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Abstract

This evaluates the potential for a newly proposed non-linear subsurface flux equation to improve the performance of the

hydrological Hillslope Link Model (HLM). The equation contains parameters that are functionally related to the hillslope

steepness and the presence of tile drainage. As a result, the equation allows a better representation of hydrograph recession

curves, hydrograph timing, and total runoff volume. The authors explore the new parameterization’s potential by comparing

a set of diagnostic and prognostic setups in HLM. In the diagnostic approach, they configure 12 different scenarios with

spatially uniform parameters over the state of Iowa. In the prognostic case, they use information from topographical maps

and known locations of tile drainage to distribute parameter values. To assess performance improvements, they compare

simulation results to streamflow observations during a 17-year period (2002–2018) at 140 U.S. Geological Survey (USGS)

gauging stations. The operational setup of the HLM model used at the Iowa Flood Center (IFC) serves as a benchmark to

quantify overall model improvement. In particular, the new equation provides better representation of recession curves and the

total streamflow volumes. However, when comparing the diagnostic and prognostic setups, the authors find discrepancies in the

spatial distribution of hillslope scale parameters. The results suggest that more work is required when using maps of physical

attributes to parameterize hydrological models. The findings also demonstrate that the diagnostic approach is a useful strategy

to evaluate models and assess changes in their formulations.
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Abstract 11 

This evaluates the potential for a newly proposed non-linear subsurface flux equation to improve 12 

the performance of the hydrological Hillslope Link Model (HLM). The equation contains 13 

parameters that are functionally related to the hillslope steepness and the presence of tile drainage. 14 

As a result, the equation allows a better representation of hydrograph recession curves, hydrograph 15 

timing, and total runoff volume. The authors explore the new parameterization’s potential by 16 

comparing a set of diagnostic and prognostic setups in HLM. In the diagnostic approach, they 17 

configure 12 different scenarios with spatially uniform parameters over the state of Iowa. In the 18 

prognostic case, they use information from topographical maps and known locations of tile 19 

drainage to distribute parameter values. To assess performance improvements, they compare 20 

simulation results to streamflow observations during a 17-year period (2002–2018) at 140 U.S. 21 

Geological Survey (USGS) gauging stations. The operational setup of the HLM model used at the 22 

Iowa Flood Center (IFC) serves as a benchmark to quantify overall model improvement.  In 23 

particular, the new equation provides better representation of recession curves and the total 24 

streamflow volumes. However, when comparing the diagnostic and prognostic setups, the authors 25 

find discrepancies in the spatial distribution of hillslope scale parameters. The results suggest that 26 

more work is required when using maps of physical attributes to parameterize hydrological 27 

models. The findings also demonstrate that the diagnostic approach is a useful strategy to evaluate 28 

models and assess changes in their formulations.   29 
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Plain Language Summary 30 

In the current work, we test the accuracy of a hydrological model using a novel equation that 31 

represents the subsurface flow from hillslopes to channels. The equation has into account the 32 

terrain steepness and the presence of tile drainage. We test the model in the state of Iowa comparing 33 

its results with records from about 140 USGS streamflow gauges between 2002 and 2018. We set 34 

up the model using constant and distributed parameters. In the distributed case, we use a digital 35 

elevation map to describe the steepness and a map describing the tiles drainage localization in 36 

Iowa. We found that regardless of the setup the novel equation improves the model performance. 37 

The fixed-distributed approach gave us information about the strengths and weaknesses of the 38 

model and its inputs. According to our results, distributed variables do not necessarily improve the 39 

model performance suggesting that more work is required to find the adequate spatial parameter 40 

distribution for hydrological models. 41 

  42 
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Key findings 43 

• The use of a non-linear equation to represent subsurface flux improves the hydrological 44 

model performance at multiple scales. 45 

• Parameters derived from maps that describe the landscape variability do not necessarily 46 

help the model to improve its performance. 47 

• The diagnostic-prognostic approach helps to identify the limits of a non-linear equation 48 

using distributed information. 49 

  50 
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1 Introduction 52 

Flood forecasts calculated using regional distributed hydrological models are becoming more 53 

common and relevant because they also provide information about internal watershed processes 54 

in large domains, along with predicted hydrographs for all streams in the river network. These 55 

forecasts are expected to be accurate at the region’s ungauged watersheds (Samaniego et al., 2010) 56 

as a consequence of appropriate spatial representation of processes and parameters in the model.  57 

Current hydrological models correctly identify many aspects of the streamflow hydrographs 58 

providing acceptable forecasts. However, they still struggle to reproduce the hydrograph recession. 59 

According to Mandeville (2016), modelers need to pay more attention to storm runoff's slow flow, 60 

which is a crucial component of the recession. For regional models, recession becomes more 61 

challenging because its non-linearity increases with the spatial scale (Chen & Krajewski, 2015; 62 

Clark et al., 2009; Harman et al., 2009). Landscape properties such as the topography, soil, and 63 

the stream network seem to be involved in the recession variability (Biswal & Marani, 2010; Shaw 64 

& Riha, 2012; Tallaksen, 1995). Additionally, human landscape and land use interventions, such 65 

as tile drainage, alter streamflow and its recession (Schilling et al., 2019; Schilling & Helmers, 66 

