
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
72
10
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Scaling laws for mixed-heated stagnant-lid convection and

application to Europa

Frederic Deschamps1 and Kenny vilella2

1Academia Sinica
2Hokkaido University

November 23, 2022

Abstract

Because rocks and ices viscosities strongly depend on temperature, planetary mantles and ice shells are often thought to

be animated by stagnant-lid convection. Their dynamics is further impacted by the release of internal heat either through

radioactive isotopes decay or tidal dissipation. Here, we quantify the impact of internal heating on stagnant-lid convection.

We performed numerical simulations of convection combining strongly temperature-dependent viscosity and mixed (basal and

internal) heating in 3D-Cartesian and spherical geometries, and used these simulations to build scaling laws relating surface

heat flux, Φsurf, interior temperature, Tm, and stagnant lid thickness, d lid, to the system Rayleigh number, heating rate, H,

and top-to-bottom viscosity ratio, Δη. These relationships show that Tm increases with H but decreases with Δη, while Φsurf

increases with H and Δη. Importantly, they also describe heterogeneously heated systems well, provided that the maximum

dissipation occurs in hottest regions. For H larger than a critical value H crit, the bottom heat flux turns negative and the

system cools down both at its top and bottom. Two additional interesting results are that 1) while the rigid lid stiffens with

increasing H, it also thins; and 2) H crit increases with increasing Δη. We then use our scaling laws to assess the impact of

tidal heating on Europa’s ice shell properties and evolution. Our calculations suggest a shell thickness in the range 20-80 km,

depending on viscosity and dissipated power, and show that internal heating has a stronger influence than the presence of

impurities in the sub-surface ocean.
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Abstract. Because rocks and ices viscosities strongly depend on temperature, planetary 25 

mantles and ice shells are often thought to be animated by stagnant-lid convection. Their 26 

dynamics is further impacted by the release of internal heat either through radioactive isotopes 27 

decay or tidal dissipation. Here, we quantify the impact of internal heating on stagnant-lid 28 

convection. We performed numerical simulations of convection combining strongly 29 

temperature-dependent viscosity and mixed (basal and internal) heating in 3D-Cartesian and 30 

spherical geometries, and used these simulations to build scaling laws relating surface heat flux, 31 

surf, interior temperature, Tm, and stagnant lid thickness, dlid, to the system Rayleigh number, 32 

heating rate, H, and top-to-bottom viscosity ratio, . These relationships show that Tm 33 

increases with H but decreases with , while surf increases with H and . Importantly, they 34 

also describe heterogeneously heated systems well, provided that the maximum dissipation 35 

occurs in hottest regions. For H larger than a critical value Hcrit, the bottom heat flux turns 36 

negative and the system cools down both at its top and bottom. Two additional interesting 37 

results are that 1) while the rigid lid stiffens with increasing H, it also thins; and 2) Hcrit increases 38 

with increasing . We then use our scaling laws to assess the impact of tidal heating on 39 

Europa’s ice shell properties and evolution. Our calculations suggest a shell thickness in the 40 

range 20-80 km, depending on viscosity and dissipated power, and show that internal heating 41 

has a stronger influence than the presence of impurities in the sub-surface ocean. 42 
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 44 

Plain language summary. Convection is a mode of heat transfer that is thought to play or 45 

have played a key role in the cooling of planetary mantles and ice shells of icy bodies. The 46 

convection vigor, efficiency and ability to transport heat are all controlled by the properties of 47 

the systems in which it settles. In planetary mantles and ice shells, two important parameters 48 

are the variations of viscosity triggered by changes in temperature, which lead to the formation 49 

of a rigid lid at the top of the system, and the production of heat within the system, which 50 

weakens hot plumes rising from its base. In this article, we assess the combined effects of these 51 

two parameters. For this, we perform numerical simulations of convection, from which we 52 

deduce quantitative relationships between input and output parameters, the later including 53 

internal temperature and surface heat flux. We show that both heat flux and temperature 54 

increase with increasing internal heat production, while increasing the thermal viscosity 55 

contrast increases heat flux, but reduces temperature. We then apply our relationships to the 56 

case of Europa, a moon of Jupiter, and show that the thickness of its ice shell should be in the 57 

range 20-80 km.    58 

 59 

 60 

Key points. 61 
 62 

 We run simulations of stagnant-lid mixed-heated convection and build temperature and heat 63 

flux scaling laws from them 64 

 Stagnant lid stiffens and thins with increasing rate of internal heating 65 

 The critical rate of internal heating at which bottom heat flux turns negative increases with 66 

increasing viscosity ratio 67 

68 
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1. Introduction 69 

Heat transfer through planetary mantles and ice shells of large icy bodies is controlled by the 70 

properties of these systems. Due to the strong temperature-dependence of silicate rocks and ices 71 

viscosities, convection within these systems is likely to operate in the so-called stagnant-lid 72 

regime (e.g., Christensen, 1984; Moresi and Solomatov, 1995), unless, as in the case of the 73 

Earth, specific conditions allow the development of plate tectonics. In stagnant-lid convection, 74 

a rigid layer forms at the top of the system as an extension of the top thermal boundary layer 75 

(TBL). Because this layer is not mobile and transports heat by conduction, its presence strongly 76 

alters heat transfer through the system. Another process altering the ability of convection to 77 

transfer heat towards the surface is the production of heat within the system. In systems heated 78 

both from their bases and their interiors, hot plumes rising from the bottom TBL get weaker 79 

with increasing rate of internal heating, and may not reach the surface if heat production is too 80 

high (e.g., Travis and Olson, 1994; Deschamps et al., 2010a). As a result, the amount of heat 81 

that can be extracted from regions located beneath the system is reduced. Ultimately, for 82 

internal heating rate larger than a critical value, the bottom heat flux turns negative, meaning 83 

that the system cools down both from its top and its base. In rocky planets, a source of internal 84 

heating is the decay of long-lived radio elements (235U, 238U, 232Th, and 40K). Short-lived 85 

elements, mainly 26Al, may have further played a role in the evolution of planetesimals, the 86 

parent bodies of rocky planets and asteroids. In the case of icy moons, tidal dissipation provides 87 

a source of heat within or at the bottom of the ice shell. The amount of heat released, and thus 88 

the evolution of the body, depends on its orbital properties and may vary with time (e.g., Tobie 89 

et al., 2003, 2005; Roberts and Nimmo, 2008), with internal heating being null or negligible if 90 

the body is tidally locked or if it moves on a quasi-circular orbit. Quantifying the influence of 91 

internal heating on the ability of rocky mantles and ice shells to transport heat towards the 92 
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surface is therefore essential to model accurately the long term evolution of icy bodies and 93 

rocky planets.    94 

  A convenient way to quantify these effects is to build relationships (or scaling laws) 95 

between the key parameters describing thermal evolution (mainly interior temperature and 96 

surface heat flux) and the system properties, for instance its rheology, Rayleigh number (which 97 

measures the vigor of convection and depends itself on the system physical and thermal 98 

properties), and rate of internal heating. Scaling laws may be built from series of numerical 99 

simulations of convection, in which one or more parameters are systematically varied. Here, 100 

we conduct such a study in the case of mixed-heated systems animated by stagnant-lid 101 

convection. In addition to building scaling laws, we parameterize the value of internal heating 102 

at which the bottom heat flux turns negative. Finally, we use our results to model the properties 103 

and evolution of Europa’s outer ice shell.   104 

 105 

2. Numerical model and simulations 106 

We performed numerical simulations of thermal convection for an incompressible, infinite 107 

Prandtl number fluid using StagYY (Tackley, 2008). The fluid is heated both from the bottom 108 

and from within, and the internal heating is controlled by the heat production per unit of mass, 109 

H. The conservation equations of momentum, mass, and energy are then 110 

  𝛁𝜎 − 𝛁𝑃 = −𝛼𝜌𝑔𝑇𝒆𝒛 (1) 111 

  𝛁 ∙ 𝒗 = 0 (2) 112 

and 𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
= 𝑘𝛁 ∙ (𝛁𝑇) − 𝜌𝐶𝑃𝒗 ∙ 𝛁𝑇 + 𝜌𝐻 , (3) 113 

where the elements of the deviatoric stress tensor, 𝜎, are 𝜎𝑖𝑗 = 𝜂(𝜕𝑣𝑖 𝑥𝑗⁄ + 𝜕𝑣𝑗 𝑥𝑖⁄ ), P is the 114 

non-hydrostatic pressure, v the velocity, T the temperature, ez the radial unit vector, , , and 115 

CP, and k the fluid thermal expansion, density, heat capacity and thermal conductivity (all 116 
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assumed constant throughout the system), g the gravity acceleration, and  the fluid viscosity, 117 

which here varies with temperature. Numerical methods used to solve Eqs. (1) to (3) are detailed 118 

in Tackley (2008). 119 

  The geometry is either 3D-Cartesian or 3D-spherical. In this later case, the spherical shell 120 

is modelled with a set of Yin and Yang stripes (Kageyama and Sato, 2004), the shell curvature 121 

being controlled by the ratio between its inner and outer radii, f = rc/R. Depending on the 122 

curvature and on the effective Rayleigh number, Raeff (defined below), the resolution of each 123 

Yin or Yang stripe varies between 192×576 and 512×1536 (corresponding to spherical grids of 124 

384×768 to 1024×2048 points), and the radial resolution of the shell varies between 96 and 192 125 

points. 3D-Cartesian simulations are performed in boxes with a horizontal to vertical aspect 126 

ratio equal to 4 in both x and y directions, and a grid resolution of 128×128×64 points for Raeff 127 

< 106, 256×256×128 points for 106 ≤ Raeff < 108, and 384×384×192 points for Raeff ≥ 108. In 128 

addition, for both 3D-Cartesian and 3D-spherical cases, the grid is vertically refined at the top 129 

and at the bottom of the domain. Overall, this provides a good sampling of plumes and thermal 130 

boundary layers, when they exist. The top and bottom boundaries are free slip and isothermal, 131 

and reflective boundary conditions are imposed on sidewalls of 3D-Cartesian simulations. In 132 

all cases, initial temperature distributions are built from random perturbations superposed on a 133 

1D radial adiabatic profile with thin TBLs at top and bottom. 134 

  Conservation equations are non-dimensionalized with the characteristic properties of the 135 

system. Hereafter, non-dimensional quantities are distinguished from their dimensional forms 136 

by adding a tilde, ~. We used the thickness of the fluid layer, D, as characteristic length, and 137 

the super-adiabatic temperature jump across this layer, T, as characteristic temperature. The 138 

non-dimensional temperature and internal heating rate are then given by 𝑇̃ = (𝑇 − 𝑇𝑠𝑢𝑟𝑓) Δ𝑇⁄ , 139 

where Tsurf is the surface temperature, and 140 

  𝐻̃ =
𝜌𝐻𝐷2

𝑘Δ𝑇
 . (4) 141 
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Non-dimentionalization further implies to replace the source term of momentum equation, 142 

gT, by the Rayleigh number, 143 

   𝑅𝑎 =
𝛼𝜌𝑔Δ𝑇𝐷3

𝜂𝜅
 , (5)  144 

where 𝜅 = 𝑘 𝜌𝐶𝑃⁄  is the thermal diffusivity. This number measures the ratio between buoyancy 145 

and viscous forces, and is an input parameter of our simulations. 146 

  The viscosity of ice strongly depends on temperature. Here, we modelled this dependency 147 

using the Frank-Kamenetskii (FK) approximation,   148 

  𝜂 = 𝜂0exp [−𝑎η
(𝑇−𝑇0)

Δ𝑇
] , (6) 149 

where 0 and T0  are the reference viscosity and temperature, and a a parameter that controls 150 

the amplitude of viscosity variations. This approximation overestimates the surface heat flux 151 

by up to 30 % (e.g., Reese et al., 1999), and it does not account for dependencies of viscosity 152 

on strain rate and grain size. Nevertheless, it facilitates the calculations and allows capturing 153 

the role of one specific parameter (here, internal heating), since a large number of FK 154 

simulations are available in the literature and can be used for comparisons. In the FK 155 

approximation, the non-dimensional viscosity, 𝜂̃ = 𝜂 𝜂0⁄ , is given as a function of the non-156 

dimensional temperature, 𝑇̃, by 157 

  𝜂̃ = exp(−𝑎η𝑇̃) . (7)  158 

The top-to-bottom viscosity ratio,  = exp(a), is an input parameter of our simulations. For 159 

viscosity ratios larger than 104, convection generally operates in the so-called stagnant-lid 160 

regime (e.g., Christensen, 1984; Davaille and Jaupart, 1993; Moresi and Solomatov, 1995), in 161 

which a highly viscous (stagnant) lid develops at the top of the fluid. In this layer, heat is 162 

transported by conduction, thus reducing the heat transfer. Experimental rheological laws for 163 

ice Ih (Durham et al., 2010) imply that the top-to-bottom viscosity ratios through the outer ice 164 



 

 

 7 

shells of icy bodies are much larger than 104. Convection within these shells, if occuring, should 165 

then operate in the stagnant-lid regime. 166 

  In most cases, we assumed homogeneous heating, i.e., H is constant throughout the 167 

system. Tidal dissipation within icy bodies may however depends on viscosity (Tobie et al., 168 

2005), which, in our simulations, varies with temperature. We therefore calculated a few cases 169 

with viscosity-dependent internal heating. Following Roberts and Nimmo (2008), we assumed 170 

that internal heating is given by 171 

𝐻 = 𝐻0 [
𝜔𝜂 𝜇⁄

1+(𝜔𝜂 𝜇⁄ )2
] [

𝜔𝜂𝑟𝑒𝑓 𝜇⁄

1+(𝜔𝜂𝑟𝑒𝑓 𝜇⁄ )
2]⁄                                    (8) 172 

where ref and  are the reference viscosity and rigidity of ice, H0 a constant, and  the orbital 173 

frequency. Note that the reference viscosity in Eq. (8) may be different from that defined in Eq. 174 

(6), provided that in calculations a correction is applied for consistency. Here, because we 175 

assumed that the strongest dissipation occurs close to the melting point of ice, ref is defined at 176 

the bottom of the ice shell (i.e., for 𝑇̃ = 1). In Eq. (6), by contrast, the reference viscosity 0 is 177 

the surface viscosity (for  𝑇̃ = 0), which implies 𝜂𝑟𝑒𝑓 = 𝜂0exp(−𝑎𝜂). The non-dimensional 178 

internal heating rate may then be written 179 

  𝐻̃ = 𝐻̃0 [
𝜁𝑟𝑒𝑓𝜂̃exp⁡(𝑎𝜂)

