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Abstract

Terrestrial soil organic carbon (SOC) dynamics play an important but uncertain role in the global carbon (C) cycle. Current

modeling efforts to quantify SOC dynamics in response to global environmental changes do not accurately represent the

size, distribution and flux of C from the soil. Here, we modified the Daily Century (DAYCENT) biogeochemical model by

parameterizing conceptual SOC pools with C fraction data, followed by historical and future simulations of SOC dynamics.

Results showed that simulations using modified DAYCENT (DCmod) led to better initialization of SOC stocks and distribution

compared to default DAYCENT (DCdef) at long-term research sites. Regional simulation using DCmod demonstrated higher

SOC stocks for both croplands (34.86 vs 26.17 MgC ha-1) and grasslands (54.05 vs 40.82 MgC ha-1) compared to DCdef for

the contemporary period (2001-2005 average), which better matched observationally constrained data-driven maps of current

SOC distributions. Projection of SOC dynamics to land cover change (IPCC AR4 A2 scenario) under IPCC AR5 RCP8.5

climate scenario showed absolute SOC loss of 8.44 and 10.43 MgC ha-1 for grasslands and croplands, respectively, using DCmod

whereas, SOC losses were 6.55 and 7.85 MgC ha-1 for grasslands and croplands, respectively, using DCdef. The projected SOC

loss using DCmod was 33% and 29% higher for croplands and grasslands compared to DCdef. Our modeling study demonstrates

that initializing SOC pools with C fraction data led to more accurate representation of SOC stocks and individual carbon pool,

resulting in larger absolute and relative SOC losses due to agricultural intensification in the warming climate.

1
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 18 

Key points: 19 

1. The modified model overestimated measured SOC values at long term research sites but 20 

better approximated derived SOC values from other data products when calibrated to 21 

carbon (C) fraction compared to the default model.  22 

2. Model modifications led to larger absolute and relative losses of SOC compared to the 23 

default model during 1895-2005.  24 

3. Under the RCP8.5 scenario, projected SOC losses with the modified model were 33% 25 

and 29% larger for croplands and grasslands, respectively, compared to the default 26 

model.   27 
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Abstract 28 

Terrestrial soil organic carbon (SOC) dynamics play an important but uncertain role in the global 29 

carbon (C) cycle. Current modeling efforts to quantify SOC dynamics in response to global 30 

environmental changes do not accurately represent the size, distribution and flux of C from the 31 

soil. Here, we modified the Daily Century (DAYCENT) biogeochemical model by parameterizing 32 

conceptual SOC pools with C fraction data, followed by historical and future simulations of SOC 33 

dynamics. Results showed that simulations using modified DAYCENT (DCmod) led to better 34 

initialization of SOC stocks and distribution compared to default DAYCENT (DCdef) at long-term 35 

research sites. Regional simulation using DCmod demonstrated higher SOC stocks for both 36 

croplands (34.86 vs 26.17 MgC ha-1) and grasslands (54.05 vs 40.82 MgC ha-1) compared to DCdef 37 

for the contemporary period (2001-2005 average), which better matched observationally 38 

constrained data-driven maps of current SOC distributions. Projection of SOC dynamics to land 39 

cover change (IPCC AR4 A2 scenario) under IPCC AR5 RCP8.5 climate scenario showed 40 

absolute SOC loss of 8.44 and 10.43 MgC ha-1 for grasslands and croplands, respectively, using 41 

DCmod whereas, SOC losses were 6.55 and 7.85 MgC ha-1 for grasslands and croplands, 42 

respectively, using DCdef. The projected SOC loss using DCmod was 33% and 29% higher for 43 

croplands and grasslands compared to DCdef. Our modeling study demonstrates that initializing 44 

SOC pools with C fraction data led to more accurate representation of SOC stocks and individual 45 

carbon pool, resulting in larger absolute and relative SOC losses due to agricultural intensification 46 

in the warming climate.  47 

  48 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 3 

1. Introduction 49 

Soil is the largest terrestrial reservoir of organic carbon (C), storing about 1500 Pg C in the top 50 

100 cm (Batjes, 2016; Nachtergaele et al., 2012). Any small changes in the magnitude, distribution 51 

and forms of terrestrial soil organic carbon (SOC) may lead to large release of C to the atmosphere 52 

(Sulman et al., 2018), with significant impact on food security and the global climate system (Lal, 53 

2004). Given that changes in SOC represent one of the largest uncertainties in the global C budget 54 

(Ciais et al., 2014), accurate quantification of the distribution and forms of SOC can help to 55 

constrain the global C budget and provide key insights on the underlying processes related to SOC 56 

protection and cycling (Stockmann et al., 2013).   57 

Changes in SOC stocks at any given time depend on the balance between organic matter inputs 58 

via plant production, additions of manure and compost, and outputs via decomposition, erosion 59 

and hydrologic leaching of various C compounds (Davidson and Janssens, 2006; Jobbágy and 60 

Jackson, 2000). Although higher organic matter inputs to the soil generally correlate with high 61 

SOC (Sanderman et al., 2017a), the biological stability of SOC is ultimately determined by the 62 

interactions among the soil physicochemical environment (soil moisture, temperature, pH and 63 

aeration), soil mineralogy, and the accessibility of the organic matter to microbes and enzymes 64 

(Schmidt et al., 2011). Current understanding of the SOC dynamics indicates that the soil 65 

physicochemical environment plays an important role in determining the C efflux from soil and 66 

that the efflux rates are modified by substrate availability and the affinities of enzymes for the 67 

substrates (Six et al., 2002). However, the extent to which different physicochemical 68 

characteristics of soil control the stabilization and cycling of SOC is still debated (Carvalhais et 69 

al., 2014; Doetterl et al., 2015; Rasmussen et al., 2018). Additionally, the complex molecular 70 

structure of C substrates and their sensitivity to climatic and environmental constraints add further 71 
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complexity in understanding SOC dynamics at different spatial and temporal scales (Davidson and 72 

Janssens, 2006). 73 

Previous studies have shown that the factors affecting the stabilization/destabilization of SOC are 74 

numerous and that the changes in SOC over space and time are the result of complex interactions 75 

among climatic, biotic and edaphic factors (Rasmussen et al., 2018; Stockmann et al., 2013; Torn 76 

et al., 1997; Wiesmeier et al., 2019). For example, Carvalhais et al. (2014) have shown that climate, 77 

particularly temperature, strongly controls SOC turnover. Doetterl et al. (2015) found that 78 

geochemical characteristics such as base saturation, soil texture, silica content and pH also play a 79 

dominant role by altering the adsorption and aggregation of SOC. In addition, other studies 80 

indicate that soil nitrogen (N) availability affects SOC change due to constraints on microbial 81 

activity and plant productivity (Grandy et al., 2008; Janssens et al., 2010; Sinsabaugh et al., 2005). 82 

These findings have led to the view that the accumulation and decomposition of organic matter in 83 

soil is ultimately determined by the interactions among climate, vegetation type, topography and 84 

lithology.        85 

Biogeochemical models commonly rely on capturing SOC heterogeneity associated with the 86 

complex interactions among climatic, biotic and edaphic factors by defining a number of distinct 87 

SOC pools with different potential turnover rates (Tian et al., 2015; Todd-Brown et al., 2014). The 88 

potential turnover rates of distinct soil pools are modified by climatic factors such as soil moisture 89 

and temperature, soil chemical factors such as pH and oxygen availability and the mechanism that 90 

facilitates C protection via organo-mineral interactions and aggregation, often loosely represented 91 

by clay content (Trumbore, 1997). Each of these pools is conceptual in nature, implying that the 92 

turnover times of these pools cannot be determined by chemical and physical fractionation (Paul 93 
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et al., 2001). As a result, there is increasing need and effort to link the conceptual pools with some 94 

measurable data to determine the turnover rates of SOC pools in the biogeochemical models. 95 

In current biogeochemical models, there is a general agreement that the soil organic matter (SOM) 96 

contains at least three C pools: an active pool dominated by root exudates and the rapidly 97 

decomposable components of fresh plant litter, with mean residence time (MRT) ranging from 98 

days to years (Hsieh, 1993); a slow pool dominated by decomposed organic material, often of 99 

microbial origin, with MRT ranging from years to centuries (Torn et al., 2013); and a passive pool 100 

dominated by stabilized organic matter with MRT of several hundred to thousands of years 101 

(Czimczik and Masiello, 2007). Changes in the size and relative abundance of these pools are 102 

strongly influenced by climate, soil type and land use (Sanderman et al., 2021). Therefore, 103 

accounting for accurate distribution of SOC into different pools is paramount to quantify the 104 

current SOC stocks and examine the vulnerability of SOC to future environmental changes.  105 

