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Abstract

High-resolution climate models (˜28 km grid spacing) can permit realistic simulations of tropical cyclones (TCs), thus enabling

their investigation in relation to the climate system. On the global scale, previous works have demonstrated that the Community

Atmosphere Model (CAM) version 5 presents a reasonable TC climatology under prescribed present-day (1980-2005) forcing.

However, for the Western North Pacific (WNP) region, known biases in simulated TC genesis frequency and location under-

represent the basin’s dominant share in observation. This study addresses these model biases in WNP by evaluating WNP TCs

in a decadal simulation, and exploring potential improvements through nudging experiments. Among the major environmental

controls of TC genesis, the lack of mid-level moisture is identified as the leading cause of the deficit in simulated WNP TC genesis

over the Pacific Warm Pool. Subsequent seasonal experiments explore the effect of constraining the large-scale environment

on TC development by nudging WNP temperature field towards reanalysis at various strengths. Temperature nudging elicits

significant response in TC genesis and intensity development, as well as in moisture and convection over the Warm Pool. These

responses are sensitive to the choice of nudging timescale. Overall, the nudging experiments demonstrate that improvements

in the large-scale environment can lead to improvements in simulated TCs. The verification of the environmental controls

for simulated TC genesis suggests future model developments in relation to model physics. The potential improvements will

contribute to the understanding of how the mean state of current or future climates may give rise to extremes such as TCs.
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Abstract13

High-resolution climate models (∼28 km grid spacing) can permit realistic simulations14

of tropical cyclones (TCs), thus enabling their investigation in relation to the climate15

system. On the global scale, previous works have demonstrated that the Community At-16

mosphere Model (CAM) version 5 presents a reasonable TC climatology under prescribed17

present-day (1980-2005) forcing. However, for the Western North Pacific (WNP) region,18

known biases in simulated TC genesis frequency and location under-represent the basin’s19

dominant share in observation. This study addresses these model biases in WNP by eval-20

uating WNP TCs in a decadal simulation, and exploring potential improvements through21

nudging experiments. Among the major environmental controls of TC genesis, the lack22

of mid-level moisture is identified as the leading cause of the deficit in simulated WNP23

TC genesis over the Pacific Warm Pool. Subsequent seasonal experiments explore the24

effect of constraining the large-scale environment on TC development by nudging WNP25

temperature field towards reanalysis at various strengths. Temperature nudging elicits26

significant response in TC genesis and intensity development, as well as in moisture and27

convection over the Warm Pool. These responses are sensitive to the choice of nudging28

timescale. Overall, the nudging experiments demonstrate that improvements in the large-29

scale environment can lead to improvements in simulated TCs. The verification of the30

environmental controls for simulated TC genesis suggests future model developments in31

relation to model physics. The potential improvements will contribute to the understand-32

ing of how the mean state of current or future climates may give rise to extremes such33

as TCs.34

1 Introduction35

Tropical cyclones (TCs), an extreme form of organized deep convection, typically36

have a horizontal spatial scale on the order of ∼1000 km. The potentially severe soci-37

etal impacts of these weather events add to the motivation for their investigation under38

current and future climates (e.g., Bakkensen & Mendelsohn, 2019). With computational39

advances, high-resolution general circulation models (GCMs), with horizontal grid spac-40

ing finer than 50 km, permit the explicit simulation of TCs as a part of the global cli-41

mate system (Zhao et al., 2009; Shaevitz et al., 2014; Bacmeister et al., 2014; Murakami42

et al., 2015; K. Reed et al., 2015; Walsh et al., 2015; Bacmeister et al., 2018; Stansfield43

et al., 2020). Many of these TC-permitting GCMs present a fairly realistic global clima-44
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tology of TC tracks, although model-specific biases often emerge at the basin scale (e.g.45

Wehner et al., 2017; Camargo et al., 2020; Roberts et al., 2020). For example, the Com-46

munity Atmosphere Model version 5 (CAM5) with a horizontal grid spacing of ∼28 km47

simulates a reasonable TC distribution at the global scale, but regional biases in TC gen-48

esis frequency and location persist across different configurations, especially for the West-49

ern North Pacific (WNP) basin (Bacmeister et al., 2014; Wehner et al., 2014; K. Reed50

et al., 2015; Bacmeister et al., 2018). These biases underrepresent the basin’s share in51

global TC climatology, complicating the interpretation of future projections on both re-52

gional and global scales.53

These model- and region-specific biases in simulated TCs are often linked to the54

mean state of the surrounding large-scale environment, in particular the thermodynamic55

and dynamic conditions affecting TC genesis and development. Of these, ocean coupling56

have been shown to improve TC intensity development via air-sea fluxes (Ogata et al.,57

