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Abstract

We present a novel methodology for exploring 4D seismic data in the context of monitoring subsurface resources. Data-space

exploration is a key activity in scientific research, but it has long been overlooked in favour of model-space investigations. Our

methodology performs a data-space exploration that aims to define structures in the covariance matrix of the observational

errors. It is based on Bayesian inferences, where the posterior probability distribution is reconstructed through trans-dimensional

(trans-D) Markov chain Monte Carlo sampling. The trans-D approach applied to data-structures (termed ”partitions’) of the

covariance matrix allows the number of partitions to freely vary in a fixed range during the McMC sampling. Due to the trans-D

approach, our methodology retrieves data-structures that are fully data-driven and not imposed by the user.

We applied our methodology to 4D seismic data, generally used to extract information about the variations in the subsurface.

In our study, we make use of real data that we collected in the laboratory, which allows us to simulate different acquisition

geometries and different reservoir conditions. Our approach is able to define and discriminate different sources of noise in 4D

seismic data, enabling a data-driven evaluation of the quality (so-called ”repeatability’) of the 4D seismic survey. We find

that: (1) trans-D sampling can be effective in defining data-driven data-space structures; (2) our methodology can be used to

discriminate between different families of data-structures created from different noise sources. Coupling our methodology to

standard model-space investigations, we can validate physical hypothesis on the monitored geo-resources.
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Abstract.9

We present a novel methodology for exploring 4D seismic data in the con-10

text of monitoring subsurface resources. Data-space exploration is a key activ-11

ity in scientific research, but it has long been overlooked in favour of model-12

space investigations. Our methodology performs a data-space exploration that13

aims to define structures in the covariance matrix of the observational errors.14

It is based on Bayesian inferences, where the posterior probability distribution15

is reconstructed through trans-dimensional (trans-D) Markov chain Monte Carlo16

sampling. The trans-D approach applied to data-structures (termed ”partitions”)17

of the covariance matrix allows the number of partitions to freely vary in a fixed18

range during the McMC sampling. Due to the trans-D approach, our method-19

ology retrieves data-structures that are fully data-driven and not imposed by the20

user.21

We applied our methodology to 4D seismic data, generally used to extract in-22

formation about the variations in the subsurface. In our study, we make use of23

real data that we collected in the laboratory, which allows us to simulate dif-24

ferent acquisition geometries and different reservoir conditions. Our approach25

is able to define and discriminate different sources of noise in 4D seismic data,26

enabling a data-driven evaluation of the quality (so-called “repeatability”) of the27

4D seismic survey. We find that: (1) trans-D sampling can be effective in defin-28

ing data-driven data-space structures; (2) our methodology can be used to dis-29

criminate between different families of data-structures created from different noise30
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sources. Coupling our methodology to standard model-space investigations, we31

can validate physical hypothesis on the monitored geo-resources.32
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1. Introduction

In their investigations of the Earth system, geo-scientists have to deal with two complemen-33

tary spaces: data space and model space. The model space is generally defined as the space34

of the investigated parameters. For a given parameterization of the system, each point of the35

model space defines a possible model of the system, represented by a combination of values36

of the model parameters. To make inferences on the model parameters, we need to take mea-37

surements of relevant geo-observables. The data space contains all the possible combinations38

of such observations [Tarantola, 2005] and the measured data points form a local subset of the39

data space with its own structure. While there is a vast literature about methodologies for in-40

vestigating the model space [Sambridge and Mosegaard, 2002, e.g.], few attempts have been41

made at a systematic exploration of the data space. Exploration of the data space is an ordinary42

activity for geo-scientists, and includes, for example, data preparation, quality controls (QC)s43

for data selection and estimation of data errors. Some of those activities, for example the data44

selection, could have a strong impact on the data space, modifying, for example, the data struc-45

ture. Generally, such activities rely on the expert-opinion of the geoscientists and are carried46

out ahead of the main geophysical investigations that are related to the model space.47

There are two main reasons for considering a systematic exploration of the data space. First,48

the ever growing amount of geo-data available to geo-scientists needs to be tackled with more49

automated workflows; expert opinion is generally a time-consuming process. Second, more50

interestingly, expert opinion, as a human activity, implies the separation of data into categories51

(i.e. a discrete number of outputs) rather than a more general continuous evaluation of proba-52

bility. For example, in data selection activities, the expert can select and, then exclude, part of53
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the data based on their experience, using a two category model (in/out, good/bad). Conversely,54

a more automated workflow, developed in a statistical framework, can associate a probability55

value to each data point, avoiding the need to remove any of them from the analysis.56

In recent years, some studies have reported cases of systematic exploration of the data space,57

even if such analyses take often a marginal role in the scientific studies themselves. In particu-58

lar, there are some examples [Bodin et al., 2012a; Dettmer and Dosso, 2012; Xiang et al., 2018]59

where Bayesian inference is applied to a geophysical inverse problem for defining both phys-60

ical parameters (i.e. investigating the model space) and the errors associated to the data (i.e.61

exploring the data space), the so called Hierarchical Bayes approach [Malinverno and Briggs,62

2004] . In Hierarchical Bayes algorithms, the uncertainties related to the data are assumed to63

be poorly known and need to be estimated during the process. This approach usually assumes a64

fixed number of parameters which represent the unknown part of the data space. In most appli-65

cations of the Hierarchical Bayes approach, the absolute value of the data errors is considered66

an unknown in the problem that needs to be inferred [Bodin et al., 2012a]. Sometimes, in cases67

where the structure of the data errors is known (i.e. we know which data points are measured68

with more precision with respect to other points), a scaling factor of the data error is used as the69

unknown [Piana Agostinetti and Malinverno, 2018]. In more complex cases, the Hierarchical70

Bayes approach is adopted to somehow define a function of the data uncertainties, so called71