Relating these conceptual pools with SOC partitioned into laboratory defined fractions, such as 106 

particulate-, mineral associated- and pyrogenic-forms of C (POC, MOAC and PyC, respectively), 107 

can help to constrain the turnover rate of different pools in biogeochemical models. For example, 108 

Skjemstad et al. (2004) related POC, MOAC and PyC approximated using a combination of 109 

physical size fractionation and solid-state 13C-NMR spectroscopy with resistant plant material 110 

(RPM), humic (HUM) and inert organic material (IOM) pools in the Rothamsted  carbon (RothC) 111 

model to predict changes in SOC in response to changes in soil type, climate and management. 112 

However, RothC does not explicitly simulate plant growth and plant response to dynamic changes 113 

in climate and other environmental factors (Zimmermann et al., 2007). In addition, the plant 114 

material is loosely partitioned into decomposable and resistant forms with large uncertainties in 115 

their respective sizes (Cagnarini et al., 2019). Unlike RothC, ecosystem models such as 116 
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Century, DeNitrification-DeComposition (DNDC) and Agricultural Production Systems 117 

sIMulator (APSIM) integrate the effects of climate, land use change and land management 118 

practices by simulating plant physiology and soil biogeochemistry, and explicitly consider the 119 

effects of climate, land use and land management on three conceptual soil C pools with different 120 

turnover rates (Hartman et al., 2011; Ogle et al., 2010).  121 

In this study, we modified, calibrated and evaluated the version 4.5 of the Daily Century model 122 

(hereafter, DAYCENT) to improve the representation of SOC dynamics by linking conceptual 123 

pools of active, slow and passive SOC against estimates of the measurable POC, MOAC and PyC 124 

fractions, respectively. We then simulated the response of SOC to climate and land use change 125 

during the historical and future period using the default (hereafter, DCdef) and modified (hereafter, 126 

DCmod) DAYCENT model in the US Great Plains ecoregion. The objectives of this study were to 127 

1) modify the DCdef model to link active, slow and passive pools of organic C to soil C fractions; 128 

2) calibrate and evaluate DCmod performance by comparing the distribution of C in active, slow 129 

and passive pools against C fractions predicted at seven long-term research sites; 3) evaluate the 130 

differences between the DCmod and DCdef in simulating contemporary SOC stocks and their 131 

distribution by comparing against other existing data products in the US Great Plains region; and 132 

4) project the SOC change in response to climate and land cover change through 2100. We 133 

hypothesize that (i) calibrating the conceptual pools to C fraction data in the DAYCENT model 134 

leads to more accurate initialization of equilibrium pool structure (Skjemstad et al., 2004), thereby 135 

allowing a better comparison of measured and simulated SOC in response to climate, land use and 136 

management (Basso et al., 2011); (ii) conversion of native vegetation to any agricultural use 137 

significantly alters the distribution of SOC among the various soil pools (Guo and Gifford, 2002), 138 

but the rate and extent of SOC change depend on the intensity of agricultural use (Lal, 2018; Page 139 
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et al., 2014), with larger losses from models that allocate more C to active and slow pools; and (iii) 140 

land use under a warming climate would result in larger absolute and relative losses of SOC from 141 

the model that derive more SOC from the active pool due to rapid decomposition of fresh organic 142 

matter induced by warming (Crowther et al., 2016). 143 

2. Materials and methods 144 

2.1 The DAYCENT Model 145 

The DAYCENT Version 4.5 is a daily time step version of the Century biogeochemical model that 146 

simulates the dynamics of C and N of both managed and natural ecosystems (Del Grosso et al., 147 

2002; Parton et al., 1998). The exchange of C and N among the atmosphere, vegetation and soil is 148 

a function of climate, land use, land management and other environmental factors. The vegetation 149 

pool simulates potential plant growth at a weekly time step limited by water, light and nutrients. 150 

The DAYCENT model consists of multiple pools of SOM and simulates turnover as a function of 151 

the amount and quality of residue returned to the soil, the size of different soil pools and a series 152 

of environmental limitations. The type and timing of management events including tillage, 153 

fertilization, irrigation, harvest and grazing activities can affect plant production and SOM 154 

retention.  155 

The DAYCENT model was originally developed from the monthly CENTURY model version 4.0. 156 

The CENTURY 4.0 is a general FORTRAN model of the plant-soil ecosystem that simulates 157 

carbon and nutrient dynamics of different types of terrestrial ecosystems (grasslands, forest, crops 158 

and savannas). CENTURY 4.0 primarily focused on simulation of soil organic matter dynamics 159 

of agro-ecosystems (Metherell et al., 1994). Earlier development of the CENTURY focused on 160 

simulation of soil organic matter dynamics of grasslands, forest and savanna ecosystems (Parton 161 

et al., 1988; Sanford Jr et al., 1991).  162 
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The first DAYCENT model was developed in FORTRAN 77 and C from CENTURY 4.0 to 163 

simulate the exchanges of C, water, nutrients, and gases (CO2, CH4, N2O, NOx, N2) among the 164 

atmosphere, soil and plants at a daily time step (Del Grosso et al., 2001; Kelly et al., 2000; Parton 165 

et al., 1988). The submodels used in DAYCENT are described in detail by Del Grosso et al. (2001), 166 

which includes submodels for plant productivity, soil organic matter decomposition, soil water 167 

and temperature dynamics, and trace gas fluxes. Other model developments while transitioning 168 

from CENTURY 4.0 to DAYCENT included dynamic carbon allocation and changes in growing 169 

degree days routine that triggers the start and end of growing season based on phenology (soil 170 

surface temperature, air temperature, and thermal units).  171 

The first formal version DAYCENT 4.5 (Hartman et al., 2011) was developed from Del Grosso et 172 

al. (2002), with a focus on simulation of trace gas fluxes for major crop types in the US Great 173 

Plains region. Hartman et al. (2011) focused on calibrating and validating crop yield and trace gas 174 

fluxes for all the major crop types in 21 representative counties in the US Great Plains region. 175 

The SOM sub-model consists of active, slow and passive pools with different turnover times. The 176 

active pool has a short (1-5 yr) turnover time and consists of live microbes and microbial products. 177 

The slow pool has an intermediate turn over time (20-50 yr) and contains physically protected 178 

organic matter and stabilized microbial products. The passive pool has a long turnover time (400-179 

2000 yr) with physically and chemically stabilized SOC. In DAYCENT, the turnover of the active, 180 

slow and passive pools are simulated as a function of potential decomposition rates of respective 181 

pools modified by soil temperature, moisture, clay content, pH and cultivation effects. Changes in 182 

SOC are simulated for the top 20 cm of the soil. 183 

In this study, we modified the DAYCENT and developed a methodology to calibrate the size of 184 

the conceptual soil pools by comparing it with carbon fraction data at long term research sites. 185 
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First, we developed measurable carbon fraction data using a combination of diffuse reflectance 186 

spectroscopy and a machine learning model (section 2.2). Second, we modified the DAYCENT 187 

model to link conceptual active, slow, and passive pools with the carbon fraction data (section 2.3 188 

& 2.4). Third, we parameterized the DAYCENT by tuning the potential decomposition rates (k) 189 

such that the size of the active, slow and passive soil pools match with the POC, MAOC and PyC, 190 

respectively at the long-term research sites (section 2.5). Fourth, we calibrated both the default and 191 

modified DAYCENT using input data developed in section 2.3 against observed total SOC at the 192 

long-term research sites (section 2.6), followed by model validation (section 2.7) and historical 193 

and future simulations (section 2.8). 194 

2.2 Development of carbon fraction datasets to match with soil carbon pools 195 

 196 

To link the SOC pools in DAYCENT with measurable C fractions, we used seven long-term 197 

research sites located in the United States (Cavigelli et al., 2008; Gollany, 2016; Ingram et al., 198 

2008; Liebig et al., 2010; Schmer et al., 2014; Sindelar et al., 2015; Syswerda et al., 2011), which 199 

span a range of climatic, land use and land management gradients (Table 1). Six of seven research 200 

sites are part of Long-Term Agroecosystem Research (LTAR) network focused on sustainable 201 

intensification of agricultural production. The remaining site is part of Columbia Plateau 202 

Conservation Research Center (CPCRC) Long-Term Experiment (LTE). At each site, we predicted 203 

the POC, MAOC and PyC fractions using a diffuse reflectance mid-infrared (MIR) spectroscopy-204 

based model as detailed in Sanderman et al. (2021). The predictive models for the C fractions were 205 

developed from a database of fully fractionated soil samples using a combination of physical size 206 

separation and solid-state 13C NMR spectroscopy (Baldock et al., 2013b) of Australian (Baldock 207 

et al., 2013a) and US origin (Sanderman et al., 2021). All samples for model development were 208 

scanned using a Thermo Nicolet 6700 FTIR spectrometer with Pike AutoDiff reflectance 209 
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accessory located at the Commonwealth Scientific and Industrial Research Organization (CSIRO) 210 

in Australia. The soil samples from all the long-term research sites were scanned using a Bruker 211 

