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Abstract

Lightning plays a major role in tropospheric oxidation, and its role on modulating tropospheric chemistry was thought to be

emissions of nitrogen oxides (NOx). Recent field and laboratory measurements demonstrate that lightning generates extremely

large amounts of oxidants, including hydrogen oxides (HOx) and O3. We here implement the lightning-produced oxidants in

a global chemical transport model to examine its global impact on tropospheric composition. We find that lightning-produced

oxidants can increase global mass weighted OH by 0.3-10%, and affect CO, O3, and reactive nitrogen substantially, depending

on the emission strength of oxidants from lightning. Our work highlights the importance and uncertainties of lightning-produced

oxidants, as well as the need for rethinking the role of lightning in tropospheric oxidation chemistry.
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Abstract  11 

Lightning plays a major role in tropospheric oxidation, and its role on modulating tropospheric 12 

chemistry was thought to be emissions of nitrogen oxides (NOx). Recent field and laboratory 13 

measurements demonstrate that lightning generates extremely large amounts of oxidants, 14 

including hydrogen oxides (HOx) and O3. We here implement the lightning-produced oxidants in 15 

a global chemical transport model to examine its global impact on tropospheric composition. We 16 

find that lightning-produced oxidants can increase global mass weighted OH by 0.3-10%, and 17 

affect CO, O3, and reactive nitrogen substantially, depending on the emission strength of 18 

oxidants from lightning. Our work highlights the importance and uncertainties of lightning-19 

produced oxidants, as well as the need for rethinking the role of lightning in tropospheric 20 

oxidation chemistry. 21 

 22 

1. Introduction 23 

Lightning plays a major role in tropospheric oxidation chemistry [Murray et al., 2013]. It can 24 

produce nitrogen oxides, hydrogen oxides, and ozone through visible flashes, subvisible charges, 25 

and corona. The production of NO by lightning is through the Zel’dovich mechanism involving 26 

the dissociation of O2 and N2 and very high temperature (>4000 K) with visible flashes 27 

[Schumann & Huntrieser, 2007]. As the dissociation energy of O2 (0.50 MJ mol-1) and H2O 28 

(0.50 MJ mol-1) are lower than that of N2 (0.94 MJ mol-1) [Howard & Rees, 1996], producing O3 29 

and HOx by lightning requires less energy. 30 

 31 

The role of lightning on modulating global oxidation was mainly considered through emissions 32 

of nitrogen oxides (NOx) [Chameides et al., 1977; Murray et al., 2012], which leads to the 33 

production of the major tropospheric oxidants, OH and ozone. The global lightning NOx (LNOx) 34 

emission is estimated to be about 2-8 Tg N/yr [Schumann & Huntrieser, 2007]. The lightning 35 

production of hydrogen oxides (LHOx) was considered unimportant due to their short lifetime 36 

[Hill & Rinker, 1981; Bhetanabhotla et al., 1985]. The lightning production of O3 (LO3) is 37 

shown in the laboratory to occur by corona discharges in higher amounts than LNOx by a factor 38 

of 5-30 [Hill et al., 1988; Peyrous & Lapeyre, 1982; Simek & Clupek, 2002], but lower 39 

production of O3 was found in visible flashes [Wang et al., 1998]. LO3 by corona discharge is 40 

further supported by field measurements [Bharali et al., 2015; Bozem et al., 2014; Kotsakis et 41 

al., 2017; Minschwaner et al., 2008]. Recent studies show that extremely high amounts of HOx 42 

and O3 can be produced by visible flashes and subvisible charges in electrified storms [Brune et 43 

al., 2021; Jenkins et al., 2021].  44 

 45 

Here we implement a simplistic parameterization for lightning HOx and O3 into a global 46 

chemical transport model (GEOS-Chem) to investigate the global impact of this overlooked 47 



oxidant source (LHOx and LO3). Given the large uncertainties associated with current estimates 48 

of LHOx and LO3, we only focus on their potential global impact in this work. 49 

 50 

2. Methods 51 

 52 

GEOS-Chem is a global chemical transport model with transport driven by assimilated 53 

meteorological fields from the NASA Global Modeling and Assimilation Office’s Modern-Era 54 

Retrospective analysis for Research and Applications, version 2 (MERRA-2) system [Bey et al., 55 

