on medium-to-heavy rainfall in which 365 

hits are prevalent. Prioritizing “hit-relevant” performance such as bias and correlation, we have 366 

elected to focus on 2BCMB for the remainder of this study. This issue deserves further attention, 367 

however, as the relative performance of 2ADPR and 2BCMB can be expected to vary 368 

geographically, seasonally, and with precipitation microphysics (Skofronick-Jackson et al., 2017; 369 

Skofronick‐Jackson et al., 2018). 370 

Table 1. The contingency tables of 2ADPR and 2BCMB, benchmarking against the ground reference GV-371 
MRMS. For each pair of estimates, hits (top left), false alarms (top right), misses (bottom left), and correct non-372 
detects (bottom right) are shown. The total paired data sample size over CONUS is 20,986,107. 373 

 PGV-MRMS ≥ 0.1mm h-1 PGV-MRMS < 0.1mm h-1 

P2ADPR ≥ 0.1mm h-1 931,165 (4.4%) 52,187 (0.2%) 

P2ADPR < 0.1mm h-1 44,407 (0.2%) 19,958,348 (95.1%) 

P2BCMB ≥ 0.1mm h-1 833,803 (4.0%) 324,859 (1.5%) 

P2BCMB < 0.1mm h-1 141,769 (0.7%) 19,685,676 (93.8%) 

In addition to the absolute precipitation estimation performance, another key consideration is 374 

the need for approximate (if not strict) independence from the SMP product being evaluated, if 375 

DPR derived products are to be used as alternative references. Khan et al. (2018) and You et al., 376 

(2020) argue that the independence need can be approximately met as numerous processing steps 377 

and assumptions stand between the DPR/GMI observations and their manifestation within IMERG 378 

(as highlighted in Section 2.1). Nonetheless, we examined this by comparing the accuracy of 379 
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IMERG (for hits only) relative to both 2BCMB and GV-MRMS (Figure 3). The RBs between 380 

IMERG and the two reference datasets are similar (31% in the case of GV-MRMS, and 36% for 381 

2BCMB; while visual inspection shows different conditional bias features). RMSEs are very 382 

similar (5.08 versus 5.13 mm h-1), while Pearson correlation CC with 2BCMB is slightly higher 383 

(0.45) than with GV-MRMS (0.41). Contingency tables corresponding to Figure 3 are shown in 384 

Supplemental Table S1 and reveal similar detection skills of IMERG relative to 2BCMB and GV-385 

MRMS. Taken together, these results suggest that there is indeed approximate independence 386 

between IMERG and 2BCMB, confirming the latter’s potential to evaluate the former. This issue 387 

is discussed further in Section 5.1. 388 

 389 

Figure 3. Density scatterplots of coincident precipitation estimates from GV-MRMS and 2BCMB versus 390 
IMERG. Only precipitation estimates greater than 0.1 mm h-1 are considered, including all the data samples over 391 
the CONUS during the study period. 392 

Climatological CSGDs fitted to GV-MRMS and 2BCMB share similar spatial patterns of μ 393 

and POP (Supplemental Figures S2a–d; σ and δ were also investigated but are not shown). 2BCMB 394 

tends to slightly underestimate μ and POP relative to GV-MRMS, likely reflecting its imperfect 395 
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detection and quantification. Fitted CDFs for climatological CSGDs are illustrated for a 1°×1° box 396 

in the state of Tennessee in the Southeastern CONUS and a 1°×1° box in New Mexico in the 397 

Southwest (Figures S2e–f), which are randomly selected to represent the locations characterized 398 

by different climates. Although these CSGDs closely match the empirical CDFs over the more 399 

humid Southeastern box, 2BCMB exhibits a higher probability of zero precipitation and relatively 400 

large differences from GV-MRMS for light precipitation rates less than 1 mm h-1 (Figure S2e). In 401 

the drier Southwest, a small negative bias in estimated POP is evident (Figure S2f), consistent with 402 

previous studies and related to the CRPS minimization scheme (Ghazvinian et al., 2020).  403 