Vertex 70 FTIR equipped with a Pike AutoDiff reflectance accessory located at Woodwell Climate 212 

Research Center in the United States. For all samples, spectra were acquired on dried and finely 213 

milled soil samples. Since the SOC fraction model and the soil samples were scanned using 214 

different instruments, we developed a calibration transfer routine to account for the differences in 215 

spectral responses between the CSIRO (primary) and Woodwell (secondary) instruments by 216 

scanning a common set of 285 soil samples. The calibration transfer routine was developed using 217 

piecewise direct standardization (PDS) as described in Dangal & Sanderman (2020).  218 

  219 
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For estimating C fractions of the prediction set (i.e., soil spectra of seven long-term research sites), 222 

we used a local memory based learning (MBL) approach that fits a unique target function 223 

corresponding to each sample in the prediction set (Dangal et al., 2019; Ramirez-Lopez et al., 224 

2013). The MBL selects spectrally similar neighbors for each sample in the prediction sets to build 225 

a unique SOC fraction model for each target sample. The spectrally similar neighbors were 226 

optimized by developing a soil C fraction model using a range of spectrally similar neighbors and 227 

selecting the neighbors that produce the minimum root mean square error based on local cross 228 

validation. Before developing the soil C fraction model, the spectra of both the calibration and 229 

prediction sets were baseline transformed. Following baseline transformation, spectral outliers 230 

were detected using F-ratios (Hicks et al., 2015). The F-ratio estimates the probability distribution 231 

function of the spectra and picks samples that fall outside the calibration space as outliers (Dangal 232 

et al., 2019). Observation data used for building the soil C fraction model were square root 233 

transformed before model development and later back-transformed when estimating the goodness-234 

of-fit. The performance of predictive models is shown in Table S1. 235 

The predicted soil C fractions for the seven long-term research sites were then converted into C 236 

fraction stocks using the relationship between C fraction (%), bulk density (BD; g/cm3) and the 237 

depth (cm) of soil samples. Since the BD data were not available for all long-term research sites 238 

for different crop rotation and grazing intensities, we predicted BD using methods similar to those 239 

described above. The only difference was that the samples used to develop the BD model were 240 

based on a much larger database of soil spectra scanned at the Kellogg Soil Survey Laboratory 241 

(KSSL) in Lincoln, USA (Dangal et al., 2019). Before predicting BD, the calibration transfer, as 242 

documented in Dangal & Sanderman (2020), between the KSSL and Woodwell soil spectra were 243 

developed and the local modeling approach (i.e., MBL) was used to make final prediction for 244 
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samples with missing laboratory BD. Calibration transfer between the spectrometers at the 245 

Woodwell (secondary instrument) and KSSL (primary instrument) laboratory was necessary to 246 

improve prediction of BD (R2 = 0.46-0.64 and RMSE = 0.26-0.50) (Dangal and Sanderman, 2020). 247 

One of the technical challenges associated with the comparison of simulated pool sizes against 248 

diffuse reflectance spectroscopy-based predictions of POC, MOAC and PyC at long-term research 249 

sites was the absence of laboratory data on C fractions to validate the MIR based predictions. To 250 

address this shortcoming, we first compared the sum of the MIR based predictions of POC, MOAC 251 

and PyC against observation of total SOC available at these sites (Figure S1). When comparing 252 

the total SOC against MIR based predictions, we did not limit the comparison to 20 cm, but 253 

allowed it across the full soil depth profile based on the availability of SOC data at the seven long-254 

term research sites. Additionally, the laboratory data used for model comparison were available at 255 

multiple depths of up to 60 cm often without a direct measurement for the 0-20 cm depth 256 

necessitating an approximation of the 0-20 cm stock. For example, when soils were collected from 257 

0-15 and 15-30 cm, we estimated the 20 cm SOC stock by adding 1/3 of the 15-30 cm SOC stock 258 

to the entire 0-15 cm SOC stock.  259 

2.3 Input datasets for driving the DAYCENT model 260 

The US Great Plains region was delineated using the Level I ecoregions map (Omernik and 261 

Griffith, 2014) available through the Environmental Protection Agency (https://www.epa.gov/eco-262 

research/ecoregions-north-america). The datasets for driving the DAYCENT were divided into 263 

two parts: 1) dynamic datasets that include time series of daily climate (precipitation, maximum 264 

and minimum temperature), annual land cover land use change (LCLUC) and land management 265 

practices (irrigation, fertilization and cropping system, tillage intensity) and 2) static datasets that 266 

include information on soil properties (soil texture, pH and bulk density) (Sanderman et al., 2021), 267 

https://www.epa.gov/eco-research/ecoregions-north-america
https://www.epa.gov/eco-research/ecoregions-north-america
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and topography maps (Jarvis et al., 2008). For the historical period (1895-2005), we used a 268 

combination of VEMAP and PRISM (1895-1979) and Daymet (1980-2005) (Daly and Bryant, 269 

2013; Kittel et al., 2004; Thornton et al., 2012). The VEMAP datasets are available at a daily time 270 

step and a coarser spatial resolution (0.5o x 0.5o), while the PRISM datasets are available at a 271 

monthly time step and a finer spatial resolution (10 km × 10 km). We interpolated the PRISM data 272 

at a daily time step by using the daily trend from the VEMAP datasets such that the monthly 273 

precipitation totals and monthly average temperature matches the monthly climate from the 274 

PRISM data. For the future (2006-2100), we used the Intergovernmental Panel on Climate Change 275 

(IPCC) 5th assessment report (AR5) RCP4.5 and RCP8.5 climate scenarios available at a spatial 276 

resolution of 1/16o x 1/16o. 277 

Table 2. Default and modified decomposition (k) parameters used in the DAYCENT to simulate 278 

the size of different carbon pools 279 

Pools Default  Modified k (yr-1) 

 k (yr-1) grid search N Optimized Absolute Relative (%) 

Active 7.30 (3,12) 301 3.50 -3.80 -52 

Slow 0.20 (0.10,0.30) 201 0.14 -0.06 -30 

Passive 0.0045 (0.001,0.0085) 351 0.0075 0.003 +67 

 280 

For annual LCLUC, we used spatially explicit datasets available at a resolution of 250m × 250m 281 

for the historical (1938-2005) and future (2006-2100) periods under the IPCC 4th assessment report 282 

(AR4) A2 scenario (Sohl et al., 2012). We used only the A2 land cover scenario because there was 283 

not much difference in the trajectories of land cover change through 2100. For the period 1895-284 

1937, we backcasted the proportional distribution of croplands and grasslands by integrating the 285 

Sohl et al. (2012) data with HYDE v3.2 data (Klein Goldewijk et al., 2017). We estimated the 286 
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fractional distribution of croplands and grasslands by calculating the total number of pixels 287 

dominated by each land cover type at 250m resolution within each 1/16 o grid cell (Figure S2a). 288 

Irrigation and fertilization data are based on census of agriculture statistics (Falcone and LaMotte, 289 

2016). All datasets were interpolated/aggregated to a common resolution of 1/16o x 1/16o 290 

(approximately 7km x 7km at the equator).   291 

Cropping systems and crop rotation are based on county level data for the US Great Plains region 292 

available through Hartman et al. (2011), which were merged with tillage type and intensity data 293 

(Baker, 2011) to write 24 unique schedule files that describe grid-specific cropping system and 294 

crop management practices. The 24 unique schedule files include sequences of time blocks, with 295 

each block describing a unique set of crop types, crop rotation, tillage type, tillage intensity, 296 

fertilization, irrigation and residue removal (Hartman et al., 2011). Using these schedule files, we 297 

developed an unsupervised classification algorithm (K-means) to create 24 unique clusters as a 298 

function of long-term average climate (precipitation, minimum- and maximum-temperatures), 299 

land forms, land cover type and elevation. We then assigned all the grid cells to one of the 24 300 

unique clusters to create a spatially explicit dataset on cropping system and crop rotation. While 301 

developing the unsupervised classification algorithm, the eastern part of the US Great Plains region 302 

dominated by corn (Zea mays L.) - soybean (Glycine max (L.) Merr.) rotation was 303 

underrepresented. To address this shortcoming, we used randomly selected grid points from the 304 

CropScape data (https://nassgeodata.gmu.edu/CropScape/) available through the USDA National 305 