“data structures” or “states” hereinafter, which include: estimating an auto regressive model of72

the data errors [i.e. a form of error correlation, Dettmer and Dosso, 2012], and estimating an73

increasing linear model for the data errors as a function of the geometrical distance between74

measurement points [e.g. Galetti et al., 2016]. In all of these cases however, the number of pa-75

rameters representing the data structure is fixed a-priori (usually one or two parameters, rarely76
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more than three). By contrast, Steininger et al. [2013] and Xiang et al. [2018], extend Hierar-77

chical Bayes approach to make inferences on the data space by considering data structures that78

are represented by a variable number of parameters. Xiang et al. [2018] make use of a transdi-79

mensional (trans-D) sampler [Sambridge et al., 2006, 2013] for sampling models belonging to80

two different states: in one state, one unknown defines an autoregressive model of the first order81

for the data errors, i.e. assume uncorrelated errors, while in a second state, two unknowns are82

used to define an autoregressive model of the second order, i.e. exponential correlation between83

data uncertainties. Using this ability to jump from one state to the other, the algorithm is able84

to indicate the “predominant” auto-regressive model associated to the data errors. As far as we85

know, Steininger et al. [2013] and Xiang et al. [2018] are the first applications of a trans-D86

algorithm in Geophysics, for sampling different states representing different error models, even87

if they are limited to a transition between states represented by one and two parameters.88

In this study, we move a step forward in the development of algorithms for data space ex-89

ploration. We make use of a trans-D sampler for exploring different “states” (represented by90

a different number of variables), where each state reproduces a partition of the data space (i.e.91

a data structure). The number of states to be explored is no longer strictly limited [e.g. two92

states, like in Xiang et al., 2018], and the number of variables representing each state can vary93

between a user-defined minimum and maximum. The algorithm is developed in a Bayesian94

framework, used to define the posterior probability of the data structures. Data space structures95

are expressed in terms of partitions of the covariance matrix of the errors, which allow us to96

define regions of the data space where measured data are in agreement with a given working97

hypothesis. The algorithm is applied to the data analysis workflow used for time-lapse seismics98

(also called 4D seismics), a technology used primarily by oil&gas companies for monitoring99
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their reservoirs. The 4D seismic data consist of time-repeated active seismic surveys that need100

to be investigated for detecting noise/distortions and focusing the subsequent geophysical inver-101

sion on the portion of active seismic data where temporal changes have occurred. The algorithm102

is applied on laboratory data that mimic active seismic surveys and the results are discussed in103

light of the potential of the algorithm for statistically separating signals with different origins.104

1.1. 4D seismics: key-concepts and present-day challenges

The term 4D seismics indicates the data workflow adopted by oil&gas companies for monitor-105

ing their reservoirs through the repetition, after a few years, of active seismic surveys. The 4D106

seismic workflow consists of three main phases: acquisition, processing and interpretation. 4D107

seismics is generally performed for off-shore reservoirs, but the first successes were obtained108

on-shore [e.g. Porter-Hirsche and Hirsche, 1998; Davis et al., 2003]. This technology is also109

used for monitoring CO2 underground storage sites [Lumley, 2010; Cheng et al., 2010; Yang110

et al., 2014; Roach et al., 2015]. Briefly, a first active seismic survey, the so-called baseline111

survey, is performed just before starting production to image the untouched resources. After112

some time and while the reservoir is under production, the active seismic survey is repeated, the113

so-called monitor survey. If the seismic acquisition and data processing are exactly the same114

as those used for the baseline survey, the differences between the images can be uniquely at-115

tribute to changes in the physical properties of the reservoir due to its exploitation. Through the116

analysis of such differences, scientists can make informed decisions about the next phases of117

exploitation of the reservoir.118

An important question is: how can we get relevant information from 4D seismics? Produc-119

tion related effects on images obtained from the monitor survey can be obscured by distortions120

induced by the lack of repeatability of the data acquisition and processing. This is one of the121
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main technical barriers for getting the correct information from 4D seismics [Koster et al.,122

2000]. The concept of repeatability between two or more seismic surveys indicates the degree123

to which the data-sets can be considered to be generated from the same operational and com-124

putational workflows. Measures of repeatability between two seismic surveys generally include125

Normalized Root Mean Square (NRMS) and trace correlation [also called predictability Kragh126

and Christie, 2002]. Increasing and evaluating the repeatability of 4D seismics have been the127

focus of a number of studies in the last decades [Landro, 1999; Houck, 2007; Pevzner et al.,128

2011], with the main efforts going into increasing acquisition quality, i.e. hardware solutions.129

Statistical approaches to 4D data analysis have been limited to the interpretation phase [e.g.130

applying Machine Learning algorithms to porosity inversion Dramsch, 2019].131

1.2. Methodological framework: Bayesian inference, Markov chain Monte Carlo and

trans-dimensional algorithms
Various geophysical inverse problems have been solved following a probabilistic Bayesian132

framework [Tarantola, 2005, 2006]. Bayes’ theorem133

p(m | d) =
p(m)p(d | m)

p(d)
(1)

connects (probabilistic) prior information p(m) about some subsurface properties (m) and data134

measured (d), generally at the surface, to extract new information about such properties (the so-135

called posterior probability distribution p(m | d) or PPD), through an (assumed) known error136

statistics [the Likelihood p(d | m), or L(m) hereinafter, Bayes, 1763]. Thus, in contrast with137

other approaches, the solution of geophysical inverse problems is given in the form of a proba-138

bility distribution over the investigated parameters, and not as a single value for each parameter139

(i.e. a single model). In simple cases, Bayes’ theorem can give an analytic solution to geophys-140
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ical inverse problems [Tarantola, 1987]. However, numerical methods have been widely used141

in more complex cases. In particular, Markov chain Monte Carlo (McMC) sampling has been142

found to be well suited for sampling a chain of Earth models with a probability proportional to143

the PPD and, thus, to make inferences on relevant parameters based on such sampled models144

[Sambridge and Mosegaard, 2002]. Here, we follow the approach presented in Mosegaard and145

Tarantola [1995] and we develop a sampler of the prior probability distribution which can be146

“switched” to sample models with a probability that follows the PPD. After collecting a relevant147

number of models from the PPD, we compute numerical estimators of the investigated parame-148

ters directly from the sampled models. For example, the mean value of the parameter m, can be149

estimated as150

m̂ =
1

Ns

Ns∑
j

m j, (2)

where Ns is the number of samples computed during the McMC sampling and mj is the value of151

parameter m for the j-th model sampled. Following the approach in Mosegaard and Tarantola152

[1995], we define the probability of accepting a new model along the Markov chain as:153

α = min[1, L(mcand)/L(mcur)], (3)

where mcand, the candidate model, and mcur, the current model, are two consecutive Earth mod-154

els along the Markov chain and L(m) is the likelihood of the model given the observed data.155

