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Abstract

The Angstrom-Prescott (A-P) model is widely suggested for estimating solar radiation (Rs) in areas without measured or

deficiency of data. The coefficients of this model must be locally calibrated, to calculate evapotranspiration (ET) correctly. The

aim of this research was calibration and validation of the coefficients of the A-P model at six meteorological stations across arid

and semi-arid regions of Iran. This model was improved by adding the air temperature and relative humidity terms. Besides,

the coefficients (’a’ and ‘b’) of the A-P model and improved models was calibrated using some optimization algorithms including

Harmony Search (HS) and Shuffled Complex Evolution (SCE). Performance indices, i.e., Root Mean Square Error (RMSE),

Mean Bias Error (MBE), and coefficient of determination (R2) were used to analyze the models ability in estimating Rs. The

results indicated that the performance of the A-P model had more precision and less error than improved models in all the

stations. In addition, the best results were obtained for the A-P model with the SCE algorithm. The RMSE varies between

0.82 and 2.67 MJ m-2 day-1 for the A-P model with the SCE algorithm in the calibration phase. In the SCE algorithm, the

values of RMSE had decreased about 4% and 7% for Mashhad and Kerman stations in the calibration phase compared to the

HS algorithm, respectively. In other words, the highest decrease of RMSE is related to Kerman station.
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The Angstrom-Prescott (A-P) model is widely suggested for estimating solar 

radiation (Rs) in areas without measured or deficiency of data. The coefficients of 

this model must be locally calibrated, to calculate evapotranspiration (ET) 

correctly. The aim of this research was calibration and validation of the coefficients 

of the A-P model at six meteorological stations across arid and semi-arid regions 

of Iran. This model was improved by adding the air temperature and relative 

humidity terms. Besides, the coefficients ('a' and 'b') of the A-P model and 

improved models were calibrated using some optimization algorithms including 

Harmony Search (HS) and Shuffled Complex Evolution (SCE). Performance 

indices, i.e., Root Mean Square Error (RMSE), Mean Bias Error (MBE), and 

coefficient of determination (R2) was used to analyze the models ability in 

estimating Rs. The results indicated that the performance of the A-P model had 

more precision and less error than improved models in all the stations. In addition, 

the best results were obtained for the A-P model with the SCE algorithm. The 

RMSE varies between 0.82 and 2.67 MJ m-2 day-1 for the A-P model with the SCE 

algorithm in the calibration phase. In the SCE algorithm, the values of RMSE had 

decreased about 4% and 7% for Mashhad and Kerman stations in the calibration 

phase compared to the HS algorithm, respectively. In other words, the highest 

decrease of RMSE is related to Kerman station. 
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1. Introduction 26 

  The solar radiation (Rs) received from the Earth's surface is one of the most important factors 27 

affecting the thermal balance of the atmospheric-Earth system. The precise measurement or 28 

estimation of Rs is required for accurate design and management in irrigation and water resource 29 

planning and management, agriculture, meteorology, climatology, energy engineering, solar 30 

energy systems and especially in hydrology (Jahani et al. 2018; Liu et al. 2017; Robaa 2009). 31 

One of the major parts of the hydrological cycle is evapotranspiration (ET) process that is 32 

widely used for agricultural, irrigation management and water resources planning (Sanikhani 33 

et al. 2019). Solar radiation is the main input variable in the calculation of ET (Tabari et al. 34 

2016; Boscaini et al. 2020). Due to the cost and the maintenance and calibration requirements 35 

of the Rs estimating instrument, and missing data or due to instrument failure or other related 36 

problems, it might be that the estimates of Rs are not available in several regions (Abraha et al. 37 

2008; De Souza et al. 2016; Liu et al. 2001). For this reason, several methods have been 38 

presented to estimate Rs based on different types of methods such as satellite remote sensing 39 

(Sanchez-Lorenzo et al. 2017; Zhang et al. 2015), machine learning (Ağbulut et al. 2021; ,He 40 

et al. 2020; Kisi and Alizamir 2018; Shamshirband et al. 2015), numerical, and artificial 41 

intelligence (Jahani and Mohammadi 2018). There are some complexes and difficulties in using 42 

these methods for Rs estimation including requires many input variables; large datasets; coarse 43 

spatial resolution, and the eventuate model may not apply to other areas. Besides, there is no 44 

satellite-based database covering the study areas (Mihalakakou et al. 2000; , Şenkal and Kuleli 45 

2009; Weiss and Hays 2004). 46 

Another kind of method that has been developed and widely used for estimating Rs are 47 

empirical models (Fan et al. 2019). These models based on meteorological variables are a 48 

substitute to estimate Rs. Besides, these models using the easily accessible meteorological 49 

variables, such as sunshine duration, maximum and minimum air temperatures (Tmax, Tmin), 50 
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cloudiness, relative humidity (RH), and precipitation are attractive for its plainness, efficiency, 51 

and lower data requirement (Chen et al. 2018). Much preceding research has determinate that 52 

the sunshine-based models always outperform other types of models (Besharat et al. 2013; Chen 53 

et al. 2004). These models require relatively a few input variables and are easy to apply but it 54 

needs to calibrate their coefficients based on location and inputs data. However, the 55 

requirements to calibrate empirical models demonstrate that their coefficients are changing with 56 

locations. The station dependent coefficients limit the regional application of the empirical 57 

models, which is a big challenge for spatial rasterization. To solve this problem, the model 58 

coefficients for the regional usage must be calibrated.  59 

Many models are developed for estimating Rs. One of the most famous empirical sunshine-60 

based models is the Angstrom-Prescott (A-P) model. The A-P model has been applied to 61 

estimate global solar radiation based on measured sunshine hours. This model is widely used 62 

for its simpleness and remarkable performance (Paulescu et al. 2016; Raoof and Mobaser 2019; 63 