Agricultural Statistics Service in the unsupervised classification algorithm. Additionally, cropping 306 

systems classified using the unsupervised algorithm was verified against current CropScape data 307 

allowing for realistic representation of cropping systems. The distribution of schedule files 308 

representing different crop rotation and crop types used to build the unsupervised classification is 309 
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shown in Figure S2b and the spatial distribution of crop rotations based on the unsupervised 310 

classification is shown in Figure S3.    311 

2.4 Linking DAYCENT conceptual pools with C fractions     312 

The SOC dynamics in the DAYCENT consists of the first-order kinetic exchanges among 313 

conceptual pools (active, slow, and passive) defined by empirical turnover rates (Parton et al., 314 

1987). However, a major impetus for quantifying these pools comes from the fact that the size and 315 

distribution of SOC in the different pools cannot be directly linked with experimental data. Here, 316 

we developed a methodology to link the conceptual active, slow and passive pools to spectroscopy-317 

based estimates of POC, MAOC and PyC fractions. The rate of decomposition across POC, 318 

MAOC and PyC are consistent with the potential turnover rates assigned to the active, slow, and 319 

passive pools in soil C models (Baldock et al., 2013b). As a result, we modified the potential 320 

turnover rates in the DAYCENT model such that the absolute difference between the simulated 321 

SOC and predicted C fractions was minimized (see section 2.5 below). When matching the soil 322 

pools with C fraction data, we compared the sum of belowground structural, metabolic and active 323 

pool SOC to POC, slow pool SOC to MAOC, and passive pool SOC to PyC. Details on matching 324 

the conceptual pools with C fraction data are provided in Figure S4.   325 
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 326 

Figure 1. Parameterization of kactive, kslow and kpassive using carbon fractions predicted across long 327 

term research sites. The dashed black line represents the potential decomposition rates (k) that is 328 

optimized when the absolute difference between the DCmod simulated SOC in different pools and 329 

the predicted C fractions is minimum. The dashed green line represents the size of different soil 330 

SOC pools using the default k value based on DCdef model. The dashed grey line is the average 331 

POC (i.e. active), MAOC (i.e. slow) and PyC (i.e. passive) predicted using the combination of 332 

diffuse reflectance spectroscopy and machine learning at seven long term research sites {Citation}. 333 

2.5 Model parameterization  334 

In this study, we performed a grid search to parameterize the potential decomposition rates for 335 

respective soil pools by running the DAYCENT at seven long-term research sites (Figure 1; Table 336 
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2), and compare the simulated SOC in active, slow, and passive pools with the POC, MAOC and 337 

PyC fractions. In the current DAYCENT model, total SOC is defined as follows: 338 

𝑆𝑂𝐶𝑡𝑜𝑡𝑎𝑙 =  𝑆𝑂𝐶𝑠𝑡𝑟𝑐 + 𝑆𝑂𝐶𝑚𝑒𝑡𝑎𝑏 +  𝑆𝑂𝐶𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑆𝑂𝐶𝑠𝑙𝑜𝑤 +  𝑆𝑂𝐶𝑝𝑎𝑠𝑠𝑖𝑣𝑒    (1) 339 

Where, 340 

SOCstrc = structural SOC pool  341 

SOCmetab = metabolic SOC pool 342 

SOCactive = active SOC pool 343 

SOCslow = slow SOC pool 344 

SOCpassive = passive SOC pool 345 

Each of the above SOC pool has a specific potential decomposition rates that determines the time 346 

(ranging from years to centuries) until decomposition. Plant material is transferred to the active, 347 

slow and passive pools from aboveground and belowground litter pools and three dead pools. Total 348 

C flow (CFact) out of the active pool is a function of potential decomposition rates modified by the 349 

effect of moisture, temperature, pH, and soil texture. 350 

𝐶𝐹𝑎𝑐𝑡 =  𝑘𝑎𝑐𝑡 × 𝑆𝑂𝐶𝑎𝑐𝑡 × 𝑏𝑔𝑑𝑒𝑐 × 𝑐𝑙𝑡𝑎𝑐𝑡 × 𝑡𝑒𝑥𝑡𝑒𝑓 × 𝑎𝑛𝑒𝑟𝑏𝑑𝑒𝑐 × 𝑝𝐻𝑒𝑓𝑓 × 𝑑𝑡𝑚     (2) 351 

Where,  352 

CFact = the total amount of C flow out of the active pool (g C m-2) 353 

kact = intrinsic decomposition rate of the active pool (yr-1) 354 

SOCact = SOC in the active pool (g C m-2). 355 

bgdec = the effect of moisture and temperature on the decomposition rate (0-1) 356 

cltact = the effect of cultivation on the decomposition rate for crops (0-1) for the active pool 357 

textef = the effect of soil texture on the decomposition rate (0-1) 358 

anerbdec = the effect of anaerobic conditions on the decomposition rate (0-1) 359 
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pHeff  = the effect of pH on the decomposition rate (0-1) 360 

dtm = the time step (fraction of year) 361 

The respiratory loss when the active pool decomposes is calculated as: 362 

𝐶𝑂2(𝑎𝑐𝑡) =  𝐶𝐹𝑎𝑐𝑡  × 𝑝1𝐶𝑂2           (3) 363 

Where,  364 

CO2(act) = respiratory loss from the SOCact pool (g C m-2) 365 

p1CO2 = scalar that control respiratory CO2 loss computed as a function of intercept and slope 366 

parameters modified by soil texture 367 

The C flow from active to passive pool is then computed as: 368 

𝐶𝐹𝑎𝑐𝑡2𝑝𝑎𝑠 =  𝐶𝐹𝑎𝑐𝑡  × 𝑓𝑝𝑠1𝑠3 × (1 + 𝑎𝑛𝑖𝑚𝑝𝑡 × (1 − 𝑎𝑛𝑒𝑟𝑏))    (4) 369 

Where, 370 

CFact2pas = C flow from the active to the passive pool (g C m-2)  371 

fps1s3 = impact of soil texture on the C flow (0-1) 372 

animpt = the slope term that controls the effect of soil anaerobic condition on C flows from active 373 

to passive pool (0-1) 374 

anerb = effect of anaerobic condition on decomposition computed as a function of soil available 375 

water and potential evapotranspiration rates 376 

The C flow from active to the slow pool is then computed as the difference between total C flow 377 

out of the active pool, respiratory CO2 loss, C flow from active to passive pool and C lost due to 378 

leaching. Mathematically, 379 

𝐶𝐹𝑎𝑐𝑡2𝑠𝑙𝑜 =  𝐶𝐹𝑎𝑐𝑡 − 𝐶𝑂2(𝑎𝑐𝑡) − 𝐶𝐹𝑎𝑐𝑡2𝑝𝑎𝑠 − 𝐶𝑙𝑒𝑎𝑐ℎ      (5) 380 

Where, 381 

Cleach = C lost due to leaching calculated as a function of leaching intensity (0-1) and soil texture 382 
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Likewise, total C flow (CFslo) out of the slow pool is a function of potential decomposition rates 383 

modified by the effect of moisture, temperature, pH, and soil texture. 384 

𝐶𝐹𝑠𝑙𝑜 =  𝑘𝑠𝑙𝑜 × 𝑆𝑂𝐶𝑠𝑙𝑜 × 𝑏𝑔𝑑𝑒𝑐 × 𝑐𝑙𝑡𝑠𝑙𝑜 × 𝑎𝑛𝑒𝑟𝑏𝑑𝑒𝑐 × 𝑝𝐻𝑒𝑓𝑓 × 𝑑𝑡𝑚   (6) 385 

kslo = intrinsic decomposition rate of the slow pool (yr-1) 386 

SOCslo = SOC in the slow pool (g C m-2). 387 

cltslo = the effect of cultivation on the decomposition rate for crops (0-1) for the slow pool 388 

The respiratory loss when the slow pool decomposes is calculated as: 389 

𝐶𝑂2(𝑠𝑙𝑜) =  𝐶𝐹𝑠𝑙𝑜  × 𝑝2𝐶𝑂2           (7) 390 

Where,  391 

CO2(slo) = respiratory loss from the SOCslo pool (g C m-2) 392 

P2CO2 = parameter that controls decomposition rates of the slow pool (0-1) 393 

The C flow from slow to passive pool is then computed as: 394 

𝐶𝑠𝑙𝑜2𝑝𝑎𝑠 =  𝐶𝐹𝑠𝑙𝑜  × 𝑓𝑝𝑠2𝑠3 × (1 + 𝑎𝑛𝑖𝑚𝑝𝑡 × (1 − 𝑎𝑛𝑒𝑟𝑏))    (8) 395 

Where, 396 

fps2s3 = impact of soil texture on decomposition (0-1) 397 

The C flow from slow to active pool is then computed as a difference between total C flow out of 398 

the slow pool, respiratory CO2 loss and total C flow from slow to passive pool. Mathematically, 399 