4.2 CSGD Error Model Visual Inspection and Deterministic Performance 404 

Linear and nonlinear versions of the CSGD error models trained by GV-MRMS and 2BCMB 405 

are further compared over the 1°×1° boxes in the Southeast and Southwest CONUS (Figure 4; see 406 

Figure S3 for identical results plotted on linear rather than log-log scales). For these selected boxes 407 

and other locations in the CONUS, IMERG is prone to overestimate precipitation at half-an-hour 408 

scale, particularly at higher precipitation rates. This is consistent with previous regional studies 409 

(e.g., Tan et al., 2017; Moazami and Najafi, 2021) and CONUS-wide analysis (Gebregiorgis et al., 410 

2018). 411 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

LI ET AL.   23 

 412 

Figure 4. Linear (red lines) and nonlinear (blue lines) conditional CSGD models for (a, b) the Southeast 1°×1° 413 
box and (c, d) Southwest 1°×1° box, trained and compared against GV-MRMS (left panels) and 2BCMB (right 414 
panels). See Figure S2 for identical results, but plotted on linear scales. 415 

The nonlinear models in Figure 4 perform better than linear models for capturing the 416 

conditional bias that is evident at high precipitation rates (e.g., >10 mm h-1). Visual inspection 417 

suggests that the 2BCMB-trained models have similar features to the GV-MRMS-trained models, 418 

though the nonlinear versions show slightly weaker systematic bias and a wider uncertainty bound. 419 

Both GV-MRMS- and 2BCMB-trained CSGD models provide reasonable fits to the validation 420 
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dataset, showing the robustness of this uncertainty quantification framework. The sample size of 421 

coincident data for the more arid southwestern box (Figures 4c–d) is limited due to lower POP, 422 

while IMERG systematic bias is somewhat lower than in the Southeast (Figures 4a–b). These 423 

results highlight the relative flexibility of this CSGD-based uncertainty quantification method 424 

under very different climatic conditions. 425 

 426 

Figure 5. MAE calculated relative to GV-MRMS: (a) IMERG, and the median predicted by (b) GV-MRMS-427 
trained linear model, (c) 2BCMB-trained linear model, and (d) 2BCMB-trained nonlinear model. Relative 428 
percentage change of MAE relative to IMERG results in (a): (e) 2BCMB-trained linear model, and (f) 429 
2BCMB-trained nonlinear model. All the results are calculated by validation data samples, and inset values 430 
are the means of all 1°×1° boxes in the CONUS. 431 

The central tendency (i.e., means or medians) predicted by the CSGD error model represent 432 

the reducible IMERG error (i.e., bias; see Wright et al., 2017). We compare the CSGD medians 433 

predicted by the GV-MRMS- and 2BCMB-trained error models over CONUS against GV-MRMS 434 

observations using MAE (Figures 5a–d). The 2BCMB-trained linear (nonlinear) models can 435 

isolate bias in IMERG—reducing MAE by 24.2% (28.4%) on average (Figures 5e–f). The GV-436 
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MRMS-trained model performs similarly (see Figure 5d for the linear model; nonlinear model not 437 

shown). There is no obvious change in MAE incorporating GWTDTOP (inset statistics in Figure 6) 438 

or other MERRA-2 predictors (results not shown), indicating that these variables have limited roles 439 

in explaining IMERG systematic error. 440 

 441 
Figure 6. The comparison of mean RCRPS maps for (a) GV-MRMS-trained linear model, (b) GV-MRMS-442 
trained nonlinear model; (c) 2BCMB-trained linear model, and (d) 2BCMB-trained nonlinear model. Inset 443 
values are the means of all 1°×1° boxes in the CONUS, and the results for nonlinear models with GWTDTOP 444 
are in parentheses. 445 

4.3 CONUS-wide Probabilistic Evaluation  446 

Figure 6 presents the mean RCRPS maps for different error models over CONUS. The results 447 

show somewhat lower CONUS-averaged RCRPS for the nonlinear GV-MRMS- and 2BCMB-448 

trained models (0.086 and 0.087, respectively) compared to the linear models (0.093 for both the 449 

