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Abstract

Despite the importance of turbidity currents in environmental and resource geology, their flow conditions and mechanisms are

not well understood. This study proposes a novel method for the inverse analysis of turbidity currents using a deep learning

neural network (DNN) to better explore the properties of turbidity currents. The aim of this study is to verify the DNN inverse

method using numerical and flume experiment datasets. Numerical datasets of turbidites were generated with a forward model.

Then, the DNN model was trained to find the functional relationship between flow conditions and turbidites by processing

the numerical datasets. The performance of the trained DNN model was evaluated with 2000 numerical test datasets and 5

experiment datasets. Inverse analysis results on numerical test datasets indicated that flow conditions can be reconstructed

from depositional characteristics of turbidites. For experimental turbidites, spatial distributions of grain size and thickness were

consistent with the sample values. Concerning hydraulic conditions, flow depth H, layer-averaged velocity U, and flow duration

Td were reconstructed with a certain level of deviation. Greater discrepancies between the measured and reconstructed values

of flow concentration were observed relative to the former three parameters (H, U, Td), which may be attributed to difficulties

in measuring the flow concentration during experiments. The precision of the reconstructions for experimental datasets was

estimated using Jackknife resampling. Although the DNN model did not provide perfect reconstruction, it proved to be a

significant advance for the inverse analysis of turbidity currents.
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• Inverse analysis of turbidity currents using deep learning neural networks was6
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Abstract12

Despite the importance of turbidity currents in environmental and resource geology,13

their flow conditions and mechanisms are not well understood. This study proposes14

a novel method for the inverse analysis of turbidity currents using a deep learning15

neural network (DNN) to better explore the properties of turbidity currents. The aim16

of this study is to verify the DNN inverse method using numerical and flume experi-17

ment datasets. Numerical datasets of turbidites were generated with a forward model.18

Then, the DNN model was trained to find the functional relationship between flow19

conditions and turbidites by processing the numerical datasets. The performance of20

the trained DNN model was evaluated with 2000 numerical test datasets and 5 exper-21

iment datasets. Inverse analysis results on numerical test datasets indicated that flow22

conditions can be reconstructed from depositional characteristics of turbidites. For23

experimental turbidites, spatial distributions of grain size and thickness were consis-24

tent with the samples values. Concerning hydraulic conditions, flow depth H, layer-25

averaged velocity U , and flow duration Td were reconstructed with a certain level of26

deviation. Greater discrepancies between the measured and reconstructed values of27

flow concentration were observed relative to the former three parameters (H, U , Td),28

which may be attributed to difficulties in measuring the flow concentration during29

experiments. The precision of the reconstructions for experimental datasets was esti-30

mated using Jackknife resampling. Although the DNN model did not provide perfect31

reconstruction, it proved to be a significant advance for the inverse analysis of turbidity32

currents.33

Plain Language Summary34

This study performed inverse analysis on turbidity currents using a machine35

learning method. Flume experiments were conducted to verify the method. Turbidite,36

the deposit of turbidity current, is an active area of study because it is closely related37

to the exploration of petroleum resources. Since turbidites are often deposited as a38

result of tsunami events, the understanding of turbidity currents can also contribute39

to geohazard prevention. The inverse analysis method proposed in this study can help40

enhance our understanding of the flow properties of turbidity currents.41
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1 Introduction42

A turbidity current is a process of sediment transport into subaqueous environ-43

ments such as deep lakes and oceans (Daly, 1936; Johnson, 1939). Turbidites, the44

deposits of turbidity currents, are often characterized by graded bedding and sedimen-45

tary successions called the Bouma sequence (e.g., Kuenen & Migliorini, 1950; Bouma,46

1962; Talling et al., 2012). Turbidites have been an active area of study due to their47

close association with petroleum resources and their role in the destruction of sea-floor48

equipment, such as submarine cables (Weimer & Slatt, 2007; Talling et al., 2015).49

Furthermore, turbidites are often deposited as a result of tsunami triggered turbid-50

ity currents (Arai et al., 2013) and thus can contribute to determine the recurrence51

intervals of geohazards.52

Studying the flow behavior of turbidity currents is essential for understanding53

the characteristics of turbidites and their implications (Talling et al., 2007). However,54

knowledge in this area remains limited because of difficulties in the direct observa-55

tion of turbidity currents. Several in-situ measurements have been conducted (e.g.,56

Xu et al., 2004; Vangriesheim et al., 2009; Arai et al., 2013; Paull et al., 2018) and57

extensive research detailing the dynamics of the measured flows was conducted (e.g.,58

Chikita, 1989; Dorrell et al., 2016; Azpiroz-Zabala et al., 2017; Heerema et al., 2020;59

Simmons et al., 2020). However, measurements of hydraulic conditions, such as sedi-60

ment concentration, were difficult because of the destructive nature and unpredictable61

occurrences of turbidity currents (Naruse & Olariu, 2008; Falcini et al., 2009; Lesshafft62

et al., 2011; Talling et al., 2015). Recently, Simmons et al. (2020) proposed a novel63

acoustic method for measuring the concentration structure within submarine turbid-64

ity currents. The method was able to extract the sediment concentration data from65

ADCP measurements, but did not perform well at high concentrations. The method66

also assumed a single grain-size class in flow, which is no consistent with acutal flow in67

nature. Therefore, inverse analysis that reconstructs the flow conditions of turbidity68

currents from their deposits is crucial for estimating the flow conditions in natural69

environments.70

Before this research, inverse analysis of turbidity currents was conducted by Baas71

et al. (2000), where flow velocity was reconstructed through analyses of sedimentary72

structures of turbidites. The results provided an estimation of the hydraulic conditions73

of flow at a single location, but did not provide a reconstruction of the spatial evolution74

of the turbidity current. In contrast, inverse analysis methods in previous studies based75

on numerical models provided more detailed insights into the spatial structure and76

evolution of flows over time (e.g., Falcini et al., 2009; Lesshafft et al., 2011; Parkinson77

et al., 2017). The method proposed by Falcini et al. (2009) assumed steady flow78

conditions and was simplified for obtaining analytical solutions, preventing it from79

accurately illustrating the flow mechanism of unsteady turbidity currents that can80

produce normally graded bedding. Consequently, this method cannot be applied to81

normally graded beds, which are typical characteristics of turbidites. Other studies82

used the optimization method, where the hydraulic parameters were determined by83

optimizing the input parameters of numerical models, so that the resulting calculations84

were consistent with the observed data from turbidites (Lesshafft et al., 2011). This85

method can provide a relatively good reconstruction of the hydraulic conditions of86

turbidity currents, but has an extremely heavy calculation load due to the complexity87

of the forward model employed and the repetitive calculation of the forward model88

for optimization. Therefore, applying the method to natural scale turbidites, which89

typically run over tens to hundreds of kilometers and flow continuously for several90

hours (Talling et al., 2015), is impossible. Optimization using the adjoint approach91

proposed by Parkinson et al. (2017) solved the problem of heavy calculation load, but92

the reconstructed values differed from the expected values up to an order of magnitude.93
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Since previous methods to estimate flow conditions for turbidites were either94

overly simplified (Baas et al., 2000), incapable of reproducing graded beds (Falcini et95

al., 2009), accurate but computationally intractable for natural scale turbidity currents96

(Lesshafft et al., 2011), or low in accuracy (Parkinson et al., 2017), a method that is97

both accurate and not computationally intractable should be developed. To resolve the98

aforementioned issues, Naruse and Nakao (2020) proposed a new method for inverse99

analysis of turbidite deposits using deep learning neural networks (DNN). A DNN100

model is a machine-learning computing system that works as a universal function ap-101

proximator (Liang & Srikant, 2016), meaning that an unknown function governing the102

relationship between observations within a domain is explored and approximated. Pre-103

viously, it was applied to problems such as landslide susceptibility analyses (Pradhan104

et al., 2010) and identification of lithology from well log data (Rogers et al., 1992),105

where the empirical relationship between the observed data and parameters aimed to106

be predicted was explored. In the case of turbidity currents, however, it is impossible107

to obtain sufficient datasets of in-situ measurements of flow characteristics for develop-108

ing a DNN inverse model. Instead of using in-situ measurements of turbidity currents109

in nature, Naruse and Nakao (2020) generated numerical datasets of turbidites using110

a forward model. The generated datasets were input into a DNN model to explore111

the functional relationship between turbidites and initial flow conditions. After this112

network training process, the DNN model can estimate flow conditions from new tur-113

bidite data. Naruse and Nakao (2020) performed inverse analysis using a trained DNN114

model on field scale numerical test datasets generated by a forward model. Their re-115

sults showed that the DNN model can reconstruct flow properties from numerical test116

datasets and was robust against noise in input data. Although the DNN model has117

demonstrated its performance on numerical datasets, it has has yet to be tested with118

turbidite data from experiments or in-situ measurements.119

In this study, we verified the ability of the DNN model to perform inverse anal-120

ysis of turbidity currents by applying it to data collected from turbidites deposited121

in flume experiments. We chose to first test the DNN inverse model on flume experi-122

ments instead of field data, because turbidity currents were generated in a controlled123

environment during flume experiments. Conditions, including flow duration and initial124

hydraulic conditions, can be set manually, and measurements of these parameters can125

also be conducted easily during experiments.126

Here, we implemented a forward model and a DNN inverse model. The forward127

model was implemented with the same governing equations as Naruse and Nakao128

(2020), but the numerical scheme and closure equations were modified to accommo-129

date experimental scale simulations and improve the accuracy of the calculation. The130