1+(𝜁𝑟𝑒𝑓𝜂̃exp⁡(𝑎𝜂))
2] [

𝜁𝑟𝑒𝑓

1+𝜁𝑟𝑒𝑓
2]⁄                                    (9) 180 

where 𝜁𝑟𝑒𝑓 = 𝜔𝜂𝑟𝑒𝑓 𝜇⁄  and 𝜂̃ is given by Eq. (7). The viscosity at which dissipation is maximal 181 

depends on the exact value of ref. With  around 4.0×109 Pa, orbital period of a few hours to a 182 

few days (corresponding to  in the range 3.0×10-5-3.0×10-6 s-1), and 5.0×1012 ≤ ref ≤ 5.0×1014 183 

Pas, ref may be chosen in the range 4.0×10-3-4.0. Here, we fixed ref to 1, so that the maximum 184 

dissipation occurs exactly at ref. This further implies that dissipation is strongest in hottest 185 

regions, including plumes heads, as done in Tobie et al. (2003). 186 
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  Because in our simulations viscosity varies throughout the system, the definition of the 187 

Rayleigh number, Ra (Eq. 5), is ambiguous. The input Ra can however be defined at a specific 188 

viscosity (or equivalently, a specific temperature), such that it does not vary during the 189 

simulations. Here, we prescribed the surface Rayleigh number, Rasurf, defined from the surface 190 

viscosity and temperature. In stagnant-lid convection, a better description of the vigor of 191 

convection beneath the lid is given by the effective Rayleigh number, Raeff, calculated with the 192 

viscosity at the temperature of the well-mixed interior (or interior temperature), 𝑇̃𝑚, which is 193 

defined as the volume averaged temperature within the adiabatic region. Following Eqs. (6) and 194 

(8), Raeff is given by 195 

  𝑅𝑎𝑒𝑓𝑓 = 𝑅𝑎𝑠𝑢𝑟𝑓exp(𝑎η𝑇̃𝑚) . (10) 196 

Note that 𝑇̃𝑚, and thus Raeff, are outputs of the simulations. 197 

  A key output observable is the amount of heat transported to the surface, measured with 198 

the heat flux. In mixed-heated systems, the conservation of energy implies that its top and 199 

bottom values, top and bot, satisfy 200 

  Φ𝑡𝑜𝑝 = 𝑓2Φ𝑏𝑜𝑡 +
(1+𝑓+𝑓2)

3
𝐻 , (11) 201 

where f is the ratio between the inner and outer shell radii, equal to 1 in Cartesian geometry. 202 

The characteristic heat flux is defined as the conductive heat flux for pure basal heating in 203 

Cartesian geometry, Φ𝑐𝑎𝑟𝑎𝑐 = 𝑘 Δ𝑇 𝐷⁄ , such that the non-dimensional form of Eq. (11) is 204 

simply obtained by replacing each variable by its non-dimensional equivalent, Φ̃𝑡𝑜𝑝, Φ̃𝑏𝑜𝑡 and 205 

𝐻̃. Equation (11) indicates that, for a given top, the production of heat within the system lowers 206 

the amount of heat that can be extracted from regions located below (for instance, planetary 207 

cores). If internal heating is too large, the system cannot extract heat from the bottom but cools 208 

down both from its top and its bottom (e.g., Moore 2008; Vilella and Deschamps, 2018), 209 

meaning that bot is negative. It is useful to introduce the Urey ratio, measuring the ratio 210 

between the internal heat production and the surface heat flux, 211 
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  𝑈𝑟 =
(1+𝑓+𝑓2)

3

𝐻

Φ𝑡𝑜𝑝
 . (12)  212 

Eqs. (11) and (12) imply that Ur > 1 if bot is negative, and 0 ≤ Ur ≤ 1 otherwise.  213 

  Convection operates only if the convective heat flux is larger than the conductive heat 214 

flux cond, which, for a mixed heated system, depends on depth (Table S1). Its surface 215 

expression is given by 216 

  Φ𝑐𝑜𝑛𝑑,𝑡𝑜𝑝 = 𝑓
𝑘∆𝑇

𝐷
+ (𝑓 + 2)

𝜌𝐻𝐷

6
 , (13) 217 

whose non-dimensional form (with respect to the characteristic heat flux) writes 218 

  Φ̃𝑐𝑜𝑛𝑑,𝑡𝑜𝑝 = 𝑓 +
(𝑓+2)

6
𝐻̃ . (14)  219 

The efficiency of heat transfer is measured with the Nusselt number, Nu, defined as the ratio 220 

between the convective and conductive heat flux. Convection operates if Nu > 1. As an example, 221 

in Cartesian geometry (f = 1), Nu > 1 requires that the surface non-dimensional convective heat 222 

flux, Φ̃𝑡𝑜𝑝, is larger than (1 + 𝐻̃ 2⁄ ). 223 

  Using this setup, we performed 63 simulations in 3D-Cartesian geometry (including 9 224 

cases with heterogeneous heating) and 25 in 3D-spherical geometry (Table 1). For comparison, 225 

we also listed 5 cases with pure bottom heating taken from Deschamps and Lin (2014). Surface 226 

Rayleigh number, top-to-bottom viscosity ratio, and non-dimensional heating rate are taken in 227 

the ranges 1 ≤ Rasurf ≤ 180, 104 ≤  ≤ 108, and 0.5 ≤ 𝐻̃ ≤ 10 respectively, leading to effective 228 

Rayleigh numbers between 2.0×105 and 2.0×108. In 3D-spherical cases, the inner-to-outer radii 229 

ratio is chosen between 0.6 and 0.85. For these ranges of values, the flow is time-dependent and 230 

reaches a quasi-stationary state (meaning that output properties, including 𝑇̃𝑚  and Φ̃𝑡𝑜𝑝 , 231 

oscillate around constant values) after some time. Output properties are estimated after the 232 

quasi-stationary phase has been reached, by time-averaging of each property over several 233 

oscillations.   234 

 235 
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3. Flow pattern and thermal structure  236 

3.1 Flow pattern 237 

Stagnant-lid convection appears for top-to-bottom viscosity ratios larger than 104 (Moresi and 238 

Solomatov, 1995), but its occurrence requires larger viscosity contrasts as the Rayleigh number 239 

(Deschamps and Sotin, 2000) or shell curvature (Yao et al., 2014; Guerrero et al., 2018) 240 

increases. Stein et al. (2013) proposed two criteria to assess the presence of a stagnant lid. First, 241 

a non-dimensional surface velocity, 𝑣̃𝑠𝑢𝑟𝑓, lower than 1; and second a mobility, M, defined as 242 

the ratio between 𝑣̃𝑠𝑢𝑟𝑓 and the root mean square velocity of the whole system, smaller than 243 

0.01. All our simulations satisfy these criteria (Table 1), and should thus belong to the stagnant-244 

lid regime.  245 

  Figures 1 to 3 show snapshots of temperature fields and associated horizontally averaged 246 

profiles for 3D-Cartesian cases with same surface Rayleigh number (Rasurf = 25) and viscosity 247 

ratio ( = 106), but different rates of internal heating, and for 3D-spherical cases with f = 0.6, 248 

Rasurf = 16,  = 106 and, again, different values of 𝐻̃. A stagnant lid is clearly visible in all 249 

cases. A closer examination (section 3.2) indicates that the lid is thinning with increasing 𝐻̃. 250 

Internal heating has a strong impact on the flow structure beneath the lid. With increasing 𝐻̃, 251 

we observe a trend similar to that reported for isoviscous fluids (e.g., Travis and Olson, 1994; 252 

Deschamps et al., 2010a). Plumes are getting thinner, more diffuse and may not reach the 253 

bottom of the stagnant lid, indicating that the growth of hot instabilities in the base thermal 254 

boundary layer (TBL) is more difficult. The flow is progressively controlled by downwellings 255 

and return flow. Importantly, if 𝐻̃ is large enough (Figs. 1g-h, and 2c-d), the bottom TBL 256 

disappears and the heat flux turns negative (Figure 3d and 3f). The system then cools down 257 

both at its top and its bottom, and the Urey ratio (Eq. 12) is larger than 1. 258 

 259 
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3.2 Properties of the stagnant lid 260 

We measured the (non-dimensional) thickness of the stagnant lid, 𝑑̃𝑙𝑖𝑑 , using the method 261 

developed by Davaille and Jaupart (1993), in which the base of the stagnant lid is defined by 262 

the intersection between the tangent at the point of inflexion of the horizontally averaged profile 263 

of vertically advected heat, 𝑣̃𝑧𝑇̃, with the origin axis (𝑣̃𝑧𝑇̃ = 0; left plots in Figure 3). The values 264 

of 𝑑̃𝑙𝑖𝑑 we obtained are reported in Table 1. All other parameters being equal, 𝑑̃𝑙𝑖𝑑 decreases 265 

with increasing rate of internal heating, while both 𝑣̃𝑠𝑢𝑟𝑓  and M are decreasing. Increasing 266 

internal heating thus results in thinner but stronger stagnant lids. 267 

  Because heat is transported by conduction in the stagnant lid, it is possible to derive 268 

analytical expressions for the horizontally averaged temperature in this region by solving the 269 

conduction heat equation. Assuming that internal heating rate and density are constant and that 270 

the surface temperature and heat flux (Tsurf and surf) are known, the (dimensional) temperature 271 

profile is given either by Eq. (S7) in Cartesian geometry, or Eq. (S8) in spherical geometry of 272 

(Supporting Information, SI). Note that these expressions are independent of the lid thickness. 273 

Their non-dimensional forms are 274 

  < 𝑇̃ >= 𝑧̃Φ̃𝑡𝑜𝑝 −
𝐻̃

2
𝑧̃2 (15)  275 

where 𝑧̃ is the non-dimensional depth, and 276 

  < 𝑇̃ >= −
Φ̃𝑡𝑜𝑝

(1−𝑓)
[1 −

𝑅̃

𝑟̃
] +

𝐻̃

6(1−𝑓)2
[2 (1 −

𝑅̃

𝑟̃
) + (1 −

𝑟̃2

𝑅̃2
)] ,  (16) 277 

where 𝑟̃ = (1 − 𝑓)−1 − 𝑧̃ and 𝑅̃ = (1 − 𝑓)−1 are the non-dimensional radius and total radius, 278 

respectively. Solving heat equation for viscosity-dependent internal heating is more complex in 279 

the general case. In our case, however, imposing the maximum dissipation at lowest viscosity 280 

implies that dissipation in the lid is close to zero. A good description of the temperature profile 281 

within the lid is then obtained by setting  𝐻̃ = 0 in Eqs. (15) and (16).  282 
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  The horizontally averaged heat flux within the stagnant lid is given by Eqs. (S11) and 283 

(S12) of SI, whose non-dimensional versions are 284 

  Φ̃(𝑧̃) =
𝑇̃𝑙𝑖𝑑

𝑑̃𝑙𝑖𝑑
+

𝐻̃

2
(𝑑̃𝑙𝑖𝑑 − 2𝑧̃) (17) 285 

and 286 

  Φ̃(𝑧̃) =
𝑇̃𝑙𝑖𝑑

𝑑̃𝑙𝑖𝑑
𝑓𝑙𝑖𝑑

𝑅̃2

𝑟̃2
−

𝐻̃

6(1−𝑓)
[𝑓𝑙𝑖𝑑(1 + 𝑓𝑙𝑖𝑑)

𝑅̃2

𝑟̃2
− 2

𝑟̃

𝑅̃
] ,  (18) 287 

where 𝑑̃𝑙𝑖𝑑 ⁡ and 𝑇̃𝑙𝑖𝑑⁡ are the non-dimensional stagnant lid thickness and basal temperature, 288 

respectively, and 𝑓𝑙𝑖𝑑 = (𝑅 − 𝑑𝑙𝑖𝑑) 𝑅⁄ = 1 − (1 − 𝑓) 𝑑𝑙𝑖𝑑 𝐷⁄  is the ratio between the radius of 289 

its base and the total radius. To obtain Eq. (18), it is useful to recall that 𝑅̃ = (1 − 𝑓)−1 . 290 

Equations (17) and (18) can be used to estimate the temperature at the bottom of the lid as a 291 

function of the surface heat flux and stagnant lid thickness. Setting 𝑧̃ = 0 in Eq. (17) and  𝑟̃ =292 

𝑅̃ in Eq. (18), and re-arranging the terms leads to 293 

  𝑇̃𝑙𝑖𝑑 = 𝑑̃𝑙𝑖𝑑 (Φ̃𝑡𝑜𝑝 −
1

2
𝐻̃𝑑̃𝑙𝑖𝑑) (19) 294 

in Cartesian geometry, and 295 

  𝑇̃𝑙𝑖𝑑 =
𝑑̃𝑙𝑖𝑑

𝑓𝑙𝑖𝑑
[Φ̃𝑡𝑜𝑝 −

1

6
𝐻̃

(2−𝑓𝑙𝑖𝑑−𝑓𝑙𝑖𝑑
2)

(1−𝑓)
] (20) 296 

in spherical geometry. Values of 𝑇̃𝑙𝑖𝑑 ⁡deduced either from Eq. (19) or Eq. (20) are reported in 297 

Table 1. 298 

  To check the validity of our approach, we inserted the values of 𝑑̃𝑙𝑖𝑑 we measured (Table 299 

1) and the values of 𝑇̃𝑙𝑖𝑑 calculated by Eqs. (19) and (20) in Eqs. (15) and (16), respectively. 300 

This provides an excellent description of the top part of the horizontally averaged temperature 301 

profiles, corresponding to the stagnant lid (dashed dark red curves in Fig. 3). Note that the 302 

values of 𝑇̃𝑙𝑖𝑑 obtained with Eq. (19) or Eq. (20) are slightly larger than that measured on the 303 

horizontally averaged profiles of temperature. 304 

 305 
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4. Scaling laws 306 

Reconstructing potential thermal evolutions of planets and satellites with parameterized 307 

convection methods requires the knowledge of appropriate relationships between input 308 

parameters (Rayleigh number, viscosity ratio, and rate of internal heating) and observables 309 

(interior temperature, surface heat flux, stagnant lid thickness), or scaling laws for short. Results 310 

from our numerical simulations allow us to build such scaling laws. These are detailed below 311 

and summarized in Table 2. 312 

 313 

4.1 Temperature of the well-mixed interior  314 

Numerical simulations indicate that the interior temperature of an isoviscous, mixed-heated 315 

fluid is well described by a relationship combining the interior temperature for pure bottom and 316 

pure internal heating (Sotin and Labrosse, 1999; Deschamps et al., 2010a). Here, we followed 317 

a similar approach and built a scaling that combines the interior temperature for a bottom-heated 318 

fluid animated by stagnant-lid convection (Deschamps and Lin, 2014; Yao et al., 2014), and for 319 

an internally-heated fluid, leading to 320 

  𝑇̃𝑚 = 1 −
𝑎1

𝑓𝑎2γ
+ (𝑐1 + 𝑐2𝑓) [

(1+𝑓+𝑓2)