GV-MRMS- and 2BCMB-based models). This highlights both the potential of 2BCMB as a 450 

reference product and confirms the superiority of the nonlinear model. Interestingly, the areas with 451 

highest RCRPS—e.g., Northeast CONUS, the Rockies, the Great Lakes states, and the Pacific 452 
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Northwest—still show relatively high RCRPS values after considering nonlinear bias. This reflects 453 

region-dependent IMERG uncertainties, likely associated with relatively high precipitation totals 454 

combined with “complicating factors” such as orography, lake-effect snow, and high fractions of 455 

annual precipitation falling as snow. 456 

 457 

Figure 7. Boxplots of the percentage decrease in CRPS relative to the linear model with no predictors for (a-458 
b) GV-MRMS-trained models, and (c-d) 2BCMB-trained models with various model complexities and 459 
predictors. The results are calculated based on training data samples, including all the 1°×1° boxes in the 460 
CONUS. The covariates TQV, T2M, GWETTOP represent the total precipitable water vapor, 2-m air 461 
temperature and topmost soil layer’s ground wetness index from MERRA-2 respectively, and GWETDTOP is 462 
the ground wetness change indicator that is derived from GWETTOP. 463 

4.4 Model Complexity and Conditional Performance  464 

We compared CONUS-wide performance improvements for a range of GV-MRMS- and 465 

2BCMB-based error models with varied model complexities, measured by the percentage decrease 466 
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of CRPS relative to the linear model without any covariate (Figure 7). Consistent with Figure 4, 467 

nonlinearity is the most critical model feature for constraining uncertainty (i.e., improving CRPS). 468 

Moreover, the improvement gained via the nonlinear formulation tends to be larger for the GV-469 

MRMS-based model than for the 2BCMB-based model (a mean of 6% vs. 4%, respectively), 470 

consistent with the larger conditional bias “detected” by GV-MRMS as shown in Figures 4 and 471 

S2. Figure 7 also shows that the most informative covariate we evaluated is GWTDTOP, which can 472 

provide modest improvements (generally 0.5-1.5% reduction in CRPS; ranging as high as 5% in 473 

some locations) to both the linear and nonlinear models. On average, the other covariates—TQV, 474 

T2M, GWTDTOP—provide more limited benefits. Therefore, only GWTDTOP is shown elsewhere 475 

in this study.  476 

We further group the validation dataset and corresponding model predictions into four cases: 477 

hits, misses, false alarms and correct non-detects. Table 2 summarizes CONUS-wide mean CRPS 478 

values of the four groups. Since the number of instances of the groups differ widely, we also show 479 

an overall “weighted mean” for each model. In general, the 2BCMB-based model shows similar 480 

performance as GV-MRMS-trained model in characterizing both the overall uncertainty and the 481 

errors associated with these four cases. The results highlight that the role of model nonlinearity 482 

and GWTDTOP may vary among different cases. The nonlinear model shows improved 483 

performance in both hits and correct non-detects cases, but performs worse than the linear model 484 

for misses and false alarms. Because the correct non-detects and hits dominate in the coincident 485 

samples (accounting for 92.6% and 3.4% of the validation dataset, respectively), the weighted 486 
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mean CRPS of the nonlinear model outperforms that of the linear version. 487 

Table 2. The CONUS-wide mean CRPS for different cases: hits (3.4% of validation data), misses (2.0%), false 488 
alarms (2.0%) and correct non-detects (92.6%), and their weighted mean according to the percentage of different 489 
cases in validation dataset.  490 

 
Cases1 

Mean CRPS for different model complexities (mm h-1) 

GV-MRMS-trained Linear Model GV-MRMS-trained Nonlinear Model 
No Covariate With GWTDTOP No Covariate With GWTDTOP 

Hits 1.484 1.449 1.282 1.275 
Correct Non-detects 0.0009 0.0013 0.0003 0.0007 

Misses 0.913 0.889 0.924 0.903 
False Alarms 0.132 0.131 0.219 0.214 

Weighted Mean 0.072 0.071 0.067 0.066 

 2BCMB-trained Linear Model 2BCMB-trained Nonlinear Model 

 No Covariate With GWTDTOP No Covariate With GWTDTOP 
Hits 1.497 1.470 1.330 1.325 