2008).  67 
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1.1 Issues with the Hillslope Link Model (HLM) in Iowa 68 

The Iowa Flood Center (IFC) produces flood forecasts for the state of Iowa using the Hillslope 69 

Link Model (HLM) (Mantilla and Gupta, 2005; Demir & Krajewski, 2013; Krajewski et al., 2017; 70 

Quintero et al., 2020). The operational HLM represents the hillslope subsurface flux using a linear-71 

reservoir equation. According to Quintero et al. (2020), the current HLM configuration accurately 72 

estimates peak flows and overall, has an acceptable performance in Iowa. However, the model has 73 

some limitations capturing the hydrograph recessions and the total runoff volume at some 74 

locations. The discrepancies between simulated and observed recessions are more notable in 75 

watersheds that are known to have been modified with tiling. Sample streamflow simulation results 76 

using the IFC HLM operational model for three Iowa watersheds are presented in Figure 1a, b, 77 

and c (in red). The model’s limitations are most evident in the watersheds located in the north and 78 

west regions of Iowa, where the model has low performance in terms of Kling Gupta Efficiency 79 

(KGE) index (Figure 1d). We associate the model’s poor performance in the region of north-central 80 

Iowa, known as the Des Moines Lobe, with the widespread use of artificial subsurface drainage 81 

(known as tile drains) in the region (Schilling & Helmers, 2008). 82 



7 

 

 

 

 83 
 84 

Figure 1. a) Observed (black) and simulated streamflows by the linear (red) and the non-linear 85 

(blue) setups at three USGS gauged stations. b) Mean annual KGE performance of the HLM 86 

linear setup for Iowa between 2002 and 2018. 87 

 88 

 89 

To address these issues, Fonley et al. (2021) developed a subsurface non-linear equation that can 90 

represent subsurface flow from hillslopes with different steepness and soil conductivities, as well 91 

as the presence of tile drainage. The blue lines in Figure 1a to 1c show the resulting hydrographs 92 

using the non-linear equation with parameters corresponding to no tile and steepness of 2% 93 

(Fonley et al. 2021). Compared with the linear equation of the operational HLM, the non-linear 94 

equation tends to improve the total streamflow volume and the simulated recession shapes. 95 

However, we still observe discrepancies (Figures 1a and b) attributed to issues with parameter 96 

values and spatial representation of processes.  97 

1.2 The diagnostic-prognostic approach 98 

According to Clark et al. (2011), the development of a hydrological model is subject to the 99 

hypothesis-testing process. This process evaluates, rejects, and replaces model components. We 100 
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performed a diagnostic-prognostic analysis of the model at 140 USGS gauges in Iowa to test the 101 

utility of the non-linear equation to represent the hillslope subsurface flux. In this case, we adapted 102 

the diagnostic-prognostic approach developed in studies on evapotranspiration (Allen et al., 2011; 103 

Kalma et al., 2008; Sur et al., 2020). Our diagnostic setups have simplified, spatially uniform 104 

parameter values, while the prognostic scenarios use maps to determine parameter values. The 105 

diagnostic-prognostic approach offers complementary information about the model (Yilmaz et al., 106 

2014) and the required independence to perform model comparisons (Crow et al., 2005).   107 

According to Quintero et al., (2019), an insightful way to improve models starts with model 108 

performance verification followed by structure modification. We expanded on this approach by 109 

using the diagnostic-prognostic analysis to add tools to verify the model’s processes and required 110 

parameters. In this paper, we first describe the HLM model and the equations governing the 111 

hillslope processes. In the description, we include the operational linear equation and the non-112 

linear equation to represent subsurface flux in the description. Then, we describe the diagnostic 113 

and prognostic setups. Finally, we compare the diagnostic and prognostic approach results at 140 114 

USGS stations and analyze the parameters’ influence on the model performance.  115 

2 Methodology and Data 116 

2.1 Model description 117 

The Hillslope Link Model (HLM) represents the hydrological processes at the hillslope scale 118 

(Figure 2a and b) and routes the streamflow through the channel network (Figure 2c). At the 119 

hillslopes, HLM has three storages, ponded surface (𝑆𝑝 [𝑚]), topsoil (𝑆𝑇 [𝑚]), and subsurface 120 
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storage (𝑆𝑠 [𝑚]). The water from the ponded storage can either infiltrate the topsoil 121 

(𝑞𝑝𝑇 [𝑚 ⋅ 𝑚𝑖𝑛−1]) or flow as runoff to the channel link (𝑞𝑝𝐿 [𝑚 ⋅ 𝑚𝑖𝑛−1]). The water in the topsoil 122 

percolates (𝑞𝑇𝑠 [𝑚 ⋅ 𝑚𝑖𝑛−1]) to the soil storage. Finally, the water in the soil storage seeps into the 123 

channel link as subsurface runoff (𝑞𝑠𝐿 [𝑚 ⋅ 𝑚𝑖𝑛−1]). Evaporation occurs from the three storages 124 

as a removal of volume from the model. Once in the river network, HLM transports the channel 125 

water (𝑞 [𝑚3 ⋅ 𝑠−1]) downstream. A detailed description of the hillslope and stream routing 126 

process can be found in Mantilla & Gupta (2005) and Quintero et al. (2020). 127 

 128 
 129 

Figure 2. Hillslope Link Model spatial discretization and schematic of the storages and processes 130 

represented at the hillslope scale: a) HLM hillslope process using the linear subsurface flux 131 

equation; b) hillslope process including the active layer (𝛽), the exponential flux (𝑞𝑒𝑠𝐿), and the 132 

tile drainage flux (𝑞𝑠𝐷); c) watershed decomposition into hillslopes and channel links; and d) 133 

functional form of the subsurface flux in the function of the soil storage (𝑆𝑠) after Fonley et. al 134 