DNN model was trained with the experimental scale numerical datasets. The trained131

DNN model was first tested with independent sets of numerical datasets that were132

also produced by the forward model. Then, the trained DNN model was tested with133

flume experiment data. Initial flow conditions of experiments were reconstructed from134

sampled deposits. These flow conditions were then fed into the forward model to re-135

construct the spatio-temporal evolution of the experiment. Reconstructed hydraulic136

conditions during the flow and grain size distribution of the deposits were compared137

with the measured values.138

2 Forward Model139

2.1 Governing Equations140

The forward model implemented in this study is a layer-averaged shallow water141

model based on Kostic and Parker (2006). It is expanded to account for the transport142

and deposition of non-uniform grain size distribution discretized to multiple grain-143

size classes in Nakao et al. (2020) (Figure 1). This model was chosen because it is144
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sufficiently complex to some details of the internal structure of flow, but also contains145

simplifications that make its calculation cost reasonable. The five governing equations146

are as follows:147

∂H

∂t
+ U

∂H

∂x
= ewU −H

∂U

∂x
, (1)

∂U

∂t
+ U

∂U

∂x
= RCTg(sin θ − cos θ∂H

∂x
)− 1

2gHR cos θ∂CT
∂x
− U2

H
(cf − ew), (2)

∂Ci
∂t

+ U
∂Ci
∂x

= wi
H

(Fiesi − roCi)−
ewCiU

H
, (3)

∂ηi
∂t

= wi
1− λp

(roCi − esiFi), (4)

∂Fi
∂t

+ Fi
La

∂ηT
∂t

= wi
La(1− λp) (roCi − esiFi), (5)

where the equations represent fluid mass conservation (equation 1), momentum con-148

servation (equation 2), sediment mass conservation (equation 3), mass conservation in149

bed (Exner’s equation) (equation 4), and sediment mass conservation in active layer150

(equation 5) (Nakao et al., 2020).151

Let x and t be the bed-attached streamwise coordinate and time, respectively.152

Parameters H, U , and Ci represent the flow depth, the layer-averaged velocity, and153

the layer-averaged volumetric concentration of suspended sediment of the ith grain-size154

class, respectively. In this study, the number of grain-size classes and representative155

grain diameters were determined on the basis of the grain size distribution in each156

experiment (specific values noted in Section 5.1). Parameter CT denotes the layer-157

averaged total concentration of suspended sediment (CT =
∑
Ci), and g represents158

gravitational acceleration. Parameter cf is the friction coefficient. Parameter θ is159

the angle of inclination of the base slope. Sediment properties are described by R,160

the submerged specific density of sediment; wi represents the settling velocity of a161

sediment particle of the ith grain-size class; λp represents the porosity of bed sediment.162

Parameter ηi is the volume per unit area of bed sediment of the ith grain-size class,163

and ηT is the sum of all ηi (ηT =
∑
ηi). Parameters La represents the active layer164

thickness, and Fi represents the volume fraction of the ith grain-size class in active165

layer. Parameters esi, ew, and ro represent the entrainment rate of sediment of the166

ith grain-size class into suspension, the entrainment rate of ambient water to flow,167

and the ratio of near-bed suspended sediment concentration to the layer-averaged168

concentration of suspended sediment, respectively (Figure 1).169

2.2 Closure Equations170

Empirical formulations from previous studies are adapted to close the govern-171

ing equations. In this study, the friction coefficient cf is assumed to be a constant172

value. The particle settling velocity wi for each grain-size class with a representative173

grain diameter Di is calculated using the relation from Dietrich (1982), which can be174

expressed as follows:175

wi = Rfi
√
RgDi, (6)

Rfi = exp(−b1 + b2 log(Repi)− b3(log(Repi))2 − b4(log(Repi))3 + b5(log(Repi))4),(7)

Repi =
√
RgDiDi

ν
, (8)

where b1, b2, b3, b4 and b5 are 2.891394, 0.95296, 0.056835, 0,000245 and 0.000245,176

respectively. ew is calculated using the empirical formula from Fukushima et al. (1985)177

as follows:178

ew = 0.00153
0.0204 +Ri

, (9)
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Figure 1. Schematic diagram of processes considered in the forward model from Nakao et al.
(2020).

with Ri, the bulk Richardson number, defined as:179

Ri = RgCTH

U2 . (10)

The entrainment coefficient of sediment es is calculated using the empirical relation180

from Garcia and Parker (1993):181

esi = aZ5

1 + (a/0.3)Z5 , (11)

Z = α1
u∗
wi
Reα2

p , (12)

where shear velocity u∗ is calculated as follows:182

u∗ =
√
cfU, (13)

and the constants α1 and α2 are 0.586 and 1.23 respectively if Rep ≤ 2.36. If Rep >183

2.36, α1 and α2 are 1.0 and 0.6, respectively. Constant a is 1.3 × 10−7. Kinematic184

viscosity of water ν is calculated as follows:185

ν = µ/ρ, (14)

where ρ and µ denote water density and dynamic viscosity, respectively. The experi-186

mentally determined values for µ at 20.0◦C (Rumble, 2018) were used in the calculation187

of ν in this study.188

2.3 Implementation of Forward Model189

In this study, the constrained interpolation profile (CIP) method (Yabe et al.,190

2001) implemented with staggered grid was used for integrating of the partial differ-191

ential equations 1, 2, and 3. The stability condition of the CIP scheme is as follows192

(Gunawan, 2015):193

1 >
∆t max(|U |+

√
gH)

∆x . (15)
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In this study, the time step ∆t was fixed to a value of 0.01 s so that it does not violate194

the stability condition. The CIP scheme implemented was of third order accuracy.195

Although this numerical scheme is not strictly mass-conservative, the volume loss196

of this method has been verified to be less than 0.07% when tested with a simple197

numerical wave tank (NWT), acceptable for fluid simulation (Vestbøstad et al., 2007).198

To stabilize the calculation, artificial viscosity was used with the scheme of Jameson199

et al. (1981), where the parameter κ was set to 0.25. The two-step Adams predictor-200

corrector method, which was more stable than the ordinary Euler’s method, was used201

to solve ordinary differential equations 4 and 5. Interval of spatial grids ∆x was set202

to 0.05 m based on experimental settings (Section 4.1). The model was tested with203

different mesh sizes ranging from one fifth to five times the current mesh size and was204

confirmed to be mesh independent. Initial values of θ for all grids were set to the same205

value as the base slope of experimental setups.206

The Dirichlet boundary condition was used for the upstream boundary, where all207

flow parameters at the upper boundary of the calculation domain, including the initial208

flow depth H0, the initial flow velocity U0, the initial total volumetric concentration209

of sediment CT,0, and the initial volumetric concentration of each grain-size class Ci,0,210

were set to be constant. Parameter Fi,0, the initial volume fraction of the ith grain-size211

class in active layer, was set to 1/N for all grain-size classes, where N represents the212

number of grain-size classes. The downstream boundary was the Neumann boundary213

condition in which all parameters were set to the same values as those of the grid214

adjacent to the lower boundary toward the upstream direction. Other than the up-215

stream boundary, all flow parameters were initialized to zero. The wet-dry boundary216

condition at the head of the flow was conducted using the scheme proposed by Yang217

et al. (2016). A threshold value of CTH, ε, was used to determine the position of218

the waterfront. If CTH < ε, the grid was dry. If CTH ≥ ε , the grid was wet. In219

this study, ε was set to 0.000001. A dry grid adjacent and downstream to a wet grids220

was a partial wet grid. Flow discharge M at a partial wet grid j was calculated using221