2015; H. Li & Sriver, 2018; Scoccimarro et al., 2017). Notably, H. Li and Sriver (2018)58

also discussed improvement in convection over the Pacific Warm Pool with slab and dy-59

namic ocean coupling. For the atmospheric component, a well-known sensitivity for sim-60

ulated TCs in GCMs is the choice of convective parameterization (K. A. Reed & Jablonowski,61

2011; Zhao et al., 2012; Zarzycki & Jablonowski, 2015; Wehner et al., 2017). More specif-62

ically, Wehner et al. (2014) discussed the representation of extreme precipitation and TCs63

in high-resolution CAM5. While the high tail-end of precipitation distribution is bet-64

ter represented at TC-permitting resolutions, the mean precipitation climatology degraded65

relative to the standard lower resolution (Bacmeister et al., 2014). These analyses raise66

the question of the relationship between the simulated mean state of the convective en-67

vironment and TCs on the extreme end.68

To identify the linkages between the large-scale environment and simulation fea-69

tures, nudging is a helpful technique which relaxes the simulation towards observation70

(Haseler, 1982; Klinker, 1990). Previous studies have explored the effects of nudging on71

regional TC simulation, including the western North Pacific (Feser & Barcikowska, 2012;72

Choi & Lee, 2016; Barcikowska et al., 2017; Moon et al., 2018), the North Atlantic (Knutson73

et al., 2007), and the Bay of Bengal (Yesubabu et al., 2014). In cases where the large-74

scale winds are the target of constraint, spectral nudging (e.g. von Storch et al., 2000)75

is implemented on the wind field only, at spatial scales greater than that of TCs (e.g.76

Feser & Barcikowska, 2012; Wang et al., 2013; Choi & Lee, 2016; Barcikowska et al., 2017).77
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On the other hand, when multiple state variables – velocity, temperature, and humid-78

ity – are nudged, the respective roles of dynamic and thermodynamic factors on the model79

behavior often merit further study (Knutson et al., 2007).80

In this study, we explore this question: Does improved simulation of the large-scale81

mean environment lead to improved simulation of TCs in high-resolution CAM5? We82

first evaluate the 1980-2005 decadal climatology of simulated TCs in CAM5 in detail over83

WNP. Biases are identified in the mean state of the large-scale environment that are re-84

sponsible for the biases in simulated TCs. Subsequently we carry out additional seasonal85

simulation experiments to address these mean-state biases, with and without nudging86

relevant state variables towards observation. Section 2 details the data, methods and ex-87

perimental design. Section 3 presents the results. Finally, Section 4 discusses the con-88

clusions and further research.89

2 Data and Methods90

2.1 Community Atmosphere Model version 5, and the Decadal Exper-91

iment92

The model simulations use CAM5, fully described in Neale et al. (2012). The model93

physics consist of a moist turbulence scheme (Bretherton & Park, 2009), shallow con-94

vection scheme (Park & Bretherton, 2009), deep convection (G. J. Zhang and McFar-95

lane (1995) with modifications, see Neale et al. (2012) for details), cloud microphysics96

(Gettelman et al., 2008), and other components. The modal aerosol model is implemented97

with prognostic aerosols (Easter et al., 2004).98

Both the decadal and seasonal simulations are configured with the finite-volume99

dynamical core at 0.25◦ horizontal resolution. The boundary condition and other forc-100

ing follow the protocols of the Atmospheric Model Intercomparison Project (AMIP; see101

Gates, 1992; Gates et al., 1999), with prescribed sea surface temperature, sea ice, and102

greenhouse gases. The setup of the decadal simulation is further described in K. Reed103

et al. (2015). High-resolution CAM5 (at 0.25◦ horizontal resolution) has been extensively104

used and evaluated for TC simulation under various AMIP configurations (Wehner et105

al., 2014; Bacmeister et al., 2014; K. Reed et al., 2015; Zarzycki & Jablonowski, 2015;106

Zarzycki, 2016; K. A. Reed et al., 2019).107
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2.2 The Seasonal Experiments and Method for Nudging108

The nudging toolbox in the Community Earth System Model framework provides109

a platform for model testing (NCAR, 2017). This module provides an extra forcing term110

for model prognostic variables (temperature, specific humidity, U- and V-wind), driv-111

ing them towards a prescribed state often derived from reanalyses, while the rest of the112

model operates as in free run. The forcing term is typically in the following form, in the113

example of temperature (T ):114

˙Tndg = C(x, y, z)
Tmodel(t)− Tana(t)