3
𝐻̃]

𝑐4 1

𝑅𝑎𝑒𝑓𝑓
𝑐3

 , (21) 321 

where parameters a1, a2 and c1 to c4 can be obtained by inversion of the 𝑇̃𝑚  predicted by 322 

simulations (Table 1), and γ = ∆𝑇 ∆𝑇𝑣⁄  is the non-dimensional inverse of the viscous 323 

temperature scale, Tv, defined as  324 

  ∆𝑇𝑣 = (−
1

𝜂

𝑑𝜂

𝑑𝑇
|
𝑇=𝑇𝑚

)
−1

 . (22) 325 

In the case of Frank-Kamenetskii approximation (Eq. 6),  = a = ln(). For consistency with 326 

scaling laws obtained for pure bottom heating, we fixed a1 and a2 to the values obtained by Yao 327 

et al. (2014), a1 = 1.23 and a2 = 1.5. We then performed two separate inversions, for Ur < 1 and 328 
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Ur > 1, in which we excluded simulations with heterogeneous heating. The inversion method 329 

follows the generalized inversion method of Tarantola and Valette (1982), and we assumed 330 

relative uncertainties of 0.5 % on observed  𝑇̃𝑚  , accounting for the time-variations of this 331 

observable during the steady-state phase. For Ur < 1, the best fitting values are c1 = 4.3, c2 = -332 

2.8, c3 = 0.26 and c4 = 0.96, with a chi-square of 20 (the total number of experiments used for 333 

this inversion being 46). The value of c3 is fairly close to the theoretical value of the Rayleigh 334 

number exponent for a purely internally heated fluid, 0.25 (Parmentier and Sotin, 2000). We 335 

therefore did an additional inversion in which we fixed c3 to 0.25, and (for simplicity) c4 to 1.0, 336 

and found c1 = 3.5 ± 0.12 and c2 = -2.3 ± 0.11, still with a good chi-square, around 30. We 337 

followed a similar procedure for Ur > 1 (28 simulations). In that case, the best fit is obtained 338 

for c1 = 4.5, c2 = -3.1, c3 = 0.34 and c4 = 1.75. Fixing, for simplicity, c3 to 1/3, we obtained c1 339 

= 4.4 ± 0.22, c2 = -3.0 ± 0.17, and c4 = 1.72 ± 0.02, with a chi-square of 39. Figure 4a compares 340 

modelled and observed values of  𝑇̃𝑚. Note that the calculations with heterogeneous heating, 341 

which were all conducted with Ur < 1 but were not included in the inversion process, are well 342 

described by the scaling law for Ur < 1. 343 

  Because the effective Rayleigh number, Raeff, depends on 𝑇̃𝑚, solving Eq. (21) for 𝑇̃𝑚 344 

requires the use of a zero-search method. As a consequence, identifying trends in the variations 345 

of 𝑇̃𝑚  with the input model parameters (surface Rayleigh number, rate of internal heating, 346 

thermal viscosity ratio, and curvature) is not straightforward. However, a close examination of 347 

Table 1 indicates that, other parameters being fixed, 𝑇̃𝑚 increases with 𝐻̃ and f, but decreases 348 

with Rasurf. Changes of 𝑇̃𝑚 with  are more complex (Figure S2a). For 𝐻̃ around 0.5-1.0 and 349 

higher, 𝑇̃𝑚  first decreases with increasing , reaches a minimum for a value of  that 350 

increases with 𝐻̃, and then starts increasing again. For 𝐻̃ < 1, 𝑇̃𝑚 increases monotonically with 351 

, as observed for purely bottom heated convection. Figures S1 and S2, built from Eq. (21) 352 
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further illustrate these trends. Interestingly, for the range of  expected in ice layers, around 15-353 

20 (section 5.1), and  𝐻̃ > 1 one expects 𝑇̃𝑚 to decrease with increasing viscosity ratio.      354 

 355 

4.2 Surface heat flux  356 

Heat flux through thermal boundary layers (TBL) scales as a power law of the Rayleigh number 357 

and of the temperature jump across the TBL (e.g., Moore and Weiss, 1973), implying that in 358 

stagnant-lid convection it also scales as the temperature viscous scale. The horizontally 359 

averaged non-dimensional surface heat flux may then be written as a function of the Rayleigh 360 

number and of the parameter  (section 4.1), which is, again, equal to ln() in the case of the 361 

Frank-Kamenetskii approximation. Figure 4b shows that regardless of  𝐻̃, the surface heat flux 362 

observed in our simulations with Ur < 1 is very well described by the scaling obtained by 363 

Deschamps and Lin (2014) and may thus be written  364 

  Φ̃𝑡𝑜𝑝 = 𝑎
𝑅𝑎𝑒𝑓𝑓

𝑏

𝛾𝑐
 , (23)  365 

where Raeff is the effective Rayleigh number (Eq. 10), and the constants a, b, and c are equal to 366 

1.46, 0.27, and 1.21, respectively. Spherical cases for Ur < 1 also fit well along this 367 

parameterisation, and do not require small correction for f, as suggested by Yao et al. (2014). 368 

A reappraisal of Yao et al. (2014) calculations further shows that for f > 0.6 such a correction 369 

is not needed. Note that Φ̃𝑡𝑜𝑝  implicitly depends on f through Raeff, which increases with 370 

interior temperature 𝑇̃𝑚 . Because 𝑇̃𝑚  decreases with f,  Φ̃𝑡𝑜𝑝  also decreases with increasing 371 

curvature. Interestingly, heat fluxes observed in cases with heterogeneous heating are slightly 372 

lower than those predicted by our scaling, but still fit very well along it, suggesting that the 373 

distribution of heat within the system does not substantially affect the surface heat flux. For Ur 374 

> 1, our calculations indicate that Φ̃𝑡𝑜𝑝 also fits well along Eq. (23) with a = 1.57 and values of 375 
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b and c similar to those for Ur < 1 (Figure 4b). Finally, the bottom heat flux, Φ̃𝑏𝑜𝑡, can easily 376 

be calculated by inserting Eq. (23) in the non-dimensional version of Eq. (11).  377 

  While increasing 𝐻̃ results, of course, in larger Φ̃𝑡𝑜𝑝 and smaller  Φ̃𝑏𝑜𝑡, the influence of 378 

the thermal viscosity ratio, , on Φ̃𝑡𝑜𝑝 is less intuitive. The 1/c term and, if  is not too high, 379 

the decrease of  𝑇̃𝑚, both lower Φ̃𝑏𝑜𝑡 as  increases. However, the exponential term in the 380 

definition of Raeff (Eq. 10) remains dominant, such that for given values of Rasurf and 𝐻̃, Φ̃𝑡𝑜𝑝 381 

increases with increasing  (Figure S2). An interesting consequence is that the Urey ratio (Eq. 382 

12) decreases with increasing thermal viscosity ratio, as also shown in Table 1. In other words, 383 

given the properties (thickness, density, thermal expansion and diffusivity, super-adiabatic 384 

temperature jump, gravity acceleration, and rate of internal heating) of a mixed-heated shell 385 

animated by stagnant-lid convection, increasing viscosity ratio allows the system to extract 386 

more heat from the underlying layer (i.e., the bottom heat flux increases). This somewhat 387 

counter-intuitive feature results from the strong increase in Raeff with increasing , implying 388 

that convection in the well-mixed interior gets more vigorous.     389 

 390 

4.3 Transition between positive and negative bottom heat flux 391 

If internal heating is too large, convection cannot evacuate all the heat produced towards the 392 

surface. A fraction of this heat is released at the base of the system, resulting in a negative 393 

bottom heat flux, Φ̃𝑏𝑜𝑡. Setting Φ̃𝑏𝑜𝑡 = 0 in Eq. (12) provides a criterion for the maximum 394 

amount of internal heat that can be transported to the surface as a function of the system 395 

properties (Rayleigh number, curvature, and viscosity ratio), 396 

  𝐻̃𝑐𝑟𝑖𝑡 =
3𝑎

(1+𝑓+𝑓2)𝛾𝑐
𝑅𝑎𝑒𝑓𝑓

𝑏 (24) 397 

Again, because Raeff depends implicitly (through 𝑇̃𝑚) on 𝐻̃, Eq. (24) does not have analytical 398 

solutions, but can be solved with a zero search method. An additional difficulty in estimating 399 
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𝐻̃𝑐𝑟𝑖𝑡 is that, while the scalings obtained for Ur < 1 and Ur > 1 overlap at Φ̃𝑏𝑜𝑡 = 0 within the 400 

error bars on scaling parameters values, they are not continuous when using the average values 401 

of these parameters (Table 2). A simple solution to this problem is to first calculate threshold 402 

values of 𝐻̃ with both Ur < 1 and Ur > 1 scalings, 𝐻̃𝑐𝑟𝑖𝑡
−  and 𝐻̃𝑐𝑟𝑖𝑡

+ , respectively, and second to 403 

define the value of 𝐻̃𝑐𝑟𝑖𝑡 as the average of these two bounds. 404 

  We then solved Eq. (24) for Rasurf in the range 0.3-300,  in the range 104-108, and f 405 

between 1 (Cartesian geometry) and 0.6, and found that 𝐻̃𝑐𝑟𝑖𝑡 is well described by  406 

   𝐻̃𝑐𝑟𝑖𝑡 =
3

(1+𝑓+𝑓2)
𝑎𝐻exp(𝑐𝐻𝛾)𝑅𝑎𝑠𝑢𝑟𝑓

𝑏𝐻 , (25) 407 

where aH = 0.184, bH = 0.31, and cH = 0.19. Equation (25) provides a convenient way to estimate 408 

𝐻̃𝑐𝑟𝑖𝑡  and is in good agreement with our numerical simulations (Figure 5). It shows that 409 

𝐻̃𝑐𝑟𝑖𝑡⁡increases with Rasurf, , and curvature (decreasing f). Note that rescaling Eq. (25) implies 410 

to multiply each of its member by 𝑘Δ𝑇 𝜌𝐷2⁄  (Eq. 4). Because Rasurf is proportional to D3, one 411 

expects the dimensional critical heating rate, Hcrit, to decrease approximately as 1/D. Thus, the 412 

transition to a negative heat flux is reached for lower heating rates in thick layers than in thin 413 

layers, unless the thermal viscosity ratio and/or the super-adiabatic temperature jump increase 414 

dramatically with D.    415 

  Finally, an interesting result is that, because Φ̃𝑏𝑜𝑡 increases with the thermal viscosity 416 

ratio  (section 4.2), 𝐻̃𝑐𝑟𝑖𝑡 also increases with . Therefore, given the properties of a mixed-417 

heated shell animated by stagnant-lid convection, increasing  allows the system to extract 418 

heat from the underlying core up to higher rate of internal heating. 419 

 420 

4.4 Thickness of the stagnant lid 421 

Following Eqs. (15) and (16), the temperature profile within the lid is not a linear function of 422 

depth. However, Figure 3 suggests that these profiles are, at first order, well described by a 423 
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linear function. This, in turn, implies that the thickness of this lid should approximately scales 424 

as the inverse of the heat flux, leading to 425 

   𝑑̃𝑙𝑖𝑑 = 𝑎𝑙𝑖𝑑
𝛾𝑐

𝑅𝑎𝑒𝑓𝑓
𝑏 , (26) 426 

where the values of parameters b and c are identical to those for surface heat flux (b = 0.27 and 427 

c = 1.21), and alid is a constant. Figure 4c shows that Eq. (26) provides a good description of 428 

the stagnant lid thickness, with best fit to the measured stagnant lid thicknesses obtained for a 429 

value of alid = 0.633 ± 0.03 for Ur < 1, and alid = 0.667 ± 0.01 for Ur > 1. 430 

 431 

5. Application to Europa 432 

We now use the results obtained in section 4 to estimate the properties and thermal evolution 433 

of Europa outer ice shell. Our purpose is not to provide a detailed description of Europa’s 434 

evolution, since we do not consider time-dependent internal heating based on Europa’s orbital 435 

evolution, but instead to assess quantitatively the role played by tidal heating within the ice 436 

layer. This approach can easily be extended to other bodies, including Pluto, which is today 437 

tidally locked but may have experienced tidal heating early in its history. 438 

  A feature common to many (if not all) large icy bodies of the outer solar System is the 439 

persistence of a sub-surface ocean beneath an outer ice Ih shell (e.g., Hussmann et al., 2007). 440 

In the case of Europa the presence of a sub-surface ocean is supported by anomalies in its 441 

external magnetic field, attributed to an internal magnetic field induced within a sub-surface 442 

liquid layer (Khurana et al., 1998). Europa’s average density suggests that its rocky core is 443 

large, ~ 70 % in volume, corresponding to a radius of ~ 1400 km. Given Europa’s gravity 444 

acceleration, 1.31 m/s2, the pressure at the surface of the core is not large enough to allow the 445 

presence of high pressure ices. Europa’s radial structure therefore likely consists of a large 446 

rocky core, surrounded by a liquid layer composed of water and impurities, and an outer ice 447 
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layer. The exact nature of impurities is still debated. Present species may include salts, in 448 

particular magnesium sulfate (MgSO4) (Vance et al. 2018), and volatile compounds such as 449 

ammonia (NH3), methanol (CH3OH), and methane (CH4), which are all predicted to condensate 450 

in giant planets environments with amounts up to a few per cent (e.g., Mousis et al., 2009; 451 

Deschamps et al., 2010b). The presence of impurities acts as an anti-freeze, opposing or 452 

delaying the crystallization of the sub-surface ocean. Interestingly, while the exact nature of 453 

impurities may affect the sub-surface ocean physical properties, including its density, it does 454 

not qualitatively impact the crystallization process, i.e., different species present in different 455 

amounts would lead to similar evolution. For instance, Vilella et al. (2020) pointed out that the 456 

impact of 30 % MgSO4 on the liquidus is equivalent to that of 3.5 % NH3.       457 

  Our modelling approach is detailed in SI. It is mostly similar to the one used in 458 