(2021).     135 

 136 
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The surface runoff, infiltration, and percolation rates are linked through the reference speed 𝑣𝑟 and 137 

the shape of the hillslope. Each hillslope has a parameter 𝑘2 [min−1] (Equation (1)) that depends 138 

on the hillslope link length (𝐿𝑖  [𝑚]) and area (𝐴ℎ[𝑚2]), along with the reference velocity 𝑣𝑟. The 139 

parameter 𝑘2 is the inverse of the runoff residence time in the hillslope. The runoff 𝑞𝑝𝐿 and the 140 

infiltration 𝑞𝑝𝑇 are linked to 𝑘2 through Equations (2) and (3), respectively. Also, the percolation 141 

rate 𝑞𝑇𝑠 is computed as a proportion of 𝑘2, expressed by 𝑘𝑖. Usually, 𝑘𝑖 is 2% of 𝑘2; however, its 142 

value may change depending on the soil and topographical properties.   143 

𝑘2 = 𝑣𝑟 ⋅ (
𝐿𝑖

𝐴ℎ
) ⋅ 60 (1) 144 

𝑞𝑝𝐿 = 𝑘2 ⋅ 𝑠𝑝 (2) 145 

𝑞𝑝𝑇 = 𝑘2 ⋅ 𝑠𝑝 ⋅ 99 ⋅ (1 − 𝑠𝑇/𝑇𝑙)
3 (3) 146 

𝑞𝑇𝑠 = 𝑘2 ⋅ 𝑠𝑇 ⋅ 𝑘𝑖 (4) 147 

The current HLM setup represents the subsurface flux to the channels (𝑞𝑠𝐿 [𝑚 ⋅ 𝑚𝑖𝑛−1]) with a 148 

linear equation (red line on Figure 2d). The equation releases water to the channel at a rate 𝑚, 149 

when 𝑆𝑠 is greater than the no-flow threshold (𝑆𝑜), as follows,  150 

𝑞𝑠𝐿 = 𝑚 ⋅ (𝑠𝑠 − 𝑆𝑜)  (5) 151 

Fonley et al. (2021) developed a set of parameterizations for ordinary differential equations that 152 

adds a non-linear component to Equation (5) when 𝑆𝑠 is above threshold storage. The following 153 
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exponential equation (continuous line on Figure 2d) is added to Equation (5) if 𝑆𝑠 is greater than 154 

the activation threshold 𝛽 [𝑚], 155 

𝑞𝑒𝑠𝐿 = 𝛼(𝑠𝑠 − 𝛽)𝑒17(𝑠𝑠−𝛽) (6) 156 

where 𝛼 is a parameter that depends on the hillslope properties, such as its steepness and the soil 157 

conductivity. Fonley et al. (2021) also developed an exponential equation that applies when the 158 

hillslope has tiles. The following equation (dashed line on Figure 2d) is added when 𝑆𝑠 is greater 159 

than the tile relative depth 𝐷𝑑  [𝑚],  160 

𝑞𝑠𝐷 = 𝑐(𝑠𝑠 − 𝐷𝑑)𝑒35(𝑠𝑠−𝐷𝑑) (7) 161 

In the described scheme, subsurface flux becomes a set of equations that HLM activates, 162 

depending on the value of 𝑆𝑠 relative to the thresholds 𝑆𝑜, 𝛽, and 𝐷𝑑. The segmented subsurface 163 

runoff is as follows, 164 

𝑞𝑠𝐿 = {

𝑞𝑙𝑠𝐿 𝑖𝑓 𝑆𝑠 < 𝛽
𝑞𝑙𝑠𝐿 + 𝑞𝑒𝑠𝐿 𝑖𝑓 𝑆𝑠 > 𝛽

𝑞𝑙𝑠𝐿 + 𝑞𝑒𝑠𝐿 + 𝑞𝑠𝐷 𝑖𝑓  𝑆𝑠 > 𝐷𝑑

 (8) 165 

The relative tile depth (𝐷𝑑) is independent of 𝛽, so either could be larger depending on the tile 166 

configuration and the hillslope properties. Moreover, if there are no tiles, Equation (8) is limited 167 

to its two first expressions. More details on the subsurface equation development can be found in 168 

Fonley et al. (2021). 169 
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2.2 Model setup and data 170 

We used both diagnostic and prognostic approaches to test the performance obtained using the 171 

non-linear equation. We used the river network for the state of Iowa derived from a DEM of 90m 172 

and decomposed into about 420,000 individual hillslopes, following the approach presented in 173 