𝐶𝐹𝑠𝑙𝑜2𝑎𝑐𝑡 =  𝐶𝐹𝑎𝑐𝑡 − 𝐶𝑂2(𝑠𝑙𝑜) − 𝐶𝐹𝑠𝑙𝑜2𝑝𝑎𝑠        (9) 400 

Likewise, total C flow (CFpas) out of the passive pool is a function of potential decomposition rates 401 

modified by the effect of moisture, temperature and pH. 402 

𝐶𝑝𝑎𝑠 =  𝑘𝑝𝑎𝑠 × 𝑆𝑂𝐶𝑝𝑎𝑠 × 𝑏𝑔𝑑𝑒𝑐 × 𝑐𝑙𝑡𝑝𝑎𝑠 × 𝑝𝐻𝑒𝑓𝑓 × 𝑑𝑡𝑚      (10) 403 

Where, 404 

kpas = intrinsic decomposition rate of the passive pool (yr-1) 405 
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SOCpas = SOC in the slow pool (g C m-2). 406 

cltpas = the effect of cultivation on the decomposition rate for crops (0-1) for the passive pool 407 

The CFpas is either lost through respiratory processes or transferred to the active pool using the 408 

following equation: 409 

𝐶𝑂2(𝑝𝑎𝑠) =  𝐶𝐹𝑝𝑎𝑠  × 𝑝3𝑐𝑜2         (11) 410 

𝐶𝐹𝑝𝑎𝑠2𝑎𝑐𝑡 =  𝐶𝐹𝑝𝑎𝑠  × (1 − 𝑝3𝑐𝑜2))        (12) 411 

Where,  412 

CO2(pas) = respiratory loss from the passive SOC pool (g C m-2) 413 

p3co2 = parameter that control decomposition rates of passive pool (0-1) 414 

CFpas2act = C flow from passive to active pool (g C m-2) 415 

Since DAYCENT is a donor-controlled model and changes in organic matter are primarily driven 416 

by a top down approach, we first parameterize the active soil pool by comparing the simulated 417 

SOC in the active pool against POC predicted using diffuse reflectance spectroscopy. During the 418 

parameterization process, we varied the potential decomposition rates (kactive) by running the model 419 

to equilibrium under native vegetation for 2000 years. We then used site history at seven long-420 

term research sites to create schedule files and simulate the effects of historical cropping systems, 421 

land use change, land management and grazing practices on the active SOC. The potential 422 

decomposition rates for the active soil pool were optimized when the absolute difference between 423 

the average of SOC in the active pool and the POC for the top 20 cm across all sites was minimum. 424 

We repeated the above process for parameterizing the slow- and passive-carbon pools by 425 

comparing it with MOAC and PyC, respectively. Similar to the active pool, we performed a grid 426 

search using the existing parameters based on the default model that controls the potential 427 

decomposition rates (kslow and kpassive) of the slow- and passive-pools. We then optimized the 428 
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parameter by using the potential decomposition rates that provides the minimum difference in the 429 

absolute values across all sites.  430 

2.6 Model calibration and simulation procedure 431 

The DAYCENT model has been well calibrated across a range of climatic, environmental, and 432 

land use gradients for different crop and grassland types. Details of the calibration procedure can 433 

be found in Hartman et al. (2011). Briefly, adjustment of key model parameters that control plant 434 

growth and SOM changes were made by changing the schedule files at each point in time. For 435 

example, transitioning to higher yielding corn varieties occurred in 1936, while the short and semi-436 

dwarf wheat varieties were introduced in the 1960s. During the calibration process, model 437 

parameters that control the maximum photosynthetic rate and grain to stalk ratio were adjusted 438 

within realistic limits to account for improvement in crop varieties. Additionally, adjustments in 439 

the schedule files were made to account for residue removal in early years, while residues were 440 

retained in later years, thereby increasing nutrient input to the soils. These calibration strategies 441 

have allowed to better capture crop dynamics in the US Great Plains region (Hartman et al., 2011). 442 

Model simulation begins with the equilibrium run starting from year zero to year 1894 by repeating 443 

daily climate data from 1895-2005 and native vegetation without disturbance or land use change. 444 

Following the equilibrium run, we performed a historical simulation to quantify the effects of land 445 

use history, land management practices, and climate change on the evolution of SOC during 1895-446 

2005. Finally, we performed future simulations using two climate scenarios (RCP4.5 and RCP8.5) 447 

and A2 LCLUC, with land management practices (i.e. irrigation, fertilization, tillage practices, and 448 

crop rotation) held at 2005 levels during 2006-2100.  449 
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2.7 Model validation at site and regional scales 450 

The performance of the calibrated model was assessed by comparing simulated SOC in the active, 451 

slow, and passive pools against predictions of POC, MAOC and PyC, respectively, at the seven 452 

long-term research sites. In the validation procedure, we ran the model at these sites using plant 453 

growth and soil parameters determined from model calibration, but with changing climate, 454 

environmental, and land use data based on the land use history of the respective sites. For all the 455 

sites, we compared the distribution of SOC in different pools and evaluated model performance 456 

using linear regression and the goodness-of-fit statistics (bias, R2, RMSE). 457 

We also compared the distribution of SOC simulated using DAYCENT against the machine 458 

learning model-based predictions of POC, MAOC, and PyC for the US Great Plains ecoregion 459 

(Sanderman et al., 2021). Additionally, we compared simulated total SOC against two other SOC 460 

maps for the contemporary period (Hengl et al., 2017; Ramcharan et al., 2018) .   461 

2.8 Historical and future changes in SOC stocks 462 

To quantify the effect of the new parameterization scheme linking measurable soil C pools with 463 

conceptual active, slow, and passive pools from the DAYCENT, we designed two scenarios. In 464 

the first scenario, we ran the model using the default (DCdef) and the modified (DCmod) model that 465 

links conceptual pools with C fraction during the historical period (1895-2005) to quantify the 466 

differences in SOC across different pools associated with different parameterization. In the second 467 

scenario, we performed future simulations to understand if the different model structures (DCdef 468 

versus DCmod) result in different effects of climate and LCLUC on SOC stocks. We used the IPCC 469 

AR5 RCP8.5 and RCP4.5 climate scenarios and the IPCC AR4 A2 LCLUC scenarios to quantify 470 

the effects of future climate and LCLUC change on SOC stocks. The RCP8.5 corresponds to the 471 

pathway that tracks current global trajectories of cumulative CO2 emissions (CO2 levels reaching 472 
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960 ppm by 2100) with the assumption of high population growth and modest rates of 473 

technological change and energy intensity improvements (Riahi et al., 2011; Schwalm et al., 2020). 474 

The RCP4.5 is a modest emission scenario with CO2 levels reaching 540 ppm by 2100 under the 475 

assumption of shift toward low emission technologies and the deployment of carbon capture and 476 

geologic storage technology (Thomson et al., 2011). The A2 land cover scenario emphasizes rapid 477 

population growth and economic development, and resembles closely to the RCP8.5 scenario. We 478 

used the AR4 for LCLUC because Sohl et al. (2012) data were available at high resolution and 479 

allowed for smoother transition between land cover types when moving from historical to future 480 

A2 LCLUC scenarios. The purpose of the second scenario is to better understand the response of 481 

SOC to future climate and LCLUC and examine the effect of the new model modification on the 482 

projected change in total SOC through 2100. 483 

3. Results and Discussion     484 

By quantifying the size and distribution of conceptual SOC pools of ecosystem models using a 485 

combination of diffuse reflectance spectroscopy and machine learning, we were able to modify 486 

DAYCENT by relating the conceptual active, slow and passive pools with measurable POC, 487 

MAOC and PyC fractions (section 3.1). Model modification led to more accurate representation 488 

of the magnitude and distribution of SOC (section 3.2) and was necessary to accurately quantify 489 

the legacy effect of previous land use under a changing climate and reproduce current SOC 490 

stocks compared to the default model (section 3.3). Projection of future SOC change show that 491 

the default model underestimates the SOC loss in response to climate and land cover change by 492 

31% and 29% for croplands and grasslands, respectively (section 3.4). Overall, our results 493 

demonstrate that relating the pools sizes from the ecosystem model with C fraction data is 494 
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necessary to better initialize SOC pool and simulate SOC response to climate and land use into 495 

the future.   496 

 497 
Figure 2. Comparison of the machine learning (ML) and DAYCENT simulated SOC using the 498 

modified (DCmod) and default (DCdef) models at long-term research sites with a known cropping 499 

history. The black dots in the boxplot represent the SOC at the various sites plotted by adding a 500 

random value such that they do not overlap with each other. 501 

3.1 Model evaluation of total SOC and the distribution of SOC at long-term research sites 502 

The modified model (DCmod) linking conceptual soil pools to measurable C fractions showed better 503 

representation of the distribution of C stocks across different pools compared to the default model 504 