Correct Non-detects 0.0004 0.0007 0.0001 0.0003 
Misses 0.922 0.904 0.931 0.916 

False Alarms 0.133 0.132 0.190 0.186 

Weighted Mean 0.072 0.071 0.067 0.067 

     1: The four cases are divided based on GV-MRMS and the coincident IMERG observations. The percentages 491 
of each case are similar to those in Table S1, but only the validation dataset is considered here. 492 

At the same time, GWTDTOP improves the uncertainty estimates for hits and misses, and the 493 

latter particularly. GWTDTOP can indicate precipitation occurrence using changes in land surface 494 

wetness conditions, and it thus helps in quantifying the “missed” precipitation that is difficult to 495 

address in most SMP products, even with gauge corrections (Li et al., 2015; Tian et al., 2009). 496 

However, the inclusion of GWTDTOP also increases CRPS in cases of correct non-detects. 497 
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 498 

Figure 8. Distributions of CRPS for GV-MRMS- and 2BCMB-trained models for different intervals of 499 
IMERG precipitation rates (validation data samples of “hits” only; N is sample size). Inset values are the 500 
mean CRPS [mm h-1] for the different models. Values inside (outside) the parentheses include (don’t include) 501 
GWTDTOP as a predictor. 502 

To better characterize the magnitude-dependent performance of the uncertainty estimates for 503 

hit cases, we consider 0.1, 1, 5, 10, and 25 mm h-1 thresholds, which roughly correspond to the 504 

0.97, 0.99, 0.995, and 0.998 quantiles of IMERG climatology. Figure 8 shows kernel-based density 505 

functions of CRPS for IMERG data between these thresholds. For IMERG-detected precipitation 506 

events, the nonlinear model outperforms the linear model, as the distributions of CRPS of the 507 

former are more concentrated towards zero and thus have a smaller mean. For larger IMERG 508 

estimates, differences become more apparent and the nonlinear models yield smaller CRPS scores 509 

than the linear models (Figures. 8c–d). This is unsurprising, since IMERG shows substantial 510 
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nonlinear conditional bias at high precipitation rates (e.g., Figure 4). This analysis also shows that 511 

the 2BCMB-trained models perform similarly to the GV-MRMS-trained model at different 512 

precipitation intensities, showing slight degradation for very heavy precipitation (>25 mm h-1), 513 

likely attributable to attenuation. The benefits of adding GWTDTOP is not visually obvious in these 514 

CRPS-based analyses; it does offer very modest benefits, however, particularly in the linear 515 

models at higher precipitation rates (inset statistics in Figure 8). 516 

Reliability diagrams for all the error models with thresholds of 0.1 mm h-1, 5 mm h-1, and 10 517 

mm h-1 are compared in Figure 9. The results clearly shows that the nonlinear model always offers 518 

more reliable estimates than the linear model (i.e., it always falls closer to the 1:1 line). The 519 

2BCMB-based nonlinear model presents similar skill to the GV-MRMS-trained model, except for 520 

events larger than 10 mm h-1. The model reliability varies at different event thresholds. For 521 

precipitation occurrence (i.e., 0.1 mm h-1), all error models tend to be consistently above the 522 

diagonal, particularly at low-medium forecast probability categories. This feature indicates that 523 

the observed frequency in each category exceeds the model estimated frequency (i.e., a “dry bias”; 524 

Wilks, 2019). This is similar to the findings of an earlier study on CSGD models (Ghazvinian et 525 

al., 2020) that relate this dry bias to the underestimation of POP by climatological CSGDs (which 526 

can be seen in Figure. S2f). This dry bias is reduced by incorporating GWTDTOP, which is 527 

unsurprising since it serves as an “indicator” of precipitation occurrence. For heavy events, on the 528 

other hand, all error models fall below the diagonal at high forecast probability categories, 529 

indicating the model tends to overestimate occurrence frequency. As discussed in Scheuerer et al. 530 
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(2017), however, the uncertainty in observed frequency increases at higher precipitation rates due 531 

to limited sample sizes. 532 

 533 
Figure 9. Reliability diagrams for GV-MRMS- and 2BCMB-trained models with various event thresholds. 534 
The upper pannels are for models without covariates, and lower pannels are for models with GWTDTOP. 535 