Homma’s equation (Yang et al., 2016) as follows:222

M = CsHj−1
√
RgCT,j−1Hj−1, (16)

where Cs, the discharge coefficient, is equal to 0.35.223

The density of the surrounding fluid ρ was set to 1000.0 kg/m3 in this study, since224

experiments were conducted with water. The submerged specific density of sediment225

R = (ρs−ρ)/ρ was set differently according to the types of particles used in experiments226

(ρs is the density of sediment particles), which are stated in Section 4.1. The porosity227

of bed sediment λp was assumed to be 0.4. In this study, both the friction coefficient228

cf and ratio of near-bed concentration to layer-averaged values ro were assumed to be229

constant. cf was set to 0.004. ro was set to 1.5 (Kostic & Parker, 2006). In addition,230

the thickness of active layer La was set to be a constant, 0.003 m (Arai et al., 2013).231

The gravitational acceleration g was 9.81 m/s2.232

3 Inverse Analysis by Deep Learning Neural Network233

In this method, initial flow conditions of turbidity currents are reconstructed234

from their turbidite deposits. The DNN model first explores the functional relationship235

between the initial flow conditions of turbidity currents and the resulting turbidite de-236

posits via training. After training, the DNN model is applied to new turbidite datasets237

for inverse analysis. In preparation for training, numerical training datasets are gener-238

ated using the forward model. During training, the training datasets are fed into the239

DNN. The DNN model examines the datasets and adjusts its internal parameters to240

make a good estimation of the initial flow conditions from the deposit profile. After241

training, the DNN, which is can predict the initial flow conditions of new turbidites242

based on the functional relationship it discovered, is tested with independent numeri-243
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cal datasets that are also generated by the forward model and with flume experiment244

data. The procedure of using the DNN model as a method of inverse analysis in this245

study is illustrated in a flowchart in Figure 2.246

Divide Numerical Datasets 
(Initial Conditions + Deposit 

Profile) for Training and Testing

Input Training Datasets to DNN 
for the Training Process

Apply Trained DNN to 
Numerical Test 

Datasets 

Appy Trained DNN to 
Flume Experiment 

Datasets

Generate Sets of  Random 
Initial Conditions

Input Sets of Initial Conditions 
to Forward Model and 

Calculate Deposit Profile 

Figure 2. A flowchart illustrating the procedures from generation of numerical data to the
application of a DNN model to numerical test datasets and flume experiment datasets.

3.1 Generation of Training Data247

A training dataset is a combination of randomly generated initial flow conditions248

at the upstream boundary of the flow and a matching deposit profile calculated using249

the forward model. A program in Python was written to generate sets of initial flow250

conditions. Each set of flow conditions generated consists of an initial flow velocity251

U0, an initial flow depth H0, a flow duration Td, and the initial concentrations of each252

grain-size class Ci,0. Other variables, such as slope, are set to constant values. The253

slope was set according to values of slope in experiments conducted (Section 4.1).254

The forward model calculates the deposit profile of a turbidite using randomly255

generated initial flow conditions. The deposit profile is calculated as volume per unit256

area for each grain-size class at 60 locations within a 3 m range downstream from the257

upstream boundary. Each data point is 0.05 m away from its neighboring points. These258

data points are akin to sampled data from flume experiments or core or outcrop data259

from actual turbidites. Since fewer data points can be obtained from experiments or260

actual turbidites, details of deposit profiles need to be interpolated from available data261

points. Table 1 illustrates the ranges of randomly generated initial flow conditions.262

These ranges were decided on the basis of possible values that can be observed in263

experimental scale turbidity currents. Since terms in the forward model calculation264

were set to be consistent with experimental settings instead of natural scale turbidity265

currents, no range of values beyond that of experimental scale would be appropriate266

for the current model implemented. In this study, 10000 training datasets were used267

for training and 2000 datasets were used for verifying the DNN. The number of test268

datasets was chosen to be the same number as that of validation datasets. The test269

–8–
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numerical datasets for verification were generated independently from the training270

datasets.271

Table 1. Range of initial flow conditions generated for the generating of training datasets.

Parameter Minimum Maximum

H0 (m) 0.01 0.3
U0 (m/s) 0.01 0.2
Ci,0 0.0002 0.005
Td (s) 180 1080

3.2 Structure of Deep Learning Neural Network272

The type of neural network (NN) used in this study is a fully connected NN,273

which consists of an input layer, several hidden layers, and an output layer. Each layer274

consists of some nodes. Each node connects with every node in the adjacent layers275

(Figure 3A). Nodes in the input layer hold deposit profile values, i.e., the volume-276

per-unit-area for all grain-size classes at spatial grids. Nodes in the output layer hold277

estimates of parameters we seek to reconstruct, which in this case are the initial flow278

conditions U0, H0, Ci,0, and the flow duration Td. The activation function used in279

this study is the rectified linear unit (ReLU), which is one of the most commonly used280

activation functions for DNNs and is proven to perform calculations at a higher speed281

than other activation functions (Krizhevsky et al., 2012).282

Input

Layer

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Input

Nodes

1

x

1

x

2

x

n

Φ(Ʃw

i

x

i

)

Activation Function

Weight

Coefficients

w

0

w

1

w

2

w

n

Output

A B

Figure 3. Schematic diagrams of DNN. A. Overall structure of DNN. B. Concept of weight
coefficient and activation function.

Before training, the weight coefficients are set to random values. As the training283

process begins, deposit profile values from the training datasets are fed into the input284

layer. These values propagate through the hidden layers of the DNN, and estimates285

of the initial flow conditions are outputted at the output layer. At this point in286

the training process, the DNN model is yet to adapt its internal variables to the287

functional relationship between turbidite deposits and initial flow conditions. Thus,288

the initial estimates are expected to largely differ from the actual values. To explore289
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this functional relationship, a loss function is used to evaluate the accuracy of the290

estimated values. The loss function used in this case is the mean squared error function,291

which is considered as one of the best functions for regression (Wang & Bovik, 2009).292

The gradient of the loss function is calculated and fed back to the hidden layers of293

the DNN model through backpropagation (Nielsen, 2015; Schmidhuber, 2015), where294

the internal values of the DNN model are optimized toward minimizing the difference295

between the estimated and actual values. This process is repeated for every epoch of296

calculation. An epoch is a cycle of calculation in a DNN that involves one forward297

pass and one backpropagation of all training data.298

The optimization algorithm used in this study is stochastic gradient descent299

(SGD), which drastically reduces the amount of calculation involved in training with-300

out compromising accuracy compared to previous gradient descent algorithms (Bottou,301

2010). In this study, Nesterov momentum is used with SGD (Ruder, 2016). Because302

of the difference in the order of the range of the initial flow conditions, the training303

datasets should be normalized before they are inputted to the DNN. In this case, all304

values are normalized to be between 0 and 1 for the DNN model to consider all param-305

eters at equal weights. The hyperparameters, including the number of layers, number306

of nodes at each layer, dropout rate, validation split, learning rate, batch size, epoch,307

and momentum, were adjusted manually. Various combinations were attempted. The308

best combination of hyperparameters was chosen on the basis of the performance of309

the DNN, which is judged on the basis of the final validation loss.310

In this study, the DNN model was developed using Python with the package311

Keras 2.2.4. The package Tensorflow 1.14.0 (Abadi et al., 2015) was used for backend312

calculations. Calculations were performed using GPU NVIDIA GeForce GTX 1080313

Ti.314

3.3 Evaluation of Trained DNN Model315

During the verification of the DNN model with test numerical datasets (Sec-316

tion 5.1), the reconstruction result of each parameter was evaluated using bias (B)317

and sample standard deviation (s) of residuals. The calculations were performed us-318

ing the following equations:319

B =
∑
xi
n

, (17)

s =
√∑

(xi −B)2

n− 1 , (18)

where n represents the number of test datasets, and xi denotes the residual of the320

specific reconstructed parameter for the ith test dataset. The value of s for each321

reconstructed parameter was compared with a representative value C∗v , which is the322

mid-value over the range in which the specific parameter was generated (Table 1).323

The confidence interval of B was determined using the bootstrap resampling method324

(Davison & Hinkley, 1997). Resampling of B was conducted 10000 times, and the 95%325

confidence interval (CI) of B was determined.326

During the verification of the DNN model using flume experiment data (Sec-327

tion 5.2), linear interpolation was first applied to the sampled experimental deposit328

datasets so that the number of data points for one experimental dataset was the same329

as that for a training dataset. Then, flow parameters at the upstream end of the sim-330

ulation were reconstructed from the measured properties of the deposit profile. The331

upstream end of the simulation was set at 1.0 m from the inlet of the flume. The332

reconstructed parameters were inputted into the forward model so that downstream333

flow parameters and the time evolution of the deposit profile were calculated. The334

calculated downstream flow parameters were compared with the flow conditions mea-335

sured during experiments. The deposit profile calculated from the reconstructed flow336
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parameters was also compared with the measured deposit profile that was used for337

inversion.338

To evaluate the precision of reconstruction, Jackknife method (McIntosh, 2016)339

was applied to the sampled deposit values and delete-1 Jackknife samples were gen-340

erated. Inverse analysis by the DNN model was performed for the delete-1 Jackknife341

samples, and downstream flow parameters were calculated for each sample. There were342