Deschamps (2021a), except for the treatments of the interior temperature, Tm, and of the 459 

stagnant lid thickness, dlid. Another important difference is that two sets of parameters are used 460 

to calculate Tm and the surface heat flux, surf, depending on whether the bottom heat flux, bot, 461 

is positive (Ur < 1) or negative (Ur > 1) (Table 2). Note that instead of solving Eq. (25) to 462 

decide which set of parameters to use, we apply a simpler procedure, which accounts for the 463 

fact that temperature and heat flux scalings are not continuous at Ur = 1. First, we calculate Tm 464 

and surf assuming parameter values for Ur < 1. If the corresponding bot calculated with Eq. 465 

(11) is negative, we calculate Tm and surf again, but with parameter values for Ur > 1. If the 466 

resulting bot turns back to positive, we set arbitrarily its value to zero and recalculate surf and 467 

Tm accordingly. 468 

  Physical properties of Europa and ice Ih used for calculations are listed in Table 3, and 469 

we considered two possible initial compositions for the subsurface ocean, pure water and a mix 470 

of water and ammonia. In this later case, we fixed the initial amount of ammonia, 𝑥𝑁𝐻3
𝑖𝑛𝑖𝑡 , to 3.0 471 

vol%, corresponding to about 2.2 wt%. This value may be considered as an upper (possibly 472 
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exaggerated) bound, and we chose it to obtain a conservative estimate of the impact of 473 

impurities on the ice shell properties and evolution. Concentration in ammonia then increases 474 

as the ice layer thickens, since only water crystalizes, while impurities are left in the sub-surface 475 

ocean. The reference viscosity, ref, is taken as a free parameter and varied between 1012 and 476 

1015 Pas, a range extended from Montagnat and Duval (2000) estimates of polar ice sheet flow. 477 

Results are presented either for a given rate of heating per mass unit, H, or a given total power 478 

dissipated in the ice shell, Ptide. For an ice shell thickness Dice, H and Ptide are related by (see 479 

also Figure S3)   480 

   𝐻 =
3𝑃𝑡𝑖𝑑𝑒

4𝜋𝑅3[1−(1−
𝐷𝑖𝑐𝑒
𝑅

)
3
]

 , (27) 481 

where R is the total radius of Europa. 482 

 483 

5.1 Ice shell properties 484 

As heat dissipation in the ice shell increases, two transitions may occur. First, at heating rate 485 

Hcrit the heat flux at the bottom of the shell may turn negative, heating up the underlying sub-486 

surface ocean and delaying its crystallization. Convection can still operate within the shell, but 487 

would be driven by downwellings and described with scaling laws for Ur > 1 (section 4). 488 

Second, at heating rate Hmelt the bottom temperature exceeds the water liquidus, triggering 489 

melting at the bottom of the shell. This implies that the ice shell cannot be thicker than a critical 490 

value, Dmelt. Local pockets of partial melt may further appear in hottest regions (plumes head), 491 

introducing additional complexities that are not accounted for by our modelling (see Vilella et 492 

al., 2020 for a discussion on this topic). Here, we estimate Hmelt by comparing the liquidus of 493 

pure water with the ice shell horizontally averaged temperature, which underestimates the 494 

presence of local pockets of melt. However, because the inverse of the non-dimensional viscous 495 

temperature scale , which is here equal to 𝐸∆𝑇 𝑅𝑇𝑚
2⁄  (SI), is somewhat high, this bias should 496 
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be limited (Vilella et al., 2020). Figure 6 shows that both Hcrit and Hmelt decrease with increasing 497 

ice layer thickness, Dice. The decrease in Hcrit is mostly related to the thickening of the ice layer 498 

(section 4.3). The decrease in Hmelt is a consequence of the water liquidus, which is itself 499 

decreasing with depth, thus favoring partial melting at lower heating rates. In other words, Dmelt 500 

decreases with increasing H. Taking H = 10-9 W/kg and a reference viscosity ref = 1014 Pas, 501 

for instance, Dmelt is around 45 km, corresponding to a total power of ~ 1.2 TW. Figure S4 502 

further indicates that all other parameters being the same, Dmelt decreases with increasing ref. 503 

As one would expect, in the case of a pure water ocean Hcrit is very close to Hmelt. It is also 504 

worth noting that the addition of ammonia in the sub-surface ocean moderates the effects of H, 505 

allowing slightly thicker ice shells at a given H.       506 

  Figure 7 plots the surface heat flux, interior temperature, and stagnant lid thickness as a 507 

function of the dissipated power, Ptide, and for different shell thicknesses. For the two ocean 508 

compositions we tested, and independently of the ice shell thickness, both Tm and surf increase 509 

with increasing Ptide, while the stagnant lid thins. At a given Ptide, thicker shells are cooler and 510 

transfer less heat, but these changes attenuate as Ptide increases. Interestingly, for values of Ptide 511 

estimated by Hussmann and Spohn (2004), in the range 0.6-1.0 TW, and despite the fact that 512 

the bottom heat flux may turn negative (in particular for cases with NH3 in the ocean), the ice 513 

shell may be as thick as 160 km (see also Fig. 6). For slightly larger values, however, Dmelt 514 

sharply decreases with increasing Ptide. In the case of a pure water ocean, for instance, it is equal 515 

to 120 and 40 km at Ptide of 1.1 and 1.3 TW, respectively. Finally, given Dice and Ptide, surf 516 

decreases with increasing ref, while Tm increases and the stagnant lid thickens (Figure S5).    517 

 518 

5.2 Thermal evolution 519 

We model the ice shell thermal evolution following the approach of Grasset and Sotin (1996), 520 

solving the conservation equation of energy at the boundary between this shell and the sub-521 
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surface ocean (SI). Again, a detailed reconstruction of this evolution would require to couple 522 

Europa’s internal and orbital evolutions (Hussmann and Spohn, 2004), implying that the tidal 523 

power dissipated within the shell is time-dependent. Instead, we assumed that the dissipated 524 

heat does not vary with time.   525 

  Examples of evolutions for ref = 1014 Pas are shown in Figure S6. The ice shell first 526 

thickens up to a maximum value, and then starts to thin again after a time that depends on input 527 

parameters. Note that values of Ptide around or larger than 1.5 TW prevents the ocean 528 

crystallization. The shell remains thinner than 10 km, and is not animated by convection. 529 

Figures 8 and S7 plot the shell properties at time t = 4.55 Gyr as a function of Ptide and ref, 530 

respectively. As one could expect, increasing Ptide and/or ref reduces the final shell thickness, 531 

Dice, and increases its internal temperature, Tm. In addition, the stagnant lid thickness, dlid, 532 

decreases, and convection shuts off at lower ref. Dissipated powers around or lower than 0.1 533 

TW have no or small impact on Dice and Tm, but still influences dlid substantially. If ref and/or 534 

Ptide are too small, the ocean crystallizes completely and remains frozen up to 4.55 Gyr. These 535 

conclusions hold for both a pure water ocean and for an ocean with 𝑥𝑁𝐻3
𝑖𝑛𝑖𝑡  = 3.0 vol%. In this 536 

later case, however, full crystallization cannot be completed even at low ref and/or Ptide. 537 

Furthermore, the effects of impurities are reduced as H increases, such that the shell properties 538 

get close to those for a pure water ocean. Internal heating therefore appears as a stronger 539 

controlling parameter than the presence of impurities. Finally, it is worth noting that for Ptide in 540 

the range 0.6-1.0 TW, relevant to Europa (Hussmann et al., 2004), and ref =1014 Pas, Europa’s 541 

ice shell should be thin, around 20-40 km at a maximum (see also Fig. S6). Lower ref allows 542 

thicker shells, for instance, with ref = 3.0×1013 Pas, up to 120 km (pure water ocean) or 80 km 543 

(𝑥𝑁𝐻3
𝑖𝑛𝑖𝑡  = 3.0 vol%).  544 

 545 
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6. Conclusions and perspectives 546 

The numerical simulations we performed allowed us to quantify the influence of the rate of 547 

internal heating, H, on stagnant-lid convection, through the determination of scaling laws for 548 

interior temperature, surface heat flux, and stagnant lid thickness (Table 2). We observed two 549 

different regimes depending on the sign of the bottom heat flux, bot, or equivalently, whether 550 

the Urey ratio is smaller or larger than 1. Interestingly, our simulations show that the value of 551 

H at which bot turns negative increases with increasing thermal viscosity ratio, . Another 552 

interesting finding is that, while the stagnant lid stiffens with increasing H, it also thins. 553 

  Our simulations include a few simplifications. The rheology of ices is certainly more 554 

complex than the Frank-Kamenetskii law we used. Compared to an Arrhenius-type of law, this 555 

approach overestimates heat flux by up to 30 % (e.g., Reese et al., 1999). In addition, different 556 

mechanisms may control ice Ih deformation depending on the strain rate and/or the grain size, 557 

but are not accounted for in our modelling. A full description of ice viscosity may instead 558 

require the definition of a composite viscosity law, as proposed by Harel et al. (2020). Our 559 

approach further neglects the possible presence of pockets of partially melted ice. Such pockets 560 

may occur in plumes heads, right beneath the stagnant lid, in which case they could trigger the 561 

formation of chaos and lenticulae regions (Tobie et al., 2003). Melt may also influence the 562 

physical properties of ice, in particular its viscosity and density. This would in turn affect the 563 

buoyancy of plumes and reduce tidal dissipation, leading to alternate phases of melting and 564 

crystallization (Tobie et al., 2003). Vilella et al. (2020) further studied the impact of melt on 565 

heat budget, and showed that for internal heating larger than a critical value, heat flux reaches 566 

a plateau, as most of the heating is used to generate more melt. While these limitations may 567 

quantitatively alter the scaling laws we build, the main trends indicated by our simulations and 568 

the conclusions drawn from them should remain unchanged.  569 



 

 

 24 

  A full description of Europa’s ice shell evolution requires coupling its orbital and thermal 570 

evolutions to capture time-variations in tidal heating. By contrast, calculations coupling Io and 571 

Europa evolutions suggest that tidal dissipation within Europa’s ice shell may have remained 572 

fairly constant around 0.6-1.0 TW during the past 4.5 Gyr (Hussmann and Spohn, 2004). If 573 

true, our evolution model should provide first order, but relevant estimates of today Europa’s 574 

ice shell properties. Taking a reference viscosity in the range 3.0×1013-3.0×1014 Pas and 575 

assuming the presence of impurities, the thickness of this shell should be in the range 20-75 576 

km. This is larger than estimates from mechanical studies based on surface geology 577 

observations (e.g., Billings and Katternhorn, 2005; Damptz and Dombard, 2011; Silber and 578 

Johnson, 2017), but consistent with estimates from thermal evolution models (e.g., Tobie et al., 579 

2003; Hussmann and Spohn, 2004; Allu Peddenti and McNamara, 2019; Green et al., 2021) 580 

and estimates of the thickness needed to generate melts needed for cryovolcanism (Vilella et 581 

al., 2020). 582 

  In addition to the evolution of icy bodies, our findings may have some implications for 583 

the evolution of planetesimals that formed in early in solar System history. These bodies are 584 

thought to have reached a few hundreds of kilometers in size and to have differentiated in a 585 

core and a mantle. The decay of 26Al may have released huge amounts of heat in their mantles, 586 

which may, in turn, have delayed the cooling of their cores. The scaling laws we obtained can 587 

be inserted in thermal evolution models of planetesimals as built, for instance, by Kaminski et 588 

al. (2020). Of particular importance is the fact that, all other parameters being the same, bot 589 

increases with increasing  and turns negative for values of H that increase with . This 590 

suggests that, if stagnant-lid convection, triggered by large top-to-bottom temperature jump, 591 

operated within the mantles of planetesimals, large amounts of heat released by the decay of 592 

26Al may have helped, rather than prevented, the cooling of planetesimals cores, and possibly 593 

the generation of magnetic fields within these cores. 594 
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Tables 699 

 700 
 701 
Table 1. Simulations of stagnant-lid convection with mixed heating. 702 

Rasurf f  𝐻̃ 𝐻̃0 Grid size 𝑇̃𝑚 𝛷̃𝑡𝑜𝑝 𝛷̃𝑏𝑜𝑡 Ur 𝑟𝑚𝑠(𝑣̃) 𝑣̃𝑠𝑢𝑟𝑓 Raeff 𝑑̃𝑙𝑖𝑑  𝑇̃𝑙𝑖𝑑 

       3D-Cartesian        

16.0 - 104 4.0  128×128×64 1.075 3.458 -0.543 1.16 26.9 1.2×10-1 3.19×105 0.316 0.892 

32.0 - 104 2.0  128×128×64 0.969 2.836 0.837 0.71 40.6 3.8×10-1 2.40×105 0.324 0.814 

32.0 - 104 3.0  128×128×64 1.016 3.222 0.223 0.93 39.9 2.9×10-1 3.71×105 0.302 0.835 

32.0 - 104 4.0  128×128×64 1.051 3.678 -0.323 1.09 41.3 2.2×10-1 5.12×105 0.280 0.872 

75.0 - 104 1.5  128×128×64 0.937 3.202 1.702 0.47 76.9 1.01 4.21×105 0.268 0.804 

75.0 - 104 3.0  128×128×64 0.998 3.668 0.670 0.82 69.7 5.4×10-1 7.36×105 0.249 0.820 

75.0 - 104 5.0  256×256×128 1.059 4.577 -0.422 1.09 73.4 2.5×10-1 1.05×106 0.221 0.889 

17.9 - 3.2×104 2.0  128×128×64 0.977 2.887 0.887 0.69 52.1 1.3×10-1 4.51×105 0.323 0.828 

17.9 - 3.2×104 4.0  128×128×64 1.042 3.740 -0.260 1.07 53.5 8.2×10-2 8.85×105 0.276 0.880 

55.9 - 3.2×104 0.0  128×128×64 0.874 3.000 3.001 0.00 112.5 7.1×10-1 4.84×105 0.254 0.762 

55.9 - 3.2×104 1.0  128×128×64 0.922 3.374 2.376 0.30 120.7 5.6×10-1 7.92×105 0.252 0.818 

55.9 - 3.2×104 2.0  256×256×128 0.962 3.649 1.649 0.55 117.4 2.6×10-1 1.21×106 0.249 0.847 

55.9 - 3.2×104 3.0  256×256×128 0.990 3.959 0.959 0.76 104.8 2.0×10-1 1.62×106 0.233 0.840 

55.9 - 3.2×104 6.0  256×256×128 1.069 5.352 -0.648 1.12 116.2 1.3×10-2 3.65×106 0.192 0.917 

178.9 - 3.2×104 4.0  256×256×128 0.985 5.344 1.343 0.75 198.9 5.4×10-1 4.92×106 0.168 0.843 