 536 

5 Discussion 537 

5.1 DPR Data as Reference 538 

Our findings point to the promise of DPR products—and particularly 2BCMB—to serve as a 539 

reference in the proposed global IMERG uncertainty estimation framework. It must be recognized, 540 

however, that while 2BCMB generally outperforms 2ADPR over CONUS (Figure 2; though not 541 

in terms of precipitation detection; see Table 1), this conclusion may not hold in other places 542 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

LI ET AL.   32 

around the globe. The rejection of 2ADPR as a reference here is not inconsistent with Khan et al., 543 

(2018), who showed that conditional biases in IMERG and 2ADPR are similar. 544 

Despite the similar error modeling results between 2BCMB- and GV-MRMS-trained error 545 

models, the two references differ in important ways: 2BCMB estimates instantaneous precipitation 546 

rate, while GV-MRMS offers precipitation estimates aggregated into 30-minute intervals. This 547 

scale mismatch inevitably will introduce additional uncertainties, which are likely to manifest in 548 

the form of random errors both in precipitation occurrence and magnitude. This seems unlikely to 549 

influence systematic errors. It should be noted that 2BCMB underestimates high precipitation 550 

rates, probably due to attenuation of radar signals. This likely explains the somewhat poor 551 

performance of the 2BCMB-based error models at high precipitation rates, relative to performance 552 

at lower intensities. 553 

As mentioned in Sections 2.1 and 4.1, an objection can be raised to the use of DPR-derived 554 

datasets as reference for IMERG or other GPM precipitation data products, owing to the (generally 555 

indirect) inclusion of DPR (and GMI, in the case of 2BCMB) in those products and thereby the 556 

potential for lack of independence between them and the DPR-based reference. Those results in 557 

Section 4.1 and the arguments of Khan et al. (2018) and You et al. (2020) suggest that this 558 

objection should not be overly concerning. The most direct contribution from DPR and GMI 559 

combined data in IMERG algorithm is the 45-day probability matching intercalibration of PMW-560 

only precipitation retrievals, before the morphing and PMW-IR merging procedures that derive 561 

the ultimate gridded IMERG estimates (Huffman et al., 2020). The actual difference in IMERG 562 
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estimates before and after this intercalibration is found to typically be less than 10% (Jackson Tan, 563 

personal communication, 7 April 2021). Nonetheless, recent work by Kirstetter et al. (2020) shows 564 

that systematic biases such as those associated with precipitation typology display similar features 565 

across Level-2 and Level-3 GPM products (i.e., QPE from DPR, GPROF-GMI, and IMERG), 566 

suggesting that uncertainty can propagate from DPR-based precipitation estimates into the SMP 567 

product. 568 

5.2 CSGD-based Error Model 569 

This study demonstrates that the CSGD error model can reasonably characterize IMERG 570 

uncertainty over CONUS. Consistent with previous studies (Hartke et al., 2020; Wright et al., 571 

2017), model fitting was relatively robust to small sample sizes (Figure 5). This property is crucial 572 

if the framework is to be expanded to the entire globe, as GPM DPR sampling frequency decreases 573 

at lower latitudes (Figure1d, and Figure 1 in You et al., 2020).  574 

The inclusion of additional predictors into the model provides a way of improving uncertainty 575 

estimates. As demonstrated in this study, incorporating GWTDTOP derived from the MERRA-2 576 

reanalysis product modestly improved the model’s performance in characterizing precipitation 577 

occurrence (Table 2, and Figure 9). Expectation of greater gains using MERRA-2 is unwarranted 578 

given its coarse temporal and particularly spatial resolution. It isn’t clear that other satellite-based 579 

products could be much help here—consider, for example, that remotely-sensed soil moisture data 580 

likely lack the combination of global coverage and short latency needed to inform near real-time 581 

IMERG uncertainty estimates. High-resolution global-scale numerical weather forecasts such as 582 
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those from NASA’s Goddard Earth Observing System Forward Processing products (GEOS-FP; 583 

Molod et al., 2012), on the other hand, seem to offer potential as they are available on a consistent 584 

global basis in realtime. Another direction which is being explored in separate work is using simple 585 

metrics derived from the IMERG precipitation fields themselves as predictors in the error model. 586 