τ
, 0 ≤ C ≤ 1 (1)115

where C is a coefficient that specifies the three-dimensional coverage and strength116

of nudging. The nudging timescale (τ) is typically set to six hours, synchronizing with117

the temporal resolution of reanalysis data. Reducing C is equivalent to relaxing the nudg-118

ing timescale and reducing the strength of nudging.119

Figure 1. The value of C used for the nudging experiments, showing the horizontal coverage

on all vertical levels.
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The seasonal experiments with nudging are motivated by the biases in the large-120

scale mean state connected to the biases in simulated TCs from the free-running decadal121

simulation, discussed in Section 3.1. Based on the cold and dry biases we find in the decadal122

simulation, we have chosen to nudge the temperature, with the expectation that the bi-123

ases in specific humidity (q) will also be reduced when the temperature is constrained.124

The impact of directly nudging specific humidity instead is briefly discussed in Section125

4. These seasonal experiments are conducted for 1993, an ENSO-neutral year with an126

average number of WNP TCs, to avoid the impact of El Niño or La Niña years on the127

seasonal climatology of WNP TCs. The temperature field from ERA-Interim (Dee et al.,128

2011) is preprocessed onto CAM5 grids for the nudging experiments. We explore the ef-129

fect of temperature nudging on WNP large-scale environment and subsequent TC gen-130

esis with a range of nudging strength: CTRL case (no nudging), T(0.125) case (1/8 nudg-131

ing strength, τ = 48h), T(0.5) case (1/2 nudging strength, τ = 12h), and T(full) case132

(full nudging, τ = 6h). Each case comprises of five ensemble runs. For each run, the133

simulation is initialized from ERA-Interim on April 1st, 1993, and ran through October134

with their respective nudging strength. The analysis focuses on July-October (JASO),135

the peak season for WNP TCs. The same nudging window (Fig. 1) is implemented across136

all three nudging cases, covering WNP in the horizontal and invariant in the vertical.137

In a supplementary set of experiments, only the vertical levels above 850 hPa are nudged138

to allow free evolution of the lower levels. This does not qualitatively change the results139

from all-level nudging. Except the nudging, the CAM5 setup for the seasonal experiment140

is otherwise identical with the decadal simulation.141

2.3 Validation and Diagnostics142

Observed TC tracks are taken from the International Best Track Archive for Cli-143

mate Stewardship (IBTrACS; Knapp et al., 2010), and all TCs from the WNP basin are144

included in the comparison to simulation. Simulated TCs from both the decadal and sea-145

sonal experiments are tracked from three-hourly model outputs by the TempestExtremes146

package (Ullrich & Zarzycki, 2016), based on threshold criteria of minimum sea level pres-147

sure, maximum wind speed, a warm core, and duration of persistence. Sensitivity of the148

tracking criteria is discussed by Zarzycki and Ullrich (2017), and we find that the results149

of this study concerning simulated TC tracks are robust over a number of available track-150
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ing methods, including that from Zhao et al. (2009), as well as various options for warm151

core detection in Zarzycki and Ullrich (2017).152

To evaluate the large-scale environment of CAM5 simulations, ERA-Interim (Dee153

et al., 2011) and Modern-Era Retrospective analysis for Research and Applications Ver-154

sion 2 (MERRA2; Gelaro et al., 2017) are used for the thermodynamic and dynamic fields.155

Specifically, the moisture fields are discussed by Berrisford et al. (2011) for ERA-Interim,156

and Bosilovich et al. (2017) for MERRA2. In addition, the global precipitation clima-157

tology project (GPCP; Adler et al., 2003) dataset is used for precipitation, and NOAA’s158

Climate Data Record (CDR; Lee, 2014) is used for outgoing longwave radiation.159

To inspect the simulated large-scale environment in relation to the genesis of TCs,160

genesis potential index (GPI, see Emanuel, 2010) is calculated from the monthly fields161

of CAM5 simulations and reanalyses. The GPI is based on an empirical relationship be-162

tween TC genesis and four large-scale environmental controls: low-level (850 hPa) ab-163

solute vorticity (η), mid-level (600 hPa) moist entropy deficit (χ), TC potential inten-164

sity (PI; see Bister & Emanuel, 2002), and vertical wind shear (VWS):165

GPI ≡ |η|3χ−4/3MAX[(PI − 35ms−1), 0]2(25ms−1 + VWS)−4 (2)166

where moist entropy deficit (χ) and moist entropy (s) are defined as follows (Emanuel167

et al., 2008):168

χ ≡ s∗mid − smid

s∗surface − s∗mid

(3)169

s ≡ cplnT −Rdlnp+
Lvq

T
−RvqlnRH (4)170

In Eq. 3, s∗ represents saturation moist entropy at the specified pressure level. In171

Eq. 4, cp is the heat capacity of dry air, Rd is the gas constant of dry air, p is pressure,172