Sabziparvar and Shetaee 2007). One of the original constraints of the A-P model is that it 64 

requires calibration using local estimated Rs data. Where no measured values for global solar 65 

radiation are available in some stations, Angstrom prospered values of 0.2, and 0.5, and Prescott 66 

0.22, and 0.54 for the empirical coefficients 'a' and 'b', respectively (Chen et al. 2013). Given 67 

its simpleness and premiere performance compared with other empirical models, its reference 68 

values for radiation coefficients 'a' and 'b', given by the Food and Agriculture Organization 69 

(FAO) Irrigation and Drainage Paper No. 56 (FAO56: a = 0.25, b = 0.5), can be used in cases 70 

where Rs data are not available (Allen et al. 1998; Chen et al. 2018; Liu et al 2019). Many 71 

research executed in various areas has shown that the use of the given coefficients to estimate 72 

Rs yields finite accuracy, and therefore, the coefficients of the A-P model should be calibrated 73 

locally (Liu et al. 2017; Sabziparvar et al. 2013; Tabari et al. 2016). FAO56 proposed the A-P 74 

model, which is a simple method to estimate the daily global solar radiation. The results of 75 
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previous researches showed that the application of the FAO pre-defined the A-P coefficients, 76 

for a variety of climatic and geographical conditions (without regardless of climate effect) the 77 

could challenge the validity of the FAO56-PM method (Liu et al. 2009; Yin et al. 2008). 78 

Therefore, many researchers performed a temporal and spatial calibration of 'a' and 'b' (Mousavi 79 

et al. 2014; Tabari et al. 2016). In another investigation, Aghashariatmadari et al. (2012) are 80 

calibrated the coefficients 'a' and 'b' and examined the variations of these coefficients at different 81 

time scales. 82 

On the other hand, researchers have attempted to estimate Rs in addition to the sunshine, take 83 

advantage of other variables such as air temperature, relative humidity, cloudiness, saturation 84 

vapor pressure, and even precipitation (Chang and Zhang 2020; Jamil et al. 2019; Mousavi et 85 

al. 2014; Ododo et al. 1998). 86 

Recently many kinds of meta-heuristic algorithms have been used to calibrate a different 87 

kind of empirical model in the real problem. Few usages of metaheuristic methods to solve solar 88 

energy problems have been reported; the Genetic Algorithm (GA) is one of these methods. Sen 89 

et al. (2001) have used GA for the designation of the A-P model coefficients. Harmony Search 90 

(HS) is one of the well-known and powerful optimization algorithms (Rahimi et al. 2012), 91 

which is emulating the music extemporization process where musicians extemporize their 92 

instruments’ pitches searching for a perfect state of harmony, was developed by (Geem et al. 93 

2001). The HS algorithm has been recently applied to different engineering optimization 94 

problems including optimized design of water dispensation network (Abualigah et al. 2020), 95 

optimal performance of a multi-reservoir system for hydropower and irrigation (Bashiri-Atrabi 96 

et al. 2015; Geem 2007), simulation of irrigation systems (Alshammari and Asumadu 2020;, 97 

Čistý 2007), an optimization model for groundwater management objectives (Luo et al. 2020), 98 

and recognition of unknown groundwater pollution sources (Ayvaz 2010). To fix the defects of 99 

the HS algorithm, the methods such as the Global Harmony Search (GHS) and Improved 100 
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Harmony Search (IHS) algorithm were developed. Another optimization algorithm that is used 101 

for effective global minimization and calibration of hydrologic models is the Shuffled Complex 102 

Evolution (SCE) algorithm (Duan et al. 1993). Also, this algorithm has been used widely for 103 

the calibration of different rainfall-runoff models (Adeyeri 2020), for the rehabilitation of water 104 

distribution networks (Elshaboury et al. 2020), and optimizing urban water supply Headwork's 105 

systems (Cui and Kuczera 2003).  106 

There has not been much research on the computing Rs by optimization algorithms in Iran, 107 

and only one research conducted in Mashhad (Rahimi et al. 2012) examined. This is the first 108 

research by optimization algorithms for calibration of the A-P model coefficients in Iran. 109 

Through these algorithms, the A-P model coefficients are calibrated faster and more accurately, 110 

and Rs that is a fundamental input for calculating ET (Cunha et al. 2021), estimated more 111 

correctly. Accurate estimation of Rs provides an accurate calculate of ET. The exact calculation 112 

of ET is necessary for many applications such as improving water usage, agricultural planning, 113 

and effective water resources management, especially in arid and semi-arid climates. 114 

This research aims to calibrate and improved the A-P model for estimating Rs at six 115 

meteorological stations in arid and semi-arid climates of Iran using the optimization algorithms 116 

including HS, IHS, GHS, and SCE. Then to investigate the effect of T and RH variables on the 117 

efficiency of the A-P model to estimating Rs, three improved A-P models were developed by 118 

adding terms of Tmax, Tmin, and mean relative humidity (RHmean) and calibrated using applied 119 

optimization algorithms. 120 

2. Material and methods 121 

2.1.Study area  122 

Iran is situated among latitudes of 25°N to 40°N and longitudes of 46°E to 65°E with an area 123 

of 1,648,000-km2. Most parts of Iran are arid and semi-arid climates. On the other hand, low 124 

irrigation efficiency in agricultural fields requires that the amount of ET and water requirement 125 
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of plants that require an accurate estimate of the amount of Rs be calculated. In this research six 126 

meteorological stations, which are situated at arid and semi-arid climates of Iran, were selected 127 

to evaluate the performance of the calibrated A-P model in Rs estimation. The selected stations 128 

have arid and semi-arid climates based on the De Martonne climate classification method 129 

(Pellicone et al. 2019; Rahimi et al. 2013) from 1992–2017 and reliable long-term data (Fig. 1). 130 