10.0 - 105 2.0  128×128×64 0.975 2.976 0.977 0.67 69.7 5.7×10-1 7.62×105 0.319 0.849 

10.0 - 105 4.0  256×256×128 1.034 3.818 -0.181 1.05 69.1 4.1×10-2 1.38×106 0.273 0.894 

10.0 - 105 6.0  256×256×128 1.110 5.007 -0.994 1.20 96.4 2.4×10-1 3.60×106 0.224 0.971 

31.6 - 105 0.0  256×256×128 0.891 3.143 3.144 0.00 148.1 3.0×10-1 9.06×105 0.257 0.809 

31.6 - 105 0.492 1.0 256×256×128 0.915 3.276 2.785 0.15 156.4 2.4×10-1 1.18×106 0.257 0.842 

31.6 - 105 2.0  256×256×128 0.964 3.772 1.774 0.53 148.2 1.2×10-1 2.08×106 0.244 0.860 

31.6 - 105 2.096 3.0 256×256×128 0.982 3.493 1.397 0.60 132.2 7.2×10-2 2.57×106 0.246 0.858 

31.6 - 105 4.0  256×256×128 1.006 4.471 0.471 0.89 132.6 7.3×10-2 3.38×106 0.214 0.866 

31.6 - 105 5.0  256×256×128 1.028 4.898 -0.101 1.02 133.7 7.2×10-2 4.35×106 0.202 0.889 

31.6 - 105 6.0  256×256×128 1.054 5.447 -0.553 1.10 145.7 6.6×10-2 5.88×106 0.187 0.915 

50.6 - 105 2.0  256×256×128 0.957 4.236 2.236 0.47 195.8 1.5×10-1 3.08×106 0.214 0.861 

50.6 - 105 3.0  256×256×128 0.979 4.501 1.502 0.67 169.1 1.3×10-1 3.97×106 0.201 0.843 

50.6 - 105 3.022 4.0 256×256×128 0.991 4.182 1.159 0.72 170.4 8.9×10-2 4.58×106 0.206 0.860 

50.6 - 105 6.0  256×256×128 1.035 5.710 -0.290 1.05 179.8 1.1×10-1 7.60×106 0.174 0.900 
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Table 1 (continued).  705 

Rasurf f  𝐻̃ 𝐻̃0 Grid size 𝑇̃𝑚 𝛷̃𝑡𝑜𝑝 𝛷̃𝑏𝑜𝑡 Ur 𝑟𝑚𝑠(𝑣̃) 𝑣̃𝑠𝑢𝑟𝑓 Raeff 𝑑̃𝑙𝑖𝑑  𝑇̃𝑙𝑖𝑑 

50.6 - 105 8.0  256×256×128 1.089 6.970 -1.029 1.15 226.5 7.9×10-2 1.41×107 0.149 0.952 

50.6 - 105 10.0  256×256×128 1.145 8.427 -1.573 1.19 313.9 6.7×10-2 2.70×107 0.129 1.007 

56.6 - 3.2×105 4.0  256×256×128 0.980 5.685 1.685 0.70 326.6 9.4×10-2 1.41×107 0.161 0.864 

56.6 - 3.2×105 8.0  256×256×128 1.040 7.461 -0.539 1.07 354.8 7.4×10-2 2.99×107 0.132 0.914 

113.1 - 3.2×105 4.0  256×256×128 0.970 6.600 2.602 0.61 486.3 2.3×10-1 2.48×107 0.137 0.867 

10.0 - 106 1.0  256×256×128 0.940 3.913 2.914 0.31 266.4 4.0×10-2 4.38×106 0.232 0.880 

10.0 - 106 2.0  256×256×128 0.963 4.162 2.164 0.48 240.1 2.7×10-2 5.97×106 0.227 0.894 

10.0 - 106 3.0  256×256×128 0.981 4.455 1.456 0.67 213.7 2.1×10-2 7.74×106 0.209 0.865 

10.0 - 106 4.0  256×256×128 0.995 4.755 0.754 0.84 216.69 1.5×10-2 9.33×106 0.203 0.882 

10.0 - 106 4.251 5.5 256×256×128 1.012 4.442 0.192 0.96 216.81 1.7×10-2 1.18×107 0.205 0.912 

10.0 - 106 5.0  256×256×128 1.010 5.179 0.178 0.97 217.0 1.8×10-1 1.15×107 0.190 0.895 

10.0 - 106 6.0  256×256×128 1.030 5.689 -0.312 1.05 227.3 1.5×10-1 1.51×107 0.177 0.915 

10.0 - 106 8.0  256×256×128 1.082 7.007 -0.994 1.14 308.3 1.4×10-1 3.11×107 0.150 0.963 

25.0 - 106 0.0  256×256×128 0.912 4.415 4.416 0.00 456.1 2.8×10-1 7.38×106 0.193 0.850 

25.0 - 106 2.0  256×256×128 0.952 5.234 3.235 0.38 371.5 3.8×10-2 1.29×107 0.171 0.868 

25.0 - 106 2.059 3.0 256×256×128 0.959 4.984 2.926 0.41 370.8 4.5×10-2 1.42×107 0.179 0.892 

25.0 - 106 3.0  256×256×128 0.969 5.426 2.428 0.55 367.6 2.2×10-2 1.63×107 0.169 0.873 

25.0 - 106 3.041 4.0 256×256×128 0.977 5.059 2.016 0.60 355.2 3.3×10-2 1.82×107 0.176 0.892 

25.0 - 106 4.0  256×256×128 0.981 5.639 1.637 0.71 361.3 4.3×10-2 1.92×107 0.165 0.876 

25.0 - 106 4.929 6.0 256×256×128 1.001 5.564 0.635 0.89 361.2 4.6×10-2 2.54×107 0.163 0.905 

25.0 - 106 6.0  256×256×128 1.006 6.392 0.394 0.94 366.8 3.6×10-2 2.71×107 0.150 0.889 

25.0 - 106 8.0  256×256×128 1.037 7.450 -0.550 1.07 403.1 3.3×10-2 4.14×107 0.133 0.922 

45.0 - 106 4.0  256×256×128 0.973 6.377 2.380 0.63 515.9 8.5×10-2 3.10×107 0.144 0.875 

5.6 - 3.2×106 4.0  256×256×128 0.992 4.957 0.956 0.81 281.6 1.1×10-1 1.57×107 0.194 0.886 

5.6 - 3.2×106 8.0  256×256×128 1.065 7.130 -0.870 1.12 377.2 7.4×10-2 4.71×107 0.146 0.958 

41.9 - 3.2×106 4.0  256×256×128 0.967 7.495 3.496 0.53 937.6 5.4×10-2 8.18×107 0.123 0.892 

10.0 - 107 0.0  256×256×128 0.923 5.271 5.278 0.00 964.4 8.9×10-2 2.94×107 0.165 0.869 

10.0 - 107 2.948 4.0 256×256×128 0.969 6.089 3.142 0.48 753.1 1.9×10-2 6.14×107 0.152 0.926 

10.0 - 107 4.0  256×256×128 0.975 6.568 2.571 0.61 732.8 1.5×10-2 6.76×107 0.149 0.935 

10.0 - 107 8.0  384×384×192 0.940 8.115 0.114 0.99 734.9 1.1×10-2 1.15×108 0.121 0.920 

10.0 - 107 10.0  384×384×192 1.035 9.325 -0.676 1.07 851.5 1.0×10-2 1.79×108 0.108 0.948 

3.2 - 108 0.0  384×384×192 0.934 6.000 5.999 0.00 1228.2 2.0×10-2 9.46×107 0.147 0.885 

3.2 - 108 2.871 4.0 384×384×192 0.967 6.857 3.986 0.42 1353.7 4.8×10-3 1.74×108 0.137 0.941 

3.2 - 108 4.0  384×384×192 0.971 7.403 3.401 0.54 1328.9 4.0×10-3 1.88×108 0.127 0.909 
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Table 1 (continued). 707 

Rasurf f  𝐻̃ 𝐻0 Grid size 𝑇̃𝑚 𝛷̃𝑡𝑜𝑝 𝛷̃𝑏𝑜𝑡 Ur 𝑟𝑚𝑠(𝑣̃) 𝑣̃𝑠𝑢𝑟𝑓 Raeff 𝑑̃𝑙𝑖𝑑  𝑇̃𝑙𝑖𝑑 

       Spherical        

16.0 0.60 106 4.0  192×576×96×2 0.932 3.970 3.767 0.67 242.7 8.0×10-2 6.25×106 0.221 0.859 

16.0 0.60 106 10.0  192×576×128×2 1.034 6.313 -0.607 1.03 307.6 2.2×10-2 2.55×107 0.155 0.918 

5.1 0.60 107 4.0  192×576×128×2 0.929 4.389 4.928 0.60 396.0 2.1×10-2 1.64×107 0.204 0.887 

10.0 0.70 106 8.0  192×576×96×2 0.964 3.964 2.129 0.74 193.4 3.5×10-2 6.12×106 0.228 0.861 

10.0 0.70 106 8.0  256×768×128×2 1.035 5.596 -0.498 1.04 234.5 1.7×10-2 1.61×107 0.177 0.918 

3.2 0.70 107 8.0  256×768×128×2 1.011 5.833 -0.011 1.00 366.1 4.4×10-2 3.78×107 0.167 0.908 

10.0 0.70 107 2.0  192×576×128×2 0.907 4.914 7.046 0.30 622.9 6.1×10-2 2.23×107 0.171 0.854 

15.8 0.70 107 3.0  192×576×128×2 0.917 5.845 7.461 0.37 797.0 5.8×10-2 4.15×107 0.149 0.879 

3.2 0.75 107 4.0  256×768×128×2 0.964 4.530 2.568 0.68 346.0 9.2×10-2 1.78×107 0.206 0.894 

3.2 0.75 107 8.0  256×768×128×2 1.017 6.049 -0.208 1.02 378.8 4.2×10-2 4.19×107 0.162 0.915 

3.2 0.75 107 10.0  256×768×128×2 1.054 7.188 -0.923 1.07 496.3 3.5×10-2 7.49×107 0.141 0.950 

10.0 0.75 107 4.0  256×768×128×2 0.945 5.834 4.883 0.53 660.7 2.0×10-2 4.19×107 0.155 0.892 

10.0 0.75 107 10.0  384×1152×192×2 1.005 7.817 0.192 0.99 716.3 9.1×10-3 1.10×108 0.123 0.912 

10.0 0.80 106 2.0  256×768×96×2 0.938 3.617 3.107 0.45 223.4 7.4×10-2 4.25×106 0.242 0.859 

10.0 0.80 106 4.0  256×768×96×2 0.977 4.267 1.580 0.76 192.0 3.0×10-2 7.18×106 0.213 0.857 

10.0 0.80 106 8.0  256×768×128×2 1.051 6.039 -0.729 1.08 258.1 1.6×10-2 2.02×107 0.168 0.931 

10.0 0.80 106 10.0  256×768×128×2 1.098 7.289 -1.315 1.12 366.4 1.3×10-2 3.89×107 0.144 0.978 

32.0 0.80 106 4.0  256×768×128×2 0.952 5.412 3.368 0.60 404.7 1.7×10-1 1.65×107 0.167 0.879 

3.2 0.80 107 4.0  256×768×128×2 0.972 4.666 2.205 0.70 359.2 1.1×10-2 2.02×107 0.201 0.893 

3.2 0.80 107 8.0  256×768×128×2 1.025 6.253 -0.395 1.04 401.8 3.8×10-3 4.69×107 0.159 0.922 

3.2 0.80 107 10.0  256×768×128×2 1.058 7.503 -0.979 1.08 557.2 4.6×10-3 7.99×107 0.134 0.951 

1.0 0.80 108 4.0  512×1536×192×2 0.966 5.266 3.157 0.62 626.5 2.5×10-3 5.32×107 0.181 0.920 

3.2 0.80 108 3.0  512×1536×192×2 0.940 6.482 6.387 0.38 1250.1 1.1×10-2 1.11×108 0.144 0.930 

10.0 0.85 106 4.0  256×768×128×2 0.983 4.403 1.345 0.78 201.5 2.6×10-2 7.86×106 0.215 0.883 

10.0 0.85 106 8.0  256×768×128×2 1.058 6.253 -0.838 1.10 283.1 1.4×10-2 2.23×107 0.164 0.940 

Listed parameters are the surface Rayleigh number, Rasurf, the inner-to-outer radii ratio (for spherical cases), f, the top-to-bottom thermal viscosity ratio, , the 708 
non-dimensional rate of internal heating, 𝐻̃, the constant 𝐻̃0 (for heterogeneous internal heating cases, Eq. 9), the grid size, the average non-dimensional 709 

temperature of the well-mixed interior, 𝑇̃𝑚, the top and bottom non-dimensional heat fluxes, Φ̃𝑡𝑜𝑝 and  Φ̃𝑏𝑜𝑡, the Urey ratio, Ur (Eq. 12), the root mean square 710 

velocity of the whole system, 𝑟𝑚𝑠(𝑣̃), the average surface velocity, 𝑣̃𝑠𝑢𝑟𝑓, the effective Rayleigh number, Raeff (Eq. 10), the non-dimensional thickness of the 711 

stagnant lid, 𝑑̃𝑙𝑖𝑑, calculated following the method of Davaille and Jaupart (1993), and the temperature at the base of this lid, 𝑇̃𝑙𝑖𝑑, deduced from Eq. (19) or Eq. 712 

(20) with observed values of Φ̃𝑡𝑜𝑝 and 𝑑̃𝑙𝑖𝑑. Calculations with pure bottom heating (𝐻̃ = 0) are taken from Deschamps and Lin (2014). 713 
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 715 
Table 2. Summary of scaling laws 716 