In other words, the candidate is always accepted if L(mcand) ≥ L(mcur). If L(mcand) < L(mcur),156

the random walk moves to the candidate model with probability equal to L(mcand)/L(mcur). The157

last point, L(mcand) < L(mcur), guarantees that the McMC sampler will not get stuck in a local158
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maximum of the likelihood function, because models which worsen the fit to the data may still159

be accepted.160

Two fundamental points in Bayesian inferences are the initial states of knowledge about the161

investigated parameters, the so-called priors, which can take a closed analytical form, or be162

represented by a set of rules (e.g. one parameter has to be smaller than a second parameter, like163

in P- and S- waves velocities in rocks). More interestingly, the statistics of the data uncertainties164

should be known at a certain level. Such statistics is used to compute the likelihood value of an165

Earth model. Simplified statistics can be adopted (e.g. a diagonal covariance matrix in Gaussian166

distributed errors) but has been proven to give un-realistic results in some cases [Birnie et al.,167

2020]. Both of these assumptions have to hold to make inferences on physical parameters and,168

given Equation 1, the solution to the geophysical inverse problem may change under different169

assumptions.170

An efficient design of the McMC sampler is fundamental for achieving robust results (in terms171

of number of samples extracted from the PPD) in a limited amount of time. Several different172

recipes have been designed in the past for proposing a candidate model, i.e. a new point in173

the model space, as a perturbation of the current model, i.e the last visited point in the model174

space [Bodin et al., 2012b]. In fact, if the sampling is too limited to the neighbourhood of the175

current model, McMC will converge too slowly toward the global maximum of the likelihood176

function. Conversely, too strong a perturbation of the current model will likely lead to poorly177

fitting candidate models, most of which will be rejected. In recent years, one ingredient that178

has been added to many implementations of the McMC sampler is the possibility of sampling a179

candidate model which has a different number of variables than the current model [Malinverno,180

2002; Sambridge et al., 2006]. In practise, we relax the hard constraint of a fixed number181
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of variables in the models, allowing it to vary between fixed minimum and maximum values.182

This new generation of McMC samplers are collectively called trans-dimensional samplers [e.g.183

Sambridge et al., 2013] and are based on the pioneering works of Geyer and Møller [1994] and184

Green [1995]. For trans-dimensional samplers, Equation 3 holds under specific assumptions on185

the model space transformation and its Jacobian matrix [see Appendix B in Piana Agostinetti186

and Malinverno, 2010, for details].187

2. Data

We consider a simple time-lapse scenario that consists of an overburden layer and a reservoir.188

To better mimic a real world application, we use a scaling factor of 10000 such that a frequency189

of 200 kHz represents a frequency of 20 Hz, and a dimension of 1 mm represents 10 m. To190

build this experiment in the lab we take two Plexiglas blocks with dimensions 310 × 154 × 77191

mm, and attach them together (Figure 1). The first Plexiglas block represents the overburden192

layer with elastic properties of Vp = 2780 m/s, Vs = 1480 m/s, and ρ = 1.19 g/cm3. This193

overburden layer remains unchanged between the two surveys. To build the reservoir layer we194

remove a rectangular cube from the second block, allowing us to insert different fluids into our195

‘reservoir’.196

For the baseline survey, we keep the second block empty, representing a gas-filled reservoir.197

In this case, the elastic properties of the air are Vp = 332 m/s, Vs = N/A, and ρ ∼ 0 g/cm3. For198

the monitor survey, we fill the block with water, miming a scenario where the gas in the reservoir199

has been replaced with brine. The elastic properties of the water are Vp = 1500 m/s, Vs = N/A,200

ρ ∼ 1 g/cm3. Figure 1 shows the experimental setup for the data acquisition. For the source201

we use a P-wave transducer with a single-cycle sine wavelet at 200 kHz, generated through202

the function generator (top left corner of Figure 1). This P-wave transducer has a diameter of203
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10 mm. For the receivers, we use a laser vibrometer that measures the particle velocity along204

the direction of the laser beam (perpendicular to the surface), and sends it to the oscilloscope205

to be saved. The laser measures the signal at 160 points along the tape, giving us a total of206

160 receivers with a sampling distance of 0.5 mm. The nearest offset in this case is 10 mm.207

Figure 1 top right corner shows the signal reading at the nearest offset for the baseline case.208

Throughout the data acquisition the P-wave transducer is glued to the Plexiglas box, and the209

laser is attached to a stage that stably moves it along the tape. This allows for a controlled and210

repeatable time-lapse experiment. Summarising, the experimental set-up allows us to record211

160 “wiggles” for each of the two different reservoir-states, composing two “shot-gathers”. For212

the first 100 wiggles in each shot-gather, clear arrivals from the surface and the reservoir can213

be separated. These shot-gathers compose a homogeneous, discrete (x, t)-space, where x is the214

wiggle offset, and t is the recording time (Figure 2). In general, we use the first shot-gather from215

the first reservoir-state experiment as the “baseline survey” (Figure 2a). We combine the wiggles216

for the two experiments to simulate different monitoring scenarios. For example, in Figure 2b,217

we mimic: (a) the misplacement of some sensors (wiggles between 15 and 25), replacing the218

correct baseline wiggles with wiggles from the baseline survey but with a four-wiggles shift;219

and (b) the presence of changes in the reservoir (wiggles 60 to 90), replacing wiggles from the220

baseline with wiggles from the second reservoir-state experiment. Point-wise measurements of221

the squared difference between baseline and monitor surveys can be larger for misplacement222

sensors than for reservoir alteration (Figure 2c), making the discrimination between the two223

effects quite challenging.224

To test our methodology, we used one in five wiggles for the first 100 wiggles, thus, we225

collect 20 “traces” for each survey, Nw = 20. Downsampling the number of wiggles allows226
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us to have enough data for simulating the misplacement of the receiver in the monitor survey.227

In the following , we continue to call “wiggles” the recording for a single detector position as228

a function of time in each shot-gather, and we call “traces” the wiggles selected to compose229

the baseline and monitor surveys. Each trace is composed of NS = 1251 samples. Thus, our230

(x, t)-space is composed of Nw · Ns = 25020 data-points.231

2.1. Error statistics

To rigorously compare the monitor and baseline survey we need to know how the errors are232

statistically distributed in the two data-sets, i.e. the error covariance matrix. Computing the233

rank of such a large (Nw · Ns)× (Nw · Ns) matrix could be intractable. To avoid this, we estimate234

the covariance matrix from the data themselves with the following assumptions. First, we do235

not consider inter-trace correlation, so our model of the covariance matrix is block-diagonal,236

one block for each trace. Note that this assumption means that near-by traces are not correlated,237

which could be un-realistic under some scenarios, e.g. weather conditions, acquisition systems238

and so on. Second, we assume the same error statistics for the baseline and monitor surveys.239

Again, this assumption could be partially false for, e.g., surveys acquired with a large (10s of240

years) time-gap. However, under our assumptions, we can estimate a tractable error covariance241

matrix C∗e,ij which can be decomposed following the approach developed in Malinverno and242

Briggs [2004], with an adequate correlation model [Kolb and Lekić, 2014].243

Given the nature of our data, i.e. band-limited waveforms, our covariance matrices are semi-244

positive definite Toeplitz matrices and they can be decomposed as:245

C∗e,ij = SRS (4)

where:246
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S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1,1 0 0 . . . 0
0 σ2,1 0 . . . 0
0 0 σ3,1 . . . 0
...