Mantilla & Gupta (2005). The precipitation forcing corresponds to hourly Stage IV QPEs (Reed 174 

& Maidment, 1999, Lin, 2011). We forced the evapotranspiration using the mean annual monthly 175 

values derived from MODIS (Running et al., 2017) for the region. 176 

Equation (8) offers a formulation for the subsurface flux that we want to validate on the Iowa 177 

domain. In this process, we can fix parameters uniformly over the space or distribute them 178 

spatially. A uniform setup assumes that each hillslope in the region uses the same model 179 

parameters, while a distributed setup assumes parameter variability as a function of landscape 180 

properties. Neither approach is without error because the parameters are only approximate, and 181 

they could depend upon unknown factors that are variable in space. The fixed setup is unrealistic, 182 

and the distributed setup may be subject to spatial errors. However, both approaches are 183 

complementary. Fixed setups could help assess the ability of Equation (8) to improve the accuracy 184 

of simulated streamflow fluctuations. In contrast, a distributed setup helps to validate the parameter 185 

description given by the map(s). Considering this, we used both approaches to validate the new 186 

𝑞𝑠𝐿 equation and to explore the limits of the so-called predefined setups. In the distribute 187 

parameters case, we use the steepness of the hillslopes (Figure 3a) and the tiles localization 188 

according to the DNR (Figure 3b).  189 
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 190 

Figure 3. Maps of the hillslope steepness (a) and tile drainage localization according to the Iowa 191 

DNR (b).   192 

 193 

The model validation consists of comparing fixed (diagnostic) and distributed (prognostic) HLM 194 

setups (Figure 4). The diagnostic setup (Figure 4a) shows how different formulations could 195 

significantly improve the model over the region. On the other hand, the prognostic setups (Figure 196 

4b) show the improvements and limitations derived from the application of “known” spatial 197 

variables.  198 
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 199 
 200 

Figure 4. Diagnostic and prognostic experiment setup: a) diagnostic case with four non-linear 201 

subsurface flux equations fixed for the domain of Iowa after Fonley et al (2021); b) prognostic 202 

case, with equations varying with the hillslopes steepness (blue scenario) and the presence of 203 

tiles (red scenario); and c) percolation rates fixed for the different scenarios. Their combination 204 

gives us 12 diagnostic scenarios and three prognostic scenarios.  205 

 206 

The formulation of Equation (8) relies on the percolation rate because the non-linear formulation 207 

depends upon the amount of water in the subsurface storage. The described dependence increases 208 

the relevance of the percolation parameter (𝑘𝑖). The distribution of 𝑘𝑖 can be derived from maps 209 

of the soil profile properties. However, using an additional map may increase the errors affecting 210 

the comparison of both setups. For this reason, we choose to fix three different percolation rates 211 

for the diagnostic and prognostic setups (Figure 4c).    212 
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2.2.1 Diagnostic setups 213 

In the diagnostic setup (Figure 4a), we created four parametrizations of Equation (8) for the Iowa 214 

domain.  The parametrizations range from flat hillslopes (light blue line on Figure 4a) to steep or 215 

tiled hillslopes (red line on Figure 4a). By combining the four parameterizations and the three 𝑘𝑖 216 

rates, we obtain 12 diagnostic scenarios (D1 to D12 in Figure 4c). D1 to D4 use 𝑘𝑖 = 0.02; D5 to 217 

D8 use 𝑘𝑖 = 0.03; and D9 to D12 use 𝑘𝑖 = 0.04. 218 

2.2.2 Prognostic setups 219 

In the prognostic setup, we distributed parameter values in function of the hillslopes steepness and 220 

the Iowa DNR map describing tiles presence (Figure 4b). According to Fonley et al. (2021), the 221 

parameter 𝛼 of Equation (6) can be explained by the hillslope steepness (𝛾ℎ) using a linear 222 

equation. Using the following equation, we assigned 𝛼 to each hillslope, obtaining functional 223 

forms that oscillate between the blue bands shown in Figure 4b,  224 

𝛼 = 𝛾ℎ(8.5 ∗ 10−8) + 9.48 ∗ 10−7 (9) 225 

Additionally, we include Equation (8) for tiled terrain following the tile distribution shown by the 226 

map in Figure 4b. For the tile drainage equation, we use 𝑐 to equals 5.4 ∗ 10−7 (see Fonley et al., 227 

2021). Combined with the percolation rates 𝑘𝑖 of 0.02, 0.03, and 0.04, we developed the prognostic 228 

scenarios P1, P2, and P3, respectively (distributed setups in Figure 4c). 229 
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3 Results and Discussion 230 

3.1 Insights from a diagnostic-prognostic approach 231 

The diagnostic and prognostic setups produced significant differences between the model outputs. 232 

In Figure 5, we present the simulated hydrographs at three watersheds simulated by the diagnostic 233 

scenario D4 in blue and the prognostic scenario P1 in red. In this case, the diagnostic setup assumes 234 

that all the hillslopes have tiles or are steep. On the other hand, the prognostic setup assumes tiles 235 

only at some hillslopes and that the parameter 𝛼 of Equation (6) varies with the steepness. In these 236 

three cases, the diagnostic (or fixed) setup produces a longer recession curve than the one obtained 237 

by the prognostic setup. The diagnostic case has a better match on the Iowa River at Tama (Figure 238 