18 delete-1 Jackknife samples for each experiment, since the deposits were sample at343

18 locations. Considerng the small sample size (less than 30), t-distribution was used344

instead of noraml distribution. The 95% confidence interval of t-distribution is ±(t ×345

sx), where sx is the standard error and is defined by the following equations:346

x =
∑n
i=1 xi
n

, (19)

sx =

√∑n
i=1(xi − x)2

n(n− 1) , (20)

where n represents the sample size, xi denotes the jackknife sample where the ith347

sampled deposits value were eliminated, and x is the mean of xi. The value t is a348

standarized value determined by the degree of freedom and the alpha level. Degree of349

freedom is the sample size subtracted by 1. In this case, the sample size is 18, thus df350

is 17. For 95% confidence interval, the alpha level is 0.05. According to the two-tails351

t-distribution table, t for our samples is 2.110.352

4 Flume Experiments353

4.1 Experiment Settings354

The flume was made of acrylic panels and was 4 m in length, 0.12 m in width,355

and 0.5 m in depth. During the experiments, it was submerged in a tank made of glass356

panels and a steel supporting frame. The tank was 5.5 m in length, 2.5 m in width,357

and 1.8 m in depth. The slope of the channel floor changed at 1.0 m from the inlet,358

where a was the upstream slope and b was the downstream slope (Figure 4). Values359

of a and b for each experiment are stated in Table 2.360

Sediment was mixed with water in two mixing tanks before the experiments.361

During the experiments, the mixture of sediment and water was first pumped to the362

constant head tank and then released into the flume. The flow into the flume was363

controlled via a valve at the base of the constant head tank. Flow discharge was364

regulated by changing the degree of valve opening. The amount of mixture in the365

constant head tank was kept at a constant level during the experiments to maintain a366

stable flow discharge. The damping tank at the downstream end of the flume prevented367

any reflection of flow toward the upstream direction. A pipe of freshwater supply was368

placed at the top of the damping tank, and a draining pipe was placed at the bottom369

of the damping tank. The combination of these two pipes kept the level of water in370

the tank constant and prevented the reflection of flow.371

Five experiments were conducted using plastic particles in this study. The den-372

sity of the plastic particles used was 1.45 g/cm3. Two experiments (experiments PP1,373

PP2) were performed using polyvinyl chloride, which had an average grain diameter374

of 0.120 mm, and melamine, which had an average grain diameter of 0.220 mm (Sec-375

tion 4.3). Three experiments (experiments PP3, PP4, PP5) were performed with two376

types of melamine, which had an average grain diameter of 0.120 mm and 0.220 mm,377

respectively (Section 4.3).378
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4.2 Measurements and Data Analysis379

Before each experiment, the tank water temperature was measured using a glass380

alcohol thermometer. The mixture in the tank was sampled with a 500 mL beaker to381

measure the initial concentration in the tank. Flow velocity was measured using an382

acoustic Doppler velocity profiler (ADVP; Nortek Vectrino Profiler). The maximum383

functional range of the ADVP used was 4.0 − 7.0 cm below the probe. The actual384

range of reliable measurement may be shorter if the signal-to-noise ratio (SNR) of385

data collected is below a certain threshold (Appendix A). To obtain the vertical386

velocity profile of the flow, an actuator was used to adjust the position of the ADVP387

during the experiments.388

A siphon with 10 plastic tubes was used to measure the suspended sediment389

concentration of the flow. The tubes were aligned vertically at 1.0 cm intervals and390

were positioned such that samples were collected at 0.0 to 9.0 cm above the bed.391

Aluminum tubes with an outer diameter of 8.0 mm and an inner diameter of 5.0 mm392

were attached to the outlets of plastic tubes to keep them in place. Sampling by siphon393

was conducted when the flow reached a quasi-equilibrium state. The state of flow was394

determined by observing the development of the flow. Two single-lens reflex cameras395

were used to record the experiments. Flow depth was determined based on the video396

recorded.397

After the experiments, the flume was left untouched for 1 to 3 days for the398

suspended sediment to settle. Afterward, photos were taken from a lateral view per-399

pendicular to the flume. The lateral view of the deposited sediment was photographed400

with a ruler beside it. The height of the deposit was determined from the photos. Wa-401

ter was then gradually drained from the tank with a bath pump at a rate of 0.0002333402

m3/s. After the water was drained, deposited sediment was sampled at 20 cm intervals403

starting from the upstream boundary of the flume.404

Samples from the siphon and the mixing tank were first weighed immediately405

after they were collected. Then, they were dried in a drying oven at 70◦C along with406

the deposit samples. Samples from the siphon and the mixing tank were weighed again407

after drying. The measurements were used for calculating the sediment concentration408

in the flow and tank. Grain size distribution analysis was performed in a settling409

tube for all dried sediment samples. The settling tube used was 1.8 m in length.410

The calculation of grain size distribution was performed using STube (Naruse, 2005).411

Particle settling velocity was calculated using Gibbs (1974). The measured grain size412

distribution of sediment was discretized to four grain-size classes. The representative413

grain diameter of grain-size classes 1, 2, 3, and 4 were set to be 210, 149, 105, and 74.3414

µm, respectively.415

In steady flow conditions, the relationship between the layer-averaged flow ve-416

locity U , the layer-averaged sediment volumetric concentration C, and the flow depth417

H is defined as follows (Garcia & Parker, 1993):418

UCH =
∫ ∞
a

uzczdz, (21)

where uz and cz represent the flow velocity and sediment volumetric concentration,419

respectively, at elevation z above the bed. The relationship between the layer-averaged420

flow velocity U and the velocity maximum Um is defined by the following equation421

(Altinakar et al., 1996):422

Um
U

= 1.3. (22)

The layer-averaged flow velocity was calculated from the velocity maximum of the423

profile measured by the ADVP using the relationship described by equation 22. The424
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sediment volumetric concentration was calculated from siphon measurements using the425

relationship described by equation 21.426

4.3 Experimental Conditions427

Experimental conditions for the five runs conducted are outlined in Table 2. CTT428

represents the total concentration of sediment in the mixing tank. C1T, C2T, C3T,429

and C4T represent the concentrations of grain-size classes 1, 2, 3, and 4, respectively.430

Parameter xC represents the position of the siphon downstream, whereas xU represents431

the position of ADVP downstream. xH represents the position in which the flow432

depth was measured from a video taken during the experiments. xU, xC and xH were433

changed for each run because of limitations in the flume setup at the time of the434

experiments. Temperature is the measured temperature of clear water in the tank435

before the experiments.436

Table 2. Conditions and settings of experiments conducted.

PP1 PP2 PP3 PP4 PP5

CTT 0.0191 0.0276 0.0120 0.0141 0.0101
C1T 0.0102 0.0160 0.00230 0.00453 0.00290
C2T 0.00713 0.00820 0.00670 0.00657 0.00446
C3T 0.00146 0.00254 0.00250 0.00246 0.00199
C4T 0.000366 0.000817 0.000460 0.000567 0.000766
xC (m) 1.08 2.10 1.50 1.50 1.50
xU (m) 1.46 2.48 1.20 1.20 1.20
xH (m) 1.10 1.10 1.20 1.20 1.20
Temperature (◦C) 22.5 17.0 13.0 13.5 14.0
Slope a 26.8% 26.8% 25.6% 25.6% 25.6%
Slope b 10.0% 10.0% 8.00% 8.00% 8.00%

5 Results437

Inverse analysis was applied to deposits within a 2.6 m range downstream of the438

beginning of slope b (1.0 m from the inlet of flow). Due to the limited size of the flume,439

slope a was set to a steep angle (26.8% or 25.6%) in all five experiments to ensure that440

the flow accelerates sufficiently for entrainment to occur. Considering the instabilities441

near the inlet and the overly steep slope, the region with slope a was excluded from442

numerical simulations and inverse analysis. For the generation of numerical datasets,443

the upstream boundary of the simulation was set at the beginning of slope b, and444

calculations were performed for a 3.0 m range downstream. The actual sampling of445

experiment deposits was performed only up to 2.6 m from the beginning of slope b446