...
...
...

...
0 0 0 . . . σNs,Nw

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

represents the diagonal matrix containing the standard deviation of each data point bi j in the247

baseline [Malinverno and Briggs, 2004].248

With the assumption of independent traces, the correlation matrix R can be represented as a249

block-diagonal matrix with Nw blocks, each of dimension: Ns × Ns. The block R j represents250

the error correlation within the j-th trace and can be estimated from the data [Piana Agostinetti251

and Malinverno, 2018; Piana Agostinetti and Martini, 2019]. However, such data-derived cor-252

relation matrices R j are often not positive definite and need to be approximated, e.g., with the253

singular value decomposition, to use them for estimating the covariance matrix and computing254

the likelihood L(mcand). In this study, we make use of a correlation model that results in posi-255

tive definite matrices and guarantees stable matrix inversion [Kolb and Lekić, 2014]. Thus, our256

blocks R j assume the form:257

R j = Rik, j = e−λ j |ti−tk | cos (λ jω j|ti − tk|) (6)

where tk and ti are the time of the bk j and bi j samples, respectively, while λ j and ω j are estimated258

from the data in the j-th trace. In Figure 3, we illustrate the computation of σi j, λ j and ω j. In259

Figure 3a, we show how we estimate the standard deviation of each point in each trace. For the j-260

th trace (red), we consider all traces between j−5 and j+5 and we compute a stack of these traces261

(Figure 3b). From the stack, we compute a residual for each trace considered (Figure 3c) and262

the residuals are autocorrelated. The autocorrelation functions are stacked to obtain an average263
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autocorrelation (orange line in Figure 3d). This function is used to estimate λ j andω j (green line264

in Figure 3d), through a 2-parameter grid search. Our model for the autocorrelation function265

fits the empirical function well before 10μs and somewhat over-estimates sample correlation at266

longer periods, thus it should be considered a conservative model.267

3. Exploration of the data-space through trans-dimensional sampling: methodology

Exploring the data space of 4D seismics implies the separation of multiple sources for the268

“4D signal” (i.e. the signal arising when monitor and baseline surveys differ). Here we consider269

a simplified case using three signal sources: ambient random noise (noise, hereinafter), sensor270

misplacement (perturbation) and physical changes in the reservoir (target signal). With perfect271

survey repetition (no sensor misplacement) and no change in the reservoir, the unique source272

of 4D signal is the noise. Assuming an empirically estimated noise model, we can define our273

working hypothesis: in the case of a unique source of 4D signal from the noise, the fit of the274

monitor survey with respect to the baseline survey should close to the number of data-points275

Nw × Ns, where the fit is statistically represented by:276

φ∗ =
(
eT

ij (2 × C∗e,ij)
−1 eij

)
, (7)

which is used to compute the likelihood of the monitoring to the baseline survey:277

L∗ =
Nw∏
i=1

1

[(2π)Ns |2 × C∗e,ij|]1/2
exp

(
−1

2
φ

)
, (8)

and we assume Gaussian distributed noise with the error model defined in Section 2.1. Here,278

the covariance matrix C∗e,ij is directly estimated from the data through their autocorrelation and279
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their standard deviation. It is interesting to note that the likelihood computation is what we need280

to advance our McMC sampling, following Equation 3.281

When there signals in the 4D data caused by different sources, we can adopt a Hierarchical282

Bayes approach to define a different configuration for the covariance matrix so that the new283

covariance matrix will again closely fit our error model and the working hypothesis defined by284

Equation 8. As detailed in Bodin et al. [2012a], modifications to the covariance matrix obtained285

through a Hierarchical Bayes algorithm not only represent improved estimates of the data un-286

certainties, but also include any additional source of uncertainty arising from, e.g., un-realistic287

modelling or, as in our case, incorrect assumptions. In fact, the likelihood function above does288

represent the differences in the two surveys in case of noise only (our assumption), and the289

covariance matrix needs to be modified appropriately when this hypothesis is violated. In the290

case of sensor mis-placement (i.e. when errors occur in the geometry of the monitor survey),291

the modification of the covariance matrix should be the same for all the points belonging to292

the misplaced traces. Conversely, when changes in the reservoir occur, the covariance matrix293

needs to be modified only for those seismic phases generated at the top of the reservoir for some294

consecutive traces (in our simplified data, from the top and the bottom in field measurements).295

Summarising, we will try to define a different structure for the covariance matrix so that the296

modified covariance matrix will approximate our error model.297

3.1. Partition of the error covariance matrix

Here we define a new structure of the covariance matrix as an unambiguous correspondence298

between a partition of the data and a partition of the covariance matrix, so that separating regions299

of the data space separates distortions in the covariance. Given the properties of the covariance300
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matrix and assigning a relevant weight to each sampled point (x,t), we can create a modified301

covariance matrix such as302

Ce,ij(m) =W(m) × 2 × C∗e,ij ×W(m) (9)

where303

Wij(m) = 10wi j(m), (10)

and wi j is a weight associated to sample point (x,t), derived by the model sampled during the304

McMC process. Note that our assumptions on the original covariance matrix (block-diagonal305

matrix generated from a modelled correlation function) are not necessary for generating Ce,ij.306

