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Abstract

India implemented stay-at-home order (i.e. lockdown) on 24 March 2020 to decrease the spread of novel COVID-19, which

reduced air pollutant emissions in different sectors. The Weather Research and Forecasting model with Chemistry (WRF-Chem)

was used to study the changes in air pollutants during the lockdown period in 2020 compared with similar period in 2019. We

found that both meteorology and lockdown emissions contributed to daytime PM2.5 (-6% and -11%, respectively) and ozone

(-6% and -8%, respectively) reduction averaged in April 2020 in the Indo-Gangetic Plain. However, the ozone concentration

response to reductions in its precursors (i.e. NO2 and VOCs) due to the lockdown emissions was not constant over the domain.

While ozone concentration decreased in most parts of the domain, it slightly increased in major cities like Delhi and in regions

with many power plants. We utilized the reaction rates information in WRF-Chem to study the ozone chemistry. We found

carbon monoxide, formaldehyde, isoprene, acetaldehyde, and ethylene as the major VOCs that contribute to the ozone formation

in India. We used the ratio of chemical loss of radicals with radicals and NOx, and its corresponding formaldehyde to NO2 ratio

(FNR) to find the ozone chemical regimes. Using the upper limit of FNR transition region (1.3), we found that most parts of

India are within NOx-limited regime while urban regions and the regions with many power plants are in a VOC-limited regime.

As a result, policy makers should study the characteristics of a region before implementing mitigation strategies.
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Abstract 19 

India implemented stay-at-home order (i.e. lockdown) on 24 March 2020 to decrease the spread of novel 20 

COVID-19, which reduced air pollutant emissions in different sectors. The Weather Research and 21 

Forecasting model with Chemistry (WRF-Chem) was used to study the changes in air pollutants during 22 

the lockdown period in 2020 compared with similar period in 2019. We found that both meteorology and 23 

lockdown emissions contributed to daytime PM2.5 (-6% and -11%, respectively) and ozone (-6% and -8%, 24 

respectively) reduction averaged in April 2020 in the Indo-Gangetic Plain. However, the ozone 25 

concentration response to reductions in its precursors (i.e. NO2 and VOCs) due to the lockdown emissions 26 

was not constant over the domain. While ozone concentration decreased in most parts of the domain, it 27 

slightly increased in major cities like Delhi and in regions with many power plants. We utilized the 28 

reaction rates information in WRF-Chem to study the ozone chemistry. We found carbon monoxide, 29 

formaldehyde, isoprene, acetaldehyde, and ethylene as the major VOCs that contribute to the ozone 30 

formation in India. We used the ratio of chemical loss of radicals with radicals and NOx, and its 31 

corresponding formaldehyde to NO2 ratio (FNR) to find the ozone chemical regimes. Using the upper 32 

limit of FNR transition region (1.3), we found that most parts of India are within NOx-limited regime 33 

while urban regions and the regions with many power plants are in a VOC-limited regime. As a result, 34 

policy makers should study the characteristics of a region before implementing mitigation strategies.     35 

1. Introduction 36 

While COVID-19 virus  is a global disaster in terms of its health and economy damages, it provides a 37 

unique opportunity in earth system sciences (Gorris et al., 2021). As many countries initiated stay-at-38 

home orders (hereafter called lockdown) in early 2020 to control the spread of the virus, anthropogenic 39 

air pollutant emissions started to decline in different sectors (Doumbia et al., 2021). While many studies 40 

had used numerical models to understand the impacts of stringent future emission control “scenarios” on 41 

air quality (Amann et al., 2020), worldwide lockdowns introduced a scenario accompanied by actual 42 

observational data. As a result, numerous studies have studied the changes in air pollution using ground 43 

measurements (e.g. Shi and Brasseur (2020)) and satellite data (e.g. Goldberg et al. (2020)). An 44 

exhaustive review on these studies can be found in Gkatzelis et al. (2021). However, these data have 45 

spatial or/and temporal gaps. In order to utilize the models, some studies used available activity data (e.g. 46 

Doumbia et al. (2021)) or inverse modeling (e.g. Souri et al. (2021)) to update emission inventories. 47 

Air pollution is a concerning issue in India due to its large health and environmental impacts (Ghude et 48 

al., 2014; HEI, 2018). While even extreme air pollution events are not unusual in India (Roozitalab et al., 49 

2021), clean air due to the lockdown was unusual and attracted people and media’s attention (Gupta, 50 

2020). In India, the lockdown officially started on 24 March 2020 and continued in four phases until the 51 

end of May 2020. While residential and power sectors emissions did not show large changes, large 52 

emission reductions were reported in other sectors such as transportation (Beig et al., 2021). This 53 

reduction in emissions resulted in different changes in air quality over India. Relatively short lifetime of 54 

NO2 makes it a suitable tracer of local NOx emissions (Goldberg et al., 2019). Figure 1 shows the 55 

tropospheric column NO2 concentration in April 2019 and 2020 over northern India retrieved from the 56 

TROPOspheric Monitoring Instrument (TROPOMI) satellite data. Lower values in April 2020 compared 57 

with 2019 indicate reductions in NOx emissions in most parts of India except the thermal power plant 58 

regions. For example, NO2 concentrations showed large reductions over Delhi and other urban regions 59 

due to the lower activities in transportation sector. However, the demand for electricity showed small 60 

changes during the lockdown period; NO2 concentrations did not change very much over the thermal 61 
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power plants region (ESA, 2020). Other studies using TROPOMI and Ozone Monitoring Instrument 62 

(OMI) satellites and ground measurements data confirmed these changes (Biswal et al., 2020).  63 

Many studies used measurement data and studied the changes in air pollutant concentrations in Indian 64 

regions during different phases of the lockdown period (Jain & Sharma, 2020; V. Kumar et al., 2020; 65 

Kumari & Toshniwal, 2020; Mahato et al., 2020; Selvam et al., 2020; Singh et al., 2020). While the 66 

studied periods are different in each study, the conclusion was solid. All of them found significant 67 

reductions in PM2.5 and NO2 concentrations when compared to pre-lockdown period or previous years. A 68 

limited number of studies have also investigated the lockdown emission effects in India. Zhang et al. 69 

(2021) used WRF-CMAQ model to study the pre-lockdown-to-lockdown air quality changes in India, 70 

between 21 February and 24 April 2020, by decreasing the emissions in industrial (82%), transportation 71 

(85%), and energy (26%) sectors during the lockdown period. They found that air quality improved over 72 

India for all the pollutants with some exceptions of MDA8 ozone for some urban areas. Dumka et al. 73 

(2021) used the WRF-CHIMMERE model and simulated significantly lower PM2.5 and NO2 74 

concentrations over India during the lockdown period (25 March and 17 May 2020) compared with the 75 

pre-lockdown period by completely excluding traffic and industrial sectors from the emission inventory. 76 

Gaubert et al. (2020) used CESM2 model and adjusted emission based on the work by Doumbia et al. 77 

(2021) to study the meteorological and lockdown emission impacts on the secondary atmospheric 78 

pollutants during the lockdown period over the world. They found that the lockdown emissions reduced 79 

ozone in India, while meteorology had both decreasing and increasing effect on ozone concentration. In 80 

general, the above-mentioned studies found unexpected changes in ozone concentrations. While large 81 

reductions in NO2 concentration, as its’ precursor, were found, lower reductions were reported in ozone 82 

concentrations (Zhang et al., 2021). Moreover, some enhancements in observed ozone concentrations 83 

compared with the pre-lockdown period were found (Kumari & Toshniwal, 2020; Mor et al., 2021). 84 

Similarly in global scale, Miyazaki et al. (2020) found that NOx emission reductions due to the COVID-85 

19 lockdowns led to about 2% reduction in the global tropospheric ozone burden, while surface ozone 86 

concentrations increased in some regions (Shi & Brasseur, 2020; Sicard et al., 2020). 87 

Different response of ozone to its precursors’ changes is due to its complicated chemistry. Chen et al. 88 

(2020) studied the sensitivity of ozone formation to its precursors and aerosol loading in Delhi. They 89 

found that a reduction by more than 65-80% in NOx emissions alone was needed to reduce the ozone 90 

concentration, whereas VOC emission reductions were the efficient control strategy. On the other hand, 91 

the effects of meteorology should also be considered when studying the differences in concentrations 92 

between 2020 and previous years. Gkatzelis et al. (2021) found only about one-third of all the global 93 

studies on the effects of COVID-19 accounted for impacts of changing meteorology. For example, 94 

Goldberg et al. (2020) showed that meteorological conditions alone decreased tropospheric column NO2 95 

concentration by a median of 21.6% in the United States (US) in 2020 compared with 2019. Different 96 

meteorology can also change the amounts of biogenic emissions, dust emissions, and biomass burning 97 

emissions. As a result, a modeling study is required to investigate the impacts of meteorology and 98 

lockdown emissions on the air quality during the lockdown period. Furthermore, numerous modeling 99 

studies have been performed over India with the primary focus on PM (Garaga et al., 2018), while only a 100 

few of them have studied ozone (Luke Conibear et al., 2018; Ghude et al., 2016; Kota et al., 2018; R. 101 

Kumar et al., 2012; Sharma et al., 2017).  102 

The objectives of this study are to understand 1) how the meteorology and COVID-19 lockdown 103 

emissions affected air quality in northern India and 2) how ozone precursor’s emissions contributed to 104 

ozone formation in India. To achieve these objectives, we used the regional Weather Research and 105 

Forecasting Model with Chemistry (WRF-Chem) version 4 to simulate the air quality during March and 106 
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April in 2019 and 2020. We also utilized the Integrated Reaction Rate (IRR) capability in this version to 107 

understand how ozone formed in different regions (i.e. urban, non-urban, and a thermal power plant 108 

region) in India and how it changed during the lockdown period. To account for emission changes during 109 

the COVID-19 lockdown period, we used the adjustment factors proposed by Doumbia et al. (2021).  110 

The paper is organized as follows. First, we provide a description of the WRF-Chem model and 111 

adjustment factors used to account for the lockdown period emissions, and evaluate the modeling results 112 

against ground measurements data in 2019 and 2020. Then, we study the effects of meteorology and 113 

lockdown emissions on air quality using different modeling experiments. Finally, we use the IRR and 114 

study the ozone chemistry in different regions in India and provide a summary of the findings. 115 

 116 

Figure 1 Tropospheric column NO2 concentrations over the WRF-Chem modeling domain averaged for April a) 2019 and b) 117 

2020 retrieved from TROPOMI on board the Copernicus Sentinel-5 Precursor satellite. The three regions used for process 118 

analysis has been marked and also shown on Figure S1. The quality assurance more than 0.5 was used.  119 

2. Methods: 120 

2.1. WRF-Chem modeling  121 

WRF-Chem model version 4.0 was used in this study in order to utilize its new IRR capability (Grell et 122 

al., 2005; Pfister et al., 2019). We used a single domain, centered over Delhi, which covered the Indo-123 

Gangetic Plain (IGP) and central India with a 15 km x 15 km resolution and 39 vertical layers (Figure 1; 124 

location of the IGP is shown in Figure S6). The Model for Ozone and Related chemical Tracers, version 4 125 