5b), while the prognostic setup exhibits a better match on the White Breast Creek (Figure 5a) and 239 

at the Cedar River (Figure 5c). Figure 5 gives a brief description of the expected differences 240 

between the setups. Also, it shows that Equation (8) can improve the streamflow representation, 241 

given the correct set of parameters.  242 



17 

 

 

 

 243 
 244 

Figure 5. Diagnostic (blue) and prognostic (red) simulations done for the year 2013. Results are 245 

compared with the USGS observations (black).  246 

 247 

According to Figure 5, the non-linear model can produce a good representation of the hydrograph 248 

falling limb and early recession, depending on the parameters. Considering the described 249 

sensitivity, we compare the event-based KGE (Equation (10)) of the non-linear setups and the 250 

linear model (Figure 6). The KGE equation summarizes the correlation (𝛾), the mean value (𝜇), 251 

and the deviation (𝜎). Our results suggest that the KGE performance depends heavily on the 252 

percolation rate (𝑘𝑖).  With 𝑘𝑖 = 0.02 (first row of Figure 6), all the non-linear setups tend to 253 

improve the linear model, with significant performance decrease in some events. Conversely, 254 

values of 𝑘𝑖 equal to 0.03 and 0.04 do not exhibit a significant KGE change (second and third rows 255 
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of Figure 6).  Cases such as D5 and D11 exhibited a performance like the one obtained by the 256 

linear model. Other cases, such as D9, tended toward a general decrease in performance. D6, D8, 257 

and P2 exhibited a slight performance increase. The described results highlight the relevance of 258 

the percolation rate and the subsurface parameters. The comparison with the linear model shows 259 

that Equation (8) can significantly improve the model performance, depending on the parameters. 260 

 261 
 262 

Figure 6. Event-based KGEs comparison between the diagnostics setups and the linear model. 263 

Each row corresponds to a fixed percolation rate. Columns correspond to the four fixed 264 

equations. The color bar shows the percentage of events that fall at each bin of the 2D histogram. 265 

 266 

Differences among the scenarios are highlighted when comparing the performance gauge by 267 

gauge. First, we choose the diagnostic (D) and prognostic (P) setup with the best performance at 268 

each gauge. For this, we used the KGE to select the setup outperforming the others at most of the 269 
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events. In Figure 7, we present the KGE distribution and the percentage of time each scenario was 270 

chosen. We found similarities between the diagnostic and prognostic chosen setups when grouped 271 

by the percolation rate values (𝑘𝑖). D4 and P1 (𝑘𝑖 = 0.02) have a similar KGE distribution, as do 272 

D8 and P2 (𝑘𝑖 = 0.03) and the group that includes D9, D11, D12, and P3 (𝑘𝑖 = 0.04). The 273 

similarities among the described groups highlights the relevance of 𝑘𝑖. Moreover, some differences 274 

also highlight the relevance of the Equation (8) parameters. 275 

 276 
 277 

Figure 7. Event-based KGE distribution for the selected scenarios at each station. 278 

 279 

The results presented in Figure 7 follow a spatial distribution. Figure 8 shows each USGS gauge 280 

colored by the diagnostic (Figure 8a) and prognostic (Figure 8b) setups with the best performance. 281 

In both cases, the percolation rate defines the spatial distribution. We can identify how the chosen 282 

setups (Figure 8) follow the Iowa landforms to some extent in the diagnostic case (see Figure 3a). 283 

Scenario D12 is recurrent over the Des Moines Lobe and the Northwest Iowa Plain. D9 recurs over 284 

the Missouri River Alluvial and Loess Hills landforms. D4 dominates over the Southern Iowa Drift 285 

area. In the remaining regions, we see a mix of scenarios. The spatial distribution is similar among 286 
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the chosen prognostic scenarios (Figure 8b) and seems to be highly influenced by the percolation 287 

rates, represented here by tones of blue (𝑘𝑖 = 0.02), red (𝑘𝑖 = 0.03), and green (𝑘𝑖 = 0.04). 288 

 289 

Figure 8. Spatial distribution of the scenarios with best KGE performance at each USGS station: 290 

a) results obtained from the diagnostic scenarios; and b) results obtained from the prognostic 291 

scenarios. The green, red, and blue gauge colors correspond to the percolation rates of 0.02, 0.03, 292 

and 0.04, respectively. 293 

 294 

According to Figure 8, the chosen diagnostic and prognostic scenarios share percolation rates. 295 

However, differences exist in the spatial performance improvement distribution (Figure 9). Figure 296 

9a and b show the diagnostic and prognostic scenarios of KGE improvement with respect to the 297 

linear model. With only two cases of negative KGE differences (red dots on Figure 9a), the 298 

diagnostic scenarios outperform the linear model at almost all the USGS gauges. Alternatively, in 299 

the prognostic case (Figure 9 b), the count of negative KGE differences increases to 13, while the 300 

number of gauges decreases where the improvement is more significant than 0.1 (yellow). We 301 

attribute the prognostic case performance decrease to the parameter’s spatial distribution. 302 
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 303 
Figure 9. Mean KGE spatial difference of the diagnostic and prognostic scenarios with respect to 304 

the linear model: a) diagnostic KGE minus linear model KGE; and b) prognostic KGE minus 305 

linear model KGE. 306 

The prognostic scenario performance decrease happens mostly over the east and west regions of 307 