(Figure 4), because deposits beyond the region were too thin to be collected for some447

experiments. Only simulation data from the same range were used for training and448

verification to match the actual sampling range of experiment deposits.449

For hyperparameters used during training, the dropout rate, validation split, and450

momentum for the DNN model were set to 0.5, 0.2, and 0.9, respectively. The learning451

rate was set to 0.01. The batch size was set to 32 and the number of layers was set452

to 5. The number of nodes each layer was 2000. Epoch was 20000. With this setting453

the validation loss was 0.0033 for training with 10.0% slope datasets and 0.0038 for454

training with 8.00% slope datasets. Figures 5A and 6A show that overlearning did not455
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occur, as no deviation was observed between the resulting values of the loss functions456

for the training and validation datasets.457

5.1 Verification of Inverse Model with Test Numerical Datasets458

This section presents the verification results with numerical test datasets. Pa-459

rameter reconstruction results by the DNN model are shown in Figures 5 and 6. Pa-460

rameters reconstructed include flow duration Td and flow conditions at the upstream461

end (flow velocity U0, flow depth H0, and sediment concentrations Ci,0). Separate ver-462

ification was performed with numerical datasets of experiments conducted with 10.0%463

slope and 8.00% slope. Verification results are described in Sections 5.1.1 and 5.1.2.464

5.1.1 Verification with Test Numerical Datasets of Experiments Con-465

ducted with 10.0% Slope466

Overall, the reconstructed values mostly matched with the original values, with a467

few outliers (Figure 5B-H). However, a greater degree of scattering was observed for Td468

compared with other parameters.Td seemed show a tendency of being underestimated469

(Figure 5B). The ranges of misfit (2s) were reasonable for all parameters, which had470

2s/C∗v values under 22.0% (Table 3). For Ci,0, zero was within the 95% CI of B , but471

not for Td, U0, and H0. CI range was below zero for Td and U0 and above zero for H0.472

Table 3. Sample standard deviation and bias of the inversion result for numerical datasets of
experiments conducted with 10.0% slope.

Parameters s C∗v 2s/C∗v B CI of B

U0 (m/s) 0.00577 0.105 0.110 -0.00234 (-0.00316, -0.00155)
H0 (m) 0.00978 0.155 0.126 0.00164 (0.000286, 0.00301)
Td (s) 68.6 630 0.218 -49.4 (-59.1, -40.1)
C1,0 0.000254 0.0026 0.195 0.0000318 (-0.00000234, 0.0000679)
C2,0 0.000278 0.0026 0.214 0.0000292 (-0.00000832, 0.0000681)
C3,0 0.000280 0.0026 0.215 0.0000149 (-0.0000237, 0.0000536)
C4,0 0.000271 0.0026 0.209 0.0000234 (-0.0000130, 0.0000617)

5.1.2 Verification with Test Numerical Datasets of Experiments Con-473

ducted with 8.00% Slope474

Overall, good correlations were observed for the reconstructed and original values475

of flow parameters. The reconstructed values were mostly consistent with the original476

values, with a few outliers (Figure 6B-H). Similar to the test datasets described in477

Section 5.1.1, a tendency of underestimation was observed for Td (Figure 6B). The478

range of misfit (2s) was reasonable for all parameters, which had 2s/C∗v values under479

23.0% (Table 4). Zero was included in the 95% CI of B for U0, C2,0, and C3,0, but not480

for Td, H0, C1,0, and C4,0. CI range was below zero for Td and H0 and above zero for481

C1,0 and C4,0.482

5.2 Inverse Analysis of Flume Experiment Data483

In this section, the calculated deposit profiles and grain size distributions are484

compared with the actual deposit profiles sampled from the experiments (Figures 7,485

8). The results of the reconstructed flow conditions, including flow velocity UxU
, flow486
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reconstructed value was 0.00702 with a uncertainty range of ±0.000667. The measured523

CT,xC
for PP2 was 0.00410 and the reconstructed value was 0.00344 with a uncertainty524

range of ±0.000462. The percent errors between reconstructed and measured CT,xC
525

were 768% (PP1) and 16.1% (PP2), of which that of PP1 had a significantly larger526

deviation than that of PP2. The reconstructed values of each grain-size class were527

mostly overestimated (Figure 9D).528
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Figure 7. Reconstructed deposit profiles and sampled deposit data of experiments PP1 and
PP2. A. (1) Reconstructed and sampled ηT of PP1. (2) Grain size distribution at 1.4 m down-
stream. (3) Grain size distribution at 1.8 m downstream. B. (1) Reconstructed and sampled ηT

of PP2. (2) Grain size distribution at 1.4 m downstream. (3) Grain size distribution at 1.8 m
downstream.

5.2.2 Experiments Conducted with 8.00% Slope (PP3, PP4, PP5)529

Similar to the results of PP1 and PP2, deposit profiles in experiments PP3,530

PP4, and PP5 showed thinning and fining downstream trends. The reconstructed531
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deposit profiles of the total deposition closely matched the sampled data for PP4532

and PP5 (Figures 8B(1), C(1)) but was slightly greater than the measured values533

for PP3 (Figure 8A(1)). The reconstructed grain size distributions at 1.4 m and534

1.8 m downstream agreed well with the measured values for all three experiments535

(Figures 8A(2),(3), B(2),(3), C(2),(3)).536

The measured HxH
of PP3 was 0.149 m and the reconstructed value was 0.192537

m with a uncertainty range (95% confidence interval) of ±0.0145 m. The measured538

HxH
of PP4 was 0.232 m and the reconstructed value was 0.258 m with a uncertainty539

range of ±0.0180 m. For PP5, the measured HxH
was 0.196 m and the reconstructed540

value was 0.126 m with a uncertainty range of ±0.00925 m. Reconstructed HxH
of541

PP3, PP4, and PP5 had a relatively small uncertainty range in comparison to the542

meausred and reconstructed values. The percent errors between reconstructed and543

measured HxH
were 28.8%, 11.1%, and 35.7% for PP3, PP4 and PP5, respectively544

(Table 6). Of these values, that of PP5 was slightly higher than those of PP3 and545

PP4. The measured UxU
of PP3 was 0.113 m/s and the reconstructed value was 0.150546

m/s with a uncertainty range of ±0.00508 m/s. The measured UxU
of PP4 was 0.109547

m/s and the reconstructed value was 0.172 m/s with a uncertainty range of ±0.00147548

m/s. For PP5, the measured UxU
was 0.137 m/s and the reconstructed value was549

0.183 m/s with a uncertainty range of ±0.00451 m/s. Reconstructed UxU
of PP3, PP4550

and PP5 had a relatively small uncertainty range in comparison to the meausred and551

reconstructed values. The percent errors between reconstructed and measured UxU
552

were 33.2% (PP3), 57.6% (PP4), and 73.7% (PP5), in which PP5 also exhibited a553

deviation higher than those of PP3 and PP4 (Figure 9B).554

The measured Td of PP3 was 740 s and the reconstructed value was 689 s with a555

uncertainty range of ±82.5 s. The measured Td of PP4 was 332 s and the reconstructed556

value was 974 s with a uncertainty range of ±46.8 s. For PP5, the measured Td was557

408 s and the reconstructed value was 264 s with a uncertainty range of ±17.4 s. The558

percent errors between reconstructed and measured Td were 7.16% (PP3), 193% (PP4),559

and 35.3% (PP5), of which PP4 showed a much larger deviation than PP3 and PP5.560

The measured CT,xC
of PP3 was 0.00227 and the reconstructed value was 0.00580561

with a uncertainty range of ±0.000443. The measured CT,xC
of PP4 was 0.00533562

and the reconstructed value was 0.00151 with a uncertainty range of ±0.000385. For563

PP5, the measured CT,xC
was 0.00331 and the reconstructed value was 0.00564 with564

a uncertainty range of ±0.000342. The percent errors between reconstructed and565

measured CT,xC
were 155% (PP3), 71.7% (PP4), and 70.1% (PP5), where PP3 showed566

a greater deviation than the other two experiments. The concentrations of individual567

grain-size classes were mostly overestimated (Figure 9D).568

6 Discussion569

6.1 Validation of DNN as an Inversion Method for Turbidity Currents570

Using Numerical Test Datasets571

Verificaiton results using numerical datasets proved the ability of the DNN model572

to reasonably reconstruct the hydraulic conditions of turbidity currents from tur-573

bidites. Reconstructions of initial flow conditions and the flow duration using nu-574

merical datasets (Sections 5.1.1 and 5.1.2) were good judging from the s and B values575

(Tables 3 and 4). The reconstructions of the flow duration Td, flow depth H0, velocity576