Quantity Expression  Parameters   

  Symbol Ur < 1 Ur > 1 

  a1 1.23 1.23 

  a2 1.5 1.5 

Interior temperature 𝑇̃𝑚 = 1 − 𝑎1 𝑓𝑎2γ⁄ + (𝑐1 + 𝑐2𝑓) [𝐻̃(1 + 𝑓 + 𝑓2) 3⁄ ]
𝑐4

𝑅𝑎𝑒𝑓𝑓
𝑐3⁄  c1 3.5 4.4 

  c2 -2.3 -3.0 

  c3 0.25 1/3 

  c4 1.0 1.72 

  a 1.46 1.57 

Surface heat flux Φ̃𝑡𝑜𝑝 = 𝑎𝑅𝑎𝑒𝑓𝑓
𝑏 𝛾𝑐⁄  b 0.27 0.27 

  c 1.21 1.21 

  alid 0.633 0.667 

Stagnant lid thickness 𝑑̃𝑙𝑖𝑑 = 𝑎𝑙𝑖𝑑 𝛾
𝑐 𝑅𝑎𝑒𝑓𝑓

𝑏⁄  b 0.27 0.27 

  c 1.21 1.21 

  aH 0.184   

Threshold internal heating  𝐻̃𝑐𝑟𝑖𝑡 = 3𝑎𝐻exp(𝑐𝐻𝛾)𝑅𝑎𝑠𝑢𝑟𝑓
𝑏𝐻 (1 + 𝑓 + 𝑓2)⁄  bH 0.31   

  cH 0.19   

Listed expressions are scaling laws for non-dimensional interior temperature, 𝑇̃𝑚, surface heat flux, Φ̃𝑡𝑜𝑝, stagnant lid thickness, 𝑑̃𝑙𝑖𝑑, and internal 717 

heating at the transition between positive (Ur < 1) and negative (Ur > 1) bottom heat flux, 𝐻̃𝑐𝑟𝑖𝑡. In these expressions, 𝐻̃ is the internal heating, f 718 

the ratio between inner and outer radii (equal to 1 for Cartesian geometry), Rasurf the surface Rayleigh number, and Raeff the effective Rayleigh 719 

number calculated at 𝑇̃ = 𝑇̃𝑚, given by Eq. (10). The parameter , controlling the amplitude of viscosity changes with temperature, is given by 720 

γ = ∆𝑇 ∆𝑇𝑣⁄ , where Tv is the viscous temperature scale (Eq. 22). Parameter values are inferred by best fitting these expressions to the results of 721 

numerical simulations listed in Table 1. 722 
  723 



 724 
Table 3. Europa and materials properties 725 

Parameter Symbol Unit Value/Expression Europa 

Ice Ih properties     

Density I kg/m3 920  

Thermal expansion I 1/K 1.56×10-4  

Thermal conductivity kI W/m/K 566.8/T  

Heat capacity Cp J/kg/K 7.037T + 185  

Thermal diffusivity I m2/s k/Cp  

Latent heat of fusion LI kJ/kg 284  

Reference bulk viscosity ref Pa s 1012-1015  

Activation energy E kJ/mol 60  

Liquid water/ammonia properties 
    

Density (water) w kg/m3 1000  

Density (ammonia) NH3 kg/m3 734  

Thermal expansion  (water) w 1/K 3.0×10-4  

Heat capacity (water) Cw J/kg/K 4180  

Silicate core properties 
    

Density c kg/m3 3300  

Thermal diffusivity c m2/s 10-6  

Europa properties     

Total radius R km  1561 

Core radius rc km  1400 

Gravity acceleration g m/s2  1.31 

Surface temperature Tsurf K  100 

Surface thermal conductivity ksurf W/m/K  5.7 

All data for ice Ih and liquid water properties are similar to that used by Kirk and Stevenson 726 

(1987) (see references therein), except liquid ammonia density, which is from Croft et al. 727 

(1988), bulk viscosity, which is a free parameter with possible range of values extended from 728 

Montagnat and Duval (2000) estimates, and the activation energy, which is taken from the 729 

intermediate regime of Durham et al. (2010). 730 
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Figures 732 

 733 

 734 

 735 

Figure 1. Snapshots of the temperature field (left) and vertical slices of the residual temperature 736 

relative to the temperature at the bottom of the stagnant lid 𝑇̃𝑙𝑖𝑑 (right) for cases with surface 737 

Rayleigh number Rasurf = 25, thermal viscosity ratio  = 106 and different values of the non-738 

dimensional rate of internal heating, 𝐻̃. (a-b) 𝐻̃ = 0 (pure bottom heating), (c-d) 𝐻̃ = 2, (e-739 

f)⁡𝐻̃ = 4, and (g-h) 𝐻̃ = 8. Isosurface values are (a)  𝑇̃ = 0.95, (c)  𝑇̃ = 0.97, (e)  𝑇̃ = 0.95, 740 

and (g) 𝑇̃ = 1.015. In the case with  𝐻̃ = 8 (plots g-h) the bottom heat flux is negative, i.e., the 741 

system cools down both at its top and its bottom. Value of 𝑇̃𝑙𝑖𝑑 are indicated on each panel. 742 

  743 
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 744 

 745 

Figure 2. Isosurface of the temperature (left) and polar slices of the residual temperature 746 

relative to the temperature at the bottom of the stagnant lid 𝑇̃𝑙𝑖𝑑 (right) for snapshots of two 747 

cases in 3D-spherical geometry with f = 0.6, surface Rayleigh number Rasurf = 16, thermal 748 

viscosity ratio  = 106 and two values of the non-dimensional rate of internal heating, 𝐻̃ = 4, 749 

(a-b) and 𝐻̃ = 10 (c-d). Isosurface values are  𝑇̃ = 0.95 in plot (a) and 𝑇̃ = 1.03 in plot (c). In 750 

the case with  𝐻̃ = 10 (plots c-d), the bottom heat flux is negative, i.e., the system cools down 751 

both at its top and its bottom. Value of 𝑇̃𝑙𝑖𝑑 are indicated on each panel. 752 

  753 



 

 

 37 

 754 

 755 

Figure 3. Horizontally averaged profiles of temperature (right plot in each panel) and vertically 756 

advected heat flow (left plot) for four cases in 3D-Cartesian geometry (plots a-d) and two cases 757 

in 3D-spherical geometry with inner-to-outer radii ratio f = 0.6 (plots e-f). Surface Rayleigh 758 

number, Rasurf, is equal to 25 for 3D-Cartesian cases and 16 for spherical cases, and the top-to-759 

bottom viscosity ratio is  = 106 in all cases. The non-dimensional heating rate is (a) 𝐻̃ = 0, 760 

(b) 𝐻̃ = 2, (c) 𝐻̃ = 4, (d) 𝐻̃ = 8, (e) 𝐻̃ = 4, (f) 𝐻̃ = 10. The grey areas denote the vertical 761 

extension of the stagnant lid. The dashed lines in the plots of advected heat flow show the 762 

tangent to the point of inflexion, whose intersection with the origin axis defines the bottom of 763 

the lid. The dashed dark-red curves in the plots of temperature are determined assuming a 764 

conductive temperature profile in the stagnant lid, and are calculated following either 𝑇̃(𝑧̃) =765 

𝑇̃𝑙𝑖𝑑 𝑧 𝑑̃𝑙𝑖𝑑⁄  (panel a), Eq. (15) (panels b-d) or Eq. (16) (panel e-f) with values of 𝑑̃𝑙𝑖𝑑 listed in 766 

Table 1, and values of  𝑇̃𝑙𝑖𝑑 estimated from Eq. (19) or Eq. (20). 767 
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 769 

 770 

Figure 4. Comparison between observed and modelled output properties. (a) Temperature of 771 

the well-mixed interior, 𝑇̃𝑚. Observed values are listed in Table 1, and modelled values are 772 

given by Eq. (21) with parameter values discussed in section 4.1. (b) Surface heat flux, Φ̃𝑡𝑜𝑝. 773 

Observed values are listed in Table 1, and modelled values are calculated by Eq. (23) with 774 

parameter values discussed in section 4.2. (c) Thickness of the stagnant lid, 𝑑̃𝑙𝑖𝑑. Observed 775 

values are listed in Table 1, and modelled values are calculated by Eq. (26) with parameter 776 

values discussed in section 4.4. 777 

 778 
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 780 

 781 

 782 

Figure 5. Reduced non-dimensional heating rate, 𝐻̃𝑟𝑒𝑑 = exp⁡(0.19𝛾) (1 + 𝑓 + 𝑓2) 3⁄ , as a 783 

function of surface Rayleigh number, Rasurf. Blue and red symbols plot our numerical 784 

simulations (Table 1) with positive and negative bottom heat flux, respectively, and the dashed 785 

curve shows the (reduced) critical rate of internal heating for which the bottom heat flux turns 786 

negative, 𝐻̃𝑐𝑟𝑖𝑡, calculated with Eq. (25). 787 

 788 
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 790 

 791 

 792 

Figure 6. Critical values of internal heating for the transition between a positive and negative 793 

bottom heat flux, Hcrit, and for partial melting of the ice shell, Hmelt, as a function of the ice shell 794 

thickness. Calculations are made with the properties of Europa (Table 3), ref = 1014 Pa s, and 795 

for two possible compositions of the sub-surface ocean, pure water and an initial mix (i.e., for 796 

a shell thickness equal to 0) of water and 3.0 vol% ammonia. Dashed parts of the curves indicate 797 

that the system is not animated by convection, based on the observation that the convective heat 798 

flux is smaller than the corresponding conductive heat flux. The grey dashed curves represent 799 

the heating rate for three values of the total power dissipated within the ice shell (values in TW 800 

indicated on each curve). 801 
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 803 

 804 

Figure 7. Properties of Europa’s outer ice shell as a function of the power dissipated within this 805 

shell, and for three selected shell thicknesses (color code). (a) and (d) Surface heat flux. (b) and 806 

(e) Interior temperature. (c) and (f) Stagnant lid thickness. Physical properties used for 807 

calculations are listed in Table 3, the reference viscosity ref is equal to 1014 Pa s, and two initial 808 

compositions of the ocean are considered, pure water (left column), and an initial mix of water 809 

and 3.0 vol% ammonia (right column). Curves interruptions indicate that the average interior 810 

temperature is larger than the liquidus of pure water at this depth. For the cases with ammonia, 811 

two regimes occur depending on whether the Urey ratio (Ur, Eq. 12) is smaller or larger than 812 

1, leading to discontinuities at Ur ~ 1. The grey shaded bands represent the possible range of 813 

dissipated power according to Hussman and Spohn (2004). 814 
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 816 

 817 

Figure 8. Properties of Europa’s outer ice shell at t = 4.55 Gyr as a function of the power 818 

dissipated within the shell and for three values of the reference viscosity, ref (color code). (a) 819 

and (d) Thickness. (b) and (e) Interior temperature. (c) and (f) Stagnant lid thickness. Physical 820 

properties used for calculations are listed in Table 3, and two initial compositions of the ocean 821 

are considered, pure water (left column), and an initial mix of water and 3.0 vol% ammonia 822 

(right column). Dashed parts of the curves indicate that the system is not animated by 823 

convection. The grey shaded bands represent the possible range of dissipated power according 824 

to Hussman and Spohn (2004). 825 

 826 
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This supporting information provides details on the calculation of radial conductive profiles of 10 

temperature and heat flux for a mixed-heated system (section S1 and Table S1), and on the 11 

trends predicted by scaling laws for interior temperature and surface heat flux (section S2 and 12 

Figures S1 and S2). It further describes the methods used to calculate the ice shell properties 13 

(heat flux, interior temperature, and stagnant lid thickness ; section S3 and Figures S3 to S5) 14 

and the thermal evolution of this shell (section S4 and Figures S6 and S7). Our modelling is 15 

mostly similar to that used in Deschamps (2021). Major differences are the treatments of the 16 

interior temperature and stagnant lid thickness.  17 

 18 

S1. Temperature and heat flux profiles for stagnant lids in 19 

mixed-heated systems 20 

S1.1 Temperature and heat flux profiles in conductive mixed-heated systems    21 

Radial profiles of temperature and heat flux for a purely conductive system with internal heat 22 

production may be obtained by integrating the heat equation, which writes 23 

  
𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝜌̅𝐻 = 0  (S1) 24 

in Cartesian geometry, and 25 

   
1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑘

𝜕𝑇

𝜕𝑟
) + 𝜌̅𝐻 = 0   (S2) 26 

in spherical geometry, where T is the temperature, z (in Eq. S1) the depth, r (in Eq. S2) the 27 

radius, k the thermal conductivity,  𝜌̅ the density and H the heating rate per unit of mass. 28 

Considering that k,  𝜌̅ and H are constant throughout the system, and taking surface and bottom 29 



 

 

 2 

temperatures, Tsurf and Tbot, as boundary conditions, integrations of Eqs. (S1) and (S2) lead to 30 

the expressions listed in Table S1 for the temperature and heat flux profiles. Note that in 31 

Cartesian geometry, D is the thickness of the domain, and in spherical geometry, R and rc are 32 

the total and core radii, 𝑓 = 𝑟𝑐 𝑅⁄  the ratio between these radii, and 𝐷 = (𝑅 − 𝑟𝑐), again, the 33 

thickness of the conductive layer. Expressions for radial profiles of heat flux (also listed in 34 

Table S1) are obtained by derivating the radial profiles for temperature with respect to either z 35 

in Cartesian geometry, or r in spherical geometry. In this later case, one may recall that the heat 36 

flux is defined as the opposite of the temperature derivative with respect to radius. 37 

  In the case of the outer shells of icy bodies, the bottom temperature is known from the 38 

liquidus at the bottom of the ice shell. Instead of using Tbot as boundary condition, one may use 39 

the surface heat flux, surf. This surface heat flux is given by   40 

  Φ𝑠𝑢𝑟𝑓 = 𝑘
∆𝑇

𝐷
+

𝜌̅𝐻𝐷

2
         (S3) 41 

in Cartesian geometry (z = 0), and, noting that (2 − 𝑓 − 𝑓2) = (1 − 𝑓)(2 + 𝑓)  and 𝑅 =42 

𝐷 (1 − 𝑓)⁄ , by 43 

  Φ𝑠𝑢𝑟𝑓 = 𝑘
∆𝑇

𝐷
𝑓 +

𝜌̅𝐻𝐷

6
(2 + 𝑓) ,       (S4) 44 

in spherical geometry (r = R). Temperature profiles then write 45 

  𝑇(𝑧) = 𝑇𝑠𝑢𝑟𝑓 + 𝑧
Φ𝑠𝑢𝑟𝑓

𝑘
−

𝜌̅𝐻𝑧2

2𝑘
 ,       (S5) 46 

in Cartesian geometry, and 47 

  𝑇(𝑟) = 𝑇𝑠𝑢𝑟𝑓 −
Φ𝑠𝑢𝑟𝑓

𝑘
𝑅 (1 −

𝑅

𝑟
) +

𝜌̅𝐻𝑅2

6𝑘
[2 (1 −

𝑅

𝑟
) + (1 −

𝑟2

𝑅2)]   (S6) 48 

in spherical geometry. 49 

 50 

S1.2 Application to stagnant lids 51 

Depending on whether the bottom temperature, Tbot, or the surface heat flux, surf, is known or 52 

easier to access, either expressions in Table S1 or Eqs. (S5) and (S6) may be used to describe 53 
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temperature profiles within conductive systems or conductive layers. These equations may, in 54 

particular be used to infer the thermal profile within the rigid lid that forms at the top of a system 55 

animated with stagnant-lid convection (section 3.2), which writes  56 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 + 𝑧
Φ𝑠𝑢𝑟𝑓