Thus, the following discussion can be generalized to any covariance matrix. The goal now is to307

generate sensitive weights for all points, to be able to separate the portion of the monitor survey308

where the signal follows the likelihood in Equation 8, from the signal where other distortions309

are present. Given the nature of the distortions considered here, we can assume that, in the310

case of the misplacement of a single sensor, all the weights associated to the corresponding311

trace have to be modified by the same amount. This means that, for a given j, the weights wi j312

would be the same for one entire block along the diagonal of the covariance matrix, associated313

to the misplaced trace. Conversely, in case of a change in the reservoir, all weights associated314

to the same seismic phase need to be homogeneously modified. Thus, wi j would be the same315

for the same time interval across different traces (assuming an almost flat interface generating316

phases arriving almost at the same time at the receivers, as in Figure 2a at about 70μs). This317

second kind of distortion strongly impacts the covariance matrix, equivalently modifying many318

blocks along its diagonal. Having homogeneous weights for different portions of the covariance319
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matrix, we can create a partition of the covariance matrix based on the corresponding partition320

of the (x, y)-space associated to the relevant distortion. Giving the nature of our algorithm, i.e. a321

new way for elaborating partitions of the data, it could be categorized as a member of the family322

of clustering algorithms, where the number of cluster is not pre-specified by the user or chosen323

during or after the data analysis, but it is self-defined by the data themselves [e.g. Mechelen324

et al., 2018].325

3.1.1. Model parameterization326

We model our partition of the covariance matrix as rectangular partitions of the data-space327

(Figure 4). Our model is represented by a variable number of rectangular patches (so-called328

cells) that cover the data-space, where each patch has an associated constant weight. In detail,329

our model m is composed of a scalar n and five n-vectors, m = (n, cn, rn, tn, sn, πn), where n is330

the number of cells, cn the vector of position of cell centres along the x-axis, rn the vector of331

cell radii along the x-axis, tn the vector of the time-position of the cell centres along the time332

axis, sn the vector of the time-width of the cells, and πn the vector of the cell weights. Keeping333

the model definition in mind, we can assume that the relevant weight for each point in the data334

space is the sum of the weights of the cells that extend to cover that particular point:335

wi j(m) = 0 if xi j � Cm∀m = 1, ..., n (11)

wi j(m) =

n∑
m=1

πm if xi j ∈ Cm (12)

where Cm represents the time-space extension of the cell associated to the m-th nucleus, i.e.:

xi j ∈ Cm ⇔
{

cm − 1/2 · rm < xi < cm + 1/2 · rm,
tm − 1/2 · sm < x j < tm + 1/2 · sm

(13)

Having defined the weight for each data point as a function of the partitioning model of

the data space, we now have most of the elements for sampling the model space according to
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our McMC strategy. In fact, the weights define the likelihood of the model from Equation 8

substituting Ce,ij for C∗e,ij, i.e.:

L(m) = p(d | m) =

Nw∏
i=1

1

[(2π)Ns |Ce,ij|]1/2
exp

(
−1

2
φ

)
, (14)

where:

φ =
(
eT

ijCe,ij
−1eij

)
. (15)

The novelty of our approach resides in the fact that, differently from standard McMC schemes,336

here the dependence of the likelihood function on the model is solely expressed in the covariance337

matrix and not in the residuals e [e.g. Malinverno, 2002].338

Our choice of rectangular cells is optimal for the case of vertical and horizontal anomalies,339

because the trans-D sampler can easily mimic this kind of distortions with a limited number of340

cells. However, all models sampled from the PPD will have vertical and horizontal boundaries,341

thus generating a somewhat “blocky” PPD. For more complex, i.e. dipping, anomalies, more342

general functions such as “anisotropic Gaussian kernels [Belhadj et al., 2018] can be adopted.343

3.2. Priors

To make Bayesian inferences about the data partitions we define appropriate prior probability344

distributions on the model parameters. We make use of uniform probability distributions be-345

tween minimum and maximum values for all investigated parameters. Minimum and maximum346

values are reported in Table 2. Uniform priors have several advantages from a computational347

point of view, and keep the number of pieces of prior information to a minimum (two values per348

parameter). We do not impose any constraints on the radius and time-window parameters for349

cell centres approaching the boundary of the (x,t) space, i.e. some cells could span outside the350

(x,t) space (this is the reason why some cells seem to have their centres not exactly in the middle351
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of the cells in Figure 4). While this assumption can introduce some combinations of parameters352

with very limited impact on the likelihood function (e.g. when cm is close to one or close to NW353

and rm is small), the /it parsimonious behaviour of our trans-D approach guarantees that useless354

cells are removed from the model at some point, thus avoiding keeping too many cells.355

3.3. Candidate selection

We now need to define how to progress in our McMC sampling, i.e. how to propose a new356

candidate model to be compared to the current one, the so called recipe. Defining an efficient357

recipe, in terms of convergence to the global maximum of the likelihood function and abil-358

ity to explore a (potentially) multi-modal distribution, is fundamental for keeping the required359

computational resources reasonable.360

Our recipe comprises seven moves, each of which represents a different way of perturbing the361

current model. During the definition of the candidate model only one of the moves is performed.362

Moves are selected with different probability. In detail, we define the following moves:363

1. perturb the time-position tn of a randomly picked cell nucleus (this move has a probability364

of 0.15 to be selected);365

2. perturb the space-position cn of a randomly picked cell nucleus (0.15)366

3. perturb the time-extension sn of a randomly picked cell nucleus (0.15);367

4. perturb the space-extension rn of a randomly picked cell nucleus (0.15);368

5. perturb the weight πn of a randomly picked cell (0.2);369

6. birth of a new cell: one cell is ad dded to the model (0.1);370

7. death of a cell: one cell is removed from the model (0.1).371
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Perturbation of the parameters in moves [1]-[5] are made according to the scheme in Ap-372

pendix A in Piana Agostinetti and Malinverno [2010]. Following this scheme, the nor-373

mal proposal distributions for sampling the uniform priors have the following variances σi
2:374