Iowa. The most significant decrease happens on the Northwest Iowa Plains landform (Figure 9b). 308 

In this region, the chosen diagnostic setups were D12 and D9 (Figure 8 a), suggesting a mix 309 

between tiled terrain and flat hillslopes. Over the Southern Iowan Drift landform area, the 𝑘𝑖 value 310 

is the same for the diagnostic and prognostic scenarios. However, the prognostic scenario 311 

performance declines at several stations in this region. On the other hand, the Iowa Surface region 312 

exhibits more 𝑘𝑖 discrepancies between both scenarios, as well as more performance differences. 313 

The described results suggest a level of heterogeneity in the parameters shown by the diagnostic 314 

and prognostic scenarios. This heterogeneity creates difficulties when choosing the most adequate 315 

regional parameterization for the model, regardless of whether it is fixed (diagnostic) or distributed 316 

(prognostic). To address this issue, we compare the KGE (upper diagonal in Figure 11) and the 317 

mean ratio (lower diagonal in Figure 11) of the chosen scenarios. According to Figure 11, the KGE 318 
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and mean ratio of scenarios D4 and P1 outperform almost all the scenarios. Additionally, both 319 

scenarios have the highest percentage of events with KGE values above 0.4 (blue bars in Figure 320 

11 histograms). Compared with the linear model, D4 and P1 mean ratio correction is significant. 321 

In both plots (Linear-D4 and Linear-P1), there are almost no events where the linear setup 322 

outperformed D4 and P1.  323 

 324 

Figure 10. Event-based KGE comparison of the diagnostic and prognostic dominant scenarios. 325 

Each row compares a scenario against the others. The upper diagonal panels correspond to the 326 

KGE histogram of the scenarios. Over the diagonal shows the KGE histogram of each setup 327 

coloring in blue the percentage of events with a KGE above 0.4. The lower diagonal compares 328 

the event based mean ratio error.     329 
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The scenarios D4 and P1 have the same 𝑘𝑖 (0.02) value; however, their subsurface parameters are 330 

different. The parameters of D4 are fixed for all the domains following line 4 of Figure 4a. This 331 

parameterization represents highly conductive soils or the presence of tiles. On the other hand, P1 332 

parameters follow the hillslope steepness with Equation (9), and the presence of tiles described by 333 

the map in Figure 4b. The described differences in the parameters seem to develop slight 334 

dissimilarities in the performance. According to panel D4-P1 in Figure 11, the KGE performance 335 

is similar in both, although D4 has a better performance in some events. Moreover, the panel P1-336 

D4 shows that the mean ratio description of both setups is similar. Considering that D4 assumes 337 

tiles everywhere, our results suggest a high presence of tile-like signatures. 338 

3.2 Extended metrics  339 

According to the diagnostic and prognostic KGE comparisons, the performance differences 340 

between the two scenarios are relatively small. However, the KGE is subject to three parameters 341 

that do not necessarily reflect all the relevant changes in the simulated streamflows. With this in 342 

mind, we also compared the NSE (Nash Sutcliffe efficiency), the hit rate, and the lags (Figure 11 343 

a, b, and c, respectively). The NSE contrasts the simulated data prediction skill with the mean 344 

value of the observations. NSE below 0 indicates that the mean value performs better than the 345 

model, and an NSE of 1 indicates a perfect simulation. The hits rate is the percentage of time that 346 

observations and simulations share during floods. A hit rate of zero corresponds to missing all the 347 

floods, and a hit rate of one corresponds to a perfect match. The lag is a measure of the 348 

displacements applied over the simulated data to maximize the correlation. We make hourly 349 

displacements from -48h to 48h. Negative lag values correspond to cases in which the simulated 350 
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data exhibit responses earlier than the observed, and positive values correspond to the opposite 351 

behavior. A simulated series with good performance must have lags near zero.  352 

Results from Figure 11 shows that D4 and P1 have some similarities and some relevant differences. 353 

Regarding the NSE (Figure 11a), D4 has a slightly better score. Regarding the hits rate (Figure 354 

11b), it is hard to tell which scenario has a better performance. P1 has a higher fraction of hit rates 355 

approaching one, but it also has higher frequencies at some lower intervals. The number of lags is 356 

also similar (Figure 11c). Nevertheless, P1 tends toward negative lag values more than D4 does, 357 

representing more frequent early peak estimations.  358 

 359 
 360 

Figure 11. Histograms of performance metrics for the scenarios D4 and P1. Panel a compares the 361 

NSE. Panel b compares the Hit Rate considering a Hit when the simulated and observed 362 

streamflow are above the flood level of the gauge. Panel c compares the Lags (in hours) required 363 

to maximize the correlation between observations and simulations.   364 

 365 

In addition to the indexes, we compare the simulated peaks of the chosen diagnostic and prognostic 366 

scenarios. Because the gauged watersheds areas range between 40 and 18,000 𝑘𝑚2, we performed 367 

a scale-independent comparison. To obtain scale-independent peaks (𝑍), we divided the peaks 368 