The criteria for selection of the meteorological stations were based on the climate sort and the 131 

availability of the measured Rs. 132 

 133 

Fig. 1. Location of meteorological stations 134 

2.2.Data and quality control 135 

Daily meteorological data from six radiation stations were obtained from the Islamic Republic 136 

of Iran Meteorological Organization (IRIMO). The geographic and meteorological 137 

characteristics of the studied stations are presented in Table 1. In this research, the following 138 

meteorological characteristics were used as the inputs of the A-P and the three improved 139 

models: Tmax, Tmin, RHmean, and Rs (MJ m-2day-1), maximum possible daily duration of sunshine 140 

hours (N), and mean the daily number of sunshine duration (n). Due to the importance of 141 

radiation data, the quality control of the observed daily global Rs was carried (Moradi 2009): 142 
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• If either the fluency index (Rs/Ra) or relative sunshine hours (n/N) were greater than 143 

one, the data for that day were deleted from the dataset. 144 

• If Rs was greater than 0.78 × Ra, the data for that day were deleted from the dataset. 145 

• If Rs was lower than 0.03× Ra, the data for that day were deleted.  146 

• If there were ten or more days of lost data in the same month, the data for that month 147 

was omitted. 148 

Table 1      149 

Geographical and meteorological characteristics for the studied stations 150 

station Lat. 

(°N) 

Lon.  

(°E) 

Elev. 

 (m) 

Maximum 

Temperature 

 (°c) 

Minimum 

Temperature 

 (°c) 

Average 

sunshine  

(h) 

Average Rs   

(MJ m-2 day-1) 

RH  

 

(%) 

Calibration 

 period  

climate Validation 

period 

Bandar 

Abbas 

27.19 56.3 17 47 2.6 8.44 19.01 63.40 1992-2012 Semi-arid 2013-2017 

Esfahan 32.46 51.66 1590 43 -19.3 8.6 16.74 35.92 1992-2012 Arid 2013-2017 

Kerman 30.15 56.58 1754 41.4 -23.2 8.17 18.77 38.4 1992-2012 Arid 2013-2017 

Mashhad 36.16 59.38 999 43.4 -21.37 7.27 16.24 53.98 1992-2012 Semi-arid 2013-2017 

Shiraz 29.53 52.58 1486 42.4 -9 8.96 19.78 40.54 1992-2012 Semi-arid 2013-2017 

Yazd 31.88 54.35 1222 45.6 -6.7 8.94 19.46 28.81 1992-2012 Arid 2013-2017 

 151 

2.3.Models and optimization algorithms 152 

2.3.1. Models 153 

The A-P model is a model based on the sunshine, and to examine the effect of other 154 

meteorological variables, the following models presented in Table 2 were examined. 155 

 Table 2       156 

  Improved A-P model based on terms of Tmax, Tmin, and RHmean 157 

Models             Coefficients  

Model1 Include air temperature          Rs = [a1 + b1(n/N) +c (Tmax-Tmin)] Ra a1, b1, c 

Model2 Include relative humidity          Rs = [a2 + b2 (n/N) + d (RHmean)] Ra a2, b2, d 

Model3 Combined Model 1 and Model 2          Rs = [a3+ b3(n/N) + c1 (Tmax-Tmin) + d1(RHmean)] Ra a3, b3, c1, d1 

 158 

2.4.Optimization algorithm 159 

The optimization algorithms were coded with MATLAB R2018a (9.4.0.813654). These 160 

algorithms are applied to find the optimal solution to a given calculational problem that 161 
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minimizes or maximizes a special function. In this research, optimization algorithms including 162 

SCE, IHS, GHS, and HS were used. 163 

2.4.1. Shuffled Complex Evolution  (SCE) algorithm 164 

The SCE algorithm was expanded at the University of Arizona (Duan et al. 1992). Its strategy 165 

combines the strengths of the controlled random search (CRS) algorithms with the concept of 166 

competitive evolution (Holland 1975) and the newly modified concept of complex shuffling. 167 

The most important steps of the SCE are displayed in Fig. 2. 168 

 169 

Fig. 2. Pseudo-code of the SCE Algorithm 
 

2.4.2. Harmony Search (HS) algorithm 170 

When listening to a beautiful piece of classical music, who has ever wondered if there is any 171 

connector between music and finding an optimal solution to a tough design problem such as the 172 

water distribution networks or other design problems in engineering? Now for the first time, 173 

scientists have found such a fascinating connection by expanding a new algorithm, called HS. 174 

Geem et al. first expanded the HS in 2001. 175 

 HM= [

x11  x12   x13 … x1n

x21  x22   x23 … x2n

             ⋮       ⋮        ⋮        ⋮     ⋮   
xHMS1  xHMS2   xHMS3 … xHMSn

]                                                                                                    (1) 176 

Harmony memory considering (HMC) rule: 177 

• For this rule, a new random number r1 is produced within the range [0, 1]. 178 

Initialize k, m and s = km 

Sample {θ1, . . . , θs}, where θi ∈ Θ 

Calculate function values fi = f(X, θi) i = 1, . . . , s 

Sort fi s.t. k ← i and f1 ≤ f2 ≤ fk ≤ fk+1 . . . 