σ1
2 = σ3

2 = 8 × 10−3 for moves [1] and [3]; σ2
2 = σ4

2 = 0.0025 for moves [2] and [4];375

σ5
2 = 10−6 for move [5]. Moves [6] and [7] are called trans-dimensional moves because they376

imply the changing of the number of variables associated to the candidate model with respect377

to the current model. Such moves are defined as in Appendix B in Piana Agostinetti and Ma-378

linverno [2010], so that the determinant of their Jacobian matrix is equal to 1. We follow the379

approach developed in Mosegaard and Tarantola [1995] for moves [6] and [7]. Thus, we make380

use of a sampler that walks across the prior distributions (the so-called sampling from the priors381

approach), and we accept or reject the candidate model with the probability in Equation 3. It382

is worth noticing that sampling from the priors can be quite inefficient if the data contain a lot383

of information about the investigated parameters, and thus the PPD likely differs from the prior384

probability distribution. On the contrary, if there is limited information contained in the data,385

sampling from the priors is a convenient sampling strategy, as it removes the need to define a386

proposal distribution [as in, e.g., Bodin et al., 2012a].387

4. Results

4.1. Simple cases: Misplaced sensors or changes in the physical properties of the rocks

In this section we consider three simple tests. As a first illustration of the algorithm, we388

construct a monitor survey which mimics the mis-placement of some sensors (Figure 5). The389

baseline survey is composed of twenty traces (Wiggle numbers: 5, 10, 15, ..., 100) from the390

first experimental set-up (Plexiglas/air). For the monitor survey, we use the same traces as in391

the baseline survey, and substitute five traces (Wiggle numbers: 50, 55, ..., 70) with shifted392
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traces (Wiggle numbers: 54, 59, 64,..., 74, all positions have been shifted by the same amount)393

from the same Plexiglas’s/air experimental set-up. In this way, the amplitude of the arrivals394

do not have relevant changes, but we introduce a temporal shift. It is worth noticing that the395

number of traces used, the number of shifted traces, and the shift amplitude have been selected396

to keep a reasonable number of traces in the inversion (20 wiggles out of 100 available) while397

having enough space to introduce a significant shift in the traces (four wiggles). The results are398

obtained by running 5 parallel McMC samplings. Each chain is composed of 2 × 106 models,399

half of which are discarded as part of the burn-in phase [Somogyvari and Reich, 2019]. For each400

chain, we used 20 CPUs on a Linux cluster for about 17 hours. The full computation time was401

about 5x350 core-hours. Computation time is almost constant across all tests presented in this402

study, due to the same number of traces and the limited number of rectangular cells used by the403

trans-D sampler.404

In Figure 5, we show the most relevant information extracted from the PPD, together with the405

monitor and baseline surveys. The misplaced traces in the monitor survey are marked (yellow406

box in Figure 5b). For each point in the discrete (x, t)-space, we compute the 1D marginal PPD407

of wi j and plot its mean posterior value (Figure 5c) and standard deviation (std, Figure 5d).408

As a rule of thumb, high values of the mean posterior wi j indicate regions where the baseline409

and monitor surveys differ the most. Low and high values of the std differentiate well- and410

less- constrained regions, respectively. Our results illustrate how the algorithm works in this411

simple case. Due to the kind of distortion used, i.e. misplaced sensors, we should attribute412

almost the same weight to the entire set of misplaced traces. The algorithm accomplishes this413

task using a limited number of rectangular cells (about 20 cells, see Figure S1), confined in414

the vertical area of misplaced traces. The std also displays the same pattern with low values415
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indicating a robust result. Due to the realistic nature of our test (traces obtained in laboratory416

and not synthetic traces), the results are not “perfect” and there are some anomalies (higher417

std for surface arrivals and a vertical stripe in the std plot within the misplaced traces) due to418

complexity in the experimental set-up (hardware noise).419

The performance of the algorithm (Figure S1) highlights some key-aspects of the sampling.420

First, we are not overfitting the data because the number of cells in the sampled models is421

limited, and thus so is the number of inverted parameters. The acceptance probability for trans-422

D moves is very low, so we need long chain (> 1 million of models) to guarantee the necessary423

exploration of the data-space. However, after 1 million models, the number of cells used is424

almost stable between 15 and 30, but not constant, i.e. chains are still sampling models with425

variable number of dimensions but within a limited range of values.426

Our second test is designed to complement the previous one and considers a monitor survey427

where only changes in the reservoir state are present (Figure 6). In this case, we make use of the428

same baseline as in the previous test, but in the monitor survey we substitute five traces (Wiggle429

number: 50 to 70) with the traces recorded at the same position but for the Plexiglas/water430

experimental set-up. Both posterior mean and std of wi j share the same structure, with a vertical431

block and a pinched horizontal structure. The main difference in the results, with respect to432

the previous test, is the presence of a dark (large weights) spot in the location of the change433

in the reservoir-state, i.e. limited to the arrivals from the top of the reservoir and not including434

the surface waves (Figure 6c). Also, while the results contain a vertical stripe in the mean435

posterior wi j in the region of the reservoir changes, as in Figure 5c, the std along the same stripe436

is very large. Horizontally, the rectangular cells seem to be able to move slightly and the dark437
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region in the mean posterior wi j (defining the reservoir changes) propagates across some traces,438

suggesting a higher vertical than horizontal resolution.439

The third test considers the presence of both reservoir-changes and receiver misplacement440

in two separated regions of the (x, t)-space (Figure 7). In this case, while the baseline is kept441

the same as in previous tests, the monitor survey is composed as follows: for the misplaced442

sensors, three traces (wiggle numbers 15, 20 and 25) are replaced with wiggles from the same443

experimental set-up but with a 4 wiggle shift (so replaced with wiggle numbers: 19, 24 and 29);444

for the reservoir-changes, we substitute seven traces from 60 to 90, with the wiggles recorded445

in the same position but with the second experimental set-up. Note that the number of traces446

representing the two anomalies is different from the previous tests, to keep them separated and447

to be able to split it into two regions (see next section).448

The results clearly show that, in the case of not-interacting anomalies, the two kinds of distor-449

tions can be separately identified (Figure 7c). Both anomalies can be seen in the mean posterior450

of wi j with the same characteristics as in the previous tests. In the analysis of the std there is451

a clear difference, with respect to the previous tests, in the bright spot defining the reservoir-452

change, but also in the value (lower here) of the vertical stripe defining the misplaced sensors.453

However, such changes could be attributed to the different numbers of traces composing the454

anomalies (Figure 7d), indicating that the std is more sensitive to the lateral extension of the455

anomaly than to the mean posterior value.456

4.2. Complex case: simultaneous retrieval of misplaced sensor and changes in the

physical properties of the rocks
The most interesting case represents the co-existence of both misplaced receivers and457

reservoir-changes in the same region of (x, t)-space. To test this, the baseline is kept the same458
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as in previous tests. The monitor survey is composed of the baseline traces with substitutions in459

three different and contiguous regions. In the first region, called “A”, six traces are substituted460

by shifted wiggles from the same experimental set-up (i.e. mimic misplacement receivers only:461

wiggles numbers 30, 35, ..., 55 are replaced with 34, 39, ..., 59). Also in the second region462