Lv is the latent heat of vaporization following Bryan (2008), Rv is the gas constant of173

water vapor, and RH is relative humidity. As a metric of mid-level moisture, moist en-174

tropy deficit (χ) is closely related to relative humidity, which was used in a previous for-175

mulation of GPI (Emanuel & Nolan, 2004).176
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For the statistical diagnosis, pairwise statistical distances between the CAM5 ex-177

periments and the observed records are calculated using the Z-statistics from the two-178

sided Kolmogorov-Smirnov test (see Eq. 5.17–18 from Wilks, 2011):179

Zs ≡ (
n1n2
n1 + n2

MAX|F (x1)− F (x2)|)1/2 (5)180

where n1 and n2 are the sample sizes, and F (x1) and F (x2) are the empirical cu-181

mulative distribution functions (CDF).182

3 Results183

3.1 WNP TC Genesis in CAM5 Decadal Simulation (1980-2005)184

In the CAM5 decadal simulation, WNP TC genesis is biased in both location and185

frequency, which subsequently affect track intensity development. Fig. 2 shows WNP186

TC tracks and intensity from observation and the decadal simulation of the peak sea-187

son (July-October), which have included TCs that developed east of 180◦ E and moved188

into the basin. As identified by previous studies (Bacmeister et al., 2014; Wehner et al.,189

2014; K. Reed et al., 2015), the simulated WNP TC frequency is lower than observation190

by 45%. Moreover, the lack of TC genesis in the lower latitudes (near absence south of191

10◦ N) in the CAM5 decadal simulation leads to biases in the spatial pattern of TC in-192

tensity development. As simulated TCs form at higher latitudes than in observation, the193

latitudes at which they mature in intensity show a corresponding shift to the north, from194

about 20◦ N in observation to about 30◦ N in simulation. These biases would negatively195

affect the representation of landfalling statistics, as well as TC-induced extreme precip-196

itation over land.197

The climatology of simulated GPI reflects the biases in simulated TC genesis (Fig.198

3). Note that by only keeping TCs formed in WNP, the simulated TC frequency is fur-199

ther reduced from Fig. 2. In observation (Fig. 3, middle column), the area of high GPI200

south of 20◦ N inside the Warm Pool corresponds well to the main development region201

seen in TC genesis density. In the CAM5 simulation (Fig. 3, left column), while the spa-202

tial patterns of TC genesis and GPI show comparable agreement, the centers of both are203

shifted north of 20◦ N, out of the Warm Pool. This northward bias is further reflected204

in the right column of Fig. 3, showing the CAM5-to-observation ratio for TC genesis and205
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Figure 2. WNP TC tracks and intensity from observation and CAM5 decadal simulation,

July-October 1980-2005. The annual average number of TC genesis within the season is shown in

the upper right corner.

GPI; in the CAM5 simulation, both TC genesis and GPI are lacking over the Warm Pool.206

Repeating the comparison with observed GPI from MERRA2 (not shown) results in con-207

sistent patterns. The consistency between simulated GPI and TC genesis suggests that208

the large-scale environmental controls comprising GPI may help to explain the under-209

lying causes for the biases in TC genesis.210

The contribution to the biases in GPI (Eq. 2) from each components is decomposed211

in Fig. 4, showing the lack of mid-level moisture in the Warm Pool as the leading cause212

of the deficit in GPI in the CAM5 simulation. The overestimation of mid-level moist en-213

tropy deficit is responsible for the underestimation of GPI over the Warm Pool. While214

the lack of relative vorticity also reduces GPI in the main develop region south of 20◦215

N, its contribution to the bias is smaller in magnitude and less spatially expansive. Po-216

tential intensity is generally overestimated in the CAM5 simulation, and vertical wind217

shear generally introduces the smallest bias in GPI. Repeating the decomposition with218

observed GPI from MERRA2, the bias due to mid-level moist entropy deficit is even more219

outstanding over the Warm Pool, while the other three GPI components remain qual-220

–9–



manuscript submitted to Earth and Space Science

Figure 3. Top row: Area-weighted TC genesis density (over a 5◦ radius) of July-October

1980-2005, from observation and CAM5 simulation. Bottom row: Corresponding GPI, scaled

by a constant uniform coefficient to match the magnitude of TC genesis density. The ratio is

calculated by dividing CAM5 simulation by observation (blue: underestimation in CAM5, red:

overestimation in CAM5). The blue box (10-20◦N, 130-150◦E), encompassing 60% of observed

TC genesis, is further examined in Fig. 5 and 9.