D0 = {(θk, fk), k = 1, . . . , s} 

Construct complexes Cj , j = 1, . . . , k s.t. Cj = {(θk, fk) ∈ D0|k = (j − 1)m + 1, . . . , jm} 

While Convergence Criteria do 

       For j = 1: k do 

           Evolve Cj using CCE (Competitive Complex Evolution)  

       end for 

       Dl ← Dl+1 

      Go to 6 

 end while 
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• If r1 < HMCR, where HMCR is the harmony memory consideration rate, then the first 179 

decision variable in the new vector xij
new is elected randomly from the values in the 180 

present HM as follows:      181 

 xij
new=xij,  xijϵ{x1j, x2j, x3j, …, xHMSj}                                                                                                           (2) 182 

The most important steps of the HS are displayed in Fig. 3 183 

Fig. 3. Pseudo-code of the HS Algorithm 184 

 185 

2.4.3. Developed Harmony Search (HS) algorithm 186 

The HS is good at recognizing high-performance areas of the solution space in a sensible 187 

amount of time but gets difficult to do a local search for numeral usages. To improve the exact 188 

situation feature HS algorithm, IHS and GHS usage a new method that increases the precision 189 

setting and the convergence rate of HS. The IHS usages a new method to generate new solution 190 

vectors that increase the precision and convergence rate of the HS. Omran and Mahdavi (2008) 191 

suggested a new variation of HS, called GHS. First, in GHS, a dynamically updating scheme 192 

of parameter PAR usage in IHS (Mahdavi et al. 2007) is employed to improve the performance 193 

of GHS. Second, GHS modifies the pitch adjustment step of HS to use the best harmonic 194 

guidance information in harmony memory (HM). In the altered stage, GHS not only destroys 195 

the parameter bandwidth (BW), which is difficult to set because it can take any values in the 196 

range of [0,∞] but also introduces a social term of the best harmony with HS. These two 197 

methods (IHS, GHS) have been developed to overcome the disadvantages of the original 198 

method. 199 

For each i ϵ [1, N] do 

 If U (0, 1) ≤ HMCR  

x'i = xi
j, where j ~ U (1, 2, . . . , HMS). 

If U (0, 1) ≤ PAR (pitch adjustment rate)  

x'i = xi ± r × bw, where r ~ U (0, 1) and bw is an arbitrary distance bandwidth. 

end if 

else 

x'i = LBi + r × (UBi - LBi), (LBi and UBi are the lower and upper bounds for each decision variable, respectively) 

end if 
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2.5.Methodology 200 

One of the most popular empirical sunshine-based models is the A-P model.  This model has 201 

been used to estimate global solar radiation based on measured sunshine hours. The model is 202 

as follows: (Angstrom 1924; Prescott 1940): 203 

 Rs =Ra [a + b(
n

N
)]                                                                                                                                                    (3) 204 

 Where Rs and Ra is daily global solar radiation and daily extraterrestrial solar radiation (MJ 205 

m-2 day-1), respectively, n is the mean daily number of sunshine duration (h), N is the 206 

maximum possible daily duration of sunshine hours (h) and 'a' and 'b' are empirical 207 

coefficients which must be calibrated based on long-term measured Rs data. Ra data for each 208 

day and location were gained from the estimation of geographical parameters including solar 209 

declination, solar constant, and the time of the year as shown in the method below (Allen et 210 

al. 1998): 211 

 Ra = 37.6dr [ωssinØsinδ + cosØcosδsinωs]                                                                                           (4)                                                                                          212 

Where dr is the eccentricity correction factor of the Earth’s orbit (equation (5)); ωs is the 213 

sunshine hour angle of the sun at sunrise in radians (equation (6)), ϕ is the latitude of the station, 214 

and δ is the solar declination angle in radians equation(7): 215 

 dr = 1 + 0.033 cos (Js 
360

365
)                                                                                                                                 (5) 216 

 ωs = arccos (-tanØtanδ)                                                                                                                                  (6) 217 

 δ = 0.409 sin (
360

365
Js -1.39)                                                                                                                              (7) 218 

The maximum possible average daily length of sunshine hour N can be calculated by Duffie- 219 

Beckman 1991 model:   220 

 N =
2

15
ωs                                                                                                                                                                  (8) 221 

 222 

 223 
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2.6.Performance indicators 224 

The performance indicators discussed in this research were the coefficient of determination 225 

(R2), Mean Bias Error {MBE (MJ m-2day-1)}, Root Mean Square Error {RMSE (MJ m-2day-
226 

1)}. These indicators were calculated as follows:  227 

 R2= [
∑ (Restim-μestim)(Rmeas-μmeas)m

i=1

[∑ (Restim-μestim)
2m

i=1 ]
0.5

[∑ (Rmeas-μmeas)
2m

i=1 ]
0.5]

2

                                                                 (9) 228 

 RMSE = [
1

M
∑

i=1

M
(Restim – Rmeas)

2]1/2                                                                                                       (10) 229 

 MBE = 
1

M
∑

i=1

M
(Restim – Rmeas)                                                                                                                     (11) 230 

Where M is the total number of estimated values, Restim and Rmeas are, respectively, estimated 231 

and measured daily global solar radiation values, 𝜇estim is the average of the daily estimated 232 

values and 𝜇meas is the average of the daily measured values. The R2 stands for the proportion 233 

of variability in a data set that is calculated for by the model. The MBE, RMSE, and the R2 234 

statistical indices were used to evaluate the performance of applied optimization methods and 235 

improved the A-P model for Rs estimating. The negative values of MBE represent the difference 236 

between the estimated data and measured data. If the MBE value is positive, then the estimated 237 

values are overestimated and if the MBE value is negative, it means the underestimate of the 238 

estimated values. Whatever the MBE value is closer to zero indicates the accuracy of the model 239 

and the closeness of the amount of estimation data to the measured data. 240 

3. Results and discussion 241 

The calibrated coefficients for the A-P model and the models obtained with different 242 

optimization algorithms, the empirical coefficients (a, b, c, d) for four models, and the RMSE, 243 

R2, MBE values are shown in Table 3 and Table 4 respectively. 244 

 245 

 246 

 247 
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Table 3 248 

 The locally calibrated of the models coefficients for the selected stations using optimization algorithms 249 

station Algorithm 
A-P Model Model1 Model2 Model3 

a b a1 b1 c a2 b2 d a3 b3 c1 d1 

Bandar Abbas 

 