𝑘
−

𝜌̅𝐻𝑧2

2𝑘
 (S7) 57 

in Cartesian geometry, and 58 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 −
Φ𝑠𝑢𝑟𝑓

𝑘
𝑅 (1 −

𝑅

𝑟
) +

𝜌̅𝐻𝑅2

6𝑘
[2 (1 −

𝑅

𝑟
) + (1 −

𝑟2

𝑅2)]          (S8) 59 

in spherical geometry. If surf is known, Eqs. (S7) and (S8) can be directly used to determine 60 

the temperature profiles within the stagnant lid.  61 

  If the thickness of the stagnant lid, dlid, and the temperature at its bottom, Tlid, are specified 62 

instead of the surface heat flux, expressions given in Table S1 lead to 63 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 + ∆𝑇𝑙𝑖𝑑
𝑧

𝑑𝑙𝑖𝑑
+

𝜌𝐻𝑧

2𝑘
(𝑑𝑙𝑖𝑑 − 𝑧) (S9) 64 

in Cartesian geometry, and 65 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 − ∆𝑇𝑙𝑖𝑑
𝑅

𝑑𝑙𝑖𝑑
𝑓𝑙𝑖𝑑 (1 −

𝑅

𝑟
) +

𝜌𝐻𝑅2

6𝑘
[𝑓𝑙𝑖𝑑(1 + 𝑓𝑙𝑖𝑑) (1 −

𝑅

𝑟
) + (1 −

𝑟2

𝑅2)]  (S10) 66 

in spherical geometry, where ∆𝑇𝑙𝑖𝑑 = (𝑇𝑙𝑖𝑑 − 𝑇𝑠𝑢𝑟𝑓)  is the temperature jump across the 67 

stagnant lid, and 𝑓𝑙𝑖𝑑 = (𝑅 − 𝑑𝑙𝑖𝑑) 𝑅⁄ = 1 − (1 − 𝑓) 𝑑𝑙𝑖𝑑 𝐷⁄  the ratio between the radius of its 68 

base and the total radius. Numerical simulations of stagnant lid convection give easily access 69 

to the surface heat flux, while the average temperature at the bottom of the stagnant lid, Tlid, is 70 

more difficult to estimate. To calculate the temperature profiles within stagnant lids Eqs. (S7) 71 

and (S8) are thus handier than Eqs. (S9) and (S10). 72 

  Heat flux equations in Table S1 may further be used to estimate the temperature at the 73 

bottom of stagnant lids given the surface heat flux and the lid thickness. In this case, heat flux 74 

writes   75 

  Φ(𝑧) = 𝑘
∆𝑇𝑙𝑖𝑑

𝑑𝑙𝑖𝑑
+

𝜌̅𝐻

2
(𝑑𝑙𝑖𝑑 − 2𝑧)  (S11) 76 
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in Cartesian geometry, and 77 

  Φ(𝑟) = 𝑘
∆𝑇𝑙𝑖𝑑

𝑑𝑙𝑖𝑑
𝑓𝑙𝑖𝑑 (

𝑅

𝑟
)

2

+
𝜌̅𝐻𝑟

3
[1 −

𝑓𝑙𝑖𝑑(1+𝑓𝑙𝑖𝑑)

2

𝑅3

𝑟3
] (S12) 78 

in spherical geometry. Taking Eqs. (S11) and (S12) at the surface (z = 0 or r = R), and 79 

rearranging the terms, one gets the temperature at the bottom of the lid, 𝑇𝑙𝑖𝑑 = 𝑇𝑠𝑢𝑟𝑓 + ∆𝑇𝑙𝑖𝑑, 80 

as a function of the surface heat flux and stagnant lid thickness, following 81 

  𝑇𝑙𝑖𝑑 = 𝑇𝑠𝑢𝑟𝑓 +
𝑑𝑙𝑖𝑑

𝑘
(Φ𝑠𝑢𝑟𝑓 −

𝜌̅𝐻𝑑𝑙𝑖𝑑

2
) (S13) 82 

in Cartesian geometry, and 83 

  𝑇𝑙𝑖𝑑 = 𝑇𝑠𝑢𝑟𝑓 +
𝑑𝑙𝑖𝑑

𝑘𝑓𝑙𝑖𝑑
[Φ𝑠𝑢𝑟𝑓 −

𝜌̅𝐻𝑅

6
(2 − 𝑓𝑙𝑖𝑑 − 𝑓𝑙𝑖𝑑

2 )] (S14) 84 

in spherical geometry. 85 

 86 

S2. Trends in scaling laws for temperature and heat flux  87 

Supplementary Figures S1 and S2 plot the non-dimensional interior temperature, 𝑇̃𝑚 , and 88 

surface heat flux, Φ̃𝑡𝑜𝑝, as a function of the input parameters of numerical simulations and 89 

following scaling laws inferred in sections 4.1 and 4.2 of the main article (Eqs. 21 and 23). 90 

Input parameters are the surface Rayleigh number, Rasurf, the ratio between the inner and outer 91 

radii of the shell, f (with f = 1 for Cartesian geometry), the non-dimensional rate of internal 92 

heating, 𝐻̃, and the non-dimensional inverse of the viscous temperature scale, , controlling the 93 

amplitude of viscosity variations with temperature. The viscosity law follows the Frank-94 

Kamenetskii approximation, implying that  = ln(), where  is the top-to-bottom viscosity 95 

ratio. As discussed in sections 4.1 and 4.2, two sets of parameters are needed to explain the 96 

results of the simulations, depending on whether the Urey number, Ur, defined by Eq. (12) of 97 

the main text, is smaller or larger than 1. This leads to discontinuities for cases where Ur ~ 1. 98 
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  Figure S1 shows that 𝑇̃𝑚  increases with 𝐻̃ , as one would expect, but decreases with 99 

increasing Rasurf, while Φ̃𝑡𝑜𝑝 increases monotically with both 𝐻̃ and Rasurf. Interior temperature 100 

further decreases as curvature gets larger (f decreases). The amplitude of variations in 𝑇̃𝑚 with 101 

f are rather limited compared to variations of 𝑇̃𝑚 with 𝐻̃, but comparable to those induced by 102 

changes in Rasurf. Note that Φ̃𝑡𝑜𝑝 does not depend explicitly on f (Eq. 23 of main text), but is 103 

nevertheless sensitive to this parameter because the effective Rayleigh number, Raeff (Eq. 10 of 104 

main article) depends on temperature. As a consequence, Φ̃𝑡𝑜𝑝  decreases with increasing 105 

curvature, but these variations are relatively limited compared to those induced by changes in 106 

Rasurf or 𝐻̃. 107 

  The influence of  on 𝑇̃𝑚 is more complex and depends in particular on the value of 𝐻̃ 108 

(plots a and b in Figure S2). For 𝐻̃ < 1, 𝑇̃𝑚 monotically increases with  (and thus with ), as 109 

observed for stagnant-lid convection with a bottom heated-fluid, i.e., 𝐻̃ = 0 (e.g., Moresi and 110 

Solomatov, 1995; Deschamps and Sotin, 2000). By contrast, for 𝐻̃ around 1 and higher, 𝑇̃𝑚 111 

first decreases with increasing , reaches a minimum value for a value of  that increases with 112 

𝐻̃, and starts increasing again. It is also interesting to note that the influence of 𝐻̃ becomes 113 

smaller as  increases, i.e., for high values of  (typically, larger than 25-30), 𝑇̃𝑚 is mostly 114 

controlled by  (and thus by the thermal viscosity contrast) regardless of 𝐻̃. As a consequence, 115 

𝑇̃𝑚 < 1 (and thus Ur < 1) for such values of , and 𝑇̃𝑚 tends asymptotically to 1 as  goes to 116 

infinity. Finally, plots c and d in Figure S2 indicate that Φ̃𝑡𝑜𝑝 increases monotically with . As 117 

discussed in section 4.2,  acts on  Φ̃𝑡𝑜𝑝 directly, through 1/c and the exponential term defining 118 

Raeff, and indirectly through 𝑇̃𝑚. Both the 1/c term in Eq. (23) and, if  is not too large, the 119 

decrease in 𝑇̃𝑚  (and thus in Raeff) lead to a decrease in Φ̃𝑡𝑜𝑝 as  gets larger. However, the 120 

exponential term in the definition of Raeff is dominant, such that for given values of Rasurf and 121 

𝐻̃, Φ̃𝑡𝑜𝑝 increases with . Again, it is worth noting that the influence of 𝐻̃ diminishes as  122 
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gets larger, and that for high viscosity ratios the value of Φ̃𝑡𝑜𝑝 is mostly controlled by the 123 

amplitude of these variations.    124 

 125 

S3. Modelling of ice shell properties  126 

For applications to Europa, we assumed that the viscosity of ice Ih is described by 127 

  𝜂(𝑇) = 𝜂𝑟𝑒𝑓𝑒𝑥𝑝 [
𝐸

𝑅𝑇𝑟𝑒𝑓
(

𝑇𝑟𝑒𝑓

𝑇
− 1)] (S15) 128 

where E is the activation energy, R the ideal gas constant, and ref the reference viscosity at 129 

temperature Tref. The reference viscosity is not well constrained. Close to the melting point, i.e. 130 

for Tref equal to the liquidus temperature of pure water at the bottom of the ice shell, TH2O,bot, a 131 

range of values based on polar ice sheet creep is 1013-1015 Pa s (Montagnat and Duval, 2000). 132 

Here, we considered this parameter as a free parameter and varied it in the range 1012-1015 Pa 133 

s, extending the range of possible values estimated by Montagnat and Duval (2000). Activation 134 

energy is better constrained, with values in the range 49-60 kJ/mol depending on the creep 135 

regime (Durham et al., 2010), and around 60 kJ/mol for atomic diffusion (Weertman, 1983). 136 

Here, we used E = 60 kJ/mol in all calculations. Under icy moons conditions, ice Ih rheology 137 

is likely more complex than the diffusion creep mechanism assumed in Eq. (S15), but it is 138 

reasonable to think that the impact of internal heating on ice shell dynamics follows a similar 139 

trend for different rheologies.  140 

  Following Eq. (22) and the viscosity law (Eq. S15), the viscous temperature scale is  141 

  ∆𝑇𝑣 =
𝑅𝑇𝑚

2

𝐸
 , (S16) 142 

such that the inverse of the non-dimensional viscous temperature scale, γ = ∆𝑇 ∆𝑇𝑣⁄ , which 143 

controls the thermal viscosity contrast, is given by 144 

  𝛾 =
𝐸∆𝑇

𝑅𝑇𝑚
2 , (S17)  145 
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where ∆𝑇 = (𝑇𝑏𝑜𝑡 − 𝑇𝑠𝑢𝑟𝑓) is the top to bottom temperature jump. Still following Eq. (S16), 146 

rescaling Eq. (21) of main text gives the interior temperature 147 

  𝑇𝑚 = 𝑇𝑏𝑜𝑡 −
𝑎1𝑅

𝐸𝑓𝑎2
𝑇𝑚

2 + (𝑎1 + 𝑎2𝑓) [
(1+𝑓+𝑓2)

3

𝜌𝐼𝐻𝐷2

𝑘𝐼Δ𝑇
]

𝑐3 ∆𝑇

𝑅𝑎𝑒𝑓𝑓
𝑐4

, (S18) 148 

where Tbot is the bottom temperature defined as the liquidus of the water + impurities system,  149 

H the internal heating rate per mass unit, I and kI the density and thermal conductivity of the 150 

ice Ih, respectively, D the thickness of the ice layer, and Raeff the Rayleigh number calculated 151 

with the viscosity temperature Tm, 152 

  𝑅𝑎𝑒𝑓𝑓 =
𝛼𝐼𝜌𝐼𝑔Δ𝑇𝐷3

𝜂(𝑇𝑚)𝜅𝐼
 , (S19) 153 

In Eq. (S19), I and I are the thermal expansion and thermal diffusivity of ice Ih, and (Tm) is 154 

calculated with Eq. (S15). The values of the parameters a1, a2, and c1 to c4 are given in section 155 

4.1. Note that parameters c1 to c4 have different values depending on whether the Urey ratio 156 

(Ur, Eq. 12 of main text) is smaller or larger than 1. It is also worth noting that if the sub-surface 157 

ocean is composed of pure water, the bottom temperature Tbot is equal to the reference 158 

temperature defined in the viscosity law (Eq. S15), but is lower than this reference temperature 159 

if impurities (e.g., ammonia) are also present (see next paragraph). Equation (S18) does not 160 

have analytical solution, and we solved it following a Newton-Raphson zero-search method.     161 

  Impurities act as an anti-freeze and may include ammonia (NH3), methanol (CH3OH), 162 

and salts (e.g., magnesium sulfate, MgSO4). Here, we more specifically considered ammonia, 163 

which is predicted to condensate in giant planets environments with amounts up to a few per 164 

cent (Mousis et al., 2009; Deschamps et al., 2010). In the case of Europa, magnesium sulfate 165 

may further be an important compound of the ocean (Vance et al. 2018). Qualitatively, however, 166 

the evolution of the icy bodies is not significantly impacted by the nature of the impurities, but 167 

only by their amount. For instance, Vilella et al. (2020) pointed out that the impact of 30 % 168 

MgSO4 on the liquidus is equivalent to that of 3.5 % NH3. On another hand, it should be noted 169 
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that different compositions may impact physical properties of the ocean, in particular its 170 

density. Adding 30 % MgSO4 would increase density by about 150 kg/m3, while 3.5 % NH3 171 

would reduce it. Details on the calculation of the water-ammonia system liquidus can be found 172 

in Deschamps and Sotin (2001). Practically, we prescribed the initial fraction of ammonia, 173 

corresponding to the concentration of ammonia in the initial ocean. The concentration in 174 

ammonia then increases as the ocean starts to freeze, since up to the eutectic composition (equal 175 

to 32.2 wt% in the case of NH3), only water ice crystalizes, while impurities are left in the 176 

subsurface ocean, whose volume decreases due to the thickening of the outer ice layer. Note 177 

that in phase diagrams, concentrations in impurities are usually measured in wt%. For practical 178 

reasons, we perform calculations with the volume fraction, which we correct to weight fraction 179 

when determining the liquidus, following (in the case of ammonia) 180 

  𝑥𝑁𝐻3
𝑤𝑡 =

𝑥𝑁𝐻3
𝑣𝑜𝑙 𝜌𝑁𝐻3

𝑥𝑁𝐻3
𝑣𝑜𝑙 𝜌𝑁𝐻3 +(1−𝑥𝑁𝐻3

𝑣𝑜𝑙 )𝜌𝑤
 , (S20) 181 

where w and NH3 are the densities of liquid water and ammonia, respectively. 182 

  The surface heat flux is obtained by rescaling the heat flux scaling law (Eq. 23 of main 183 

text) with the characteristic heat flux, Φ𝑐𝑎𝑟𝑎𝑐 = 𝑘𝑟𝑒𝑓 Δ𝑇 𝐷⁄ , where kref is the characteristic 184 

thermal conductivity. Most reconstruction of icy bodies thermal evolutions used values of kref 185 

in the range 2.0-3.0 W/m/K, corresponding to the conductivity at the temperature of the well 186 

mixed interior or at the bottom of the shell (e.g., Grasset et al., 1996; Tobie et al., 2003; 187 