Finally, while we explored several deterministic and probabilistic performance measures in 587 

this study, it is doubtful that we have fully explored all relevant aspects of model skill. Future 588 

global validation efforts will continue exploring this topic using more candidate evaluation metrics 589 

(e.g., Massari & Maggioni, 2020; Wilks, 2019) and in varied environmental settings. 590 

5.3 IMERG Uncertainty Beyond the DPR Swath 591 

This study’s central premise—that DPR measurements on board the GPM core observatory 592 

can serve as an alternative reference for estimating IMERG uncertainty—carries a key limitation: 593 

since spatial and temporal coincidence between IMERG and DPR is needed to train the error model, 594 

this can only occur within the DPR swath. Of course, DPR and GMI are co-located on the GPM 595 

core observatory. The result is that the uncertainty estimates presented here primarily reflect the 596 

relationships between DPR and GMI-influenced IMERG. Because GMI is the most accurate PMW 597 

precipitation radiometer currently in space (Skofronick‐Jackson et al., 2018), our analyses 598 

probably provide the “best scenario” (i.e., lowest uncertainty); the real uncertainty associated with 599 

IMERG estimates that are dominated by other PMW or IR sensors or morphing is likely greater 600 

(e.g., Tan et al., 2016, and Li et al., 2020; also see Figure S3) than our models would predict. 601 
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To overcome this limitation, more work is needed to examine how DPR-based uncertainty 602 

estimates can be “inflated” to better reflect the properties of other PMW and IR sensors as well as 603 

IMERG’s morphing scheme. The work of You et al. (2020)—who compared 2ADPR precipitation 604 

estimates against those of different PMW sensors within GPROF—provides a possible blueprint 605 

for addressing this. 606 

 607 

6 Summary and Conclusions 608 

This study proposes a prototype uncertainty quantification framework for satellite 609 

precipitation products, in which GPM DPR-derived observations are used in place of ground-based 610 

measurements. Though we focus our study on the IMERG-Early dataset at its native 30-minute, 611 

0.1° resolution over CONUS, the quasi-global availability of DPR measurements allows this 612 

framework to be applied across the globe to any satellite precipitation dataset whose 613 

spatiotemporal resolution is similar to that of IMERG, such as CMORPH and PERSIANN. 614 

Uncertainty is modeled using a flexible and parsimonious three-parameter censored shifted gamma 615 

distribution (CSGD) error model which can characterize the probability of precipitation as well as 616 

intensity-dependent systematic bias and the potential range of random error. Uncertainty estimates 617 

from the CSGD error model trained on the 2BCMB reference are compared against high-quality 618 

ground observations from the GV-MRMS dataset, as well as uncertainties inferred from GV-619 

MRMS-based versions of the error model. We believe this is the first study to generate IMERG 620 

uncertainty estimates using this general approach. 621 
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Our CONUS-wide assessment suggests that the combined (DPR and GMI) product 2BCMB 622 

outperforms 2ADPR (which uses DPR exclusively) in terms of precipitation intensity statistics. 623 

2ADPR has somewhat better detection properties, however. Due to substantial intensity-dependent 624 

error behaviors in IMERG, the rejection of 2ADPR as a reference by Khan et al. (2018), and the 625 

supposition that better uncertainty estimates during precipitating periods would be preferable to 626 

better estimates of detection uncertainty, we focused our error modeling analysis on the 2BCMB 627 

product. 628 

Multiple CSGD-based IMERG error models of varying complexity were trained using both 629 

GV-MRMS and 2BCMB. We find that the precipitation climatology characterized by GV-MRMS- 630 

and 2BCMB-based models yield similar properties and comparable performance throughout 631 

CONUS, though the 2BCMB-based model has slightly lower mean and POP values, likely 632 

attributable to its imperfect detection skill. 2BCMB-based model performance also suffers at high 633 

precipitation rates compared with GV-MRMS-based models. Evaluation using CRPS indicates 634 

that IMERG uncertainty, for both models, is relatively high at the Northeast CONUS, the Rockies, 635 

and the Pacific Northwest, where a number of “complicating factors” such as orography, lake-636 

effect snow, as well as high fractions of annual precipitation falling as snow may complicate 637 