itatively similar (not shown). In the interest of diagnosing model biases and exploring221

potential improvements for WNP TC genesis, the dominance of the moist entropy deficit222

component in GPI bias prompts a focused investigation of the biases in Warm Pool mois-223

ture and the potential impact on simulated TCs.224

Focusing on the main development region of 10-20◦N, 130-150◦E (the blue boxes225

in Fig. 3), which encompasses the hot spots of TC genesis in observation, a comparison226

of the vertical profiles of temperature and humidity reveals cold and dry biases over this227

region (Fig. 5). The temperature and humidity fields both contribute to the difference228

in moist entropy deficit (Eq. 3 and 4). Fig. 5(a), (c), and (d) show the difference between229

the CAM5 simulation and ERA-Interim reanalysis, with MERRA2 also plotted for ref-230

erence. For the temperature profile (Fig. 5(a)), while CAM5 falls in between the two re-231

analyses close to the surface, the cold bias grows throughout the higher levels, reaching232
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Figure 4. The four environmental variables comprising GPI, and their respective contribu-

tion to GPI bias in the simulation by ratio, July-October 1980-2005. Note that while the first

two columns are showing the values of the variables, the ratio as in Fig. 3 is calculated over the

corresponding GPI component, e.g. χ−4/3 for moist entropy deficit.

about 1 K at the mid-levels when compared to ERA-Interim. This leads to the corre-233

sponding pattern in the profile of saturation specific humidity (Fig. 5(c)). For specific234

humidity (Fig. 5(d)), while CAM5 behaves more MERRA2-like at the low levels below235

900 hPa, a dry bias exists and is largest at about 800 hPa, and persists throughout the236

higher levels. MERRA2 has more mid-level moisture in this region than ERA-Interim237

in terms of both specific and relative humidity (Fig. 5(b)), consistent with the more out-238

standing bias from the moisture entropy deficit term when using MERRA2 for the GPI239

decomposition in Fig. 4 (not shown). For CAM5, Fig. 5(b) shows that while the satu-240

ration specific humidity is slightly reduced due to the cold bias, the pronounced lack of241
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specific humidity relative to the two reanalyses leads to excessive moisture entropy deficit,242

as seen in Fig. 4.243

The cold and dry biases that extend over the Warm Pool (first and second rows244

in Fig. 6) are potentially linked to known deficits in the convective environment. The245

third row of Fig. 6 shows a comparison of the large-scale flow on the mid-level between246

CAM5 and ERA-Interim over the WNP region. ERA-Interim shows a clear pattern of247

East Asian Summer Monsoon circulation over the western side of the WNP. The spa-248

tial extent of the monsoon trough is associated with the large-scale environment for WNP249

TC development through both humidity and dynamics, as discussed by observation-based250

(Sadler, 1976; L. Wu et al., 2012) and modeling studies (L. Wu et al., 2014; Murakami251

et al., 2011). In CAM5, the flow around the Philippines is lacking the recurvature as seen252

in the reanalysis, contributing to the lack of horizontal convergence over the Warm Pool.253

Combined with a lack of humidity (Fig. 6, second row), the resulting lack of moisture254

flux convergence (Fig. 6, third row) reflects the precipitation deficit (Fig. 6, fourth row)255

discussed by Bacmeister et al. (2014). Another feature related to the lack of convection256

in CAM5 is the surplus of outgoing longwave radiation (Fig. 6, bottom row), partly due257

to the lack of deep convection and high clouds over the Warm Pool (Sobel & Camargo,258

2005; L. Wu et al., 2012). The resulting effect on the energy budget may have contributed259

to the cold bias.260

In this section, we have examined the climatology of WNP TC genesis in the CAM5261

decadal simulation, in relation to the cold and dry biases in the large-scale environment262

over the Warm Pool. While a detailed explanation of the large-scale biases is beyond the263

scope of this study, we hypothesize that improving the large-scale environment will im-264

prove TC genesis. Specifically, correcting the biases in temperature and moisture over265

the Warm Pool may lead to more realistic TC genesis in this region. In the next section,266

we bring this hypothesis to test by conducting a suite of simulation experiments with267

temperature nudging.268

3.2 Seasonal Experiments (1993) with Temperature Nudging269

In the previous section, we have identified the lack of mid-level moisture, connected270

to the overall cold and dry biases over the WNP Warm Pool, as the leading cause of the271

biases in simulated TCs. To explore the improvement of this cold and dry bias and its272
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potential impact on simulated TCs, we conducted seasonal simulation experiments nudg-273

ing the temperature field towards reanalysis with a range of strengths (see Section 2.2).274