Běhounková et al., 2010). Here, we fixed kref to 2.6 W/m/K (Grasset and Sotin, 1996). 188 

Interestingly, in the case of Europa, this value leads to ice shell properties and thermal evolution 189 

very close to those obtained with temperature-dependent thermal conductivity (Deschamps, 190 

2021). Accounting for the shell’s curvature, measured with the ratio between the inner and outer 191 

radii, f, the basal and surface heat fluxes write 192 

   Φ𝑠𝑢𝑟𝑓 = Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑡𝑜𝑝        (S21) 193 

and    Φ𝑏𝑜𝑡 = Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑡𝑜𝑝 𝑓2⁄  . (S22) 194 
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Note that this formulation is slightly different from that used in Deschamps (2021), where the 195 

non-dimensional convective heat flux (Φ̃𝑐𝑜𝑛𝑣) was inferred from 3D-Cartesian calculations and 196 

a correction for spherical geometry was assumed, leading to Φ𝑠𝑢𝑟𝑓 = 𝑓Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑐𝑜𝑛𝑣  and 197 

Φ𝑏𝑜𝑡 = Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑐𝑜𝑛𝑣 𝑓⁄ . Because the curvature of outer ice layers of large icy bodies remains 198 

large (typically, f > 0.7), this difference only triggers small to moderate effects on the 199 

calculations of ice shell properties and thermal evolution. Note that if the surface heat flux is 200 

lower than the conductive characteristic heat flux, carac, the system is not animated by 201 

convection and transfers heat by conduction. This occurs, for instance, if the ice shell is too thin 202 

or, in the case of a sub-surface ocean containing impurities, too thick. In this later case, the 203 

temperature at the bottom of the shell is much lower than in the case of a pure water ocean. As 204 

a result, reference and interior viscosities are higher, decreasing the vigor of convection or even 205 

shutting off convection (Deschamps and Sotin, 2001). 206 

  As discussed in main text, two sets of parameters for Eq. (23) may be used, depending on 207 

whether the bottom heat flux, bot, is positive (Ur < 1) or negative (Ur > 1). The threshold (non-208 

dimensional) internal heating is given by Eq. (25) of main text, and may be used as a criteria to 209 

decide which set of parameters to use. Here, instead, we used a simpler procedure, which 210 

accounts for the fact that temperature and heat flux scalings are not continuous at Ur = 1. First, 211 

we calculate the internal temperature Tm (Eq. S18) and the surface heat flux, surf, assuming 212 

parameter values for Ur < 1. If the corresponding bot (calculated with Eq. (11) of main text) 213 

is negative, we re-evaluate Tm and surf, but with parameter values for Ur > 1. If the resulting 214 

bot is positive again, we set arbitrarily its value to zero, and recalculate surf and Tm 215 

accordingly. 216 

  To calculate the thickness of the stagnant lid, Deschamps (2021) assumed that the 217 

temperature at the bottom of the lid is well described by Tlid = 2Tm – Tbot, and then deduced dlid 218 

from the expression of the conductive temperature profile within the lid. However, the 219 
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relationship between Tlid and Tm assumes that temperature jump in the bottom and top thermal 220 

boundary layers (excluding the stagnant lid) are equal, which is not valid for mixed-heating 221 

convection. Here, instead, we estimated the thickness of the stagnant lid by rescaling Eq. (26) 222 

of the main article, leading to 223 

   𝑑𝑙𝑖𝑑 =
𝑎𝑙𝑖𝑑𝛾𝑐

𝑅𝑎𝑒𝑓𝑓
𝑏 𝐷 , (S23) 224 

where  and Raeff are given by Eqs. (S17) and (S19), respectively, the constant alid is equal to 225 

0.633 for Ur < 1 and 0.667 for Ur > 1, b = 0.27, and c = 1.21. The temperature at the bottom of 226 

the stagnant lid can then be calculated using Eq. (S14). 227 

 228 

S4. Thermal evolution 229 

The present day radial structure of icy bodies may be estimated from appropriate thermal 230 

evolution modelling. Here, we followed the approach of Grasset and Sotin (1996), which 231 

calculates the evolution of ice layers thicknesses based on an energy balance accounting for the 232 

production of heat in the silicate core, the cooling of the ocean, and the crystallization of ice 233 

shells. Europa is not large enough to host high pressure ices, such that the inner radius of the 234 

outer ice Ih shell, rbot, can be calculated by solving the energy conservation equation at the 235 

boundary between this shell and the sub-surface ocean. Energy conservation at this boundary 236 

then writes 237 

  
𝑑𝑟𝑏𝑜𝑡

𝑑𝑡
[𝜌𝑤𝐶𝑤 (−

𝜕𝑇𝑎𝑑

𝜕𝑟
+

𝜕𝑇𝑏𝑜𝑡

𝜕𝑟
)

(𝑟𝑏𝑜𝑡
3−𝑟𝑐

3)

3
− 𝜌𝐼𝐿𝐼𝑟𝑏𝑜𝑡

2] = 𝑟𝑏𝑜𝑡
2Φ𝑏𝑜𝑡 − 𝑟𝑐

2Φ𝑐   (S24) 238 

where t is time, Tbot and bot are the temperature and heat flux at the bottom of the ice layer, 239 

given by the liquidus of the ocean and by Eq. (S22), respectively, rc is the core radius, c the 240 

heat flux at the top of the core, w and Cw the liquid water density and heat capacity, I and LI 241 

the density and latent heat of fusion of ice Ih, respectively, and Tad, the adiabatic temperature 242 

in the ocean, given by 243 
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  𝑇𝑎𝑑(𝑟) = 𝑇𝑏𝑜𝑡(𝑟𝑏𝑜𝑡) [1 −
𝛼𝑤

𝜌𝑤𝐶𝑤
𝜌𝐼𝑔(𝑟 − 𝑟𝑏𝑜𝑡)] , (S25) 244 

with w being the thermal expansion of liquid water. Within the silicate core, heat is assumed 245 

to be produced by the decay of 4 radiogenic elements, 40K, 232Th, 235U, and 238U. The heat flux 246 

at the top of the core is then calculated following Kirk and Stevenson (1987) by  247 

  Φ𝑐 = 2√
𝜅𝑐𝑡

𝜋
𝜌𝑐 ∑ 𝐶0,𝑖𝐻𝑖

4
𝑖=1

[1−exp (−𝜆𝑖𝑡)]

𝜆𝑖𝑡
 , (S26) 248 

where c and c are the thermal diffusivity and density of the silicate core, and the subscript i 249 

refers to the 4 radiogenic elements, whose properties are listed in Table S2. We solved Eq. 250 

(S24) up to t = 4.55 Gyr using an adaptative stepsize control Runge-Kutta method (Press et al., 251 

1992), and assuming an initial ice Ih thickness equal to 10 km together with the material and 252 

physical properties listed in Table 3 of the main text. Again, because the reference viscosity ref 253 

is a sensitive parameter but is poorly constrained, we performed calculations for values of ref 254 

in the range 1012-1015 Pa s, corresponding to an extended range of the values estimated by 255 

Montagnat and Duval (2000).   256 

 257 
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 297 
 298 

Table S1. Relationships for radial profiles of temperature and heat flux for a conductive 299 

mixed-heated system. 300 

Quantity Geometry Expression 

Temperature Cartesian 
𝑇𝑠𝑢𝑟𝑓 + ∆𝑇

𝑧

𝐷
+

𝜌̅𝐻𝑧

2𝑘
(𝐷 − 𝑧) 

- Spherical 
𝑇𝑠𝑢𝑟𝑓 − ∆𝑇

𝑅

𝐷
𝑓 (1 −

𝑅

𝑟
) +

𝜌̅𝐻𝑅2

6𝑘
[𝑓(1 + 𝑓) (1 −

𝑅

𝑟
) + (1 −

𝑟2

𝑅2)] 

Heat flux Cartesian 
𝑘

∆𝑇

𝐷
+

𝜌̅𝐻

2
(𝐷 − 2𝑧) 

- Spherical 
𝑘

∆𝑇

𝐷
𝑓 (

𝑅

𝑟
)

2

+
𝜌̅𝐻𝑟

3
[1 −

𝑓(1 + 𝑓)

2

𝑅3

𝑟3
] 

T  = (Tbot - Tsurf) is the bottom-to-top temperature jump, where Tsurf and Tbot are the surface 301 

and bottom temperature and D is the thickness of the shell. In Cartesian geometry, z is depth, 302 

and in spherical geometry, r is radius, R the total radius, and 𝑓 = 𝑟𝑏𝑜𝑡 𝑅⁄  the ratio between the 303 

inner and outer radii of the shell. k is the thermal conductivity, H the rate of internal heating, 304 

and 𝜌̅  the average density, which are here all considered as being constant. 305 

 306 

 307 

 308 

 309 

 310 
 311 

Table S2. Properties of long-lived radioactive isotopes. 312 

Element Decay constant,   Heat release, H Initial abundance, C0 

 (1/yr) (W/kg) (ppb) 

40K 5.4279×10-10 2.917×10-5 738.0 
232Th 4.9405×10-11 2.638×10-5   38.7 

235U 9.8485×10-10 5.687×10-4     5.4 
238U 1.5514×10-10 9.465×10-5   19.9 

 313 

  314 
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 315 

 316 

Figure S1. Non-dimensional interior temperature 𝑇̃𝑚  deduced from Eq. (21) (top row) and 317 

surface heat flux Φ̃𝑡𝑜𝑝  calculated from Eq. (23) (bottom row) as a function of the surface 318 

Rayleigh number Rasurf (left column) and non-dimensional rate of internal heating 𝐻̃ (right 319 

column), and for several values of the ratio between the inner and outer shell radii f  (color code; 320 

f = 1 indicates Cartesian geometry). Two sets of parameters for Eqs. (21) and (23) are used, 321 

depending on whether the Urey ratio (Ur, Eq. 12) is smaller or larger than 1 (see main article), 322 

leading to discontinuities at Ur ~ 1. For calculations as a function of Rasurf (left column), 𝐻̃ is 323 

set to 4, and for calculations as a function of 𝐻̃ (right column), Rasurf is equal to 10. In all cases, 324 

the surface top-to-bottom viscosity ratio is fixed to 106. 325 
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Figure S2. Non-dimensional interior temperature 𝑇̃𝑚  deduced from Eq. (21) (top row) and 329 

surface heat flux Φ̃𝑡𝑜𝑝 calculated from Eq. (23) (bottom row) as a function inverse of the non-330 

dimensional viscous temperature scale, γ = ∆𝑇 ∆𝑇𝑣⁄  (see main text), and for several values of 331 

the non-dimensional rate of internal heating (color code). The viscosity is described by a Frank-332 

Kamenetskii law (Eq. 7), such that  is equal to the logarithm of the top-to-bottom viscosity 333 

ratio. Two sets of parameters for Eqs. (21) and (23) are used, depending on whether the Urey 334 

ratio (Ur, Eq. 12) is smaller or larger than 1 (see main article) and leading to discontinuities at 335 

Ur ~ 1. In all cases, the surface Rayleigh number is equal to 10, and geometry is Cartesian (f = 336 

1). 337 
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 340 

Figure S3. Rate of internal heating per mass unit as a function of the ice shell thickness and for 341 

several values of the total power dissipated in the ice layer (color code). The density of the ice 342 

shell is I = 920 kg/m3. 343 
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Figure S4. Critical values of internal heating for partial melting of the ice shell, Hmelt, as a 347 

function of the ice shell thickness and for different values of the reference viscosity, ref. 348 

Calculations are made with the properties of Europa (Table 3) and assuming a sub-surface ocean 349 

composed of pure water. Dashed parts of the curves indicate that the system is not animated by 350 

convection, based on the observation that the convective heat flux is smaller than the conductive 351 

heat flux. The grey dashed curves represent the heating rate for three values of the total power 352 

dissipated within the ice shell (values in TW indicated on each curve). 353 
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 356 

Figure S5. Properties of a 40 km thick ice Ih shell as a function of the reference viscosity, ref, 357 

and for several values of the total power dissipated in the ice layer (color code). (a) and (d) 358 

Surface heat flux. (b) and (e) Interior temperature. (c) and (f) Stagnant lid thickness. Physical 359 

properties used for calculations are listed in Table 3, and two initial compositions of the ocean 360 

are considered, pure water (left column), and an initial mix of water and 3.0 vol% ammonia 361 

(right column). Curves interruptions indicate that the average interior temperature is larger than 362 

the liquidus of pure water at that depth. Two regimes occur depending on whether the Urey 363 

ratio (Ur, Eq. 12) is smaller or larger than 1, leading to discontinuities at Ur ~ 1. 364 
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 367 

Figure S6. Evolution of the ice shell thickness as a function of time for reference viscosity ref 368 

= 1014 Pa s and several values of the total power dissipated in the ice layer (color code). The 369 

composition of the ocean is (a) pure water, or (b) an initial mix of water and 3.0 vol% ammonia. 370 

Note the logarithmic scale for the time axis.  371 
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 374 

Figure S7. Properties of Europa’s outer ice shell at t = 4.55 Gyr as a function of the reference 375 

viscosity, ref, and for several values of the total power dissipated in the ice layer (color code). 376 

(a) and (d) Ice shell thickness. (b) and (e) Interior temperature. (c) and (f) Stagnant lid thickness. 377 

Physical properties used for calculations are listed in Table 3, and two initial compositions of 378 

the ocean are considered, pure water (left column), and an initial mix of water and 3.0 vol% 379 

ammonia (right column). Dashed parts of the curves indicate that the system is not animated by 380 

convection. 381 
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