(MOZART-4) introduced by Emmons et al. (2010) with updates on monoterpenes (Hodzic et al., 2015) 126 

and isoprene oxidations (Knote et al., 2014) was selected as the gas phase chemistry mechanism (More 127 

information on the evolution of the MOZART mechanism can be found in Emmons et al. (2020)). For 128 

aerosol representation, the four-bin MOdel for Simulations Aerosol Interactions and Chemistry 129 

(MOSAIC-4bin) introduced by Zaveri et al. (2008) with updates for Secondary Organic Aerosol (SOA) 130 

formation (Hodzic & Jimenez, 2011) was selected.  131 

Initial and boundary condition (IC/BC) for meteorological fields were provided by National Center for 132 

Atmospheric Prediction Global Forecasting System Final Analysis (NCEP GFS-FNL) data 133 

(https://rda.ucar.edu/datasets/ds083.2/, last access: 20 December 2020). For Chemical IC/BC, we used the 134 

a) April 2019 b) April 2020
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Whole Atmosphere Community Climate Model (WACCM) outputs (Whole Atmosphere Community 135 

Climate Model (WACCM) Model Output, 2020). We reinitialized the model every 30-hours and updated 136 

meteorological IC/BC and chemical boundary conditions but used the chemical initial condition from the 137 

previous cycle. The re-initialization for every cycle started during nighttime at 1800 UTC (2330 Local 138 

Time (LT)) and the first 6 hours were discarded as spin up following Abdi-Oskouei et al. (2018). The 139 

simulation period included March and April in 2019 and 2020, while we primarily focus on April results. 140 

The details of other configuration options can be found in Roozitalab et al. (2021). 141 

We used the Hemispheric Transport of Air Pollution emission inventory (HTAP v2.2) 0.1x0.1 degree 142 

gridded monthly-averaged for each sector as our base anthropogenic emission inventory (Janssens-143 

Maenhout et al., 2015). The speciation provided by Emissions of atmospheric Compounds and 144 

Compilation of Ancillary Data (ECCAD) database for Non Methane Volatile Organic Carbons 145 

(NMVOCs; hereafter NMVOCs refer to VOCs except Methane and CO and VOCs refer to their 146 

inclusion), which is based on ratios in the RETRO project (https://permalink.aeris-data.fr/HTAPv2, last 147 

access: 20 December 2020). Moreover, the mapping between the ECCAD NMVOCs and model emitted 148 

species are provided in Table S1 (personal communications with Louisa Emmons, NCAR). In this study, 149 

we arbitrarily chose three regions representing an urban, a rural, and a power plant region when analyzing 150 

the ozone chemistry (Figure 1). The urban region contains the greater Delhi region (hereafter called 151 

Urban), the rural area contains a non-urban region with low population density in the border of Uttar 152 

Pradesh and Madhya Pradesh states (hereafter called Rural), and the power plant region covers an area 153 

with high emission thermal power plants (hereafter called Power). To keep the regions comparable with 154 

each other, each region includes a set of 4x5 grid cells in the model (~4500 km2; Figure S1). Hereafter, 155 

we also call the Indian regions of the domain as India. The amount of HTAP v2.2 emissions for different 156 

species over these defined regions for the month of March and April are shown in the supporting 157 

information (Table S2 and Table S3). Urban had the highest emissions for all the species except for SO2. 158 

SO2 emissions were higher in Power. The amount of NOx emission was close in Urban and Power 159 

regions. On the other hand, NMVOC emissions were very low in Power and Rural. Emissions in April 160 

were lower than March for all the regions; however, this difference was very small for Rural as the 161 

emissions were originally low.  162 

To consider emission reductions due to the lockdown in 2020, we used the adjustment factors (AFs) 163 

provided by Doumbia et al. (2021). Doumbia et al. (2021) estimated the global gridded AFs based on the 164 

change of activity data for each sector with respect to a five-week period starting on January 2020. Figure 165 

2 shows the daily change of emissions for a) India, b) Urban, c) Power, and d) Rural. It shows a small 166 

fluctuation in emissions until 24 March (as adjusting factors are with regard to January), with a dramatic 167 

change afterwards due to initiation of the lockdown. The lockdown had the largest impact on NOx 168 

emission with greater than 40% reduction averaged over India. The emissions of SO2 also showed large 169 

reductions with smaller reductions for NMVOCs and CO. Black carbon did not change very much over 170 

India, while Organic Carbon (OC) increased after the lockdown due to increased fuel consumption for 171 

residential sector (Yadav et al., 2020). The total changes in emission in each region depends on both the 172 

AFs and the amount of emission from each sector in that region. Urban showed similar emission 173 

reductions for both NOx and NMVOCs as for India. Reduction in emission of NMVOC was lower than 174 

NOx in Power and Rural. Moreover, the amount of emission change was different as well. For example, 175 

NOx emissions reduced by up to 60%, 50%, and 30% in Urban, Rural, and Power, respectively. On the 176 

other hand, OC and black carbon decreased in Urban, while increased over other regions. Figure 2 (e, f) 177 

also shows the maps of averaged emission reductions in April 2020 for NMVOC and NOx. Although 178 

these results are qualitatively consistent with results in Gaubert et al. (2020), there are some quantitative 179 

differences, primarily due to different base emission inventory and considered regions.  180 

https://permalink.aeris-data.fr/HTAPv2
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 181 

Figure 2 Daily Emission change due to AF applied on HTAP v2.2 emissions averaged in a) India, b) Urban, c) Power, and d) 182 

Rural (X-axis shows the days in March and April and Y-axis range is different for each subplot). Map of emission changes of e) 183 

NMVOC and f) NOx averaged in April 2020.  184 

The Fire Inventory from NCAR, version 2.2 (FINN v2.2) based on MODIS fire detections was used as 185 

the biomass burning emission inventory (Wiedinmyer et al., 2011). Comparing the fire emissions between 186 

2019 and 2020 during the studied period showed lower total emissions in 2020 (Figure S2), with most of 187 

the fires over central parts of the domain. However, it also showed that some days in 2020 (e.g. 16 April) 188 

had much larger emissions compared with 2019. We also used the online Model of Emissions of Gases 189 

and Aerosols from Nature (MEGAN v. 2.0.4) as the biogenic emission inventory (Guenther et al., 2006). 190 

MEGAN emissions changed between years 2019 and 2020 as they are based on meteorological fields (i.e. 191 

a) India

b) Urban

c) Power d) Rural

e) NMVOC 
Emission 
change

f) NOx  
Emission 
change
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temperature). For Dust emissions, we used the online Goddard Global Ozone Chemistry Aerosol 192 

Radiation and Transport (GOCART) mechanism.  193 

To study the response of air quality to both meteorological and emission forcings, we performed four 194 

simulations (Table 1). It should be noted the we considered all emission sources that are directly (i.e. 195 

biogenic and wind-blown dust) and indirectly (biomass burning) related to the meteorology as 196 

meteorological forcings. The reason is that the lockdown anthropogenic emissions’ adjustments do not 197 

directly affect these sources. In the 2019BAU scenario, all the year-dependent input data including 198 

chemical and meteorological IC/BC, and biomass burning emissions were from 2019. As a result, online 199 

biogenic and dust emissions also followed 2019 meteorology. Moreover, we used HTAP v2.2 emission 200 

inventory as Business As Usual (BAU) anthropogenic emission in 2019BAU. Following the same logic, 201 

2019COVID means 2019 year-dependent input data, while anthropogenic emissions were adjusted based 202 

on the multiplication of HTAP v2.2 and AFs for each sector. Similarly, 2020BAU was based on 2020 203 

year-dependent input data and BAU anthropogenic emission, while 2020COVID used adjusted emissions. 204 

These four scenarios provide an opportunity to look at the effects of meteorology, emissions, and their 205 

combined effects on air quality over the domain.  206 

Table 1 List of scenarios performed in this study 207 

Scenario Meteorology Anth. 

Emission 

Biomass 

Burning 

Emission 

Biogenic 

Emission 

Dust 

Emission 

Initial/Boundary 

Condition 

2019BAU 2019 HTAP v2.2 2019 2019 2019 2019 

2019COVID 2019 HTAP v2.2 

adjusted 

with AF 

2019 2019 2019 2019 

2020BAU 2020 HTAP v2.2 2020 2020 2020 2020 

2020COVID 2020 HTAP v2.2 

adjusted 

with AF 

2020 2020 2020 2020 

 208 

2.2. Model evaluation 209 

We evaluated the performance of the model compared with ground measurements and global reanalysis 210 

data. Scenarios 2019BAU and 2020COVID should represent the real states of the atmosphere for years 211 

2019 and 2020, respectively. In the following model evaluation discussion, the model for 2019 refers to 212 

2019BAU and the model for 2020 refers to 2020COVID results. For meteorological fields, we compared 213 

the model with the Modern-Era Retrospective analysis for Research and Applications, Version 2 214 

(MERRA-2) data (Bosilovich et al., 2015). Hourly statistics for a location in Delhi (28.6 N, 77.19 E) 215 

showed 2-m temperature (T2m) mean error (ME) of 2.9 °C and 3.5°C in 2019 and 2020, respectively, and 216 

10-m wind speed (WS10m) of 1.3 m/s and 1.3 m/s in 2019 and 2020, respectively. The root mean squared 217 

error (RMSE) for T2m was 3.4 °C and 4.1 °C in 2019 and 2020, respectively. The RMSE for WS10m was 218 

1.7 m/s and 1.6 m/s for 2019 and 2020, respectively. These are comparable with Zhang et al. (2021) 219 

values when modeling the pre-lockdown and lockdown period in India. The model satisfied the wind 220 

speed ME goal of 2.0 m/s, while overestimated temperature ME goal of 2.0 °C, proposed by Emery et al. 221 

(2001). The model simulated the daytime (1000-1700 LT) T2m peaks but overestimated nighttime values 222 

(Figure S3). Figure 3 shows the averaged hourly T2m over the domain for April 2019 and 2020 in the 223 

model (re-gridded to MERRA-2 resolution) and MERRA-2. The model captured the general spatial 224 
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pattern of temperature in both 2019 and 2020. However, the model was biased low over most parts of 225 

India in 2019. On the other hand, the model was biased high over the IGP and biased low over central 226 

India in 2020. It also shows that the model was biased high over the western parts of the IGP in both 2019 227 

and 2020. Comparing WS10m also indicated the ability of the model to capture the spatial pattern, while 228 

the model was biased low most of the time in Delhi (Figure S4). The differences in the meteorology can 229 

affect the air quality by changing the natural emission sources (e.g. dust and biogenic emissions). 230 

Furthermore, the dynamics of the atmosphere (e.g. boundary layer height and wind) change how the air 231 

pollutants disperse and transport in the atmosphere.  232 

 233 

Figure 3 Averaged hourly 2-m temperature in April 2019 (top row) and 2020 (bottom row) in the WRF-Chem model (left 234 

column), MERRA-2 (middle column), and their difference (right column). 235 

We used the hourly ground measurements air pollutant concentrations data in Delhi collected by the 236 