2001]. We use GEOS-Chem v12.5.0 (10.5281/zenodo.3403111) at a horizontal resolution of 4 56 

latitude ×5longitude with fully coupled O3-NOx-HOx-VOC-aerosol chemistry (“tropchem” 57 

mechanism)[Mao et al., 2010, 2013; Park et al., 2004]. Methane is prescribed with monthly 58 

maps of spatially-interpolated NOAA flask data, but is allowed to advect and react [Murray, 59 

2016]. 60 

 61 

The lighting NOx in GEOS-Chem largely follows Murray et al. [2012], with lightning flash 62 

densities and convective cloud depths calculated at the native GEOS-FP meteorology resolution. 63 

The simulated climatology is further constrained by the satellite observations from the Optical 64 

Transient Detector (OTD) and Lightning Imaging Sensor (LIS), with an annual mean global 65 

flash rate of 46 flashes per second [Christian, 2003]. GEOS-Chem applies 500 mol N per flash 66 

for all lightning in the northern extratropics (north of 35°N), and 260 mol N per flash for the rest 67 

of the world. This approach results in a total lightning emission of 6 Tg N per year. The vertical 68 

distribution of lightning follows Ott et al. [2010], which redistributes lightning emissions 69 

vertically based on different surface types (tropical continental, tropical marine, subtropical and 70 

mid-latitude).  71 

 72 

We scale lightning HOx and O3 with lightning NOx by a factor of 10 and 100, to examine its 73 

global impact. Our estimated lightning HOx is based on the following. The OH generated by 74 

LHOx in each electrically active convective cell is estimated to be 3.1×1025 − 2.7×1026 molecules 75 

per second [Brune et al., 2021]. Assuming globally there are 1800 electrically active convective 76 

cells every second, the global production is 3-30 T mol OH/yr. As global lightning NOx is about 77 

6 Tg N/yr (0.4 T mol N/yr) [Murray, 2016], we scale lightning HOx by a factor of 10 and 100 on 78 

a molar basis. The scaling of O3 is based on two facts. First, the O3 production rate was estimated 79 

to be 0.4 − 98 ×1027 molecules per flash [Bozem et al., 2014; Kotsakis et al., 2017; Minschwaner 80 

et al., 2008], while the NOx production rate was estimated to be one or two orders of magnitude 81 

lower than that of O3, with 2− 40 ×1025 molecules per flash [Schumann & Huntrieser, 2007]. 82 

Second, O2 and H2O have similar dissociation energy as mentioned above. We note that the 83 

resulting LO3 is in the range of 140-1400 Tg O3/yr, comparable to stratosphere-troposphere 84 

exchange (STE) ozone flux [McLinden et al., 2000].  85 

 86 

We add lightning HOx and O3 in a similar fashion as lightning NOx in the model. As GEOS-87 

Chem is run with operator splitting, we allow radicals (OH + HO2) and O3 to accumulate over 88 

the course of the emission step (20 mins in our model setup), which leads to a pulse of HOx 89 

radicals at the beginning of the chemistry timestep (also 20 mins). We find in our current model 90 

setup that at the end emission timestep, OH and HO2 are built up to the order of ~108 91 

molecules/cm3, an order of magnitude smaller than observed [Brune et al., 2021]. Once the 92 

chemistry time step starts, the spikes of OH and HO2 rapidly decrease due to the dominant loss 93 

https://doi.org/10.5281/zenodo.3403111


of radicals through the OH+HO2 reaction, similar to the box model simulations of HOx produced 94 

from lightning [Brune et al., 2021]. Within seconds, the radical levels return to background 95 

levels, while their impact on OH reactants (CO, CH4) can be significant due to high levels of OH 96 

exposure. We consider this treatment a better representation of the impact of lightning, rather 97 

than assuming a constant radical source throughout the whole chemistry time step, in which case 98 

OH+HO2 reaction would be much less of a HOx sink. In contrast, treating lightning O3 99 

production as a pulse or time averaged production should not make much difference on ozone, as 100 

the lifetime of ozone is on the order of months in the middle and upper troposphere. 101 

 102 

We conducted five model simulations for the year of 2016, as illustrated in Table 1. 103 

 104 

Table 1. Model set up for base run and sensitivity tests 105 

Model run Lightning emissions Magnitude (molar basis) 