IMERG errors. 638 

Relatively weak error model performance can be ameliorated by incorporating additional 639 

predictors to further constrain uncertainty estimates. We illustrate this by incorporating predictors 640 

from NASA’s MERRA-2 reanalyses, including a derived variable representing positive temporal 641 

deviations in near-surface soil moisture that can be associated with precipitation occurrence and 642 
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that improves uncertainty estimates, albeit modestly. Higher-resolution numerical weather 643 

predictions—particularly short-range high-resolution global forecasts—could be potentially useful 644 

for informing uncertainty estimates for near-realtime versions of IMERG. In addition, variables 645 

derived from IMERG’s ancillary data or the spatial structure of the IMERG fields themselves offer 646 

further promise to constrain IMERG uncertainty. 647 

Despite the promising performance of this uncertainty framework over CONUS, its flexibility 648 

and robustness in other parts of the globe remain untested. The accuracy of IMERG as well as the 649 

relative performance of the 2ADPR and 2BCMB products are influenced by climate, land surface 650 

conditions, and atmospheric and precipitation properties (e.g., Khan et al., 2018; Tang et al., 2016). 651 

DPR’s sampling frequency also varies with latitude due to its inclined orbit. Future work will focus 652 

on validating uncertainty estimates in other locations and conditions. 653 

Notwithstanding these remaining challenges, the IMERG uncertainty estimates provided by 654 

this error modeling framework can benefit end-user applications (Kirschbaum et al., 2017). As 655 

illustrated in a recent study, the incorporation of CSGD-based satellite precipitation uncertainty 656 

can improve regional landslide hazard nowcasting, even when a CSGD error model is trained by 657 

very limited data (Hartke et al., 2020). It should be noted that the maximum benefits of the IMERG 658 

error modeling framework only can be achieved when regional and global environmental modeling 659 

systems and workflows are adapted to “ingest” such uncertainty information. Proof-of-concept 660 

efforts in that direction are equally important as further validation of our uncertainty estimation 661 

approach. 662 
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Table S1. The contingency tables for IMERG, benchmarked against GV-MRMS and 2BCMB. For each 

pair of the estimates, hits (top left), false alarms (top right), misses (bottom left), and correct non-detects 

(bottom right) are shown. The total paired data sample size over CONUS is 20,986,107. 

 PIMERG ≥ 0.1mm h-1 PIMERG < 0.1mm h-1 

PGV-MRMS ≥ 0.1mm h-1 714,440 (3.4%)a 444,222 (2.1%) 

PGV-MRMS < 0.1mm h-1 437,897 (2.1%) 19,389,548 (92.4%) 

P2BCMB ≥ 0.1mm h-1 681,936 (3.2%) 301,416 (1.4%) 

P2BCMB < 0.1mm h-1 470,401 (2.2%) 19,532,354 (93.1%) 
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Figure S1. Coincident precipitation estimates from regridded (a) 2ADPR, and (b) 2BCMB for 02:00–
03:00 UTC 17 June 2014. The swath coverage and retrieved precipitation spatial pattern of the two DPR 
derived products are similar, though 2BCMB shows enhanced precipitation intensities (which are closer 
to GV-MRMS observations, as shown in Figure 1b in the main article).  
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Figure S2. The spatial maps of fitted (a-b) climatological CSGD mean parameter μ and (c-d) POP, and 
(e-f) the comparison of empirical CDFs (markers) and climatological CSGD fitted CDFs (lines) based 
on the coincident IMERG, GV-MRMS, and 2BCMB training data samples within the 1°×1° boxes from 
the Southeast and Southwest CONUS, respectively. The locations of the two boxes are indicated by red 
circles in (a).  



 
 

5 
 

 

Figure S3. Linear (red lines) and nonlinear (blue lines) conditional CSGD models for (a, b) the 
Southeast 1°×1° box, (c, d) Southwest 1°×1° box, trained and compared against GV-MRMS (left panels) 
and 2BCMB (right panels). See Fig. 4 for identical results, but plotted on log scales.  
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