Central Pollution Control Board (CPCB) to evaluate the air quality in years 2019 and 2020. Other than 237 

the original quality control filters applied by the CPCB (https://cpcb.nic.in/quality-assurance-quality-238 

control/, last access: 02/23/2021), we applied four additional filters (Jena et al., 2020; Singh et al., 2020). 239 

First, we removed the stations with all zero or not-a-number (i.e. NAN) values. Second, we removed the 240 

stations with no variation, in which the standard deviation (STD) of the data was less than five percent of 241 

its mean. Third and fourth, we removed the outlier values, in which the difference between two 242 

consecutive hours was more than 100 units (except for carbon monoxide (CO), for which we used a cut-243 

off of 300 µg/m3) or the difference between each value and the mean value was higher or lower than 244 

3xSTD.  245 

The model evaluation statistics for PM2.5, ozone, NO2, and CO during April 2019 and 2020 were 246 

calculated for daytime (1000-1700 LT) and 24-hour average (i.e. daily) period and are provided in the 247 

supporting information (Table S4 and Table S5). The normalized mean bias (NMB) for daily PM2.5 was -248 

31% and -17% in April 2019 and April 2020, respectively. Zhang et al. (2021) simulated the period 249 

T 2
m
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between 21 February and 23 March in 2020 and reported PM2.5 mean normalized bias (MNB) of -16% in 250 

Delhi. Roozitalab et al. (2021) reported NMB of -17% in their best experiment for modeling PM2.5 in an 251 

extreme pollution event in November 2017. The model overestimated daytime ozone concentrations with 252 

NMB of 43% and 78% in April 2019 and April 2020, respectively. On the contrary, the model was biased 253 

low for NO2 by daytime NMB of -35% and -47% for April 2019 and April 2020, respectively. The model 254 

underestimated daytime CO concentrations by NMB of -67% and -64% for April 2019 and April 2020, 255 

respectively. Kota et al. (2018) modeled air quality in India in 2015 and reported NMB of 53%, -33%, 256 

and -54% for ozone, NO2, and CO, respectively, in Delhi. Other studies have also reported overestimation 257 

of simulated ozone concentrations over Delhi (Luke  Conibear, 2018; Ghude et al., 2016; R. Kumar et al., 258 

2012; Pommier et al., 2018). On the contrary, Sharma et al. (2017) underestimated diurnal ozone by 16 259 

ppb in Delhi. Furthermore, Zhang et al. (2021) slightly underestimated ozone in Delhi by MNB of -4%. 260 

They also reported MNB of -51% and -59% for NO2 and CO, respectively. Overall, the model 261 

performance for PM2.5 was similar to other studies and daily NMB is within the benchmark criteria of 262 

Emery et al. (2017). However, the model was biased low for daytime ozone precursors (NO2 and CO) 263 

concentrations and biased high for daytime ozone mixing ratios.  264 

We explored the extent to which model performance was influenced by the year the emission inventory 265 

was based on. The HTAP v2.2 emissions used in these simulations are estimates for 2010. As a result, we 266 

performed a set of experiments using the Copernicus Atmosphere Monitoring Service global emission 267 

inventory version 4.2 (CAMS v4.2; Granier et al. (2019)). Our analysis indicated that the concentrations 268 

and changes in concentrations due to lockdown emissions were close in both CAMS and HTAP emissions 269 

(More information can be found in supporting information). As a result, we performed all further analysis 270 

in this study based on HTAP anthropogenic emission inventory. Figure 4 shows the averaged daytime 271 

PM2.5, NO2, and ozone concentrations measured (left panels) and modeled (right panels) between 10 272 

March and 30 April in 2019 (blue colors) and 2020 (red colors) in Delhi. Both measured data and the 273 

model showed similar values in 2019 and 2020 between 10 March and around 24 March (before 274 

lockdown) accompanied by a drop afterwards (during lockdown). However, the day that concentrations 275 

dropped is different between the measured data (22 March) and the model (24 March). Yadav et al. 276 

(2020) also reported that the lockdown was not abrupt and had a transition start. Furthermore, the 277 

averaged amount that concentrations dropped during the lockdown period (24 March-30 April) in 2020 278 

compared with 2019 was different between measured data and the model. Mean reduction for daytime 279 

PM2.5 concentrations was 26 µg/m3 in measured data, while the model showed a smaller drop (9 µg/m3). 280 

For daytime NO2, the measured data decreased by 14 µg/m3 (50%), while the modeled outputs decreased 281 

by 8 µg/m3 (61%). Vadrevu et al. (2020) also reported 61% reduction in TROPOMI tropospheric column 282 

NO2 concentrations during 25 March and 3 May in 2020 compared with 2019. Daytime ozone mixing 283 

ratio also dropped during the lockdown in both measured (10 ppb) and modeled (7 ppb) data. However, 284 

24-hour averaged ozone mixing ratio did not change very much neither in the measured data nor in the 285 

model although small fluctuations were observed between years 2019 and 2020 (Figure S5). We will 286 

further analyze this behavior in the process analysis section (Section 3.2). Although April 2019 daytime 287 

ozone mixing ratios were higher than March 2019, we observed lower daytime ozone mixing ratios in 288 

April 2020 compared with March 2020, both in the model and measured data. This may be seen in 289 

contrast with what other studies that reported slightly higher ozone in Delhi during the lockdown 290 

compared with pre-lockdown period (Jain & Sharma, 2020; Mahato et al., 2020). These differences are 291 

primarily due to the methodology and the observed time period. For example, Jain and Sharma (2020) 292 

reported an increase in daily ozone while we report the daytime ozone. On the other hand, Mahato et al. 293 

(2020) looked at maximum daily 8-hour averaged (MDA8) ozone during two weeks in lockdown period 294 
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compared with two weeks in pre-lockdown period and reported less than 1% increase. Overall, the model 295 

was able to capture the major responses to the lockdown.  296 

 297 

Figure 4 Averaged daytime (1000-1700 LT) PM2.5 (top row), NO2 (middle row), and ozone (bottom row) concentrations 298 

measured over CPCB stations in Delhi (left column) and modeled over Urban region (right column) between 10 March and 30 299 

April in 2019 (blue colors) and 2020 (red colors). The shaded regions show ±1STD. The observed data were extracted from the 300 

ground measurements data in Delhi, while the modeled data were averaged in the Urban subdomain.   301 

3. Results 302 

3.1. Model responses to Meteorology, Emission, and Combined 303 

effects 304 

To compare the air quality during the lockdown period (April 2020) with regards to the previous year, it 305 

is important to note that not only emissions but also the meteorology changed. Indeed, meteorology can 306 

affect both the transport of the pollution and natural sources emissions (i.e. biogenic and biomass burning 307 

emissions). Figure 5 shows the differences in 2-m temperature, biogenic isoprene emission, and biomass 308 

burning NOx emission averaged during the daytime over the domain in April 2020 and April 2019. The 309 

western IGP had lower temperatures in April 2020 while eastern IGP and the state of Gujarat experienced 310 

warmer days. Because of higher temperatures, the online MEGAN module estimated by up to 10% more 311 
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biogenic isoprene emissions in eastern parts of the IGP in April 2020. On the other hand, it estimated by 312 

up to 10% lower isoprene emissions in western IGP in April 2020. Biomass burning emission in the IGP 313 

were lower in April 2020 with small fires in the eastern IGP. Overall, eastern IGP had higher biogenic 314 

emissions in April 2020, while biomass burning emissions were lower. In central India, biomass burning 315 

emissions were higher in April 2020 compared with April 2019. Due to such changes in meteorology and 316 

emissions, the effects of reducing anthropogenic emissions on regional air quality can be different 317 

depending on the applied year. Figure 6 shows the effects of emission reductions due to the lockdown in 318 

years 2019 (the difference between 2019COVID and 2019BAU scenarios) and 2020 (the difference 319 

between 2020COVID and 2020BAU scenarios) on averaged daytime PM2.5, NOx, and ozone in the Urban 320 

region. The averaged effect of emission perturbation on changes in daytime ozone concentration was -4.1 321 

ppb and -3.4 ppb in 2019 and 2020, respectively. Similarly, the effect of emission reductions on changes 322 

in daytime PM2.5 concentration in 2019 was -6.3 µg/m3 and was -5.8 µg/m3 in 2020. For NOx, the 323 

emission perturbation effect were similar in both 2019 and 2020. However, we found large differences in 324 

day-to-day comparison. For example, lockdown emissions in 2019 and 2020 decreased daytime PM2.5 325 

concentrations in Urban by ~12 µg/m3 and ~7 µg/m3, respectively, on 5 April, which corresponds to 326 

~40% difference due to the year applied. Moreover, the amount of reduction in NOx mixing ratio on 14 327 

April was different by 46% (15 ppb and 7 ppb in 2019 and 2020, respectively). On the other hand, we 328 

also observed contradictory responses on some days. For example, ozone mixing ratios in Urban 329 

decreased on 14 April 2019 due to the lockdown emissions, while 2020 data showed an increase.  330 

 331 

Figure 5 Difference between April 2020 and 2019 in modeled daytime averaged a) 2-m temperature, b) biogenic isoprene, and c) 332 

biomass burning NOx emissions over the domain 333 
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 334 

Figure 6 Effect of lockdown emissions on daytime a) PM2.5, b) NOx, and c) Ozone concentration in April 2019 (solid line; 335 

difference between 2019COVID and 2019BAU) and 2020 (dashed line; difference between 2020COVID and 2020BAU). 336 

In order to attribute the changes between April 2019 and 2020, we looked at three scenarios. The 337 

difference between 2020BAU and 2019BAU indicates the effects of meteorology, while the difference 338 

between 2020COVID and 2020BAU presents the effects of lockdown emissions. Figure 7 and Figure 8 339 

show the percentage of point-to-point changes due to meteorology, emissions, and their combined effects 340 

(the difference between 2020COVID and 2019BAU) on averaged daytime concentrations in April. In the 341 

following analysis, we focus only on India and disregard the changes over the boundaries (affected 342 

majorly by IC/BC) and over Himalayan region (very low concentrations). Similar plots for the IGP region 343 

is provided in the supporting information (Figure S6 and Figure S7). 344 
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 345 