(DCdef) (Figures 2 & 3). When the mean SOC at these sites were compared to DCmod and DCdef 505 

simulated SOC, DCmod had better fit (R2 = 0.52) and lower RMSE (8.49 Mg C ha-1) compared to 506 

DCdef (R2 = 0.40; RMSE = 8.93 Mg C ha-1) (Figure S5). The mean SOC based on observation for 507 

these sites was 38.96 Mg C ha-1, which is comparable to the sum of predicted C fractions (37.07 508 

Mg C ha-1) and simulated SOC using DCmod (42.30 Mg C ha-1) and DCdef (36.60 Mg C ha-1) 509 

models. The DCmod simulated SOC was higher than observation and machine learning based SOC 510 
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by 9 and 12%, respectively, while DCdef showed under-predicted SOC by 6% compared to 511 

observation. Although DCmod showed a tendency toward over-prediction, assessment of the 512 

distribution of SOC demonstrated that DCmod was able to better simulate the distribution of SOC 513 

in soil pools compared to DCdef. The DCmod simulated the highest proportion of C in the slow 514 

(56%) pool followed by the passive (30%) and active (14%) pools, which is comparable to the 515 

machine learning model-based estimates of MAOC (57%), PyC (29%) and POC (14%), 516 

respectively. Unlike DCmod, DCdef model simulated the highest proportion of C in passive (53%), 517 

followed by slow (39%) and active (8%) pools (Table S2).  518 

 519 

Figure 3. Comparison of the machine learning (ML) and DAYCENT simulated SOC using the 520 

modified (DCmod) and default (DCdef) models across different pools at two long-term research sites 521 

dominated by grasslands with a known grazing history. The black dots in the boxplot represent the 522 

SOC across different sites plotted by adding a random value such that they do not overlap with 523 

each other. 524 

Evaluation of the model performance (DCmod) for grasslands and croplands showed that the 525 

modified model (DCmod) outperformed the default model (DCdef) with better model fit (R2 = 0.60), 526 
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lower bias (-1.94 Mg C ha-1) and lower RMSE (6.7 Mg C ha-1) for grasslands (Figure S6). The 527 

DCmod also produced better model fit for croplands (R2 = 0.48), but higher bias (-5.84 Mg C ha-1) 528 

and RMSE (8.86 Mg C ha-1) compared to the default (DCdef) model (bias = -0.82 and RMSE = 529 

7.45 Mg C ha-1). The DCmod was able to better represent the distribution of C in the active, slow 530 

and passive pools for both grasslands and croplands, while DCdef showed large discrepancies when 531 

representing the distribution of SOC for croplands (Table S2).  532 

The results of this exercise demonstrate that optimizing the model parameters to initialize the 533 

conceptual SOC pools by matching with C fraction data can reproduce the distribution of SOC 534 

(Figures 2 & 3), building confidence in the modeling of SOC stocks, and their pool distribution 535 

(Lee and Viscarra Rossel, 2020; Luo et al., 2016). A common approach to initializing soil C pools 536 

is based on the use of soil C steady-state conditions, which is primarily achieved by running the 537 

model over a long period of 100 to 10000 years under native vegetation. However, this approach 538 

has shown large uncertainty in the estimation of contemporary SOC partly due to differences in 539 

parameter values used to determine the initial SOC stocks, which vary many fold across models 540 

(Tian et al., 2015; Todd-Brown et al., 2014). Additionally, the size and distribution of the soil C 541 

pools are constrained by model structure and parameter values producing large differences in 542 

initial conditions, which ultimately propagates into uncertainties in historical and future projection 543 

of SOC change (Ogle et al., 2010; Shi et al., 2018). Relating these conceptual pools to measurable 544 

C fractions by optimizing parameters that control decomposition rates can help to constrain initial 545 

pool size and reduce uncertainties related to initial SOC stocks across different models 546 

(Christensen, 1996; Luo et al., 2016; Zimmermann et al., 2007). Results of this study show that 547 

tuning the potential decomposition rates within reasonable range (Figure 1) can effectively capture 548 
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the distribution of SOC among different pools without significantly altering the magnitude of total 549 

SOC (Figures 2 & 3).  550 

While tuning the parameters that control potential decomposition rates, active, and slow pools 551 

were adjusted by -3.8 yr-1 (-52% compared to default rate) and -0.06 yr-1 (-30%) respectively, and 552 

passive pool was increased by 0.003 yr-1 (67%) to match with C fractions data at the long-term 553 

research sites. These modifications were done such that the model was able to simulate total SOC 554 

and their distribution under current climatic, and land use conditions while also allowing to capture 555 

the legacy effect of previous land use, crop rotation, and tillage practices. It is important to note 556 

that other soil C models use C fraction data obtained under land use of varying intensities to run 557 

the model to steady state (Zimmermann et al., 2007), although soils under continuous use are in a 558 

transient state (Wieder et al., 2018). The rate and direction of SOC change can be modified by 559 

environmental factors, previous land use, and current management practices (e.g., intensity, 560 

cropping systems and fertilization/irrigation), which ultimately determine a new equilibrium or 561 

transient state (Chan et al., 2011; Van Groenigen et al., 2014). Here, we run the model to steady 562 

state conditions, and calibrated the SOC stocks to current land use and management practices by 563 

matching with C fractions data at all the sites.   564 

3.2 Model evaluation of SOC stocks and their distribution at the regional scale 565 

Evaluation of the model performance at the regional level by comparing model simulations to three 566 

data-driven SOC maps showed that the default (DCdef) model under-predicts SOC stocks for the 567 

contemporary period (2001-2005 average). The modified (DCmod) model was better able to 568 

reproduce the spatial pattern as observed in the data driven estimates of SOC (Figure 4). The DCmod 569 

simulated contemporary SOC stocks of 34.86 Mg C ha-1 were closer to the estimates based on 570 

three data-driven models (32.38 – 39.19 Mg C ha-1) (Figure S7). The DCdef simulated SOC stocks 571 

of 26.17 Mg C ha-1, which is lower than the machine learning based predictions by 19-33%. 572 
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Interestingly, both DCdef and DCmod were not able to reproduce the high C stocks in the 573 

northeastern Great Plains although data driven modeling shows large SOC stocks.  574 

 575 

Figure 4. Spatial pattern of SOC change during the contemporary period: modified (DCmod) (a), 576 

default (DCdef) (b), Sanderman et al. (2021) (c), Ramcharan et al. (2018) (d), and Hengl et al. 577 

(2017) (e). Data-driven SOC maps were scaled by cropland and grassland distribution maps before 578 

comparing against DAYCENT-simulated SOC.  579 

Evaluation of the model performance using a scatterplot shows that calibration of active, slow, and 580 

passive pools was necessary to produce unbiased estimates of SOC despite having slightly higher 581 

RMSE values than the default model when compared to the different SOC data sets (Figure 5). 582 

Among the three data driven models, Sanderman et al. (2021) also provided prediction of POC, 583 

MAOC, and PyC in the US Great Plains region. Comparison of the distribution of SOC across 584 

different pools indicate that the DCmod was able to reproduce SOC in the slow/MAOC, and 585 

passive/PyC pools but under-predicted the size of the active/POC pool (Figure S8).  586 
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 587 

Figure 5. Scatter plots of the comparison of DAYCENT simulated SOC (DCmod & DCdef) against 588 

Sanderman et al. (2021) – JS250m, Ramcharan et al. (2018) – AR100m, and Hengl et al. (2017) – 589 

SG250m.  590 

While the modified (DCmod) model was able to better capture the magnitude and spatial pattern of 591 

SOC when compared against data based on machine learning models, the datasets themselves 592 

present a few challenges when comparing with the results from this study. First, these datasets 593 

were produced using the environmental covariates approach under current climatic and land use 594 

conditions, and thus represent SOC dynamics using aggregated climate, land use, and 595 

environmental conditions over a certain period. However, in the DAYCENT model, we used 596 

annual and daily time series data for climatic and land use conditions to simulate the processes that 597 

control SOM retention and stabilization, which could lead to inconsistencies when comparing 598 

results between this study and data driven products. Second, outputs based on machine learning 599 

models are sensitive to the number of samples used in the training sets. For example, machine 600 

learning-based SOC shows higher stocks in the northeastern Great Plains region compared to the 601 

DCmod or DCdef models (Figure 4). This may be because the region contains thousands of shallow 602 
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seasonal wetlands with higher SOC stocks averaging between 78 to 109 Mg C ha-1 to the depth of 603 

20cm (Tangen and Bansal, 2020). Accounting for the large number of wetlands samples in the 604 

training set would likely produce higher SOC stocks in the region. We did not specifically model 605 

wetlands SOC and only considered grasslands and croplands, which cover >90% of the land area 606 

in the US Great Plains region and as such may have underrepresented these high SOC ecosystems.    607 