𝑄𝑝 [𝑚3 ⋅ 𝑠−1] by the mean annual peak 𝑄𝑝
̅̅̅̅  [𝑚3 ⋅ 𝑠−1]. Then, for each event of each link, we 369 

computed the difference between the simulated (𝑍𝑠) and the observed (𝑍𝑜) standardized peaks.  370 
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The peak flow estimation of D4 and P1 exhibited a similar performance, with D4 being superior. 371 

The D4 scenario reaches a fraction of 32% for differences near zero (Figure 12), while in P1 this 372 

value drops to 28% (Figure 12). Also, P1 has a higher fraction of errors equal or greater than one. 373 

 374 
 375 

Figure 12. Histograms of the standardized peak flows difference for the D4 (blue) and P1(red) 376 

scenarios.  377 

 378 

We expected the diagnostic superiority because in the prognostic case, we impose restrictions 379 

based on maps. The resulting differences among simulations emphasize the parameters’ relevance 380 

and the need for their correct representation. Contrasted with the diagnostic scenarios, the 381 

prognostic scenarios tend to reduce the performance. The differences between D4 and P1 suggest 382 

that the landscape descriptors could have errors that lead to decreases in the modeling performance. 383 

Also, our results suggest that there may be more tiles than the ones represented by the map in 384 

Figure 4b.   385 
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3.3 Analysis of parameter values 386 

The diagnostic and prognostic scenarios offer different ways to determine the values of parameters 387 

in space. In the diagnostic cases, we identified the best fixed-parameter combination for each 388 

gauged watershed. In the prognostic cases, we pre-defined a set of distributed parameters based on 389 

available information. In a previous step, we defined the best diagnostic and prognostic setup for 390 

each gauge (Figure 8a and b, respectively). According to our results, a spatial distribution of the 391 

parameters seems to be explained by 𝑘𝑖 and the parameters of Equation (8). Additionally, the 392 

chosen diagnostic scenarios outperform the chosen prognostic ones (Figure 9a and b). In some 393 

gauges, the performance differences are small; however, in others, the difference is relatively large. 394 

This is an interesting result because the only difference between both cases is the Equation (8) 395 

parameterization. Considering the described performance differences, we explore in more detail 396 

how they are related to the parameterizations of the diagnostic and prognostic setups. 397 

We compare the Equation (8) setup for the diagnostic and prognostic scenarios to evaluate whether 398 

variations in the parameters explain the observed performance differences. We made the 399 

comparison at each gauged watershed. For the comparison, the prognostic setup has a set of curves 400 

𝑞𝑠𝐿(𝑃) for a given watershed (light blue lines in Figure 13), and there is one diagnostic curve 401 

𝑞𝑠𝐿(𝐷) for the same watershed (dark blue line in Figure 13). Using Equation (11), we compare 402 

𝑞𝑠𝐿(𝐷) with the 50th percentile of 𝑞𝑠𝐿(𝑃) for storages between 1.6 and 1.705[𝑚] (green region in 403 

Figure 13). 404 
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 405 
 406 

Figure 13. Example of the 𝑞𝑠𝐿 parameterization comparison between the diagnostic and 407 

prognostic scenarios. The light blue lines are to the 𝑞𝑠𝐿 curves of the prognostic scenario for a 408 

given watershed. The red line corresponds to the 50th percentile of the prognostic 𝑞𝑠𝐿 curves. The 409 

dark blue line is the 𝑞𝑠𝐿 curve of the diagnostic scenario. We used the green region to perform a 410 

comparison between the scenarios.  411 

 412 

Δ𝑞𝑠𝐿 =
1

𝑁
⋅ ∑

𝑞𝑠𝐿(𝐷)𝑖−𝑃50(𝑞𝑠𝐿(𝑃))𝑖 

𝑞𝑠𝐿(𝐷)𝑖

𝑁
𝑖  (11) 413 

According to Figure 14, the differences of the parameters (Δ𝑞𝑠𝐿) hardly explains the performance 414 

differences between the diagnostic and the prognostic scenarios. In some cases, low absolute 415 

values of Δ𝑞𝑠𝐿 are linked to low KGE differences. However, the described behavior does not apply 416 

for large absolute values of Δ𝑞𝑠𝐿. Figure 14 shows many watersheds in which the differences of 417 

the absolute parameters are larger than 10% (x-axis), while the KGE absolute differences are low. 418 

Also, some cases with low absolute Δ𝑞𝑠𝐿 exhibit large KGE differences.  On the other hand, 419 

according to the colors of Figure 14 (non-absolute Δ𝑞𝑠𝐿), positive values of Δ𝑞𝑠𝐿 are related to low 420 

KGE differences; and negative values of Δ𝑞𝑠𝐿 correspond to high KGE differences.    421 
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 422 
Figure 14. Parameters’ absolute differences vs. KGE differences at the USGS gauges. The colors 423 

correspond to non-absolute differences in the parameters.  424 

 425 

We also compared the Δ𝑞𝑠𝐿 and the KGE differences in space. According to Figure 15, the 426 

coincidences between the KGE and Δ𝑞𝑠𝐿 do not show a strong regional pattern. We observe some 427 

similarities only in the Des Moines Lobe and the Northwest Iowa Plains regions. In both cases, 428 

some significant KGE differences match with large absolute Δ𝑞𝑠𝐿 values. Also, there is a match 429 

between low KGE and Δ𝑞𝑠𝐿 differences in the Iowan Surface region, with some exceptions. 430 