“B” we have misplaced traces (three traces, wiggles numbers 60,65 and 70 replaced with 64, 69463

and 74) but from the second experimental set-up, to simultaneously reproduce both misplaced464

receivers and reservoir-changes. Finally in the third region ”C”, we consider reservoir changes465

only. Four traces (wiggles numbers 75 to 90) are replaced with the wiggles recorded in the same466

position, but from the second experimental set-up. The minimum region dimension is three467

traces, but the “misplaced sensors” anomaly covers nine traces, while the “reservoir-changes”468

anomaly covers seven traces (Figures 8 and 9).469

As expected, the outcomes from a complex case are more challenging to describe. The mean470

posterior of wi j still clearly defines the reservoir changes as a dark (large values) elongated471

region that covers exactly the expected traces (Figure 8 and Figure 9b). However, recognizing472

the boundaries between regions “A” and “B”, and “B” and “C” is not easy in the mean posterior.473

In fact the value of the mean posterior of wi j does not change significantly through regions “A”474

to “C” away the reservoir-changes zone, with fluctuation given by experimental noise and lateral475

smearing of the reservoir-changes anomaly. It is hard to recognise which traces have only been476

shifted (from the region between traces number 1 to 5 where the two surveys share the same477

wiggles) or which traces are both shifted and have a reservoir-change. Knowing the monitor478

survey composition, we can see that more traces than the ones composing region “C” have been479

locally perturbed, from the occurrence of the high-weights at localised times (dark region), but480
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we cannot really discriminate which of the traces that also have the reservoir-change signature481

have been displaced.482

The results for the posterior std of the wi j furnish some additional insights into the separation483

of the three regions. In fact, comparing both mean and std shows that the posterior std is484

generally uniform, but very large in the region where we only have reservoir changes (as seen485

also in Figure 6). The posterior std is lower and more variable for the region where we have486

misplaced traces (both with and without simultaneous reservoir changes). In practise, only the487

simultaneous analysis of both mean and std posterior for wi j can somewhat unequivocally define488

the three regions.489

Finally, the posterior std is very low in the core of the reservoir-changes anomaly, as found in490

the previous test (compare to Figure 8d), likely caused by the large lateral extent of the anomaly491

(quite large, seven traces (one third of the total)). Moreover, we observe that the area of the492

std where we only have misplaced sensors is not uniform as expected, due to the interaction493

with the reservoir anomaly (anomaly lateral smearing). However, the std is large where the two494

anomalies interact.495

5. Discussion

We propose a new methodology for exploring 4D seismic data and detecting potential noise496

sources other than random ambient noise, and relevant signals from the alteration of a reservoir.497

The algorithm has been proven to correctly perform in isolating simple case scenarios (one noise498

source or one reservoir change, or both present in two different portions of the 4D seismic data).499

In such cases, our algorithm identifies the different anomalies and their position, and it is able500

to characterise them in terms of both the amplitude of the posterior weights and their standard501

deviation. In particular, anomalous signals related to a misplacement of the sensors is identified502
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as a broad portion of the monitoring survey where the posterior weights are uniformly increased503

by a limited amount, and their standard deviation is uniform too. Conversely, in the portion of504

the monitoring survey where the anomaly is related to a reservoir change, the posterior weights505

are extremely high in a localised 2D patch. Their standard deviation also displays a peculiar506

pattern, with very low values in the inner portion of the anomaly and very high values along its507

border. We suggest that the rapid change in the standard deviation is the key-element that can508

define the shape of the anomaly related to reservoir changes.509

In more complex cases, i.e. where both noise sources and reservoir signals coexist, the510

interpretation of the results is more challenging. Dis-aggregating co-existing changes/mis-511

positioning is not easy (Figure 9), but we observe that reservoir changes are always the most512

striking and isolated feature. Also in this case, the analysis of the standard deviation of the513

weights is a critical point for making inferences. In fact, even here the sharp change in the514

standard deviation defines the border of the anomaly given by reservoir changes. Moreover,515

the standard deviation also helps to define the area where the mis-placed sensors are present516

(these regions have a lower standard deviation compared to area where only reservoir changes517

are present). It is worth noting that the estimation of the standard deviation of the weights is a518

brand new outcome of our algorithm, given by our statistical approach to data-space exploration.519

Our results display to some extent the boundaries of our rectangular patches (i.e they seems520

to have a block-structure). Such blockiness indicates the resolution limits of our model to some521

extent, and are related to our choice of rectangular partitions. In trans-D algorithms, the effects522

of the parameterization on the retrieved results is an on-going research field [e.g. Gao and Lekic,523

2018]. Here, we suggest that other choices of partition shape could be more efficient on bigger-524
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scale data, such as the anisotropic kernels, proposed in Belhadj et al. [2018], which could more525

easily reproduce the true shape of anomalies in field measurements.526

Our approach to 4D seismic data analysis could be used to support more complex data work-527

flows adopted in energy industries. In Figure 10, we compare the results of our complex case,528

with a standard analytic indicator (NRMS) commonly used in data-workflow for 4D seismics.529

Comparing Figure 10a and 10b, it seems that mis-positioning is the most impactful issue in530

terms of likelihood between baseline and monitoring surveys, but it is easily separated from531

reservoir changes, which have the strongest Wi j in our case. As seen in Figure 10c, NRMS is532

clearly higher in the area of sensor misplacement. Such an anomaly masks the signal coming533

from the “altered conditions in the reservoir”. In fact such a signal can be seen as a small am-534

plitude anomaly (i.e. around 40% at trace 16-19, still higher NRMS with respect to trace 1-5535

where no anomaly is present at all), but it is totally obscured between traces 11 and 15, where536

the dominant effect is the sensor misplacement. Our approach could be used as a support to537

standard data-workflow and could save time during subsequent physical modelling of the reser-538

voir (an extremely time-consuming task). Because it makes no preliminary assumption on the539

reservoir geometry, our approach does not risk bringing an initial bias into the results and thus540

could furnish more reliable information on the state of the geo-resources.541

6. Conclusions

In this study, we presented a new methodology for the exploration of the data-space. We542

followed a trans-D sampling approach to recreate and validate data-structures in the form of543

partitions of the covariance matrix. We applied the new methodology to 4D seismic data ac-544

quired for monitoring the sub-surface. Our results indicate that:545

D R A F T May 1, 2021, 10:27am D R A F T



PIANA AGOSTINETTI ET AL.: TRANS-DIMENSIONAL DATA SPACE EXPLORATION X - 29

1. the trans-D approach can be applied to data-space exploration for defining unknown data-546

structures and separating data-volumes that are coherent with a-priori physical hypotheses;547