3.3 Historical changes in SOC stocks and their distribution 608 

When the baseline SOC (1895-1899 average) values were compared with the current (2001-2005 609 

average) SOC stocks, the modified (DCmod) and default (DCdef) models simulated a loss of 1063 610 

Tg C (12%) and 634 Tg C (10%), respectively. On a per unit area basis, DCmod showed higher 611 

absolute (17.62 Mg C ha-1) and relative (33%) SOC losses compared to the loss of 10.60 Mg C ha-612 

1 (27%) using DCdef for croplands. Grasslands showed similar patterns of higher absolute (2.51 613 

Mg C ha-1) and relative (4%) SOC losses using DCmod compared to the loss of 1.06 Mg C ha-1 614 

(3%) using DCdef. Overall, croplands showed a large and significant loss of C when compared 615 

against the baseline SOC using both models, while grasslands showed both losses and gains of 616 

SOC during 1895-2005 (Figure 6). The SOC loss from conversion of native vegetation to 617 

croplands were on average 14.70 Mg C ha-1 and 9.29 Mg C ha-1 using DCmod and DCdef, 618 

respectively. This translates into a relative loss using DCmod that is higher than the loss using DCdef 619 

by 58% during 1895-2005. For grid cells under native grasslands, DCmod simulated slightly higher 620 

average SOC loss (1.96 Mg C ha-1) compared to DCdef (1.39 Mg C ha-1). 621 
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 622 

Figure 6. Changes in contemporary (2001-2005 average) SOC after conversion of native 623 

vegetation to croplands (a) and under native vegetation (b) as a function of baseline (1895-1899 624 

average) SOC stocks. Negative values are losses while positive values are gains of SOC. 625 

The simulation of total SOC stocks following historical land use under a changing climate is 626 

constrained by model parameters that determine the time until decomposition, modified by the 627 

interaction of land use intensity with changing climate (Arora and Boer, 2010; Eglin et al., 2010). 628 

Land use change can modify total SOC through its effect on individual soil pools, with the 629 

POC/active pool more vulnerable to loss compared to the MAOC/slow and PyC/passive pools 630 

(Poeplau and Don, 2013). The potential decomposition rates using the modified (DCmod) model 631 

were adjusted to match C fraction data such that higher SOC was allocated to rapid and slow 632 

cycling pools, which are more vulnerable to loss following land use change and management 633 

intensity at decadal to century time scales (Hobley et al., 2017; Sulman et al., 2018). We further 634 

compared the historical SOC loss following land use change against other studies to determine the 635 

robustness of the new parameterization using DCmod. The SOC loss rate using DCmod are closer to 636 

the mean 30 cm loss rate of 17.7 Mg C ha-1 (Sanderman et al., 2017b), and relative loss of 42-49% 637 

following conversion of forest/pasture to croplands (Guo and Gifford, 2002). However, it is 638 

important to note that these previous studies are not directly comparable with the results from this 639 
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study because of differences in sampling depth, the intensity of land use and the time since 640 

disturbance.  641 

 642 

Figure 7. The active, slow, and passive soil pools of SOC stocks (20 cm depth) based on the 643 

modified (DCmod) model under native vegetation (1895-1899 average; top maps) and following 644 

land cover land use change (2001-2005 average; bottom maps). 645 

Comparison of the total SOC and its distribution in different pools between the two models 646 

provided a more nuanced picture of the effect of new parameterization on SOC stocks and the 647 

response of SOC to historical land use. The spatial pattern of the SOC stocks showed that the 648 

baseline SOC in the active, slow and passive pools simulated by the modified (DCmod) model 649 

(Figure 7) were higher than the default (DCdef) model (Figure S9). As a result, there were higher 650 

SOC losses from the active and slow pools using DCmod compared to DCdef (Figure 7, S9). When 651 

averaged over all pixels, the cropland SOC loss in the active, and slow, pools were 0.85, 10.09 and 652 
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gains in the passive pool was 0.34 Mg C ha-1, respectively, using DCdef. The DCmod simulated 653 

larger SOC loss for all pools with active, slow, and passive pools losing SOC by 1.48, 16.04 and 654 

0.09 Mg C ha-1, respectively. The magnitude of SOC loss from grasslands was lower compared to 655 

croplands for all three pools, with the largest SOC loss from the slow pool of 1.45 and 0.49 Mg C 656 

ha-1 using DCmod and DCdef models, respectively. The distribution of SOC to different pools 657 

indicated that DCdef had 44%, 43% and 13% SOC in the passive, slow, and active pools for 658 

croplands, while DCmod had 57% of the total SOC allocated to the slow pool, followed by the 659 

passive (23%) and active (20%) pools. For grasslands, both models were consistent in allocating 660 

the largest proportion of SOC (59% in default and 70% in modified) to slow pools, followed by 661 

passive and active pools. 662 

The differences in the total SOC and their distribution between the models is constrained by the 663 

sensitivity of the SOC pools to environmental, climatic, and management factors (Davidson and 664 

Janssens, 2006; Dungait et al., 2012; Luo et al., 2016). The SOC stocks in the passive pool are not 665 

significantly different between the models at the regional level because the passive pool is less 666 

sensitive to environmental, climatic, and management factors, and it has a smaller contribution to 667 

total SOC (Collins et al., 2000), the SOC stocks in the passive pool were not significantly different 668 

between the models at the regional level. However, the active and slow pools respond strongly to 669 

environmental, climatic, and management constraints, which is largely driven by rapidly cycling 670 

fresh organic matter input in the active pool, and gradually decomposing detritus in the slow pool 671 

(Sherrod et al., 2005). In the DCmod, the potential decomposition rates of the active and slow pools 672 

are adjusted, allowing the model to retain more SOC to match with C fraction data. This 673 

modification resulted in higher SOC stocks in these pools, which translated into higher total losses 674 

despite slower turnover rates relative to DCdef. Model modification was necessary not only to 675 
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match total SOC values but also to simulate the distribution of SOC into the active, slow and 676 

passive pools. 677 

 678 

Figure 8. Temporal change in the absolute SOC stocks (20 cm depth) for croplands (a) and 679 

grasslands (c) and relative SOC loss compared to the 1895 SOC for croplands (b) and grasslands 680 

(d) in response to land use under a changing climate through 2100. The solid and dashed lines after 681 

2006 represent RCP4.5 and RCP8.5 climate scenarios, respectively, both under the A2 land cover 682 

change scenario. 683 

3.4 Future changes in SOC stocks and their distribution 684 

Projection of the SOC dynamics in response to land cover change under a changing climate 685 

resulted in greater relative changes for both croplands and grasslands using the modified (DCmod) 686 

compared to the default (DCdef) model (Figure 8). Despite greater rates of loss, by the end of the 687 

21st century, DCmod still simulated higher total SOC stocks compared to DCdef model (Table 3). 688 

By the end of 21st century, the DCmod simulated total SOC stocks of 2818 and 2563 Tg C for 689 

croplands under the RCP4.5 and RCP8.5 scenarios, while the DCdef simulated total SOC stocks of 690 
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2266 and 2082 Tg C. Native grasslands had higher SOC stocks of 3310 and 3095 Tg C using the 691 

DCmod compared to the SOC stocks of 2505 and 2324 Tg C using the DCdef under the RCP4.5 and 692 

RCP8.5 scenarios, respectively. On a per unit area basis, absolute loss (difference between the 693 

2095s and 2000s) were slightly higher for croplands, with a mean loss rate 10.43 Mg C ha-1 694 

compared to 8.44 Mg C ha-1 for grasslands using DCmod under the RCP8.5 scenario (Table 3). The 695 

DCdef also simulated similar trend with slightly higher absolute losses for croplands (7.85 Mg C 696 

ha-1) compared to grasslands (6.55 Mg C ha-1) under the RCP8.5 scenario. Relative losses 697 

estimated as a percentage of contemporary SOC stocks were higher in croplands (29% for DCmod 698 

vs 28% for DCdef model) compared to grasslands (16% for both DCmod and DCdef model) under 699 

the RCP8.5 scenario. Using the DCmod, the SOC loss rate were 33% and 29% higher for croplands 700 

and grasslands, respectively, compared to the DCdef by the end of the 21st century under the RCP8.5 701 

scenario. While both models simulated total SOC loss over the 21st century, the difference in SOC 702 

between models sums to an additional loss of 1252 Tg SOC under the RCP8.5 scenario. 703 

The turnover rates of SOM are primarily driven by temperature and environmental controls with 704 

significant impact on the dynamics of total SOC changes at decadal to century time scales (Knorr 705 

et al., 2005). The two model versions used the same climate and environmental data and only differ 706 

in the turnover rates of the active, slow, and passive pools. Because the sizes of active, and slow 707 

pools in the modified (DCmod) model were larger than the default (DCdef) model, simulated 708 

absolute and relative losses were higher using the DCmod compared to the DCdef for croplands. 709 