U0, and sediment concentrations C1,0, C2,0, C3,0, and C4,0 showed high (Tables 3 and577

4).578

Correlations between the actual and reconstructed values were observed for all579

parameters. Some outliers were observed for the reconstructed parameters, but most580

of the reconstructed values were close to the perfect reconstruction line. The range of581
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Figure 8. Reconstructed deposit profiles and the sampled deposit data of experiments PP3,
PP4 and PP5. A. (1) Reconstructed and sampled ηT of PP3. (2) Grain size distribution at 1.4 m
downstream. (3) Grain size distribution at 1.8 m downstream. B. (1) Reconstructed and sampled
ηT of PP4. (2) Grain size distribution at 1.4 m downstream. (3) Grain size distribution at 1.8 m
downstream. C. (1) Reconstructed and sampled ηT of PP5. (2) Grain size distribution at 1.4 m
downstream. (3) Grain size distribution at 1.8 m downstream.
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misfit (2s) of all parameters was below 23.0% of the matching representative value (Ta-582

bles 3 and 4). A relatively greater degree of scattering was observed for Td compared583

to the other parameters (Figures 5B and 6B).584

Concerning the estimation bias, zero was included in the 95% CI of bias for585

most of the parameters, proving that the reconstructed values were not significantly586

biased with respect to the original values. Even among parameters where statistically587

significant biases were detected, their deviations were minor compared with the repre-588

sentative values of the parameters (Tables 3 and 4). For example, in both numerical589

datasets of experiments conducted with 10.0% slope and 8.00% slope, the estimation590

bias B for Td had a negative value and the range of the CI of B was below zero (Ta-591

bles 3 and 4), indicating a tendency of underestimation for Td. However, the bias for592

Td was only 7.84% (10.0% slope numerical datasets) or 7.51% (8.00% slope numerical593

datasets) of the representative value of this parameter (630 s).594

Thus, this method is suitable for estimating the paleo-hydraulic conditions of595

actual experimental scale turbidity currents. Correlation between reconstructed pa-596

rameters and original values did not show any significant bias, implying that the inverse597

model developed in this study served as a high precision, high accuracy estimator of598

flow conditions.599

6.2 Verification of DNN Inversion with Flume Experiment Data600

As a result of inversion using the DNN model, the overall deposit profiles were601

reasonably reconstructed for all five experiments, and the reconstructed grain size602

distribution downstream matched the sampled values from experiment deposits (Fig-603

ures 7 and 8). The DNN model as an inverse method tries to find the combination of604

hydraulic conditions that best produces the inputted deposit profiles. The fact that605

the reconstructed hydraulic conditions reproduced the deposit profiles used for inverse606

analysis indicated the DNN inverse model performed well.607

For the hydraulic conditions and flow duration, a good match was observed for608

HxH
for all five experiments with a percent error under 36.0% (Tables 5 and 6). Flow609

duration Td was reasonably reconstructed for PP1, PP2, PP3, and PP5, with a percent610

error lower than 48.0%. Reconstructed Td of PP4 had a percent error greater than611

190%. The reconstructed concentrations of each grain-size class Ci,xC
were mostly612

overestimated (Figure 9). The measured and reconstructed values of flow velocities613

UxU
agreed well, especially for PP1 and PP2, with a percent error less than 18.0%.614

UxU
reconstructed for PP3, PP4, and PP5 ranged from 33.2% to 73.7%.615

The ability of the DNN model to distinguish minor differences in the charac-616

teristics of deposits was proved in the tests using numerical datasets, where a wide617

variety of initial conditions of flows were well reconstructed (Section 5.1). The fact618

that the DNN model was able to reconstruct the initial flow condition for the artificial619

test datasets proved that non-uniqueness of deposit was not a problem for the range620

of flow conditions tested in this study. According to the analysis of the results of the621

application of the DNN model to flume experiment data, there are three sources of de-622

viations in the reconstruction of hydraulic conditions: (1) measurement errors during623

and after the experiments, (2) bias inherent in the inverse model, and (3) inaccuracy624

within the forward model of turbidity currents.625

(1) The main source of deviation for sediment concentrations Ci,xC
may be inac-626

curacies in measurements. As shown in Figure 9, some of the measured concentrations627

Ci,xC
were extremely small (¡ 0.1%), making them susceptible to minor disturbances628

during sampling and measurements. For extremely small values, even minor devia-629

tions appear to be large. Thus, for Ci,xC
, the main source of deviation may not be the630

reconstructed values but the measured values.631
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As for flow velocity UxU
, the accuracy of measurement was greatly affected by632

the SNR during the experiments. Experiments PP3, PP4, and PP5 had relatively633

lower SNRs and a narrower range of reliable measurement than PP1 and PP2, with634

PP4 and PP5 having the lowest SNR (Appendix A). The narrower range of relaiable635

measurement for PP3, PP4, and PP5 resulted in ranges of vertical velocity profile636

without measurements. The measured values closest to the velocity maximum was637

used for calculation for PP3, PP4, and PP5, which could be slightly smaller than the638

actual value. In which case, the calculated layer-averaged flow velocity would also be639

smaller than the actual value. This may be the reason that UxU
of experiments PP3,640

PP4 and PP5 were overestimated and showed larger deviation than PP1 and PP2.641

Slight deviation in the sampling and measurement of the deposits could also642

be a source of deviation in the eventual reconstruction. The uncertainty range for643

the reconstructed parameters was calculated using Jackkinfe samples of the η values644

measured from the experiment deposits. The width of the uncertainty range showed645

that slight deviation of the input η values can propagate to the output reconstructed646

values of HxU
, UxU

, Ci,xC
, and Td.647

(2) Regarding the inherent bias in the inverse model, the reconstructed Td for648

the experiments PP1, PP2, PP3, and PP5 exhibited the same tendencies of deviation649

during the reconstruction using numerical test datasets. Thus, deviation in the recon-650

struction of Td may be partially due to systematic error originating from the internal651

settings of the DNN.652

(3) Inaccuracy in the forward model in describing the physical processes of tur-653

bidity currents may account for deviations of the reconstructed flow velocities from the654

measured values. There are several possible reasons why the reconstruction of flow ve-655

locity was not as accurate as with the other parameters, but the most probable reason656

is the inaccuracy of the entrainment function in describing the actual effect of entrain-657

ment in flow, considering that the exponent in the calculation of the dimensionless658

vertical velocity in the entrainment function was determined purely via optimization659

and differed greatly in previous studies (Parker et al., 1987; Garcia & Parker, 1991;660

Dorrell et al., 2018). Another problem may lie in the layer averaging of flow velocity.661

Dorrell et al. (2014) had pointed out that vertical stratification of flow velocity and662

density fields reduces depth averaged hydrostatic pressure and enhances suspended663

sediment and momentum flux, proving that incorporating the effect of flow stratifica-664

tion can be essential for calculating turbidity currents. This research aims to verify the665

DNN model as a method of inverse analysis of turbidity currents. The improvement666

of the forward model, including entrainment function and velocity calculation, should667

be the next step in the inverse analysis study of turbidity currents.668

A limitation of the inverse analysis is that it can only be conducted for flow that is669

depositional. Inverse analysis reconstructs the flow conditions from turbidite deposited670

by turbidity current, so the model would be unable to detect a non-depositional con-671

dition if it happened during a flow. Although unlikely in the current lab setting, there672

is a possibility that flow parameters cannot be reconstructed when different combina-673

tions of initial conditions produce the same deposit profile, which will be a problem to674

be resolved in the future when using field data. Compared to the analytical models,675

the shallow water model implemented provides some details of the internal structure676

of the flow, but also holds certain limitations due to its simplified calculation of flow677

dynamics. Nonetheless, the simplifications enable large batches of natural scale sim-678

ulations to be performed. Overall, even though a certain amount of deviation was679

observed for all parameters, they mostly lie within a reasonable range and provided680

valuable insights into the development of flow and deposits over time.681
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6.3 Comparison of DNN with Existing Methodologies682