SCE 0.38 0.35 0.39 0.31 -0.0015 0.38 0.35 0 0.4 0.35 -0.0019 0 

HS 0.38 0.36 0.36 0.35 0.0036 0.47 0.33 -0.0012 0.3 0.38 0.0078 0.0002 

IHS 0.39 0.33 0.39 0.36 -0.0046 0.32 0.37 0.0008 0.29 0.33 0.0058 0.0012 

GHS 0.36 0.37 0.35 0.39 -0.0006 0.39 0.35 -0.0002 0.47 0.20 -0.0016 -0.0003 

Esfahan 

 

SCE 0.15 0.58 0.15 0.58 -0.0004 0.15 0.58 0 0.15 0.58 -0.0004 0 

HS 0.13 0.60 0.18 0.60 -0.0076 0.20 0.54 -0.0007 0.1 0.54 0.0152 -0.0008 

IHS 0.16 0.56 0.12 0.64 -0.0021 0.16 0.54 0.0005 0.15 0.57 -0.0006 0.0003 

GHS 0.15 0.57 0.14 0.59 0 0.13 0.59 0 0.12 0.63 0 0 

Kerman 

 

SCE 0.27 0.51 0.27 0.51 -0.0013 0.28 0.49 -0.0003 0.29 0.50 -0.0019 -0.0003 

HS 0.28 0.47 0.21 0.44 0.0109 0.18 0.59 0.0015 0.34 0.57 -0.0058 -0.0022 

IHS 0.24 0.54 0.32 0.46 -0.0025 0.38 0.41 -0.0012 0.19 0.58 -0.0011 0.0006 

GHS 0.26 0.50 0.28 0.50 -0.0013 0.30 0.48 -0.0006 0.36 0.50 -0.0061 -0.0009 

Mashhad 

 

SCE 0.22 0.62 0.22 0.62 -0.0001 0.23 0.61 0 0.23 0.61 -0.0007 -0.0001 

HS 0.24 0.59 0.19 0.56 0.01 0.12 0.65 0.0014 0.23 0.58 0.0077 -0.0008 

IHS 0.23 0.61 0.26 0.63 -0.0074 0.29 0.58 -0.0008 0.30 0.61 -0.0016 -0.0013 

GHS 0.21 0.63 0.25 0.63 -0.0055 0.23 0.59 0 0.26 0.61 -0.0002 -0.0008 

Shiraz 

 

SCE 0.25 0.53 0.24 0.53 0.0003 0.29 0.51 -0.0006 0.30 0.51 -0.0012 -0.0007 

HS 0.26 0.50 0.11 0.51 0.0029 0.18 0.57 0.0009 0.40 0.52 -0.0064 -0.0023 

IHS 0.27 0.51 0.3 0.51 -0.0029 0.35 0.49 -0.0017 0.18 0.52 0.0107 -0.0002 

GHS 0.20 0.58 0.24 0.55 -0.0002 0.23 0.58 -0.0004 0.37 0.46 -0.0063 -0.0007 

Yazd 

SCE 0.18 0.53 0.19 0.53 0.0003 0.22 0.64 -0.0006 0.24 0.65 -0.0035 -0.0007 

HS 0.20 0.64 0.31 0.62 -0.0117 0.16 0.69 0.0003 0.10 0.63 0.015 0 

IHS 0.19 0.66 0.16 0.66 0.0034 0.21 0.68 -0.0016 0.28 0.52 0.0084 -0.0015 

GHS 0.18 0.67 0.17 0.69 -0.0021 0.26 0.60 -0.0007 0.35 0.58 -0.0075 -0.0015 

The statistics of the calibrated A‐P coefficients in six meteorological stations (Table 3) 250 

showed that the coefficient 'a' had low values in Esfahan in the HS algorithm and high values 251 

in Bandar Abbas in the IHS algorithm. The coefficients 'a' and 'b' were predicted by four models 252 

and by four optimization algorithms. Adding Tmax, Tmin and RHmean terms to the A-P model 253 

have had little effect on improving the radiation estimation used by the models. Zero or near-254 

zero values of Tmax, Tmin, and RHmean coefficients indicate this. 255 

 256 

 257 
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Table 4 258 

Statistical comparison of calibration (Ca) and validation (Va) estimated Rs (using the locally calibrated of 259 

the models coefficients) 260 

Station Algorithm 

  A-P Model Model1 Model2 Model3 

  

RMSE R2
 MBE 

 

RMSE 

 

R2 

 

MBE 

 

RMSE R2 

 

MBE 

 

RMSE R2 

 