2. the analysis of the full PPD of the data-structures can be used for classifying different548

sources of 4D signal, like repeatability noise and 4D signal from the geo-resources;549

3. In comparison with standard measures of repeatability like NRMS, our approach is less550

biased by the presence of different sources if 4D signal in the same data-volume and can be551

used to efficiently separate such sources.552

In the future, we will further develop our methodology to include different shapes and orienta-553

tion of the partitions [i.e. not rectangular patches, also called anisotropic kernels, as in Belhadj554

et al., 2018] for increasing the efficiency of the McMC sampling; and to consider 3D partitions555

and the comparison of two entire 3D volumes.556
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Variables Description

Nw number of traces in the survey

Ns number of samples per trace

i, k indices for samples

j index for a trace

xi j space (xi) and time (x j) position of the i-th point for the j-th
trace

bi j amplitude of baseline survey at the i-th point for the j-th
trace

mi j amplitude of monitor survey at the i-th point for the j-th
trace

eij = (bi j − mi j) sample-wise difference between baseline and monitor sur-
veys (at the i-th point for the j-th trace)

Terms Description

Data

shot-gather original data from the laboratory, one for each experimental
set-up

wiggle one recording (in time) at a fixed position within one shot-
gather

survey input data for the algorithm: new shot-gather composed of
selected wiggles

trace one recording of the survey

4D signal differences in the monitoring and baseline surveys

Sources of 4D signal

target signal changes in reservoir properties

noise ambient random noise

perturbation sensor misplacement.

Table 1 Description of variables and terminology
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Model parameter Minimum Maximum

Number of cells, n 1 200

Cell centre along x-axis, cn 1 20

Cell radius, rn 1 10

Cell centre along t-axis, tn 1 1251

Cell time-window, sn 1 625

Weight, πn 0.0 1.0

Table 2. Uniform prior distributions of model parameters in the m vector.
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Figure 1. Experimental setup and photos of the equipment. (a) function generator showing the

parameters of the source pulse (b) oscilloscope showing an example of a recorded wiggle. The red spot

on the model is the location of the laser receiver, which is moved vertically in controlled increments to

generate wiggles at different locations, which are combined into the final shot record.

Figure 2. Example of seismic surveys: (a) Baseline survey using all wiggles generated with

air/Plexiglas interface. (b) Monitor survey. Same wiggles as in (a), but: wiggles from 15 to 25 have

been replaced with the wiggles from 19 to 29, same interface (simulating misplaced receivers); wig-

gles from 60 to 89 have been replaced with wiggles recorded in the same position but with a different

interface (water/Plexiglas, simulating a change in the physical properties of the reservoir). (c) Squared

differences of the two survey, computed for each sample separately. Notably the largest values are

associated with “misplaced receivers”. See Section 4.1 for the details of this experiment.

Figure 3. Example of data analysis for reconstructing the Covariance matrix of the error associated

to trace 155. (a) Zoom of the traces close to trace 155. The yellow box indicates the traces used for

estimating the standard deviation and the correlation model needed to compose the Covariance matrix.

(b) Stack and standard deviation for the traces in the yellow box in (a). The orange line and the dashed

orange lines represent the stack and the standard deviation, respectively. Grey lines report the traces in

the yellow box in (a). (c) Residuals between the stack and each single trace in the yellow box in (a). (d)

Auto-correlation of the residuals in (c). The orange line shows the average of all autocorrelation curves

(grey lines). The green line displays the best-fitting curve, modelled using the function in Eq. 6 [Kolb

and Lekić, 2014].

ADDITIONAL FIGURES663
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Figure 4. Example of a model. The rectangles represent the cell, coloured according to their weights.

Where cells overlap, weights are summed. Each data point (dots) has an associated weight. Data points

outside all cells are associated to a weight wi j = 0.0. Yellow circles represent cell nuclei. To make the

figure readable, only one of every 15 data-point is plotted.

Figure 5. Results for a simple case: misplacement of receivers. (a) Baseline survey. The grey area

denotes where the signal is absent. (b) Monitor survey. See Section 4.1 for details on how the monitor

survey is created. (c) Mean posterior weight wi j associated to each data point (i-th sample on the j-

th trace). (d) Posterior standard deviation of wi j. The yellow box indicates the wiggles that changed

between the Baseline and Monitor surveys.

Figure 6. Results for a simple case: changes in the physical properties of the reservoir. See Figure 5

for details.

Figure 7. Results for a complex case: misplacement of receivers and changes in the physical properties

of the reservoir, separated. See Figure 5 for details.

Figure 8. Results for a complex case: misplacement of receivers and changes in the physical prop-

erties of the reservoir, overlapping. See Figure 5 for details. Yellow boxes indicate changes between

monitoring and baseline surveys in Figure 5 have been removed for improving readability.

Figure 9. Details of the results for a complex case: misplacement of receivers overlapping changes in

the physical properties of the reservoir. (a) Monitor survey. The three letters indicate different area with:

[A] misplaced receivers; [B] misplaced sensors and changes in the reservoir, and [C] only changes in

reservoir. (b) Mean posterior weight Wi j associated with each data point (i-th sample at the j-th trace).

(c) Posterior standard deviation of Wi j. See Section 4.2 for details.
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Figure 10. (a) Mean posterior weight Wi j associated with each data point (i-th sample at the j-th

trace). Posterior standard deviation of Wi j is shown as red contour lines. See Section 4.2 for details. (b)

Same as in Figure 2c, point-wise L2 difference between monitoring and baseline surveys. (c) NRMS

for each trace of the monitoring survey with respect to baseline survey. NRMS computed as in Kragh

and Christie [2002]

Figure S1.Details on the trans-D sampling for the simple case: misplacement of receivers. (a) PPD664

for the number of sectors in the model. (b) Acceptance rate for the seven moves composing the recipe665

for the trans-D sampling. Outcomes for each move are labelled as: “+1”, move has been accepted666

(candidate model improved the fit); “0”, move has been rejected; “-1”, move has been accepted, but the667

candidate does not improve the fit. (c) Variation of the number of cells in the sampled models for all668

five chains. A blue box indicates the “burn-in” period for which sampled models are not considered.669
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