Figure 7 Responses of April averaged daytime PM2.5 (first row), PA2.5 (second row), SIA2.5 (third row), and SOA2.5 (fourth row) 346 

concentrations to meteorology (left column), emission (middle column), and combined (right column) effects. The numbers in 347 

the parenthesis show the averaged change over the colored region between April 2020 and 2019. 348 

j) SOA25-Met (-6%) k) SOA25-Emi (-14%) l) SOA25-Com (-19%)

g) SIA25-Met (+6%) h) SIA25-Emi (-15%) i) SIA25-Com (-10%)

d) PA25-Met (-6%) e) PA25-Emi (-3%) f) PA25-Com (-8%)

a) PM25-Met (-1%) b) PM25-Emi (-9%) c) PM25-Com (-10%)
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The averaged daytime PM2.5 concentrations in April in India decreased by only one percent due to the 349 

meteorology effects. However, each region in the domain showed different changes. Figure 7 shows that 350 

larger PM2.5 concentration reductions over the IGP due to the meteorology effects (Figure S6 shows 06% 351 

for the IGP). The reduction was more intense in some parts of the IGP, e.g. west of Delhi (~25%). It also 352 

shows PM2.5 concentrations increased over central India by more than 40% over the regions mostly 353 

affected by biomass burning emissions. On the other hand, the lockdown emissions decreased PM2.5 354 

concentrations almost everywhere in India (i.e. the IGP and central India) with the average of 9% and the 355 

maximum of ~20% in Delhi. The combined effects show a large reduction in PM2.5 concentrations over 356 

the IGP (by up to 35%). However, the increase due to the meteorology over central India offset the 357 

decrease due to the lockdown emissions. The changes in PM2.5 composition as primary aerosols (PA2.5; 358 

sum of organic carbon, black carbon, and primary inorganics), secondary inorganic aerosols (SIA2.5; sum 359 

of nitrate, sulfate, and ammonium), and secondary organic aerosols (SOA2.5) are also shown. All PM2.5 360 

constituents showed a reduction over eastern IGP and an increase over central India due to the 361 

meteorology. The amount of changes were larger for SOA2.5 both in the eastern IGP and central India, 362 

suggesting biomass burning emissions had larger impacts on SOAs. However PA2.5 decreased by up to 363 

40% in the western IGP, while SOA2.5 and SIA2.5 changed by less than 10%. The large primary inorganics 364 

component of PA2.5 and faster wind speeds on the border of India and Pakistan suggest that dust 365 

emissions affected this region in April 2019 (Figure S8). Other studies have also reported pre-monsoon 366 

windblown dusts over western India (R. Kumar et al., 2014; Sarkar et al., 2019). Lockdown emissions 367 

decreased SIA2.5 and SOA2.5 between ~10-25% over the IGP with large changes over Delhi (~25%). 368 

Similarly, PA2.5 decreased by ~10% over Delhi and surrounding areas. Similar reductions can be seen on 369 

some other urban areas over the domain. However, lockdown emissions did not change PA2.5 very much 370 

(<10%) in non-urban areas as AFs for BC in India (Figure 2) suggested. Furthermore, solid fuels are the 371 

primary source of cooking and heating in non-urban regions in India and it did not change during the 372 

lockdown period (Beig et al., 2021). The combined effects show larger impacts of meteorology on PA2.5 373 

and SOA2.5 in the IGP, while changes in emissions due to lockdown had larger impacts on SIA2.5 (Figure 374 

S6).  375 
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 376 

Figure 8 Responses of April averaged daytime ozone (first row), NOx (second row), CO (third row), and NMVOC (fourth row) 377 

concentrations to meteorology (left column), emission (middle column), and combined (right column) effects. The numbers in 378 

the parenthesis show the averaged change over the colored region between April 2020 and 2019. 379 

a) Ozone-Met (-3%)

d) NOx-Met (-10%)

g) CO-Met (-9%)

j) NMVOC-Met (-13%)

b) Ozone-Emi (-6%) c) Ozone-Com (-9%)

e) NOx-Emi (-33%) f) NOx-Com (-40%)

h) CO-Emi (-3%) i) CO-Com (-12%)

k) NMVOC-Emi (-9%) l) NMVOC-Com (-21%)
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In general, the effects of meteorology on ozone was similar to PM2.5. Figure 8 shows that meteorology 380 

effects led to lower (up to -20%) and higher (up to 20%) daytime ozone mixing ratios over the IGP and 381 

central India, respectively. Regarding the ozone precursors, emission effects was significant for NOx 382 

concentration (-33%). Largely the changes in ozone can be explained by the changes in NOx, as for most 383 

parts of the domain ozone is NOx-limited (as will be discussed in Section 3.2). For example, the changes 384 

in NOx emissions due to the lockdown are large and rather uniform over the domain. Throughout most of 385 

the domain, NOx concentrations due to emission perturbations decreased by over 30%. The ozone 386 

decreases are strongly correlated with the regions with large NOx decreases. We can see only the major 387 

cities like Delhi and the regions with many power plants experienced increases in ozone mixing ratio with 388 

decreases in NOx emissions. On the other hand, ozone mixing ratio (combined effect) in the southern 389 

parts of the domain increased although lockdown emissions reduced NOx concentration. This is a region 390 

where the NOx concentrations increased due to meteorology (as shown in the change in NOx-Met 391 

subplot), which was due to the larger biomass burning emissions in April 2020 as shown in Figure 5. The 392 

net effect is that NOx concentrations increased in this region and this lead to higher ozone concentrations. 393 

The meteorology effect on NMVOCs and CO concentrations shows lower concentrations over the IGP 394 

and higher concentrations in central India in April 2020. While biogenic emissions were higher in the IGP 395 

in April 2020, lower biomass burning emissions (as shown in Figure 5) explain the meteorology effects 396 

on NMVOCs and CO concentrations in this region. Emission perturbations decreased NMVOCs 397 

concentrations over India on average by 9%, while the reduction was ~40% in Delhi (similar to NOx). The 398 

effect of emissions on CO concentration was small over India (averaged reduction of 3%). This 399 

magnitude was larger in Delhi (~25% reduction) and in lower magnitudes in other parts of the IGP. The 400 

combined effects of meteorology and lockdown emissions on ozone and its precursors showed reduction 401 

in daytime concentrations over all parts of India except central India. In central India, both biogenic 402 

emissions and biomass burning emissions were higher in April 2020.  403 

To better illustrate the response of ozone to changes in NOx and NMVOC concentrations, we show the 404 

response of the model in all the grid cells in Delhi (i.e. Urban) to the lockdown emission changes during 405 

all daytime hours in April (Figure 9). In Delhi, daytime NMVOC concentrations decreased up to 60% and 406 

NOx concentrations decreased up to 70%. Ozone concentration showed both decreasing and increasing 407 

response to the precursor reductions. Ozone increased in 20% of grid cells. In addition, most of these 408 

increasing ozone data points belong to four (out of 20) grid cells located in the eastern part of the Urban 409 

subdomain (not shown). It is important as local emission inventories also show Delhi (i.e. Urban) is most 410 

densely populated in its eastern border. The largest increases were observed at NMVOC and NOx 411 

reductions of more than 40%. Power and Rural showed lower reductions in the precursor concentrations 412 

and only a small number of grid cells showed an increased ozone response (Figure S9).  413 
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 414 

Figure 9 Plot of changes in NOx (Y-axis) and NMVOC (X-axis) concentrations due to the lockdown (2020COVID – 2020BAU) 415 

and ozone a) increasing and b) decreasing responses in all the grid cells within the Urban region (20 grid cells) during April (30 416 

days) daytime (1000-1700 LT) hours (total data points are 4800). X- and Y-axis are normalized values. 5th layer in the model was 417 

selected to minimize the impacts of direct emissions.  418 

3.2. Process Analysis of ozone chemistry 419 

As presented in the previous section, the changes in ozone concentrations did not exactly follow the 420 

changes in its precursors’ emissions during the lockdown period. Specifically, NOx and VOCs 421 

anthropogenic emissions were significantly decreased as a response to lockdown in India by up to 40% 422 

(Figure 2), whereas daytime ozone concentrations showed only a 6% reduction (Figure 8). More 423 

interestingly, 24-hour averaged ozone mixing ratios were higher on some days over Delhi during the 424 

lockdown period compared with the pre-lockdown period (Figure S5). In this section, we utilize the IRR 425 

capability of WRF-Chem to study the chemistry of ozone. We chose two sample days representing pre-426 

lockdown and lockdown conditions to look at the ozone chemistry in previously-defined Urban, Power, 427 

and Rural regions. In order to choose these two days, we applied a meteorological filter in Urban to select 428 

the days with the most similar meteorology between years 2019 and 2020. We calculated the daytime 429 

averaged 10-meter wind speed and 2-meter temperature for each day in both years and found the day with 430 

lowest overall normalized biases (Figure S10). As a result, 13 March and 7 April were selected as the 431 

sample pre-lockdown and lockdown days, respectively. Nevertheless, it is important that these days were 432 

selected based on the filters in Urban and did not necessarily represented lowest-meteorological-433 

variability days in Power and Rural (Figure S10). As an experiment, we applied the same methodology 434 

over India and found two other days with the least variability over the domain. However, it did not 435 

majorly affect the following analysis (not shown). We acknowledge that this technique of choosing the 436 

days does not consider the effects of previous days.    437 

It is important to understand the general processes in the ozone chemistry; we provide a simplified 438 

overview of the complex chemistry of ozone in the troposphere. While NOx and VOCs (including CO, 439 

and methane (CH4)) are the main precursors of ozone, hydroxyl (OH) radical is also a key species in the 440 

ozone chemistry. The reason is that OH can oxide VOCs and produce organic proxy radicals (RO2) as 441 

shown in Eq1. Then, RO2 can react with NO and produce NO2 without involving ozone (Eq2: for 442 

simplicity, we do not show the pathway towards hydroperoxyl radical (HO2) formation), which can 443 

a) ∆O3>0 b) ∆O3<0
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eventually lead to net ozone via Eq3 and Eq4. On the other hand, the ozone photolysis is the main source 444 

of tropospheric OH. Thus, this loop (Eq1 to Eq4) continues to form ozone during daytime (hv) as far as 445 

VOCs and OH are available in the atmosphere (NOx acts more as a catalyst in this loop). Relative to 446 

VOCs, CO and CH4 react very slowly with OH. Thus, short-lived VOCs become important as their 447 

availability primarily depend on their emissions. However, we should emphasize that it does not 448 

necessarily mean that large amounts of VOCs will increase ozone (i.e. radical loss via radicals (LROx)). 449 

In terms of OH, it can also react with NO2 and form nitric acid (HNO3), and remove both OH (and other 450 

radicals) and NO2 (Eq5; this is the main reaction of radical loss via NOx termination (LNOx)). In other 451 

words, VOCs reactivity with OH (VOC+OH) shows a path to ozone formation (Eq1), and NO2 reactivity 452 

with OH (NO2+OH) presents an obstacle to ozone formation (Eq5). During nighttime, photolysis of NO2 453 

(Eq3) does not occur, halting ozone formation cycle; rather, NO2 reacts with ozone and form gas phase 454 

radical nitrate (NO3) through Eq6. Moreover, available NO consumes ozone and produces NO2 (Eq7), 455 

accelerating NO3 chemistry, resulting in net ozone destruction. More detailed chemistry of ozone can be 456 

found elsewhere (e.g. Pusede and Cohen (2012); Seinfeld and Pandis (2016))  457 

𝑉𝑂𝐶 + 𝑂𝐻
𝑂2
→ 𝑅𝑂2 +𝐻2𝑂 Eq1 

𝑅𝑂2 +𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2  Eq2 

𝑁𝑂2 + ℎ𝑣 → 𝑁𝑂 +𝑂  Eq3 

𝑂 + 𝑂2
𝑀
→𝑂3  Eq4 

𝑂𝐻 + 𝑁𝑂2
𝑀
→𝐻𝑁𝑂3  Eq5 

𝑁𝑂2 + 𝑂3 → 𝑁𝑂3 +𝑂2  Eq6 

𝑁𝑂 + 𝑂3 → 𝑁𝑂2 +𝑂2 Eq7 

 458 

Figure 10 shows the surface ozone mixing ratio and planetary boundary layer height (PBLH) averaged 459 

within Urban, Power, and Rural regions for a pre-lockdown (13 March) and lockdown (7 April) days. 460 