Base LNOx  

H10 LNOx + LHOx LOH=10×LNOx, LHO2=10×LNOx 

H100 LNOx + LHOx LOH=100×LNOx, LHO2=100×LNOx 

H10_O10 LNOx + LHOx + LO3 LOH=10×LNOx, LHO2=10×LNOx, LO3=10×LNOx 

H100_O100 LNOx + LHOx + LO3 LOH=100×LNOx, LHO2=100×LNOx, LO3=100×LNOx 

 106 

 107 

3. Results 108 

Figure 1 shows the global impact of lighting produced oxidants on annual ozone in the upper 109 

troposphere. We find that adding LHOx alone (H10 and H100) will reduce ozone concentrations 110 

in the middle and upper troposphere, due to enhanced ozone loss through OH/HO2 + O3 as well 111 

as reduced ozone production efficiency through OH + NO2 [Hu et al., 2017]. For the case of 112 

H10, we find that LHOx decreases O3 in the upper troposphere by 1-2 ppbv on an annual mean 113 

basis, mainly over regions where lightning flashes are intense. For the run of H100, O3 can be 114 

reduced by 3-7 ppbv in the upper troposphere.  115 

 116 

The O3 decrease due to LHOx can be compensated by the addition of LO3. We show in Figure 1 117 

that with the case of H10_O10, annual mean O3 is in fact enhanced by 1-3 ppbv in the upper 118 

troposphere. For the case of H100_O100, annual mean O3 is enhanced by 10-30 ppbv mainly 119 

over lightning-intense regions. As the O3 lifetime is on the order of ~1 month, LO3 can 120 

effectively increase ozone in the middle and upper troposphere. 121 

 122 



 123 
Figure 1 Global impact of lightning oxidants on annual mean O3 in the upper troposphere (8 124 

km). Each panel represents the difference between a sensitivity run and base model run: (a) H10 125 

– Base (b) H100 – Base (c) H10_O10 – Base (d) H100_O100 – Base. H10 and H100 are referred 126 

to the runs with LHOx, and H10_O10 and H100_100 are referred to the runs with LHOx and LO3 127 

(see Table 1 for details).  128 

 129 

Figure 2 shows the impact of lightning oxidants on OH, HO2, and CO. We note that both H100 130 

and H100_O100 increases OH in the upper troposphere by up to 10%. The increase of OH is 131 

mainly due to the decrease of CO, which allows OH to reach another steady state with higher 132 

concentrations, as CO accounts for more than 50% loss of ambient OH [Mao et al., 2009]. The 133 

increase of HO2 is in part due to direct emission and in part due to OH+CO. We see a mild 134 

decease of CO with H10 and H10_O10, but a much bigger decrease with H100 and H100_O100. 135 

 136 

 137 
Figure 2 Effect of lightning-produced oxidants on OH (top), HO2 (middle) and CO (bottom) in 138 

the upper troposphere (8 km). Each panel represents the difference between a sensitivity run and 139 

base model run: (a) H10 – Base (b) H100 – Base (c) H10_O10 – Base (d) H100_O100 – Base. 140 

H10 and H100 are referred to the runs with LHOx, and H10_O10 and H100_100 are referred to 141 

the runs with LHOx and LO3 (see Table 1 for details).  142 

 143 

 144 



Table 2 summarizes the global impact of different sensitivity runs. In the base run, global OH 145 

production and loss are 220 T mol/yr, in agreement with other model studies [Lelieveld et al., 146 

2016]. The imbalance between Prod(OH) and Loss(OH) in sensitivity runs (H_10, H_100, 147 

H10_O10, and H100_O100) reflects the added oxidants (OH, HO2 and O3) from lightning before 148 

the chemistry timestep. We show that mass-weight global mean OH increases by 0.3%, 3%, 149 

0.8% and 9% with H_10, H_100, H10_O10, and H100_O100 respectively, with little difference 150 

on the OH Northern hemisphere to Southern hemisphere ratio. We note that the impact on global 151 

mean OH is smaller than previously estimated by Brune et al. [2021], likely due to two reasons. 152 

First, the estimate by Brune et al. [2021] is the direct impact on instantaneous global OH, i.e., a 153 

snapshot of the global OH field with pulses from LHOx included, while our calculation is based 154 

on the OH concentrations after chemistry timestep (20 min), during which HOx pulses decay to 155 

background levels within the first few seconds. The impact on global OH from our estimate is 156 

mainly resulting from changes on the burden of OH sources and sinks, such as O3 and CO. 157 