 431 
 432 

Figure 15. Maps showing KGE differences (a), and Δ𝑞𝑠𝐿 (b), in USGS gauges. 433 

 434 
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It is hard to establish a relationship between the diagnostic and prognostic parameters and their 435 

performance differences. We attribute this lack of correlation to the model’s non-linear 436 

transformations at the hillslope scale and throughout the network. It is expected that parameters 437 

would alter the model’s output. However, our results show that a pre-defined distribution of the 438 

parameters could lead to modeling errors that are hard to identify. 439 

4 Conclusions 440 

The Iowa Flood Center (IFC) has been making operational flood forecasts for the state of Iowa 441 

since 2010. IFC forecasters use the hydrological Hillslope Link Model (HLM), along with rainfall 442 

data. HLM has been accurate in forecasting streamflow fluctuations at several scales (Quintero et 443 

al., 2020). However, the model has limitations in its representation of the recession curve, and it 444 

underestimates the total streamflow volume. Moreover, the limitations seem to increase in a tiled 445 

landscape. Fonley et al. (2021) attributed these limitations to the linear equation HLM uses to 446 

represent the subsurface flux and the lack of an equation representing tiled terrain. To address this 447 

issue, Fonley et al. (2021) developed an exponential equation that can be parameterized to 448 

represent the function of the hillslope steepness and the presence of tiles.  449 

This paper evaluated the exponential equation proposed by Fonley et al. (2021), which represents 450 

subsurface hillslope-link interaction in HLM. The equation can represent hillslopes with and 451 

without tile drainage. We performed the equation evaluation at 140 USGS gauges in Iowa. The 452 

analysis used hourly records between 2002 and 2018. In the evaluation, we compared the 453 

exponential equation with a linear equation. The comparison used a diagnostic and a prognostic 454 
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approach to set up the parameters. In the diagnostic setup, we implemented 12 fixed parameter 455 

scenarios, while in the prognostic setup, we distributed the parameters considering the hillslope 456 

steepness and presence of tiles. In both cases, we considered three fixed percolation rates. Results 457 

from this study indicate the following: 458 

1. Compared with the linear equation, the exponential equation corrects the volume bias on 459 

the simulated streamflow. We attribute the correction to the active layer threshold on the 460 

exponential equation and the significant outflow increase once the storage is above this 461 

threshold. By contrast, in the linear equation, the water remains in the soil for extended 462 

periods because of the described absence of these processes.  463 

2. Depending on the parameters, the exponential equation could improve the performance of 464 

HLM. We found that the exponential equation outperforms the linear equation for several 465 

parameter combinations with changes in the shape of the hydrograph, the simulated peaks, 466 

and the timing. We also found significant differences using different combinations of the 467 

equation parameters and the percolation rate. 468 

3. The percolation rate plays a significant role in the representation of the subsurface flux 469 

from the described combinations. We found spatial coincidences in the percolation rates 470 

when choosing the best diagnostic and prognostic scenarios. Also, the percolation rate 471 

induces changes comparable with those produced by the exponential equation’s 472 

parameters. 473 

4. Determining the distributed parameters of HLM remains challenging. In this paper, we 474 

used the diagnostic and prognostic approach to analyze the parameters of HLM. The 475 
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diagnostic approach assumes unknown conditions and fixed parameters over the space. On 476 

the other hand, the prognostic method is the more classical approach, in which the 477 

parameters are derived from maps of the landscape. In our experiments, the diagnostic 478 

setups tended to outperform the prognostic setups. Additionally, we found it hard to 479 

identify a link between the diagnostic and prognostic parameters and their respective 480 

performances.   481 

In the current work, we showed how a better representation of the processes and the correct 482 

parameters can improve a hydrological model. The improvement is supported by comparisons 483 

performed at 140 USGS gauges. Moreover, the differences between the diagnostic and prognostic 484 

setups suggest that identifying the parameters is still challenging. Despite the limitation related to 485 

the number of gauges, the diagnostic approach reveals the parameters’ potential spatial 486 

distribution.  487 

Two main factors may explain the differences in parameters and performance between the 488 

diagnostic and prognostic setups: errors in the landscape description and unrepresented processes 489 

in HLM. Uncertainties exist in the tile localization maps; likewise, limitations exist in the 490 

representation of the average steepness at the hillslope scale. On the other hand, we have 491 

unrepresented processes in some regions of Iowa, such as potholes over the northwest and 492 

agricultural terraces in the west. It is difficult to identify which one of these factors is more relevant 493 

to the implementation of a hydrological model. However, according to our results, the use of maps 494 

as landscape descriptors may lead to errors that are usually hidden in a posterior calibration 495 

process. Moreover, we found hard to identify the errors caused by prescribed distributed 496 
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parameters.  Both issues could be addressed using diagnostic setups that help identify the 497 

uncertainties derived from the parameters and their possible regional distributions. 498 
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