First, we analyze the pre-lockdown day in Figure 10 (left column). It shows the differences within each 461 

region was only because of meteorology (2019 vs 2020). In Urban, the evolution of planetary boundary 462 

layer (PBL) was similar for both 2019 and 2020 scenarios and ozone followed similar trend as the PBL, 463 

with the peak at 1530 LT. In Power, the PBLH was lower in 2020 (1km) compared with 2019 (3km), 464 

which is consistent with this day’s lower temperature and higher wind speed in 2020 (Figure S10). 465 

However, ozone mixing ratio were close to each other although peaked at different hours (1530 LT in 466 

2019 vs 1130 LT in 2020). Similarly in rural, models showed different PBL evolution, while ozone 467 

mixing ratio showed a smooth similar pattern between 2019 and 2020.  468 

Second, we analyze the lockdown day (7 April) in Figure 10 (right column). In Delhi, the PBL grew 469 

faster and extended higher in 2020, while both years peaked during afternoon hours. The shallower PBLH 470 

in 2019 means more precursors are available in the shallower atmosphere (i.e. less dilution), leading to 471 

more ozone formation during the day. Moreover, the model simulated higher CO concentrations over the 472 

IGP in 2019 (not shown). Srinivas et al. (2016) found that transported pollution from the Bay of Bengal 473 

can potentially elevate the CO concentrations in Delhi. We are also interested in the impacts of lockdown 474 

emission. Comparing 2020BAU and 2020COVID, the lockdown resulted in lower peak value. It should 475 

be emphasized that this was not the case for the all days during the lockdown period as the impact of 476 

emissions on daytime ozone mixing ratio varied day by day in Urban (Figure 6). On the other hand, the 477 
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largest difference in ozone mixing ratio happens during 0030-0730 LT and 1830-2330 LT. While the 478 

reaction between NO and ozone should deplete all the ozone in the atmosphere, the titration did not 479 

deplete all the ozone in 2020COVID scenario due to lower amounts of NO available. As a result, some 480 

residual ozone remained in the atmosphere.  481 

In Power, the PBL grew faster in 2020 but its peak height was lower than 2019. However, the daytime 482 

ozone mixing ratios did not change between both years (although the morning time (0830-1030 LT) 483 

ozone was higher in 2019 due to lower PBLH). We also observed small changes between 2020BAU and 484 

2020COVID scenarios. Although the percentage of emission changes were large for both VOCs and 485 

NOx, the amount of anthropogenic VOC emissions were low in this region and NOx emissions in Power 486 

were even more than Urban (Table S3). Furthermore, the eastern IGP was also significantly impacted by 487 

biogenic emissions in 7 April 2020 (Figure S11). As a result, biogenic VOC emissions controlled the 488 

ozone formation, which were similar in both 2020BAU and 2020COVID scenarios.  489 

In Rural, the PBL growth in 2019 was faster and it extended higher than 2020. Figure S10 also shows that 490 

wind speed in Rural was lower by ~75% on 7 April 2020 compared with the same day in 2019, leaning 491 

towards a stagnant condition. As a result, the ozone mixing ratio is higher in 2020 scenarios. Comparing 492 

2020BAU and 2020COVID shows a reduction during all hours due to the lockdown emissions.  493 
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 494 

Figure 10 Surface ozone mixing ratio (primary Y-axis) and PBLH (secondary Y-axis) averaged over Urban (top row), Power 495 

(middle row), and Rural (bottom row) for a sampled pre-lockdown day (13 March: left column) and lockdown day (7 April: right 496 

column). 497 

Figure 11 shows the OH reactivity with VOCs and NO2 within Urban, Power, and Rural regions for a pre-498 

lockdown (13 March) and lockdown (7 April) day. We followed Pfister et al. (2019) suggestion in 499 

averaging these values within the PBL to minimize the effects of mixing. It is important to note (1) these 500 

OH reactivity plots are averaged within the PBL, while ozone mixing ratios in Figure 10 were surface 501 

values and (2) these plots indicate the chemistry contribution to the ozone mixing ratio, while other 502 

contributing factors such as vertical mixing and advection are also important processes impacting the 503 

actual ozone mixing ratio (Pusede & Cohen, 2012). 504 

During the pre-lockdown day, VOC+OH and NO2+OH were different for 2019 and 2020 in Urban. 505 

Although there were also some differences in the time of the peaks, the ratio of VOC+OH to NO2+OH 506 

was similar, suggesting the ozone formation was not very much different. In Power, the VOC+OH 507 

increased in 2020, while the peak of NO2+OH did not change. It shows that meteorology effects 508 

(including natural sources emissions) majorly affected OH reactivity with VOC in Power. In Rural, the 509 

a) 13 March-Urban

d) 7 April-Power

b) 7 April-Urban

f) 7 April-Rural

c) 13 March-Power

e) 13 March-Rural
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results showed smaller VOC+OH rates in 2020 with roughly similar NO2+OH rates. However, both VOC 510 

and NOx anthropogenic emissions were low in this region and very similar between 2019 and 2020. 511 

Similarly, it indicates the importance of meteorology effects and accompanied biogenic and biomass 512 

burning emissions on the ozone formation in Rural.  513 

During the lockdown day, OH reactivity (with both VOC and NO2) was higher in 2019 scenarios than 514 

2020 in Urban. This is consistent with shallower PBL in 2019, which led to higher ozone mixing ratios. In 515 

2020 scenarios, the NO2+OH rate dropped in 2020COVID compared with 2020BAU (0.5 ppb/hr), with 516 

smaller reductions in VOC+OH rate (0.2 ppb/hr). Until 1230 LT, the model did not show any large 517 

reductions in VOC+OH (i.e. ozone formation did not change), while NO2+OH showed large drops (i.e. 518 

ozone destruction decreased). Similarly, we saw larger surface ozone mixing ratios until noon in 519 

2020COVID scenario. After 1230 LT, the VOC+OH showed larger reductions, leading to lower net 520 

ozone formation in the 2020COVID scenario.  521 

In Power, larger OH reactivity values were observed for both VOC and NO2 in 2019 compared with 522 

2020. This was unexpected as we observed larger biogenic isoprene emissions in 7 April 2020 (Figure 523 

S11). However, it can be explained by higher CO contribution in 2019 results (Figure S12). On the other 524 

hand, the biogenic soil NO emission was also larger in 2019; resulting in more ozone formation. 525 

Considering the lockdown emissions, the model showed that adjusted emissions (i.e. COVID scenarios) 526 

did not change VOC+OH values. This is due to low anthropogenic and equal biogenic VOC emissions in 527 

this region. NO2+OH values decreased as NOx emissions reduced  528 

In Rural, we observed similar behavior of OH reactivity for both 2019 and 2020. It is consistent with 529 

similar ozone mixing ratio trend in Figure 10. As emissions are low in this region, ozone formation and 530 

OH reactivity does not play an important role and ozone differences can be explained by dynamics and 531 

atmospheric stability. As a result, adjusted emissions had similar effect on both VOC+OH and NO2+OH 532 

rates in 2020 scenarios. 533 
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 534 

Figure 11 OH reactivity with VOCs (primary Y-axis) and NO2 (secondary Y-axis) averaged within PBL over Urban (top row), 535 

Power (middle row), and Rural (bottom row) for a sampled pre-lockdown day (13 March: left column) and lockdown day (7 536 

April: right column). 537 

Since there are many VOCs available in the atmosphere, IRR gives us the opportunity to find the species 538 

that have higher contributions to the OH reactivity. Figure S12 shows the OH reactivity for the top six 539 

VOC species for the lockdown day in each region and scenario. CO was the main component in all the 540 

regions and scenarios. Although CO reacts slowly in the atmosphere (i.e. long lifetime), its abundant 541 

availability moves it to the top of the list. The other species were short-lived species. Formaldehyde 542 

(CH2O) was the second-ranked species in almost all the subfigures except the ones that isoprene (ISOP) 543 

had more reactivity rate. Specifically, ISOP was the second-ranked species in Power region in all the 544 

scenarios. This is because VOCs in Power region were dominated with biogenic sources and changing the 545 

anthropogenic emissions did not change their rankings. Regardless, the meteorology affected the 546 

magnitude of the contribution between the two years. ISOP was also the second-ranked species in Urban 547 

in 2020COVID scenario. High contributions by CO and CH2O to OH reactivity is also reported in the 548 

United States (Pfister et al., 2019). They found that high contribution of CH2O to OH reactivity was due 549 
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to both local emissions and chemical production, while ISOP was mostly due to biogenic emissions. 550 

While CH2O had larger contribution in the Urban, ISOP had larger contributions in the Power, which is 551 

consistent with Pfister et al. (2019). In Urban, the transportation sector had the largest contribution in 552 

anthropogenic emissions of CH2O (~90%) and residential sector had about 10% of its emission. We also 553 

found contributions from the large alkenes (BIGENE), which is a tracer of anthropogenic VOCs, in BAU 554 

scenarios in Power. Comparing the ranking of ISOP in 2020BAU and 2020COVID for Urban shows 555 

biogenic emissions had a larger contribution during the lockdown. It points to the need to consider the 556 

background biogenic emissions when evaluating expected changes in ozone due to anthropogenic 557 

emissions reductions. Large alkanes (BIGALK) contributed to the OH reactivity over Urban in 2019BAU 558 

and 2020BAU and over Rural in 2020BAU. BIGALK is another tracer of anthropogenic VOCs, and its 559 

contribution in Rural indicates the impact of transport on ozone mixing ratio in this region. Analysis of 560 

the HTAP emission inventory revealed that the transportation sector has the largest BIGALK and 561 

BIGENE emissions in Urban (~90%). The second-ranked anthropogenic sector in Urban was the 562 

industrial sector for BIGALK emission and residential sector for BIGENE emission. When looking at the 563 

entire domain (i.e. India region), transportation sector had the largest BIGALK emission, while the 564 

residential sector had the largest contribution for BIGENE and CH2O emission.  565 

As discussed earlier, LROx and LNOx are the reactions that determine the radical terminations by 566 

radicals and NOx, respectively, during the daytime (Table S6 and Table S7). More information on IRR 567 

analysis methodology is provided in the supporting information. The LROx/LNOx ratio is very important 568 

from policy’s perspective as it indicates whether reduction in NOx (large ratio values; i.e. NOx-limited) 569 

or VOCs (small ratio values; i.e. VOC-limited) emission is the efficient strategy for ozone reduction. 570 

Duncan et al. (2010) assumed the transition between NOx-limited and VOC-limited regions happens at a 571 