As shown in Fig. 7, reducing the bias in temperature by nudging has a pronounced ef-275

fect on TC genesis and subsequent development. As expected, the CTRL case shows sim-276

ilar biases as the previously discussed decadal simulation (Fig. 2), with TC genesis and277

tracks shifted to the north of the Warm Pool. As the strength of nudging increases, TC278

genesis migrates south into the Warm Pool, increasingly consistent with observation. At279

the same time, TC intensity development is increasingly dampened by the strength of280

nudging, presumably due to the interference of the nudging term with the evolution of281

TCs’ structure. On the other hand, the improvement in TC genesis location potentially282

allows TC tracks to more realistically develop and interact with other large-scale sys-283

tems, such as the Western Pacific Subtropical High (George & Gray, 1977; Camargo et284

al., 2007; W. Zhang et al., 2013b). The recurvature and intensification of TCs typically285

observed in this region affects track development as well as landfalling statistics over East286

Asia (Camargo et al., 2007; W. Zhang et al., 2013a). This effect is more readily seen in287

the relaxed nudging cases, T(0.125) and T(0.5), where more TC tracks recurve while in-288

tensifying compared to the CTRL case.289

The improvements in TC genesis in the nudging cases are consistent with GPI, with290

major contribution from the moist entropy component (Fig. 8). For the CTRL case, GPI291

and its components (not shown) are similar to the previously analyzed decadal clima-292

tology. We note that even in the T(full) case, the response of moisture does not align293

perfectly with the reanalysis. Nevertheless, all the nudging cases show a marked decrease294

in mid-level moist entropy deficit over the Warm Pool, thus decreasing this term’s con-295

tribution to the bias in GPI, and improving the pattern of GPI over the basin. Mean-296

while, the relative bias contribution by the other three components of GPI (not shown)297

are not substantially affected. Curiously, the response of mid-level moist entropy deficit298

to the strength of nudging is not monotonic. Specifically, as more easily seen in the bot-299

tom row of Fig. 8, mid-level moist entropy deficit increased east of the Philippines in T(full)300

compared to both T(0.5) and T(0.125), causing a reduction in GPI.301

A closer inspection of the vertical structure of temperature and moisture responses302

to nudging (Fig. 9) helps to explain their combined effect on GPI. For the CTRL case,303

the cold (Fig. 9(a) and Fig. 9(c)) and dry (Fig. 9(d)) biases are consistent with that of304

the decadal simulation shown in Fig. 5. We notice that due to the complexities of model305
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physics, the temperature field from the T(full) case does not exactly replicate the reanal-306

ysis. Nevertheless, in all the nudging cases, the temperature profiles show a clear and307

systematic reduction of the cold bias corresponding to the strength of nudging (Fig. 9(a)).308

Saturation specific humidity (Fig. 9 (b) and (c)) follows the temperature field correspond-309

ingly. Specific humidity (Fig. 9 (b) and (d)), while responding somewhat non-monotonically310

to the strength of nudging, shows marked improvement to the dry bias above the bound-311

ary layer. At the mid-level, all three nudging cases (T(0.125), T(0.5) and T(full)) are312

much closer to ERA-Interim in specific humidity (Fig. 9 (d)) than the overly dry CTRL313

case. Focusing on the 600 hPa level, we observe that compared to T(0.5) and T(0.125),314

T(full) is both warmer and dryer (Fig. 9 (c) and (d)), thus having a lower relative hu-315

midity and higher moist entropy deficit, in explanation of the previously discussed pat-316

terns in Fig. 8. We note that at the lower levels, temperature nudging may lead to dry-317

ing, most pronounced in the T(full) case (Fig. 9 (d)). Overall, while there are subtleties318

in the responses of temperature and moisture across the nudging cases at different lev-319

els, temperature nudging can improve both the cold and dry biases, particularly above320

the boundary layer.321

The spatial patterns of the response of temperature, moisture, and precipitation322

over the Warm Pool (Fig. 10) are consistent with the relationships discussed above. As323

seen in the vertical profiles (Fig. 9), while 600 hPa temperature fields from the nudg-324

ing cases become closer to the reanalysis with increasing strength of nudging, the spe-325

cific humidity field of T(full) drops below that of T(0.5). This increase in the dry bias326

from T(0.5) to T(full) is possibly due to the over-reaction of convective activities in T(full),327

evident in excessive precipitation (Fig. 10, bottom row). The T(0.125) case also shows328

an increase in precipitation in the WNP region from CTRL, but not nearly as much as329

in the T(0.5) and T(full) cases, and still has much lower precipitation in the Warm Pool330

compared to GPCP. To summarize the responses of other aspects of circulation and con-331

vection discussed for the decadal simulation in Fig. 6, both T(0.5) and T(full) are qual-332

itatively closer to observation than T(0.125). For the East Asian Summer Monsoon (not333

shown), while both T(0.5) and T(full) substantially improved the representation of the334

monsoon trough discussed in Section 3.1, T(0.125) falls closer to the biased CTRL case.335