MBE 

Bandar 

Abbas 

SCE 
Ca 1.13 0.841 0 1.41 0.841 -0.80 1.13 0.841 0.00 1.17 0.840 0.30 

Va 1.60 0.835 -0.41 2.08 0.840 -1.25 1.60 0.835 -0.41 1.55 0.836 -0.11 

HS 
Ca 1.16 0.835 0.21 1.16 0.835 -0.03 1.22 0.816 -0.01 1.25 0.823 -0.16 

Va 1.53 0.836 -0.19 1.62 0.827 -0.43 1.69 0.807 -0.42 1.63 0.818 -0.52 

IHS 
Ca 1.15 0.839 -0.13 1.17 0.838 -0.23 1.18 0.833 0.15 1.20 0.821 0.08 

Va 1.69 0.832 -0.55 1.66 0.838 -0.64 1.56 0.830 -0.26 1.70 0.809 -0.34 

GHS 
Ca 1.16 0.841 -0.19 1.17 0.841 -0.16 1.14 0.840 -0.09 1.35 0.825 0.62 

Va 1.61 0.839 -0.58 1.56 0.841 -0.54 1.62 0.835 -0.49 1.73 0.814 0.16 

Esfahan 

SCE 
Ca 0.83 0.970 0.09 0.83 0.970 0.01 0.83 0.970 0.09 0.83 0.969 0.01 

Va 1.3 0.941 0.40 1.29 0.940 0.32 1.31 0.940 0.4 1.29 0.946 0.32 

HS 
Ca 0.84 0.962 -0.07 0.90 0.966 -0.19 0.96 0.964 -0.02 1.13 0.943 0.12 

Va 1.26 0.940 0.24 1.29 0.937 0.14 1.40 0.935 0.26 1.53 0.923 0.36 

IHS 
Ca 0.85 0.966 -0.04 0.92 0.970 0.04 0.93 0.967 0.06 0.85 0.968 0.07 

Va 1.3 0.940 0.27 1.32 0.940 0.36 1.40 0.937 0.37 1.33 0.945 0.38 

GHS 
Ca 0.84 0.968 -0.12 0.83 0.970 0.01 0.87 0.970 -0.28 0.94 0.968 0.26 

Va 1.27 0.941 0.19 1.28 0.940 0.32 1.24 0.940 0.03 1.39 0.946 0.58 

Kerman 

SCE Ca 1.15 0.923 -0.82 1.15 0.924 0.01 1.15 0.924 -0.13 1.14 0.925 -0.10 

 Va 1.56 0.909 -0.27 1.54 0.910 -0.30 1.58 0.910 -0.43 1.55 0.911 -0.41 

HS Ca 1.39 0.908 -1.34 1.36 0.895 -0.17 1.74 0.891 1.01 1.71 0.904 -0.34 

 Va 1.23 0.895 -1.62 1.85 0.866 -0.44 1.79 0.870 0.69 1.72 0.890 -0.56 

IHS Ca 1.22 0.908 -1.10 1.24 0.923 0.18 1.30 0.912 0.18 1.29 0.917 -0.21 

 Va 1.26 0.923 -1.35 1.71 0.910 -0.17 1.74 0.897 -0.13 1.55 0.901 -0.50 

GHS Ca 1.29 0.923 -1.32 1.15 0.924 0.10 1.16 0.923 -0.08 1.21 0.919 0.25 

 Va 1.56 0.909 -1.59 1.55 0.910 -0.22 1.57 0.908 -0.38 1.50 0.907 -0.06 

Mashhad 

SCE Ca 0.82 0.981 0.07 0.82 0.981 0.05 0.84 0.981 0.18 0.82 0.981 -0.10 

 Va 1.24 0.961 0.07 1.24 0.960 0.08 1.26 0.961 0.17 1.25 0.961 -0.11 

HS Ca 0.86 0.980 0.12 1.03 0.971 0.12 1.05 0.970 -0.10 1.02 0.972 -0.06 

 Va 1.31 0.960 0.10 1.43 0.951 0.09 1.45 0.948 -0.10 1.34 0.952 -0.08 

IHS Ca 0.84 0.981 0.18 0.90 0.977 -0.05 0.88 0.979 0.14 1.03 0.976 -0.12 

 Va 1.26 0.960 0.17 1.30 0.957 -0.05 1.27 0.959 0.12 1.30 0.957 -0.12 

GHS Ca 0.83 0.981 -0.04 0.86 0.979 0.03 0.87 0.981 -0.15 0.92 0.979 -0.22 

 Va 1.22 0.961 -0.04 1.27 0.959 0.03 1.32 0.960 -0.17 1.25 0.959 -0.22 

Shiraz 

SCE Ca 1.30 0.923 0.05 1.31 0.921 -0.18 1.28 0.923 0.05 1.27 0.923 -0.04 

 Va 2.61 0.913 -2.09 2.21 0.913 -1.5 1.91 0.915 -1.03 1.95 0.916 -1.12 

HS Ca 1.35 0.922 -0.32 2.15 0.918 -3.9 1.39 0.908 -0.03 1.48 0.911 0 

 Va 2.99 0.912 -2.50 5.38 0.909 -5.09 2.15 0.899 -1.27 1.82 0.904 -0.86 

IHS Ca 1.32 0.922  0.20 1.40 0.917 0.45 1.35 0.917 0.02 1.38 0.913 -0.11 

 Va 2.54 0.912 -1.97 1.90 0.912 -0.75 1.83 0.909 -0.91 2.04 0.900 -1.16 

GHS Ca 1.38 0.923 -0.33 1.30 0.921 0.15 1.37 0.922 0.06 1.4 0.917 -0.21 

 Va 2.85 0.913 -2.41 1.90 0.913 -0.98 1.79 0.915 -0.96 2.28 0.913 -1.39 

Yazd 

SCE Ca 2.67 0.921 -2.36 2.21 0.921 -2.65 1.51 0.924 0.04 1.50 0.925 0.02 

 Va 2.39 0.916 -2.68 2.11 0.916 -2.33 1.72 0.919 0.48 1.71 0.920 0.51 

HS Ca 2.03 0.920 -1.39 1.73 0.913 -0.30 1.58 0.919 0.15 1.69 0.904 -0.04 

 Va 1.75 0.913 0.36 1.99 0.910 0.81 1.78 0.918 0.55 1.86 0.897 0.20 

IHS Ca 1.94 0.921 -1.25 1.55 0.920 -0.05 1.70 0.920 -0.24 1.73 0.905 0.16 

 Va 1.76 0.914  0.52 1.72 0.914 0.32 1.75 0.915 0.30 1.99 0.899 0.50 

GHS Ca 2.00 0.921 -1.32 1.56 0.922 -0.26 1.56 0.924 0.25 1.59 0.920 0.19 

 Va 1.73 0.915 0.45 1.66 0.917 0.19 1.84 0.919 0.67 1.88 0.915 0.73 

RMSE (MJ m-2day-1), MBE (MJ m-2day-1) 261 



14 

 

3.1.Evaluation of  solar radiation (Rs) estimation models 262 

In the studied stations, the values of R2, RMSE, and MBE for the calibrated models showed 263 

in Table 4. When tested using the R2 value, the calibrated models were found to execute best in 264 

Mashhad, followed by Esfahan, Shiraz, Yazd, Kerman, and Bandar Abbas. Due to the 265 

inaccuracy in recording and a large number of discarded data in Bandar Abbas station, this 266 

station did not have very good results compared to other stations. The RMSE performance 267 

indicated that the calibrated models had the smallest error in Mashhad, followed by Esfahan, 268 