LROx/LNOx ratio of one. Schroeder et al. (2017) found the transition of ozone production occurs at a 572 

ratio of 0.35 using 0-D photochemical box modeling. However, evaluating the LROx and LNOx values is 573 

not usually possible based on observations. As a result Sillman (1995) proposed using the ratio of 574 

measured tracers in the atmosphere as an alternative. The formaldehyde to NO2 ratio (FNR) is one of the 575 

most frequently used ratio as its species can be measured from both ground measurements and space 576 

borne instruments (Jin & Holloway, 2015; V. Kumar et al., 2020; Martin et al., 2004). Mahajan et al. 577 

(2015) used the FNR transition range between one and two to study the inter-annual variations of ozone 578 

formation in India using satellite observations, whereas Schroeder et al. (2017) showed this transition 579 

range is not constant in all regions. For example, they found in their box modeling study in the US that 580 

the transition range was 0.9-1.80 in Colorado, while the range of 0.7-2.0 was found for Houston, Texas. 581 

In other words, the FNR transition range for each region should be exclusively specified for each region. 582 

Figure 12 shows the plots of FNR ratio within the PBL as a function of LROx/LNOx in Urban, Power, 583 

and Rural for the 2019BAU and 2020BAU scenarios during the afternoon hours (1230-1430 LT). The 584 

results for 2019BAU (2020BAU) show that 65% (67%) of points were in the VOC-limited region (i.e. 585 

LROx/LNOx<0.35) in Delhi, whereas only 1% (2%) of the points were in the VOC-limited region in 586 

Rural. These results show that ozone formation regime differs for each region and indicate that we cannot 587 

employ one uniform emission control strategy everywhere in the IGP (and India). The results for Delhi 588 

support the idea that the emission control strategies that target the transportation sector, with the primary 589 

goal of PM reduction, can increase ozone (Chen et al., 2020). In Power, 64% (65% for 2020BAU) of the 590 

data-points were in the VOC-limited region, which is expected as this domain had low amounts of 591 

anthropogenic VOCs emissions (Table S3) and biogenic emissions were the primary source VOCs 592 

(Figure S12), suggesting extreme NOx emission reduction may be the only solution in this region. While 593 

the effect of different meteorology (2019BAU vs 2020BAU) on chemical regimes were negligible, 594 

dramatic changes in emissions can lead to large changes. For example, only 34% of points were in the 595 
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VOC-limited regime in Urban for 2020COVID scenario, in which both NMVOC and NOx emissions had 596 

large reductions (Figure S13). 597 

Calculating binned averages and corresponding standard deviations for the FNR data can provide some 598 

insights about the transition range (Schroeder et al., 2017). We also took the union of the transition range 599 

of 2019BAU and 2020BAU scenarios to minimize the effect of meteorology. In Urban, our results 600 

suggest that the FNR transition range is 0.4-1.1. However, it is clear that this range covers a large amount 601 

of data points in other bins as well. In Power, the lower range of the transition range goes to zero due to 602 

the large amounts of NOx emissions in this region. However, the upper range (1.2) can be used as a cut-603 

off between VOC- and NOx-limited regimes in Power. In Rural, the transition range is 0.7-1.3, which was 604 

derived based on less than 5% of the data. We also observed larger LROx/LNOx ratios in Rural compared 605 

with other regions, indicating the role of biogenic emissions in non-urban regions. Schroeder et al. (2017) 606 

emphasized that other parameters (e.g. different radicals with different lifetimes than formaldehyde) can 607 

affect the FNR ratio and it may not be a solid indicator of ozone formation sensitivity in some regions. 608 

Furthermore, Souri et al. (2020) studied the functionality of FNR ratio and found  situations where 609 

LROx/LNOx and FNR lead to contradicting conclusions regarding the chemical regime in a region, 610 

primarily because of impacts of NO2 on formaldehyde.   611 

Figure 13 shows the FNR ratio using 2020BAU and 2020COVID scenarios averaged in Urban, Power, 612 

and Rural during afternoon hours (1230-1430 LT) in April 2020. In Urban, 29 days were estimated to be 613 

in the transition range in 2020BAU scenario, while they were mostly close to the lower limit of the 614 

transition range (i.e. toward VOC-limited). Applying the lockdown emissions increased the FNR ratio by 615 

an average value of 0.48 and shifted almost all the days into either a NOx-limited or an upper limit of the 616 

transition range. Although it slightly changed the ozone formation regime, we did not see any major 617 

change in daytime ozone concentration in Urban (Figure S14). In Power using 2020BAU scenario, we 618 

observed that only four days in April were completely in a NOx-limited regime while the FNR in rest of 619 

the days were lower than the upper-limit of the transition region. The FNR ratio increased by an average 620 

value of 0.21 because of lockdown emissions reductions (i.e. 2020COVID). However, about half of the 621 

days remained below the upper-limit of the transition and did not moved to NOx-limited region, showing 622 

the lockdown emissions did not majorly change the ozone formation chemistry in Power. In Rural, almost 623 

all the days (28 days) were already in the NOx-limited regime in 2020BAU scenario. As a result, 624 

increasing the FNR ratio by an average value of 0.49 due to the lockdown emissions (i.e. 2020COVID) 625 

did not change the ozone formation chemistry in Rural.  626 

Using the upper-limit of the calculated transition regime (1.3) in the three mentioned regions, we looked 627 

at the ozone production regimes for the entire study domain (Figure 14). We found that most parts of 628 

India are in the NOx-limited regime. Indeed, all the regions except the urban areas, power plant region, 629 

and western IGP fall in the NOx-limited regime. The FNR in Haryana state was lower than 1.3, showing 630 

the state is in the VOC-limited regime. There are some locations in Punjab state with VOC-limited regime 631 

(FNR<1.3), while other locations are slightly in NOx-limited regime. Likewise, there are some locations 632 

(cities) in Uttar Pradesh with FNR close to 1.3 (i.e. close to VOC-limited regime). Using the lockdown 633 

emissions (2020COVID), the FNR increased over the domain, moving most parts of the Punjab and 634 

Haryana states into NOx-limited regime. On the other hand, the FNR in some urban locations (e.g. Delhi) 635 

and the Power region remained below 1.3; the ozone production regime did not change. Overall, our 636 

analysis indicate that the FNR can determine a region that is strictly NOX- or VOC-limited (e.g. Power 637 

and Rural) but caution should be exercised for regions close to the defined transition regions (e.g. Urban). 638 

Comparing the total OH consumed by each pathway (i.e. integrating the 24-hr values in Figure 11 for 7 639 

April as the lockdown day) and their ratio in 2020BAU and 2020COVID scenarios can also provide some 640 
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information on whether ozone chemistry regime changed because of the lockdown. Table S8 shows 641 

integrated values in total OH consumption by VOCs was higher in Urban and Rural compared with 642 

Power, confirming low VOCs in Power region. Moreover, the ratio of total OH consumption by VOC to 643 

NO2 had smallest values in Power, showing the preference of NO2+OH pathway in this region. 644 

Evaluating the change of the ratio because of lockdown emissions indicates that Urban and Rural shifted 645 

toward NOx limited regime, while the ozone chemistry regime did not change in Power.  646 

  647 

 648 

 649 

Figure 12 Plots of point-to-point FNR ratio (within the PBL) as a function of LROx/LNOx ratio during afternoon hours (1230-650 

1430 LT) for 2019BAU (left column) and 2020BAU (right column) scenarios in a, b) Urban, c, d) Power, and e, f) Rural regions. 651 

Binned averages (black squares) and standard deviations (vertical black bars) were calculated. The vertical dashed blue line 652 

represents LROx/LNOx ratio of 0.35. The horizontal blue vectors show the FNR transition range in each region (numbers in blue 653 

show the values). 654 
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 655 

 656 

Figure 13 FNR ratio within the PBL averaged during afternoon (1230-1430 LT) in a) Urban, b) Power, and c) Rural regions. 657 

Dashed horizontal line in each panel represents the transition range calculated based on LROx/LNOx ratio analysis. 658 
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 660 

Figure 14 FNR ratio (within the PBL) averaged over April using a) 2020BAU and b) 2020COVID scenarios.  661 

4. Summary and Conclusion 662 

We studied the effects of COVID-19 stay-at-home orders (i.e. lockdown) on northern India’s air quality 663 

and explored the chemistry behind the changes in ozone concentrations. For this purpose, we used the 664 

WRF-Chem version 4.0 model to utilize its integrated reaction rate (IRR) capability. The adjustment 665 

factors proposed by Doumbia et al. (2021) were used to account for the anthropogenic emission changes 666 

during the lockdown period in India. While the model satisfied the benchmark criteria proposed by Emery 667 

et al. (2017) for daily PM2.5 concentration in Delhi, it overestimated (underestimated) the daytime ozone 668 

(NO2 and CO) concentrations against the CPCB ground measurements data. However, the model was able 669 

to capture the overall observed trend in air pollutant concentrations in 2019 and 2020.  670 

Four scenarios were designed to study the effect of the meteorology and lockdown anthropogenic 671 

emission perturbations in April 2019 and 2020. We found that the effects of perturbing the anthropogenic 672 

emissions could be different depending on the applied year. The reason is that not only the anthropogenic 673 

emissions but also the meteorological dependent emissions (e.g. biogenic emissions) and the atmospheric 674 

dynamics affect the air quality in a region. We also estimated the changes in air pollutant concentrations 675 

between April 2019 and 2020 and the contribution of meteorology and lockdown emissions. While the 676 

PM2.5 concentration averaged over the IGP decreased by 6% in April 2020 due to the meteorology, it 677 

increased in the central India due to more biomass burning emissions. However, the lockdown emissions 678 

decreased the PM2.5 concentration over Indian parts of the domain by 9%. For ozone, we found the 679 

meteorology decreased the concentrations over the IGP and increased it over the central India, similar to 680 

PM2.5. However, the ozone concentration response to its precursors (i.e. NO2 and VOCs) significant 681 

reductions due to the lockdown emissions was not constant over the domain. While ozone decreased in 682 

most parts of the domain, we saw that major cities like Delhi and the regions with many power plants 683 

showed increases in ozone with decreases in NOx emissions.  684 

We also analyzed the ozone chemistry in an urban, a rural, and a densely populated power plants region 685 

during a sampled pre-lockdown and lockdown day. Using OH reactivity with VOCs (NO2) as the pathway 686 

to ozone formation (destruction), we found that the lockdown emissions decreased both pathways in the 687 

a) 2020BAU b) 2020COVID
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urban and rural region. However, it only decreased the ozone destruction in the power plant region 688 

(NO2+OH) and did not affect the ozone formation path (VOC+OH), as natural emission sources 689 

dominated the VOC emissions in this region. Our analysis showed that CO had the highest contribution in 690 

the net ozone production in all the regions and all the scenarios. We also found formaldehyde, isoprene, 691 

acetaldehyde, and ethylene contributed to the ozone formation in all the regions. However, the magnitude 692 

of contribution depended on the region and scenario. While formaldehyde was the second ranked VOC in 693 

the urban region in a business as usual scenario in 2020, isoprene had larger contribution in the lockdown 694 

scenario, indicating the impact of biogenic emissions in that region. We also found higher alkanes and 695 

higher alkenes, as tracers of anthropogenic emissions, contributed to the ozone formation in the rural 696 

region, indicating the effect of the transport in ozone formation.    697 

Furthermore, we calculated the rates that radicals (i.e. HO2 and RO2) react with radicals (i.e. LROx) or 698 