Combined with a lack of specific humidity, the bias in moisture flux convergence of T(0.125)336

coincides with deficits in Warm Pool precipitation, similar to the CTRL case. In all three337

nudging cases, the response of outgoing longwave radiation largely follows that of pre-338
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cipitation, suggesting substantial contribution from convective high clouds. Overall, these339

responses in the large-scale environmental factors to various strengths of temperature340

nudging are consistent with, and coupled to, the responses of simulated TCs shown in341

Fig. 7.342

3.3 Statistics of WNP TC Response to Temperature Nudging343

With the responses of the large-scale environment in mind, we return to the sim-344

ulated TCs for a statistical evaluation on the impact and limitations of temperature nudg-345

ing over various timescales. As previously observed in Fig. 7, temperature nudging af-346

fects TCs for both genesis and the spatial characteristics of intensity development. The347

CDFs (Fig. 11) provide an overview of the meridional distributions of TC genesis and348

lifetime maximum intensity, across all CAM5 cases and the decadal and seasonal sam-349

ples from observation. For TC genesis, the CDF confirms the incremental migration to-350

wards observation as nudging strength increases, consistent with GPI (Fig. 8). For TC351

lifetime maximum intensity, however, while the CDFs likewise migrate southwards, TCs352

from the T(full) case overshoot observation by reaching their lifetime maximum inten-353

sity too close to genesis, likely linked to the reduction in TC intensity (Fig. 7) by full-354

strength nudging towards the state from reanalysis.355

In addition to the CDFs, Fig. 12 shows the Z-statistics from the two-sided Kolmogorov-356

Smirnov test as introduced in Section 2.3. The value of Z-statistics adjusts the maximum357

difference between any given pair of CDFs shown in Fig. 11 by the sample sizes of the358

pair under comparison, where lower values of Z-statistics correspond to lower confidence359

in the statistical difference between the two samples. To confirm the justification for ex-360

perimenting with the 1993 season, the statistical distances between the seasonal CTRL361

case and the decadal simulation (not plotted) are not significant at 0.05 confidence level362

(for TC genesis, p = 0.08; for lifetime maximum intensity, p = 0.11), while both of these363

free-running CAM5 cases are significantly biased from observation (p < 0.01, as shown364

in Fig. 12). For the T(0.125) case, the significant bias in TC genesis location undermines365

the meaningfulness of the apparent homogeneity with seasonal observation for lifetime366

maximum intensity. For the T(full) case, on the other hand, the previously discussed over-367

shoot in lifetime maximum intensity denotes significant distortion to TCs’ development.368

This statistical view suggests T(0.5), corresponding to relaxing the nudging timescale369
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to double that of the model, as striking a balance between ameliorating the environmen-370

tal bias on the large-scale, and permitting TCs’ development on the synoptic scale.371

4 Conclusion and Discussion372

In this study, we evaluate the decadal climatology of high-resolution, TC-permitting373

CAM5 under AMIP configurations with a focus on the WNP basin. The cold and dry374

biases in the large-scale environment over the Warm Pool leads to the lack of WNP TC375

genesis. The general lack of convection is linked to previously identified, resolution-dependent376

precipitation deficit (Bacmeister et al., 2014), as well as biases in the East Asian Sum-377

mer Monsoon circulation (e.g., Z. Li et al., 2018). Seasonal experiments that improve378

the cold bias by nudging temperature over the WNP lead to improvements in moisture,379

precipitation, and TCs. The suite of nudging experiments confirms the importance of380

the large-scale environment on various aspects of convection. The statistics of WNP TC381

genesis and intensity development are sensitive to the choice of timescale for tempera-382

ture nudging. In particular, the forcing in model physics required to restore the large-383

scale environment in favor of TC genesis may disrupt the intensity development.384

Overall, this study shows that improving the simulated large-scale mean climate385

in CAM5, in this case implemented by nudging, can improve aspects of the simulation386

of TCs. The results suggest that improving the simulation of the mean state of thermo-387

dynamic and dynamic fields in CAM – and GCMs in general – would lead to improve-388

ments in the simulation of extreme events such as TCs. Such improvements can poten-389

tially be achieved through continued model development. At the same time, through the390

analysis of conventional and nudged simulations, we note some potential implications and391

caveats as follows.392

The frequency of TC genesis, on either the global or basin scale, is known to be393

sensitive to subgrid-scale physical parameterizations (Zhao et al., 2012; Bacmeister et394

al., 2014; Zarzycki & Jablonowski, 2015), dynamical core (K. Reed et al., 2015), or choices395