Second, the global mass-weighted OH is weighted towards the lower troposphere [Lawrence et 158 

al., 2001], while LHOx in our model is mainly distributed into the middle and upper troposphere. 159 

As a result, the global mass-weighted OH is relatively insensitive to the changes of OH field in 160 

the middle and upper troposphere 161 

 162 

Lightning-produced oxidants also impact the global CH4 budget. We find in Table 2 that the 163 

global loss of CH4 increases by 15-110 Tg CH4/yr from our sensitivity runs. As CH4 oxidation is 164 

rather slow in the upper troposphere, we find that the impact on CH4 is mainly in the lower 165 

troposphere where the potential for LHOx generation is currently unknown.  166 

 167 

Lightning-produced O3 offers an alternative explanation to ozone layering in the free 168 

troposphere. Atmospheric observations often show layers of high O3 with high moisture [Newell 169 

et al., 1999; Oltmans et al., 1996], and these ozone layers are unlikely from stratosphere 170 

intrusion because of the high moisture. On the other hand, if these O3 layer are produced during 171 

lightning, they can be transported thousands of kilometers away from the source region because 172 

the O3 lifetime in the upper troposphere is about a month. Lightning-produced O3 is also 173 

consistent with the seasonality of ozone layering, which shows a summer maximum in northern 174 

mid-latitude[Colette & Ancellet, 2005]. 175 

 176 

 177 

Table 2 Global impact of lighting produced oxidants on tropospheric composition 178  
Base H10 H100 H10_O10 H100_O100 

Global mass-weighted OH (106 

molecules/cm3) 

1.212 1.216 1.252 1.222 1.324 

OH NH/SH ratio 1.21 1.21 1.22 1.21 1.23 

Prod Ox (Tg/yr) 5027 5058 5088 4983 4450 

Loss Ox (Tg/yr) 4763 4804 4871 4918 6115 

Prod OH (Tmol/yr) 222.1 223.8 230.4 225.5 249.8 

Loss OH (Tmol/yr) 222.1 228.1 274.1 229.9 293.5 

Prod CO (Tmol/yr) 57.2 58.0 61.3 58.2 63.5 

Loss CO (Tmol/yr) 87.6 88.7 93.0 88.9 95.4 

Loss CH4 (Tg CH4/yr) 564.8 579.2 633.6 582.4 676.8 



Prod HNO3 (Tmol/yr) 3.81 3.84 3.93 3.84 3.95 

Prod HNO2 (Tmol/yr) 1.41 1.35 1.36 1.31 1.11 

Loss HNO2 (Tmol/yr) 1.41 1.35 1.36 1.31 1.11 

 179 

 180 

Figure 3 shows the global impact of lighting produced oxidants on the partitioning of reactive 181 

nitrogen in the upper troposphere. With newly added OH and HO2 produced by lightning, 182 

OH+NO2 is thus enhanced in the middle and upper troposphere, leading to a higher production of 183 

HNO3 and lower ozone production efficiency (Table 2). We find that both NO and NO2 in the 184 

upper troposphere decreased by 10-20 pptv on an annual mean basis over the tropics and 185 

subtropics where lightning activity is high. In the meantime, we see an increase in most nitrogen 186 

reservoirs including HNO3, peroxyacetyl nitrate (PAN) and peroxynitric acid (HNO4). The only 187 

exception is PAN in H100 and H100_O100, likely due to enhanced loss of PAN through its 188 

reaction with OH. This shift of NOx towards their reservoirs may have important implication on 189 

nitrogen chemistry in the upper troposphere.  190 

 191 

Our results in this work are mainly based on the annual mean, and we expect the impact on 192 

shorter time scales to be different. For example, we expect a significant increase of HONO on a 193 

short time scale (on the order of hours to days) due to the production of OH and NO as shown in 194 

box model simulations [Brune et al., 2021]. Once HONO is photolyzed and returns OH and NO, 195 

enhanced OH will lead to higher peroxy radicals that then convert NO2 to peroxy nitrates and 196 

other nitrogen reservoirs, resulting in lower concentrations of NO and NO2. Consequently, we 197 

see a decrease of annual mean HONO production and loss in sensitivity runs in Table 2.  198 