NO2 (i.e. LNOx) and used their ratio (LROx/LNOx) to find the ozone chemistry regime in different 699 

regions. Our analysis showed that the urban and power plant regions were primarily VOC-limited 700 

(LROx/LNOx <0.35), while the rural region was in NOx-limited region. Following Schroeder et al. 701 

(2017), we also calculated this ratio’s corresponding formaldehyde to NO2 concentration ratio (FNR) in 702 

each region. This is preferred as it can be calculated using ground measurements and satellite observation 703 

data. Our analysis suggested the FNR ratio of 1.3 as the upper-limit of the transition regime from VOC-704 

limited to NOx-limited over India. Using that threshold, we classified most parts of India in the NOx-705 

limited regime while most of the cities like Delhi and power plant region are in the VOC-limited regime. 706 

Some regions like the western IGP were towards the VOC-limited regime but shifted to NOx-limited 707 

regime after applying the lockdown emissions. 708 

Understanding the ozone formation chemistry and the role of emission sources and different species can 709 

help the policy makers to implement efficient emission control scenarios. Our results showed that the 710 

ozone formation process can be different in each region depending on its local anthropogenic and natural 711 

emission sources and the meteorology. We acknowledge that our study was limited to only three arbitrary 712 

chosen regions. While our results can provide information on overall response of the air quality to 713 

emission reductions, they do not necessarily represent the general ozone chemistry in India. However, it 714 

provides a framework that can be used to study the efficacy of local emission control scenarios on ozone 715 

formation in India.  716 

Data Availability The WRF-Chem and IRR hourly output results for all four scenarios are 717 

available from Iowa Research Online at https://doi.org/10.25820/data.006144. TROPOMI data can be 718 
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Introduction  

The supporting information includes an overview of comparison between the results using HTAP v2.2 and 

CAMS v4.2 emission inventories (Text S1), a guideline how to use the IRR outputs of WRF-Chem model (Text 

S2), and figures and tables supporting the results in the main manuscript.  

 

 

  



Text S1- Comparing results using HTAP v2.2 and CAMS v4.2 anthropogenic emission inventories 

To evaluate how changing anthropogenic emission inventories affect simulation results, we performed a set of 

experiments using HTAP v2.2 and the Copernicus Atmosphere Monitoring Service global emission inventory version 

4.2 (CAMS v4.2) available from ECCAD database (https://permalink.aeris-data.fr/CAMS-GLOB-ANT, last access: 

02/23/2021). CAMS v4.2 provides 0.1x0.1 degree gridded monthly-averaged emissions for the years between 2000 

and 2020. It uses Emissions Database for Global Atmospheric Research version 4.3.2 (EDGARv4.3.2) for the years 

before 2012 and projects emissions between 2012 and 2020 using the Community Emissions Data System (CEDS) 

emission trends (Granier et al., 2019). Comparing CAMS v4.2 and HTAP v2.2 emissions for Delhi (i.e. Urban) 

indicated about 100% and 200% higher BC and OC emissions, respectively, in CAMS v4.2 inventory. CAMS v4.2 also 

showed higher CO (32%) emission, while lower NOx (23%) and SO2 (12%) emissions. NMVOC emissions was roughly 

similar in both inventories.  

Statistics using CAMS v4.2 emission inventory were improved (Table S4-S5). In April 2019, the NMB for daily PM2.5 

and daytime ozone decreased by 10% and 12%, respectively. In April 2020, the NMB for daily PM2.5 decreased by 

47% and decreased by 10% for daytime ozone. Overall, the model performance using both emission inventories 

were within the benchmark criteria for daily PM2.5 concentrations. Moreover, the performance for daytime ozone 

concentration was similar using both inventories  Although there are some local emission inventories available 

throughout the country (Guttikunda et al., 2019;Jena et al., 2021), this experiment showed the necessity of an 

updated gridded national emission inventory for India. Regardless, our primary goal in this study was to investigate 

how the emission changes affected concentrations changes rather than capturing the actual concentrations. Results 

using CAMS emissions are very similar to those using HTAP as Figure S15 shows. 

  

https://permalink.aeris-data.fr/CAMS-GLOB-ANT


Text S2. Using IRR data in WRF-Chem model 

IRR provides the gas-phase reaction rate for the species involved in each reaction. As a simple unit for these 

outputs, IRR within the WRF-Chem model, are in ppb and are cumulative. As a result, the hourly reaction rates 

(ppb/hr) can be calculated by subtracting the values in two consecutive hours. We use the difference between 

hours “i” and “i+1” as the reaction rate in hour “i”. Reporting this information in ‘ppb/hr’ makes the data easy-to-

report and useful for all the species within the reaction. For example, in the reaction A+B-> C+D, a single reaction 

rate of RR in ppb/hr shows that RR ppb of A and B was consumed and RR ppb of C and D was produced in a specific 

hour. In our analysis, we used the IRR information averaged within the boundary layer following Pfister et al. 

(2019).   

 

  



 

 

Figure S1 Location of the selected regions of Urban (Lower Left (LL): 28.3N, 76.7E, Upper Right (UR): 28.9N, 77.5E), 
Rural (LL: 25N, 79E, UR: 25.6N, 79.8E), and Power (LL: 23.9N, 82.7E, UR: 24.5N, 83.5E). States of Punjab, Haryana, 
Uttar Pradesh, and Gujarat are also shown. 
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Figure S2 Comparison of FINN biomass burning emissions between 2019 and 2020 for a) total emissions and b) the 
ratio of daily emissions 

  

March April

a) Total fire emissions b) Daily emissions ratio (2020/2019)



 

Figure S3 Timeseries of 2m temperature in model (black dots) and MERRA-2 (green line in 2019 (a) and red line in 
2020 (b)) in a grid cell over Delhi (28.6N, 77.19 E) 

  

a) April 2019

b) April 2020



 

Figure S4 Temporospatial performance of the model for 10 m wind speed in April 2019 and 2020. Timeseries (g,h) 
are for a location in Delhi (28.6N, 77.19 E) 

  

g) April 2019

h) April 2020

a) April 2019-Model b) April 2019-MERRA2

d) April 2020-Model e) April 2020-MERRA2
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Figure S5 24-hour averaged PM2.5 (top row), NO2 (middle row), and ozone (bottom row) concentrations measured 
over CPCB stations in Delhi (left column) and modeled over Urban region (right column) between 10 March and 30 
April in 2019 (green colors) and 2020 (red colors). The shaded regions show ±1STD. The observed data were 
extracted from the ground measurements data in Delhi, while the modeled data were averaged in the Urban 
subdomain. 

  

a) PM25-Obs b) PM25-Mod

c) O3-Obs d) O3-Mod

e) NO2-Obs f) NO2-Mod



 

Figure S6 Responses of April averaged daytime PM2.5 (first row), PA2.5 (second row), SIA2.5 (third row), and SOA2.5 

(fourth row) concentrations in the IGP to meteorology (left column), emission (middle column), and combined 
(right column) effects. The numbers in the parenthesis show the averaged change over the colored region between 
April 2020 and 2019.  

j) SOA25-Met (-21%) k) SOA25-Emi (-14%) l) SOA25-Com (-32%)

g) SIA25-Met (-9%) h) SIA25-Emi (-17%) i) SIA25-Com (-24%)

d) PA25-Met (-11%) e) PA25-Emi (-4%) f) PA25-Com (-14%)

a) PM25-Met (-6%) b) PM25-Emi (-11%) c) PM25-Com (-22%)



 

Figure S7 Responses of April averaged daytime ozone (first row), NOx (second row), CO (third row), and NMVOC 
(fourth row) concentrations in the IGP to meteorology (left column), emission (middle column), and combined 
(right column) effects. The numbers in the parenthesis show the averaged change over the colored region between 
April 2020 and 2019. 

  

a) Ozone-Met (-6%)

d) NOx-Met (-14%)

g) CO-Met (-17%)

j) NMVOC-Met (-20%)

b) Ozone-Emi (-8%) c) Ozone-Com (-14%)

e) NOx-Emi (-38%) f) NOx-Com (-47%)

h) CO-Emi (-4%) i) CO-Com (-20%)

k) NMVOC-Emi (-12%) l) NMVOC-Com (-30%)



 

Figure S8 Responses of April averaged daytime a) other inorganics (OIN2.5), b) OC2.5, c) BC2.5, and d) 10-m wind 
speed (Ws10) to meteorology effects. 

  

a) OIN2.5-Met b) OC2.5-Met

c) BC2.5-Met d) Ws10- Met



 

Figure S9 Plot of changes in NOx (Y-axis) and NMVOC (X-axis) concentrations due to the lockdown (2020COVID – 
2020BAU) and ozone responses in all the grid cells within the Power (a, b) and Rural (c, d)regions (20 grid cells) 
during April (30 days) daytime (1000-1700 LT) hours (total data points are 4800). X- and Y-axis are normalized 
values. 5th layer in the model was selected to minimize the impacts of direct emissions. 

  

a) Power-∆O3>0 b) Power-∆O3<0 

c) Rural-∆O3>0 d) Rural-∆O3<0 



 

Figure S10 The changes between 2020 and 2019 in averaged daytime 2-m temperature (Y-axis) and 10-m wind 
speed (X-axis) in March (left column) and April (right column) in Urban (top row), Power (middle row), and Rural 
(bottom row). The numbers show the day of the month. The colors show the percentage of decrease in NOx 
emission in each day (negative value shows an increase in emission). The black (red) circle in top panel shows the 
day with the lowest overall changes in meteorology in March (April). X- and Y-axis are normalized changes.  
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April 7th: Lockdown
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Figure S11 Biogenic emission from MEGAN in 7 April 2020 (left column) and 2019 (middle column) and their 
corresponding changes (right column) for isoprene (top row), CO (middle row), and NO (bottom row) 

  

b) 7 April 2019-Ebiog_ISOP
a) 7 April 2020-Ebiog_ISOP

e) 7 April 2019-Ebiog_CO
d) 7 April 2020-Ebiog_CO

h) 7 April 2019-Ebiog_NO
g) 7 April 2020-Ebiog_NO

c) 7 April 2019-Bias Ebiog_ISOP

f) 7 April 2019- Bias Ebiog_CO

i) 7 April 2019-Bias Ebiog_NO



 

Figure S12 Diurnal cycle of OH reactivity with VOC species (averaged within the PBL) in Urban (left column), Power 
(middle column), and Rural (right column) for each scenario. Only the first six VOC species with higher total 
contribution is shown. The legend in each panel shows the ranking of the species for each scenario. 