in the tracking algorithm (Horn et al., 2014; Zarzycki & Ullrich, 2017). On the other hand,396

as our analysis confirms, it is the spatial pattern of TC genesis that more closely relates397

to the underlying large-scale mean state of the simulated climate. The analysis of the398

seasonal experiments further suggests that in addition to TC frequency, the spatial char-399
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acteristics of TC genesis and intensity development on the regional scale in relation to400

the environmental fields are also important for model evaluation.401

As the implementation of nudging depends on the model aspect to be addressed,402

we argue here that the nudging of temperature serves to investigate the link between the403

large-scale convective environment and TCs. On the other hand, in comparison to pre-404

vious studies, it is worth exploring whether spectral nudging limited to greater horizon-405

tal wavenumbers will significantly impact the results in future work. It is also worth not-406

ing that certain implementations of nudging may lead to unintended results due to re-407

sponses from model physics or dynamics. One example is that, when the boundary of408

the horizontal nudging window is placed too close to the main development region, the409

temperature gradient may artificially introduce spurious vorticity. Additionally, exper-410

iments that directly nudge the specific humidity field would excessively disrupt the time411

evolution of model physics, effectively inhibiting any TC development. By nudging the412

temperature field, the response of moisture ameliorates the dry bias while partially cir-413

cumventing the direct disruption.414

As previously acknowledged, the direct nudging of the large-scale environment vari-415

ables is an exploratory exercise rather than a solution, especially with regard to the re-416

sulting TC intensity damping. Moreover, in terms of convection and the related TC cli-417

matology, the effect of ocean coupling may lead to improvements due to better repre-418

sentation of air-sea fluxes (H. Li & Sriver, 2018), or degradation due to SST biases (Small419

et al., 2014). In the interest of high-resolution climate modeling, including those that420

permit TCs, one of the ongoing critical challenges is understanding the resolution- or coupling-421

dependent biases in the simulated mean climate, which could potentially lead to mech-422

anistic improvements. In this context, idealized test cases specifically designed to address423

these issues can shed light on the physical explanations of model behavior (K. A. Reed424

& Jablonowski, 2012; K. A. Reed & Medeiros, 2016; A. R. Herrington & Reed, 2017; A. Her-425

rington & Reed, 2018). Further investigation of TCs in relation to the mean climate in426

an idealized modeling framework may lead to additional insights, including the impact427

of ocean coupling (X. Wu et al., 2021).428
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Figure 5. (a): Differences from ERA-Interim in the vertical profiles of temperature, of CAM5

decadal simulation and MERRA2, respectively; (b): Vertical profiles of specific humidity and

saturation specific humidity of CAM5 decadal simulation and the two reanalyses; (c): as (a), but

for saturation specific humidity; (d): as (a), but for specific humidity. All profiles are averaged

over 10-20◦N, 130-150◦E (the blue boxes in Fig. 3), July-October 1980-2005. In (b), (c), and (d),

solid lines represent specific humidity, and dashed lines represent saturation specific humidity.
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Figure 6. Large-scale environments in CAM5 and observation, July-October 1980-2005: 600

hPa temperature, specific humidity, wind (vectors) and horizontal convergence (shaded contours),

horizontal convergence of moisture flux, precipitation, and outgoing longwave radiation.
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Figure 7. WNP TC tracks and intensity from observation and CAM5 seasonal experiments

(see Section 2.2 for details), July-October 1993. In the seasonal experiments, all tracks from the

five ensemble members are shown, while the number of TCs is averaged, shown in the upper right

corner.

Figure 8. GPI from observation and CAM5 seasonal experiments, July-October 1993 as in

Fig. 3, and the moist entropy deficit component with its contribution to GPI bias as in Fig. 4.
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Figure 9. Same as Fig. 5, but for CAM5 seasonal experiments (ensemble average for each

case of experiment) and the two reanalyses, July-October 1993.
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Figure 10. Large-scale environments in CAM5 seasonal experiments and observation, aver-

aged over July-October 1993: 600 hPa temperature, specific humidity, and precipitation.

Figure 11. Cumulative distribution functions for the latitude of (a) TC genesis, and (b)

lifetime maximum intensity.
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Figure 12. The Z-statistics from the two-sided Kolmogorov-Smirnov test (see Section 2.3 for

details) between the CAM5 cases and observed decadal and seasonal records. Higher values of Z-

statistics correspond to higher confidence levels for rejecting the null hypothesis of homogeneity,

as indicated by the two shaded zones in the background. Light blue zone: The null hypothesis

cannot be rejected at 0.05 confidence level; Light gray zone: The null hypothesis can be rejected

at 0.01 confidence level.
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