 199 

 200 

 201 
Figure 3 Effect of lightning-produced oxidants on NO2 (top), PAN (middle) and HNO3 (bottom) 202 

in the upper troposphere (8 km). Each panel represents the difference between a sensitivity run 203 

and base model run: (a) H10 – Base (b) H100 – Base (c) H10_O10 – Base (d) H100_O100 – 204 

Base. H10 and H100 are referred to the runs with LHOx, and H10_O10 and H100_100 are 205 

referred to the runs with LHOx and LO3 (see Table 1 for details).  206 

 207 

 208 

4. Discussion 209 

Here we implement a new source of oxidants (OH + HO2 + O3) from lighting into a global 210 

chemical transport model, to examine its potential impact on tropospheric chemistry. Due to 211 



large uncertainties associated with lightning and its emissions, we conduct only a few sensitivity 212 

tests to provide a qualitative assessment. However, we find that this new source of oxidants can 213 

increase global mass weighted OH by 0.3-10%, and affect CO, O3 CH4 and reactive nitrogen 214 

substantially, depending on the emission strength of oxidants from lightning (Table 2).  215 

 216 

Large uncertainties remain in many aspects. First, we assume that lightning NOx and oxidants are 217 

instantly mixed in each model grid box when there is lightning.  In fact, field observations 218 

suggest that NOx, HOx, and ozone are likely produced in different parts of storm clouds (NOx 219 

dominates in visible flashes, HOx and O3 dominates in subvisible discharges and coronas) 220 

[Jenkins et al., 2021; Brune et al., 2021]. It remains unclear how this instant mixing would affect 221 

the non-linear behavior of HOx-NOx-O3 chemistry and its possible consequence[Gressent et al., 222 

2016]. Second, the volume of a model grid box in the upper troposphere (approximately 400 km 223 

× 500 km × 1 km) is about 1000 times bigger than the typical lightning mapping array (LMA) 224 

volume for one convective cell (1x1017 cm3) [Brune et al., 2021], leading to a dilution effect on 225 

radical loss through OH + HO2. However, there are typically many electrically active convective 226 

cells occupying one model grid box, so the grid cell box might be only 10 to 100 times larger 227 

than the volume of all the convection within that cell. Also, the fact that we allow the model to 228 

build up radicals over the emission timestep (20 mins or 1200 seconds) can somewhat 229 

compensate this dilution effect (Figure 4). These effects also imply that our model results may 230 

vary with model resolution and the choice of emission timesteps.  231 

 232 

 233 
Figure 4 OH loss per flash through reactions with all OH reactants (excluding HO2 and NO2), 234 

calculated by a box model [Brune et al., 2021]. We exclude HO2 and NO2 because their reactions 235 

with OH are considered permanent HOx sinks. The white dots represent the observations from 236 



DC3 aircraft campaign, and the gray box represents the range of model values in the upper 237 

troposphere after the emission timestep but before the chemistry timestep.  238 

 239 

Our results are further complicated by the non-linear HOx-NOx-O3 chemistry. We show in Figure 240 

4 that the extent of OH loss through reactants other than HO2 and NO2, is largely dependent on 241 

the relative concentrations of OH and NO. In fact, NO could effectively extend OH lifetimes by 242 

producing HONO and reducing OH loss through OH+HO2 in the first few seconds. As HONO 243 

photolyzes and returns OH, OH+HO2 becomes a minor loss for OH. As shown in Figure 4, the 244 

high concentrations of observed NOx from lightning are not reproduced in the global model, in 245 

part due to instant mixing, leading to a lower fraction of OH loss through CO and other OH 246 

reactants. This non-linear chemistry is therefore sensitive to co-location of LHOx, LNOx and 247 

LO3, as well as model configurations.  248 

 249 

Our work suggests the strong need of revisiting current estimates of global lightning NOx 250 

emissions, with newly added HOx and O3.  On one hand, OH and HO2 may further shorten NOx 251 

lifetimes in upper troposphere (Figure 2 and 3), pointing to a higher level of global LNOx [Nault 252 

et al., 2017]. On the other hand, LO3 offers an additional source for ozone in the free 253 

troposphere, indicating a need for reducing lightning NOx emission [Sauvage et al., 2007]. In 254 

addition, we show that the nitrogen partitioning is indeed sensitive to lightning-produced 255 

oxidants (Figure 3). The role of lightning in tropospheric chemistry may be redefined when 256 

LNOx, LHOx, and LO3 are all taken into account.  257 

 258 
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