 

  

a) 2019BAU-
Urban

b) 2019BAU-Power c) 2019BAU-Rural

d) 2019COVID-
Urban

e) 2019COVID-Power f) 2019COVID-Rural

g) 2020BAU-Urban h) 2020BAU-Power i) 2020BAU-Rural

j) 2020COVID-Urban k) 2020COVID-Power l) 2020COVID-Rural



 

Figure S13 Plots of point-to-point FNR ratio (within the PBL) as a function of LROx/LNOx ratio during afternoon 
hours (1230-1430 LT) for 2020COVID scenario in a) Urban, b) Power, and c) Rural regions. Binned averages (black 
squares) and standard deviations (vertical black bars) were calculated. The vertical dashed blue line represents 
LROx/LNOx ratio of 0.35. The horizontal blue vectors show the FNR transition range in each region (numbers in blue 
show the values). Red values show the percentage of points in each region that fall in VOC-limited regime based on 
LROx/LNOx information. 

  

a) Urban-2020COVID

b) Power-2020COVID

c) Rural-2020COVID
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Figure S14 Daytime averaged ozone mixing ratio averaged within Urban region using all the scenarios 

  



 

Figure S15 Simulated daytime averaged and measured data in CPCB stations in Delhi for ozone, NO2, CO, and PM2.5 

concentrations using HTAP and CAMS emission inventories in April 2019 (left column) and 2020 (right column). 
Shaded area shows 1STD of the measured values. 

  

a) Ozone 2019 b) Ozone 2020

c) NO2 2019 d) NO2 2020

e) CO 2019 f) CO 2020

g) PM2.5 2019 h) PM2.5 2020



Table S1 The mapping between HTAP and CAMS VOC species to MOZART mechanism in WRF-Chem 

MOZART HTAP CAMS 

C2H2 ethyne voc9 

C2H4 ethene voc7 

C2H6 ethane voc2 

C3H6 propene voc8 

C3H8 propane voc3 

BIGALK butanes + pentanes + hexanes&higher-alkanes + esters + ethers voc4+voc5+voc6+voc18+voc19 

BIGENE other-alkenes voc12 

BENZENE benzene voc13 

TOLUENE toluene voc14 

XYLENES xylene + trimethylbenzenes + other-aromatics voc15+voc16+voc17 

CH2O methanal voc21 

CH3CHO other-alkanals (aldehydes) voc22 

CH3OH 0.15 * alcohols 0.15*voc1 

C2H5OH 0.85 * alcohols 0.85*voc1 

CH3COCH3 0.2 * ketones 0.2*voc23 

MEK 0.8 * ketones 0.8*voc23 

HCOOH 0.5 * acids 0.5*voc24 

CH3COOH 0.5 * acids 0.5*voc24 

ISOP   voc10 

C10H16   voc11 
 

  



Table S2 Total emissions in HTAP inventory using BAU and COVID scenarios in March 

 India Urban Power Rural 

Species 

(unit) 
BAU COVID BAU COVID BAU COVID BAU COVID 

NMVOC 

(Gmol) 
14.23 13.8 0.45 0.4 0.03 0.03 0.04 0.04 

NOx 

(Gmol) 
9.52 8.69 0.49 0.43 0.42 0.4 0.01 0.013 

CO 

(Gmol) 
119.0 115.53 2.47 2.18 0.98 0.94 0.26 0.26 

SO2 

(Gmol) 
7.22 6.75 0.18 0.17 0.46 0.44 0.00 0.00 

BC (Tg) 45.54 45.66 0.69 0.62 0.09 0.09 0.08 0.08 

OC (Tg) 106.75 111.14 0.76 0.73 0.18 0.19 0.23 0.24 
 

  



 

Table S3 Total emissions in HTAP inventory using BAU and COVID scenarios in April 

 India Urban Power Rural 

Species 

(unit) 
BAU COVID BAU COVID BAU COVID BAU COVID 

NMVOC 

(Gmol) 
13.28 11.14 0.42 0.19 0.03 0.02 0.04 0.03 

NOx 

(Gmol) 
8.82 5.21 0.46 0.2 0.38 0.29 0.01 0.007 

CO 

(Gmol) 
110.9 93.59 2.28 1.05 0.9 0.69 0.25 0.21 

SO2 

(Gmol) 
6.6 4.49 0.17 0.11 0.42 0.32 0.00 0.00 

BC (Tg) 42.15 41.44 0.63 0.34 0.08 0.09 0.08 0.09 

OC (Tg) 99.3 114.38 0.7 0.55 0.17 0.20 0.22 0.26 
 

  



Table S4 Daytime (1000-1700 LT) statistics. Mean (± standard deviation), Normalized Mean Bias (NMB), Root Mean 
Square Error (RMSE), and Pearson Correlation Coefficient averaged for all CPCB stations in Delhi in 2019 (scenario: 
2019BAU) and 2020 (scenario: 2020COVID) using HTAP and CAMS anthropogenic emission inventories. 

   HTAP CAMS 

Variable Year 
OBS Mean 

(±1std) 

MODEL 

Mean 

(±1std) 

NMB 

(%) 
RMSE 

R 

(%) 

MODEL 

Mean 

(±1std) 

NMB 

(%) 
RMSE 

R 

(%) 

O3 

(ppb) 

2019 50(±11) 71(±13) +43 25 +37 69(±11) +38 22 +38 

2020 36(±6) 64(±9) +78 30 +37 62(±8) +70 27 +36 

PM2.5 

(µg/m3) 

2019 56(±22) 39(±12) -31 27 +36 34(±12) -39 30 +44 

2020 30(±13) 28(±12) -7 14 +42 25(±11) -17 13 +47 

NO2 

(µg/m3) 

2019 28(±7) 18(±13) -35 15 +38 13(±11) -55 18 +43 

2020 14(±2) 7(±7) -47 9 +33 6(±7) -56 10 +30 

CO 

(µg/m3) 

2019 829(±135) 277(±86) -67 566 +42 305(±109) -63 541 +40 

2020 566(±132) 201(±57) -64 382 +53 237(±83) -58 351 +43 

 

 

  



Table S5 24-hour averages statistics. Mean (± standard deviation), Normalized Mean Bias (NMB), Root Mean Square 
Error (RMSE), and Pearson Correlation Coefficient averaged for all CPCB stations in Delhi in 2019 (scenario: 
2019BAU) and 2020 (scenario: 2020COVID) using HTAP and CAMS anthropogenic emission inventories. 17285 and 
22880 hourly points prior to applying filters were used in 2019 and 2020, respectively. 

   HTAP CAMS 

Variable Year 
OBS Mean 

(±1std) 

MODEL 

Mean 

(±1std) 

NMB 

(%) 
RMSE 

R 

(%) 

MODEL 

Mean 

(±1std) 

NMB 

(%) 
RMSE 

R 

(%) 

O3 

(ppb) 

2019 27(±20) 31(±32) +18 19 +87 37(±27) +38 17 +85 

2020 24(±12) 35(±25) +47 20 +84 38(±20) +59 19 +82 

PM2.5 

(µg/m3) 

2019 82(±40) 56(±20) -31 42 +53 59(±26) -28 40 +57 

2020 45(±23) 38(±15) -17 21 +51 41(±19) -9 19 +60 

NO2 

(µg/m3) 

2019 46(±20) 70(±45) +51 42 +68 56(±40) +22 34 +60 

2020 20(±7) 42(±32) +116 36 +61 34(±27) +72 27 +54 

CO 

(µg/m3) 

2019 1095(±369) 563(±270) -49 622 +53 685(±356) -37 539 +53 

2020 670(±179) 339(±136) -49 363 +58 516(±261) -23 266 +56 

 

  



Table S6 Reactions used to calculate the LROx in IRR analysis 

MOZART Reactions IRR reactions (LROx) 

ALKO2 + HO2 -> ALKOOH  ALKO2_HO2_IRR 

BENZO2 + HO2 -> BENZOOH BENZO2_HO2_IRR 

BZOO + HO2 -> BZOOH BZOO_HO2_IRR 

C2H5O2 + HO2 -> C2H5OOH + O2  C2H5O2_HO2_IRR 

C3H7O2 + HO2 -> C3H7OOH + O2  C3H7O2_HO2_IRR 

C6H5O2 + HO2 -> C6H5OOH C6H5O2_HO2_IRR 

CH3O2 + HO2 -> CH3OOH + O2 CH3O2_HO2_IRR 

HO2 + HO2 -> H2O2 + O2  HO2_HO2_H2O_IRR 

HO2 + aer -> 0.5*H2O2  HO2_IRR 

HOCH2OO + HO2 -> HCOOH HOCH2OO_HO2_IRR 

ISOPAO2 + HO2 -> ISOPOOH  ISOPO2_HO2_IRR 

MACRO2 + HO2 -> MACROOH MACRO2_HO2_IRR 

MBONO3O2 + HO2 -> MBONO3O2_HO2_IRR 

MBOO2 + HO2 -> MBOOOH MBOO2_HO2_IRR 

MEKO2 + HO2 -> MEKOOH  MEKO2_HO2_IRR 

NTERPO2 + HO2 -> NTERPOOH  NTERPO2_HO2_IRR 

OH + HO2 -> H2O + O2  OH_HO2_IRR 

PHENO2 + HO2 -> PHENOOH PHENO2_HO2_IRR 

PO2 + HO2 -> POOH + O2 PO2_HO2_IRR 

RO2 + HO2 -> ROOH RO2_HO2_IRR 

TERP2O2 + HO2 -> TERP2OOH  TERP2O2_HO2_IRR 

TERPO2 + HO2 -> TERPOOH  TERPO2_HO2_IRR 

TOLO2 + HO2 -> TOLOOH  TOLO2_HO2_IRR 

XO2 + HO2 -> XOOH  XO2_HO2_IRR 

XYLENO2 + HO2 -> XYLENOOH XYLENO2_HO2_IRR 

XYLOLO2 + HO2 -> XYLOLOOH  XYLOLO2_HO2_IRR 
 

  



Table S7 Reactions used to calculate the LNOx in IRR analysis 

MOZART Reactions IRR reactions 

CH3CO3 + NO2 + M -> PAN + M CH3CO3_NO2_IRR 

DICARBO2 + NO2 + M -> NDEP + M DICARBO2_NO2_IRR 

MACRO2 + NO -> .8 ONITR + nume MACRO2_NO_a_IRR 

MALO2 + NO2 + M -> NDEP + M MALO2_NO2_IRR 

MDIALO2 + NO2 + M -> NDEP + M MDIALO2_NO2_IRR 

NO2 + OH + M -> HNO3 + M OH_NO2_IRR 

PHENO + NO2 -> NDEP PHENO_NO2_IRR 
 

  



 

Table S8 Total OH reactivity with VOCs and NO2 and corresponding ration in Urban, Power, and Rural for April 7th 
(lockdown sample day) 

Scenario OH+VOC OH+NO2 (OH+VOC)/(OH+NO2) 

Urban 

2019BAU 58.67 13.75 4.27 

2019COVID 54.03 8.15 6.63 

2020BAU 27.3 8.2 3.3 

2020COVID 23.28 4.59 5.07 

Power 

2019BAU 24.23 7.65 3.17 

2019COVID 23.91 6.22 3.84 

2020BAU 12.21 6.63 1.84 

2020COVID 12.61 5.8 2.17 

Rural 

2019BAU 20.78 2.68 7.75 

2019COVID 19.62 1.78 11.02 

2020BAU 24.21 2.27 10.67 

2020COVID 19.74 1.25 15.79 
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