Compared to previous methods of inverse analysis of turbidity currents, the in-683

version method using the DNN model has great advantages in terms of calculation684

cost and reconstruction accuracy. Previous inversion methods of turbidity currents685

seek to optimize flow initial conditions to a particular set of data collected from tur-686

bidites, which is extremely time-consuming for application to one dataset and does687

not guarantee the general applicability of the methods to turbidite deposits (Lesshafft688

et al., 2011; Parkinson et al., 2017; Nakao et al., 2020). For example, a genetic algo-689

rithm used in Nakao et al. (2020) first initializes a population of parameters and then690

optimizes the population of parameters through selection and mutation. Eventually,691

the remaining parameters can successfully reconstruct target turbidite. However, each692

epoch of optimization requires the selection results from the previous epoch, and thus,693

the calculation of the forward model cannot be parallelized over epochs. In the adjoint694

method used by Parkinson et al. (2017), control variables within the forward model695

of turbidity currents are first initialized and inputted into the numerical model. The696

turbidite deposit profile is calculated and compared with the target values using a cost697

function. Gradients of the cost function (objective function) for control variables are698

calculated analytically. If the result is not optimal, the adjoint model will run, and699

control variables will be adjusted by descent method. The adjusted control variables700

will be re-inputted into the numerical model. This cycle is repeated until the recon-701

structed deposit profile is judged to be optimal. Thus, the iteration of calculation702

cannot be performed simultaneously. In contrast, the DNN model explores the general703

functional relationship between turbidite deposited and flow, allowing its applicability704

to turbidity currents in general. The forward model calculation to generate training705

datasets can be perfectly parallelized, thereby significantly reducing the amount of706

calculation time.707

Since the parallelization of the forward model calculation significantly reduced708

the calculation time, a more accurate and realistic forward model with a heavier calcu-709

lation load could implemented. As a result, the forward model used in this research is710

much better at capturing the spatio-temporal evolution of turbidity current than the711

forward model used in previous research (Falcini et al., 2009; Parkinson et al., 2017).712

Falcini et al. (2009) used a steady flow forward model, whereas our forward model is713

a non-steady flow model that reproduces the evolution of flow over time. The method714

implemented in Parkinson et al. (2017) omitted the effect of entrainment, which is a715

significant part of sediment transport in turbidity currents. As a result, their recon-716

structed values of flow depth, concentration, and grain diameter of the turbidite were717

2.56 km, 0.0494%, and 103 µm, respectively (Parkinson et al., 2017). Compared to718

the objective values collected from the turbidite deposits, these values showed great719

deviations. In contrast, our predictions closely agreed with the original values and the720

effect of sediment suspension was incorporated in our forward model. Another im-721

provement from previous research is that the forward model used in this study applies722

to turbidite datasets of multiple grain-size classes.723

Lesshafft et al. (2011) proposed a method based on direct numerical simulation724

(DNS) of the Navier-Stokes equations. However, the calculation costs of the method725

were extremely high, making it impractical to apply the method to natural scale tur-726

bidites. The computational cost of DNS was scaled to Re3, thereby limiting the effec-727

tiveness of DNS to only experimental scale flows (Biegert et al., 2017). As a result,728

the maximum value of Reynolds number attained in previous numerical simulation729

using DNS was 15,000 (Cantero et al., 2007), which corresponds to 3.0 cm/s for flow730

velocity and 50 cm for the flow depth. Thus, their methodology cannot be applied to731

natural scale turbidites.732
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7 Conclusions733

In this study, a new method for the inverse analysis of turbidites using a DNN734

model was verified with actual flume experiment data. Compared to previous methods,735

the DNN model proved to be an efficient method for the inverse analysis of turbidity736

currents without compromising reconstruction accuracy. The DNN model performed737

well for verification using numerical datasets, judging by the standard deviation and738

bias of the reconstructed parameters. In terms of the application of the DNN model739

to experiment data, deposit profiles were well reconstructed; however, the initial flow740

conditions did not match the measured values perfectly. The uncertainty range of741

95% confidence interval was determined for the reconstructed values of the experiment742

datasets using Jackknife resampling method.743

The reconstructed and measured flow depths H had percent error that is less744

than 36.0%, which is low for the inverse analysis results. Th inverse analysis result745

for Td had a percent error ranging from 4.76% to 35.2%, except for PP4, which had746

a percent error of 193%. U was well reconstructed for experiments PP1 and PP2747

(percent error 2.38% and 17.9%) and showed greater deviation for PP3, PP4, and748

PP5 (percent error 33.2%-73.7%). The reconstructed values for Ci had percent errors749

ranging from 1.79% to greater than 300%.750

Overall, the DNN model exhibited good performance for the inversion of nu-751

merical datasets and some parameters of the experiment data. The deposit profiles752

were well reconstructed, demonstrating the success of the DNN model in exploring the753

functional relationship between the initial conditions of flow and resulting deposits.754

The verification results with numerical datasets and flume experiments reveal that the755

implemented forward model is competent in performing inverse analysis on turbidity756

currents, but it needs to be more robust for application to a wide range of flow con-757

ditions. Improvement of the forward models and parameters, such as the entrainment758

function, will be a top priority in the future. The DNN’s hyperparameter settings and759

internal structure also have room for improvement, judging from the inversion result760

using numerical datasets. The application of the DNN model to field datasets will be761

the eventual goal.762

Appendix A Flow Velocity Profile and the Corresponding Signal-to-Noise763

Ratio (SNR)764

The accuracy of flow velocity measurements by the ADVP used (Nortek Vectrino765

Profiler) was affected by the Singal-to-Noise Ratio (SNR). According to the user man-766

ual of Nortek Vectrino Profiler, the ”weak spot” of acoustic profile measurement due767

to pulse interference can be detected from the SNR values. The manual states that768

the SNR value of measurements need to be at least 30 dB to be considered reliable.769

Data with SNR between 20 dB and 30 dB should be used with caution and data with770

SNR lower than 20 dB should not be trusted. The measured velocity profile for each771

experiment and the matching SNR profile are shown in Figures A1 and A2. The772

height above bed of ADVP differed for the experiments conducted, thus the range of773

measured profiles above bed were also different.774

From figures A1 and A2, it was apparent that SNR of velocity measurements775

for experiments PP1 and PP2 were much higher than those of experiments PP3, PP4,776

and PP5..The SNR values of PP1 and PP2 were above 40 dB. Experiment PP3 had777

slightly better SNR profile than PP4 and PP5, with the peak SNR above 40 dB, but778

the lowest SNR barely above 30 dB. Experiment PP4 had especially low SNR, with779

the peak SNR slightly above 30 dB. SNR of PP5 was above 40 dB toward the bottom,780

but decreased below 30 dB toward the top. While the entire velocity profile can be781
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used for analysis of PP1 and PP2, only regions with high SNR can be used for PP3,782

PP4, and PP5.783
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Figure A1. Time-averaged velocity profile and SNR of velocity profile for experiments con-
ducted with 10.0% slope. A. (1) Time-averaged velocity profile of PP1. (2) SNR of velocity
profile for PP1. B. (1) Time-averaged velocity profile of PP2. (2) SNR of velocity profile for PP2.

Appendix B Details of Forward Model Implemented784

B1 Example of Forward Model Calculation785

The forward model was tested with two sets of numerical simulations of turbidity786

currents. Testing was conducted using the forward model programmed for generating787

numerical datasets for experiments conducted with a 10% slope. The settings of the788

numerical simulations are listed in Table B1, whereas the time evolution of the high789

CT,0, U0 simulation is shown in Figure B1, and the time evolution of the low CT,0,790

U0 simulation is shown in Figure B2. In both cases, the flow depth H was greater791

toward the head of the current. H at the head of the current also increased over time792

(Figures B1A and B2A). Flow velocity U in the high CT,0, U0 simulation increased793

toward the head of the current(Figure B1B), whereas U in the low CT,0, U0 simulation794

increased initially, and then decreased toward the head of the current (Figure B2B).795

The total volumetric concentration of sediment CT in flow decreased downstream in796

both cases (Figures B1C and B2C). In the high CT,0, U0 case, a larger portion of797

sediment was deposited downstream than in the low CT,0, U0 case (Figures B1D and798
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Figure A2. Time-averaged velocity profile and SNR of velocity profile for experiments con-
ducted with 8.00% slope. A. (1) Time-averaged velocity profile of PP3. (2) SNR of velocity
profile for PP3. B. (1) Time-averaged velocity profile of PP4. (2) SNR of velocity profile for PP4.
C. (1) Time-averaged velocity profile of PP5. (2) SNR of velocity profile for PP5.
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B2D). The low CT,0, U0 case had the most sediment deposited toward the upstream799

end of the flow.800

For the both high and low CT,0, U0 simulations, a thicker deposit was observed801

for grain-size classes 1 and 2 than for grain-size classes 3 and 4 (Figures B1E, G, H802

and B2E, G, H). Although the initial concentrations of the finer grain-size classes 3803

and 4 C3,0, C4,0 were higher than that of the coarser grain-size class 1 (C1,0), less804

fine sediment was deposited since it was more likely to remain suspended and be805

carried beyond the lower flow boundary by the high-velocity flow. For the low CT,0,806

U0 simulation, the coarser grain-size class, grain-size classes 1 and 2, had almost all807

sediment deposited near the upstream boundary, whereas the finer grain-size class,808

grain-size classes 3 and 4, had sediment spread out toward the downstream direction809

(Figures B2E, F, G, H). This happened because the low-velocity flow was unable to810

keep the coarse sediment suspended.811

Table B1. Initial flow conditions of numerical simulations of turbidity currents.