Larger losses using the DCmod are primarily associated with the legacy effects of management 710 

intensity and rising temperatures with larger rates of SOC loss from the active, and slow pools 711 

(Crow and Sierra, 2018) of DCmod compared to DCdef. Additionally, the size of the passive pool in 712 

DCdef is larger compared to DCmod, and this pool is less vulnerable to land use intensity and 713 
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warming climate compared to active and slow pools. Thus, there was a disproportionately larger 714 

SOC loss driven by the size of the slow pool and the interaction of climate and management 715 

intensity using the DCmod compared to the DCdef, which translated into larger absolute and relative 716 

losses of SOC. For grasslands, we did not include any management driven changes. Both absolute 717 

and relative losses of SOC stocks in the grasslands are primarily driven by the warming climate 718 

(Jones and Donnelly, 2004), with active and slow pools losing more SOC stocks using DCmod 719 

compared to DCdef. Future work should consider the interactive effects of grazing management 720 

with climate. 721 

  722 
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Future land use, management intensity, nitrogen content, and climate interact in different ways to 725 

control C flow from soil pools with different mean residence times, which ultimately determine 726 

total SOC stocks (Deng et al., 2016; Luo et al., 2017; Sulman et al., 2018). Under a warming 727 

climate, SOC formed from fresh organic matter inputs controls the size of the active/POC pool, 728 

which is further constrained by the intensity of land use and is more vulnerable to loss (Crow and 729 

Sierra, 2018; Lavallee et al., 2020). The active/POC pool also acts as a donor to the slow/MAOC 730 

pool with C transfer and rates of SOC accumulation increasingly controlled by temperature (Crow 731 

and Sierra, 2018). In the DAYCENT, regardless of model version, the size of the active pool is 732 

relatively small as fresh organic matter is either decomposed rapidly or quickly enters the slow 733 

pool. Because the slow pool has longer residence times ranging from years to decades, the slow 734 

pool is less vulnerable to loss and can accrue C when transfer rates from the active pool exceed 735 

the rates of decomposition (Collins et al., 2000; Fontaine et al., 2007). In this study, the rates of 736 

decomposition due to rising temperatures had a stronger control on the size of the slow pool 737 

compared to the transfer of SOC from the active pool. As a result, the slow pool continued to lose 738 

SOC under projected climate changes in the future.  739 

4 Conclusions 740 

In this study, we developed an approach to link conceptual soil pools in biogeochemical models 741 

against C fraction data predicted using a combination of diffuse reflectance spectroscopy and 742 

machine learning. We then quantified the long-term evolution of SOC change and projected the 743 

SOC response to future climate and land cover scenarios using the modified (DCmod) model that 744 

has been calibrated to C fraction data. Our results demonstrate that matching the active, slow and 745 

passive pools against POC, MOAC and PyC data lead to better representation of total SOC stocks 746 

and the distribution of SOC into different pools. With the updated model, the long-term legacy 747 
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effect of past agricultural management results in larger absolute and relative losses of SOC 748 

compared to the default (DCdef) model. Projecting the SOC response to climate and land cover 749 

change into the future (2005-2100) indicates that the new model modification (DCmod) increases 750 

SOC losses by 2100 by 32% and 28% for croplands and grasslands, respectively, under the RCP8.5 751 

scenario compared to using the DCdef model. 752 

There are several study limitations that need to be addressed in our future work. First, new 753 

modeling efforts should also consider quantifying how changes in aboveground biomass inputs 754 

quantity and quality affect SOC dynamics given mixed results in agricultural systems in response 755 

to litter inputs (Halvorson et al., 2002; Sanderman et al., 2017a). Second, current models rely on 756 

using clay content to modify rates of SOM stabilization and turnover, but recent research has 757 

shown that other soil physicochemical properties such as exchangeable calcium and extractable 758 

iron and aluminum are stronger predictors of SOM content (Rasmussen et al., 2018). Third, new 759 

modeling efforts should constrain model parameters affecting SOC dynamics by integrating them 760 

with data-driven modeling and long-term experimental data (Jandl et al., 2014). Finally, given the 761 

paucity of data related to C fractions, there is increasing need for measurement and modeling of C 762 

fractions across a wide range of environmental and management gradients (Luo et al., 2017). 763 

Despite these limitations, we have shown that models calibrated to pool sizes by matching with C 764 

fractions can improve long-term SOC predictions by more accurately representing soil C 765 

transformations in response to climate, land cover and land use change.  766 

Code and Data Availability:  767 

The DAYCENT model source code is available in Harvard dataverse repository 768 

(https://dataverse.harvard.edu/dataverse/daycent45). The new parameterization scheme and 769 

scripts for regional model simulation are available in github (https://github.com/whrc/DAYCENT-770 

https://dataverse.harvard.edu/dataverse/daycent45
https://github.com/whrc/DAYCENT-soil-carbon-pools
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soil-carbon-pools). Input data for driving the models are freely available online from different 771 

sources and have been cited appropriately in the manuscript. Long term ecological data are part of 772 

United States Department of Agriculture – Agricultural Research Service and can be requested 773 

from the references listed in Table 1. 774 
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Fig S1. Comparison of machine learning based prediction of the sum of C fractions (POC, 

MAOC and PyC) against laboratory based total SOC for seven long term research sites in the 

continental US. The left panel figure represents croplands and the right panel figure represents 

grassland sites.  

 

 

 

 



 

 

 

 

 

 

 

Fig S2. Cropland and grassland distribution (a) and distribution of the schedule files that 

represent different cropping systems (b) in the Great Plains region, US. The black dots in Fig. b 

represent 24 unique county level cropping systems and crop rotations, while the red dots 

represent new randomly selected grid points added to the clustering algorithm for building the 

unsupervised classification model. 
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Fig S3. Crop rotation maps for the contemporary time period using the K-means unsupervised 

classification algorithm. The crop rotation map is used only when there is cropping in the given 

pixel. In the absence of cropping, the given pixel is assumed to be continuously grazed native 

grasslands. 



 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Fig. S4. Linking DAYCENT conceptual pools to C fraction data predicted using a combination of mid-infrared spectroscopy and a 

local memory-based learning approach, where STRCbel  is structural, METABbel is metabolic,  Active, Slow and Passive are active, 

slow and passive soil C pools, and POC, MAOC and PyC are particulate, mineral associated and pyrogenic organic carbon. 
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Fig. S5. Comparison of the sum of C fractions, DAYCENT simulated SOC using the default 

(DCdef) and the modified (DCmod) models against laboratory based SOC estimates at the long-

term research sites.    

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig S6 Scatterplots of the comparison of modified (DCmod) and default (DCdef) simulation 

against data-driven estimates of total SOC at the long-term research sites. The top and bottom 

panels show the comparison for croplands and grasslands, respectively.  

 

  



 

 

 

 

 

 

 

Fig S7. Comparison of total SOC (20 cm depth) between the DAYCENT and data driven 

modeling for the contemporary period. JS250, Sanderman et al. 2021; AR100m, Ramcharan et 

al. (2018); SG250m, Hengl et al. (2017). 

 



 

Fig S8. Comparison of the simulated active-, slow- and passive-SOC (20 cm depth) against 

Sanderman et al. (2020) for the US Great Plains Agricultural region during the contemporary 

period. The green line represents the median SOC values based on JS250 (Sanderman et al. 

2021) C fraction predictions. 

 

  



 

 

 

 

 

 Fig S9. Active, slow and passive SOC pools at 20-cm depth based on the default (DCdef) model 

under native vegetation (1895-1899 average; top maps) and following land cover land use 

change (2001-2005 average; bottom maps). 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Table S1. Predictive performance of US Samples using spectra acquired on Woodwell 

instrument with and without calibration transfer 

 No calibration transfer1 After calibration transfer1 

 Bias R2 RMSE Bias R2 RMSE 

POC (g/kg) 0.65 0.50 4.93 1.04 0.70 4.39 

MAOC (g/kg) 0.86 0.81 3.30 0.62 0.88 2.84 

PyC (g/kg) 0.38 0.49 2.83 0.29 0.68 2.29 

1Leave-one-out cross validation on the 99 GP samples 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table S2. Distribution of SOC across different pools by plant functional types (PFTs) when 

compared to C fractions predictions at the long-term research sites.  

 Grasslands Croplands 

 

C fractions DCmod DCdef C fractions DCmod DCdef 

Active 0.20 0.13 0.08 0.14 0.14 0.08 

Slow 0.56 0.63 0.49 0.57 0.56 0.39 

Passive 0.24 0.24 0.43 0.29 0.30 0.53 
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