Bandar Abbas, Kerman, Shiraz, and Yazd. The mean RMSE values for the three improved 269 

models were lower than 1.3, which also indicated acceptable exactitude. The mean R2 value of 270 

the improved models was largest in Mashhad (0.977), followed by the values for Esfahan, 271 

Shiraz, Yazd, Kerman, and Bandar Abbas. The performance of the improved models in the 272 

same climates showed very small variation. The RMSE statistic showed that all models were 273 

more accurate in Esfahan, with an average value of 0.89 MJ m-2 day-1, followed by Bandar 274 

Abbas, Mashhad, Shiraz, Kerman, and Yazd. The fact that all improve models validated by the 275 

two statistical indicators performed well and that there was no significant difference between 276 

the models in each station show that these two indicators could not be used alone to specify the 277 

best model in each station. Therefore, the MBE statistic was used to determine the difference 278 

between the estimated and measured data. Based on Performance indicators RMSE, MBE, 279 

calibration of the A-P model improved the accuracy of estimated Rs in most of the studied 280 

stations. If the value of R2 and RMSE are closer to one and zero respectively, the model is more 281 

appropriate. 282 

3.2.Comparison of results with other researchers 283 

Calibrated the coefficients of the A-P model by various researchers showed in Table 5. In this 284 

research, the coefficients 'a' and 'b' were calculated for the selected stations with different 285 
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optimization algorithms (Table 3). Coefficient 'a' varies from 0.13 to 0.39, Also coefficient 'b' 286 

varies from 0.33 to 0.67 for six stations. 287 

Table 5  288 

Comparison of calibrated coefficients of the A-P model in the present study with the results of other 289 

researchers 290 

Station 
Bandar 

Abbas 
Esfahan Shiraz Kerman Mashhad Yazd 

 a b a b a b a b a b a b 

Khalili and Rezai-e Sadr (1997)    0.30 0.42 0.29 0.42 0.28 0.45 0.30 0.37 0.21 0.64 

Javadi and Moeini (2010)  0.34 0.306 0.361 0.35 0.317 0.405 0.322 0.421 0.335 0.332 0.345 0.398 

Sabziparvar et al (2013)    0.271 0.48 0.247 0.512 0.267 0.518 0.274 0.418 0.304 0.492 

Didari and Ahmadi (2019)     0.31 0.48       

Present  study 

SCE 0.38 0.35 0.15 0.58 0.25 0.53 0.27 0.51 0.22 0.62 0.18 0.53 

HS 0.38 0.36 0.13 0.60 0.26 0.50 0.28 0.47 0.24 0.59 0.20 0.64 

IHS 0.39 0.33 0.16 0.56 0.27 0.51 0.24 0.54 0.23 0.61 0.19 0.66 

GHS 0.36 0.37 0.15 0.57 0.20 0.58 0.26 0.50 0.21 0.63 0.18 0.67 

In comparison with previous researches, some differences were observed between the results 291 

of this research and other works. For example, Javadi and Moeini (2010), Sabziparvar et al. 292 

(2013), and Khalili and Rezai-e Sadr (1997) applied the   A-P model for Shiraz and reported 293 

the following pairs of 'a' and 'b', 0.317, 0.405; 0.247, 0.512; 0.29, 0.42, respectively. Whiles in 294 

the present research values of 'a' and 'b' coefficients were obtained as 0.25 and 0.53 with the 295 

SCE optimization algorithm for the same station; that is in good agreement with the coefficients 296 

of Sabziparvar et al. In this research, the A-P coefficients 'a' and 'b' with the SCE optimization 297 

algorithm were obtained 0.22 and 0.62 for Mashhad, but Khalili and Rezai-e Sadr (1997), Javadi 298 

and Moeini (2010) and Sabziparvar et al. (2013)  reported,  0.30, 0.37; 0.335,.0.332 and 299 

0.274,0.418 for the same station, respectively. Javadi and Moeini (2010), Sabziparvar et al. 300 

(2013), and Khalili and Rezai-e Sadr (1997) suggested the application of the A-P model for the 301 

Esfahan station with the following pairs of coefficients 'a' and 'b': 0.361, 0.35; 0.271, 0.482; and 302 

0.30, 0.42; but this research suggests values of 0.15 and 0.58 for 'a' and 'b' with the SCE 303 

optimization algorithm, respectively (Table 3). The inconsistency of the results can be 304 

explained by a longer period of estimated Rs, which were applied in this research. Based on Liu 305 

et al. (2009), sample size and the length of the observation period could illustrate such 306 
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differences in different researches. Also, the rules for quality control of the Rs dataset and the 307 

higher restrictions for removing unreliable Rs data might somewhat cause such discrepancies 308 

(Table 5). 309 

The values of measured and estimated global solar radiation by the A-P model from 1992 to 310 

2017 are compared as shown in Fig. 4. To appraise the prediction accuracy of Rs, computed 311 

from the regional best performing estimated data and the measured data, specific values of the 312 

A-P model statistics by different optimization algorithms (HS, IHS, GHS, and SCE) in the 313 

Kerman station were compared. Also, the R2 values of both the measured data and the estimated 314 

data in this station were very close to the 1:1 line, which means that the Rs determined from the 315 

estimated data and measured data were in good accordance. 316 

According to Table 4 and Fig. 4, the calibration and validation performance of the A-P model 317 

was better than three improved models in all stations. As shown in Table 4, the RMSE varies 318 

between 0.82 and 2.67 MJ m-2day-1 for the A-P model with the SCE algorithm in the calibration 319 

phase. Besides, other indicators were lower in the case of the A-P models in the SCE algorithm. 320 