High CT,0, U0 Low CT,0, U0

H0 (m) 0.15 0.15
U0 (m/s) 0.2 0.02
CT,0 0.018 0.001
C1,0 0.004 0.0002
C2,0 0.005 0.0003
C3,0 0.0047 0.00027
C4,0 0.0043 0.00023
cf 0.004 0.004
ro 1.5 1.5
Duration (s) 420 420
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Figure B1. Example of forward model calculation with high initial flow velocity and sediment
concentration (Table B1). A. Time evolution of flow depth H. B. Time evolution of flow velocity
U . C. Time evolution of total sediment volumetric concentration CT. D. Time evolution of de-
posit profile ηT. E. Time evolution deposit profile of grain-size class 1 η1. F. Time evolution of
deposit profile of grain-size class 2 η1. G. Time evolution of deposit profile of grain-size class 3
η1. H. Time evolution of deposit profile of grain-size class 4 η1.
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Figure B2. Example of forward model calculation with low initial flow velocity and sediment
concentration (Table B1). A. Time evolution of flow depth H. B. Time evolution of flow velocity
U . C. Time evolution of total sediment volumetric concentration CT. D. Time evolution of de-
posit profile ηT. E. Time evolution deposit profile of grain-size class 1 η1. F. Time evolution of
deposit profile of grain-size class 2 η1. G. Time evolution of deposit profile of grain-size class 3
η1. H. Time evolution of deposit profile of grain-size class 4 η1.
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B2 Sensitivity Tests of Forward Model812

The degree of sensitivity of the forward model to changes in the initial conditions813

of the flow and model parameters was tested (Table B2). Testing was conducted814

using the forward model programmed for generating numerical datasets of experiments815

conducted with the 10% slope. Numerical simulations were conducted with different816

values of the six parameters H0, U0, CT,0, es, ro, and cf . H0, U0 and CT,0 values in817

Case 1 were the mid-values over the range of H0, U0, and CT,0 for generating training818

data. Other parameters remained constant for the simulations.819

The results of the sensitivity tests revealed that changes in the deposit profile820

occur when the initial flow conditions differ (Figure B3). The volume of the deposited821

sediment increased overall as H0 increased (Figure B3A). The same trend was observed822

for U0, and CT,0 (Figure B3B, C). Among these three parameters, the amount of823

increase in the volume per unit area of deposit was greatest for CT,0, and smallest for824

U0 and H0. Concerning model closure parameters, the resultant deposit profile showed825

almost no change for different values of entrainment coefficient es and cf(Figure B3D,826

F). A slightly lower amount of deposition was observed for larger es. A small increase827

in the amount of deposition was observed as cf decreased (Figure B3F). The volume828

per unit area of deposit increased moderately when ro increased.829

Table B2. Settings for sensitivity tests of forward model.

Case H0 (m) U0 (m/s) CT,0 es ro cf

1 0.15 0.1 0.01 GP 1.5 0.004
2 0.3 0.1 0.01 GP 1.5 0.004
3 0.05 0.1 0.01 GP 1.5 0.004
4 0.15 0.2 0.01 GP 1.5 0.004
5 0.15 0.02 0.01 GP 1.5 0.004
6 0.15 0.1 0.02 GP 1.5 0.004
7 0.15 0.1 0.001 GP 1.5 0.004
8 0.15 0.1 0.01 GPx2 1.5 0.004
9 0.15 0.1 0.01 GPx0.5 1.5 0.004
10 0.15 0.1 0.01 GP 2.0 0.004
11 0.15 0.1 0.01 GP 1.0 0.004
12 0.15 0.1 0.01 GP 1.5 0.01
13 0.15 0.1 0.01 GP 1.5 0.007
14 0.15 0.1 0.01 GP 1.5 0.001
15 0.15 0.1 0.01 GP 1.5 0.0005
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Figure B3. Sensitivity tests of deposit profile of numerical turbidites to change in initial
flow conditions and closure parameters (Table B2). A. Dependency on initial flow depth H0. B.
Dependency on initial flow velocity U0. C. Dependency on initial total sediment volumetric con-
centration CT,0. D. Dependency on sediment entrainment rate es. E. Dependency on the ratio of
near-bed to layer-averaged concentration ro. F. Dependency on friction coefficient cf .
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B3 Verification of Forward Model with Results from Previous Research830

We conducted calculations on experiment NOVA2 (Garćıa, 1993) under the same831

flow conditions and parameter settings as those used for modeling in Kostic and Parker832

(2006) to validate the numerical scheme and forward model implemented in this study.833

The resulting flow depth profile, velocity profile and concentration profile were com-834

pared with the model results from Kostic and Parker (2006) and the experiment data835

from Garćıa (1993) in Figure B4. The calculated flow depth profile showed an almost836

perfect match with that from Kostic and Parker (2006) (Figure B4A). The velocity837

profile was slightly higher than that of Kostic and Parker (2006) before the slope838

break, with close match for the values after the slope break (Figure B4B). The cal-839

culated concentration profile by the model in this study was slightly higher than that840

of Kostic and Parker (2006) (Figure B4C). The overall reconstruction by the model841

implemented in this study matched the results from the previous study by Kostic and842

Parker (2006).843

B4 Sensitivity of Forward Model to Different Entrainment Functions844

Calculations were conducted using the same initial flow conditions as those of845

experiments GLASSA5 and GLASSA7 (Garćıa, 1993) to test sensitivity of the imple-846

mented forward model to different entrainment functions. Three different entrainment847

functions were tested, including functions from van Rijn (1984), Garcia and Parker848

(1993), and Dorrell et al. (2018). The resulting deposit profiles are shown in Fig-849

ure B5. Measurements from Garćıa (1993) and model results from Kostic and Parker850

(2006) are also shown for comparison. Figures B5A and B show that results from851

the model implemented in this study showed a closer match with the experimental852

measurements from Garćıa (1993), but the deposit profile showed almost no change853

with the change in entrainment function. A greater difference may be visible for a field854

scale simulation, but for experimental turbidity currents, the effect does not seem to855

be visibly large.856
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Figure B4. Forward model calculation results using initial flow conditions of experiment
NOVA2 from Garćıa (1993). Plotted with experimental measurements from Garćıa (1993) and
model results from Kostic and Parker (2006). A. Flow depth profile. B. Velocity profile. C.
Concentration profile
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Figure B5. Forward model test of sensitivity to different entrainment functions using initial
flow conditions of experiment GLASSA5 and GLASSA7 from (Garćıa, 1993). Plotted with ex-
perimental measurements from (Garćıa, 1993) and model results from Kostic and Parker (2006).
A. Deposit profile of GLASSA5 when calculated with different entrainment functions. B. Deposit
profile of GLASSA7 when calculated with different entrainment functions.
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Notation857

α1, α2 Parameters related to sediment entrainment858

B Bias859

cf Friction coefficient860

Ci Layer-averaged volumetric concentration of suspended sediment of the ith grain-861

size class862

CI of B 95% confidence interval of bias863

Cs Discharge coefficient864

CT Layer-averaged total concentration of suspended sediment865

C∗
v The mid-value over the range in which the specific parameter was generated866

Di Representative grain diameter of the ith grain-size class867

esi Entrainment rate of sediment of the ith grain-size class into suspension868

ew Entrainment rate of ambient water to flow869

Fi Volume fraction of the ith grain-size class in active layer870

g Gravitational acceleration871

H flow depth872

La Active layer thickness873

M Flow discharge874

R Submerged specific density of sediment875

Rfi Dimensionless particle fall velocity of the ith grain-size class876

Ri Bulk Richardson number877

Repi Particle Reynolds number of the ith grain-size class878

ro Ratio of near-bed suspended sediment concentration to the layer-averaged concen-879

tration of suspended sediment880

s Sample standard deviation881

t Time882

Td Flow duration883

U Layer-averaged flow velocity884

u∗ Shear velocity885

wi Settling velocity of a sediment particle of the ith grain-size class886

x Streamwise distance887

ηi Volume per unit area of bed sediment of the ith grain-size class888

ηT Total volume per unit area of bed sediment889

κ Parameter related to artificial viscosity890

λp Porosity of bed sediment891

µ Dynamic viscosity of water892

ν Kinematic viscosity of water893

ρ Density of water894

θ Angle of inclination of the base slope895
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