Based on the results in Tables 4 and Table 5, the decrease rate of RMSE values in various 321 

stations for four optimization algorithms was different. For example, in the SCE algorithm, the 322 

value of RMSE decreased by about 4% and 7% for Mashhad and Kerman stations in the 323 

calibration phase contrasted to the HS algorithm, respectively. In other words, the highest 324 

decrease of RMSE is related to Kerman station. The lowest value of R2 was observed in Bandar 325 

Abbas station (R2 = 0.81). Further, according to MBE values, a decrease occurred in the MBE 326 

of all stations in the SCE algorithm contrasted to three algorithms (IHS, GHS, and Hs), in the 327 

A-P and three improved models. 328 
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Fig. 4. Comparison of measured and estimated Rs in the A-P model 332 

According to Table 4 and Fig. 4, the calibration and validation performance of the A-P model 333 

was better than three improved models in all stations. As shown in Table 4, the RMSE varies 334 

between 0.82 and 2.67 MJ m-2day-1 for the A-P model with the SCE algorithm in the calibration 335 
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phase. Besides, other indicators were lower in the case of the A-P models in the SCE algorithm. 336 

Based on the results in Tables 4 and Table 5, the decrease rate of RMSE values in various 337 

stations for four optimization algorithms was different. For example, in the SCE algorithm, the 338 

value of RMSE decreased by about 4% and 7% for Mashhad and Kerman stations in the 339 

calibration phase contrasted to the HS algorithm, respectively. In other words, the highest 340 

decrease of RMSE is related to Kerman station. The lowest value of R2 was observed in Bandar 341 

Abbas station (R2 = 0.81). Further, according to MBE values, a decrease occurred in the MBE 342 

of all stations in the SCE algorithm contrasted to three algorithms (IHS, GHS, and Hs), in the 343 

A-P and three improved models. 344 
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Fig. 5.  Comparison R2 and RMSE between the calibrated and validation model with different 348 

optimization algorithms for Mashhad and Kerman stations 349 

The values of R2 and RMSE for Mashhad and Kerman stations by different optimization 350 

algorithms, the A-P model, and the three improved models are shown in Fig. 5.  351 
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          Fig6. The minimum and maximum A-P model coefficients in Hs method, in different harmony 354 

memory size (HMS) 355 

0.700

0.900

1.100

1.300

1.500

SCE HS IHS GHS

A-P Model
Model1
Model2
Model3

Mashhad station(calibration)

0.700

1.000

1.300

1.600

1.900

SCE HS IHS GHS

A-P Model
Model1
Model2
Model3

Mashhad station(validation)

Max a=0.39

Min a=0.18

Min b= 0.41

Max b= 0.59

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 10 20 30 40
HMS

Kerman Station

a 
an

d
 b

Max a= 0.40

Min a= 0.11

Min b= 0.46

Max b= 0.58

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 10 20 30 40

a 
an

d
 b

HMS

Shiraz Station

Max a= 0.35

Min a= 0.10

Min b= 0.52

Max b=  0.69

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 10 20 30 40

a 
an

d
 b

HMS

Yazd Station

Max a= 0.47

Min a= 0.29

Min b= 0.20

Max b= 0.39

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 10 20 30 40

a 
an

d
 b

HMS

Bandar-Abbas Station

Max a= 0.21

Min a= 0.10

Min b= 0.55

Max b=  0.64

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 10 20 30 40

a 
an

d
 b

HMS

Esfehan Station

Max a=  0.30

Min a= 0.12

Min b= 0.56

Max b= 0.65

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 10 20 30 40

a 
an

d
 b

HMS

Mashhad Station

)
1-

d
a
y

2-
R

M
S

E
 (

M
J
 m

 

)
1-

d
a
y

2-
R

M
S

E
 (

M
J
 m

 

Optimization algorithms Optimization algorithms 



20 

 

The values of 'a' and 'b' in the harmonic memory sizes (HMS) (5, 10, 20, 30, and 40) in six 356 

meteorological stations are shown in Fig. 6. This Figure show that as the initial population 357 

increases, the values of the coefficients become convergent and a smaller range for the 358 

coefficients is obtained in different stations. For example, in Kerman station, with increasing 359 

HMS, the minimum and maximum coefficient 'a', changes from 0.18 to 0.35 and from 0.39 to 360 

0.36, respectively. The maximum and minimum values of 'a' are close to each other, and this is 361 

true for coefficient 'b'. 362 

4. Conclusion 363 

The results of the based on daily Rs and meteorological data from six stations in Iran from 364 

1992–2017, the performance of the calibrated A‐P model, and three improved models for the 365 

A‐P coefficients were evaluated, and the best performing those for each station were obtained. 366 

For practical usages, the use of a calibrated form of the A-P model seems necessary for Iran 367 

climatic situations. 368 

The effect of T and RH was applied to the A-P model and the coefficients of these models 369 

were calibrated by optimization methods. The results showed that adding Tmax, Tmin, and RHmean 370 

did not have much effect on the A-P model. Also, the SCE optimization algorithm method has 371 

shown better results than other optimization methods.  372 

Considering the sunshine, which is an important factor for estimating Rs, and accepting that 373 

Iran is a country in which sunshine is significant, the Angstrom empirical model can well 374 

estimate total radiation. In this research, the coefficients 'a' and 'b' were calibrated. Coefficient 375 

'a' varies from 0.1 to 0.47 and coefficient 'b' varies from 0.2 to 0.69 for studied stations.  376 

In this research, three Rs estimation models were appraised and calibrated. The results indicate 377 

that, among the improved models, the A-P model (R2 = 0.981 in Mashhad station) offers the 378 

best Rs estimations in the semi-arid and arid climate, as compared to the measured Rs. 379 

 380 
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The performance of the A-P model had more precision and less error than improved models in all the stations in 608 

this research 609 

The best performance of the A-P model was obtained with the Shuffled Complex Evolution (SCE) algorithm. 610 

Sunshine was the main factor determining the solar radiation 611 


