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Abstract

CO2 emissions from fossil fuel combustion (FFCO2) can be robustly estimated from fuel used (as activity data, AD) and CO2

emissions factor, due to the nature of FFCO2. Recent traffic emission changes under the impact of the COVID-19 pandemic

have been estimated using emerging non-fuel consumption data, such as human mobility data that tech companies reported

as AD, due to the unavailability of timely fuel statistics. The use of such unconventional activity data (UAD) might allow

us to provide emission estimates in near-real time; however, the errors and uncertainties associated with such estimates are

expected to be larger than those of common FFCO2 inventory estimates, and thus should be provided along with a thorough

evaluation/validation of the methodology and the resulting estimates. Here, we show the impact of COVID-19 on traffic CO2

emissions over the first six months of 2020 in Japan. We calculated CO2 monthly emissions using fuel consumption data and

assessed the emission changes relative to 2019. Regardless of Japan’s soft approach to COVID-19, traffic emissions significantly

declined by 23.8% during the state of emergency in Japan (April-May). We also compared relative emission changes among

different estimates available. Our analysis suggests that UAD-based emission estimates during April and May could be biased

by -19.6% to 12.6%. We also used traffic count data for examining the performance of UAD as a proxy for traffic and/or

CO2 emissions. We found traffic changes are not proportional enough to emission changes to allow emissions to be estimated

with accuracy, and moreover, the traffic-based approach failed to capture emission seasonality. Our study highlighted the

challenges and difficulties in the use of limited non-scientific data for modeling human activities and assessing the impact on the

environment, and the importance of a thorough error and uncertainty assessment before using these data in policy applications.
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Abstract  15 
CO2 emissions from fossil fuel combustion (FFCO2) can be robustly estimated from fuel used (as activity 16 
data, AD) and CO2 emissions factor, due to the nature of FFCO2. Recent traffic emission changes under 17 
the impact of the COVID-19 pandemic have been estimated using emerging non-fuel consumption data, 18 
such as human mobility data that tech companies reported as AD, due to the unavailability of timely fuel 19 
statistics. The use of such unconventional activity data (UAD) might allow us to provide emission 20 
estimates in near-real time; however, the errors and uncertainties associated with such estimates are 21 
expected to be larger than those of common FFCO2 inventory estimates, and thus should be provided 22 
along with a thorough evaluation/validation of the methodology and the resulting estimates.  23 
   Here, we show the impact of COVID-19 on traffic CO2 emissions over the first six months of 2020 in 24 
Japan. We calculated CO2 monthly emissions using fuel consumption data and assessed the emission 25 
changes relative to 2019. Regardless of Japan’s soft approach to COVID-19, traffic emissions 26 
significantly declined by 23.8% during the state of emergency in Japan (April-May). We also compared 27 
relative emission changes among different estimates available. Our analysis suggests that UAD-based 28 
emission estimates during April and May could be biased by -19.6% to 12.6%. We also used traffic count 29 
data for examining the performance of UAD as a proxy for traffic and/or CO2 emissions. We found traffic 30 
changes are not proportional enough to emission changes to allow emissions to be estimated with 31 
accuracy, and moreover, the traffic-based approach failed to capture emission seasonality. Our study 32 
highlighted the challenges and difficulties in the use of limited non-scientific data for modeling human 33 
activities and assessing the impact on the environment, and the importance of a thorough error and 34 
uncertainty assessment before using these data in policy applications.    35 
 36 
Keywords: CO2, fossil fuel CO2 emission, COVID-19, IPCC, emission inventory, activity data  37 
 38 
1 Introduction  39 
 40 
     Carbon dioxide (CO2) emissions from fossil fuel combustion (FFCO2) are the main drivers of the 41 
observed atmospheric CO2 growth (e.g. Prentice et al 2001).  Since the time of the industrial revolution, 42 
human beings have added 400 trillion metric tons of CO2 into the atmosphere by burning fossil fuels, such 43 
as coal, oil and natural gas (Gilfillan et al 2020). Under the Paris Climate Agreement (e.g. UNFCCC 44 
2021a), the world set the 1.5/2.0 degree C temperature goal and aims to achieve the goal by the mid 21st 45 
century, which requires significantly reducing greenhouse gas (GHG) emissions, including CO2 as well as 46 
other major GHG gases, to net zero GHG emissions (or carbon/climate neutral) (e.g. Reville 2016, 47 
Marland et al 2019, UNFCCC 2021b). The Paris Agreement recognizes the subnational contributions to 48 
the climate actions. Quantifying emissions at subnational levels, which is beyond the scope of the current 49 
IPCC inventory system, is thus the critical central skill for assessing and monitoring the emission 50 
reduction effort towards the Paris Agreement goal.  51 
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   Estimates of FFCO2 are often from fuel statistics (e.g. Marland and Rotty 1984, IPCC 2006, Andres et 1 
al 2011, 2012). According to the emission compilation guideline defined by the Intergovernmental Panel 2 
on Climate Change (IPCC), GHG emissions from a country (or a system of interest) can be calculated as 3 
a product of socio-economic activity data (AD) and emission factor (EF) (IPCC 2006):  4 
 5 

!"#$$#%& = 	)*	 × 	!,   --- (1) 6 
 7 
The robustness of the FFCO2 estimates from the calculation is mainly supported by the use of the total 8 
fuels used/combusted within the system boundary. Given that CO2 does not chemically change after 9 
oxidation/combustion, FFCO2 from a country (or system) of interest can be robustly estimated by 10 
multiplying the amount of fossil fuels burned by the emission factor. In this way (defined as reference 11 
approach in the IPCC guideline), country-level FFCO2 estimates can be obtained in a relatively quick 12 
manner using available fuel statistics, then compared to ones from the sectoral approach, which requires 13 
additional socio-economic sectoral disaggregation of statistical data (e.g. IPCC 2006). The robustness of 14 
the estimates from the fuel-based approach is due to the fact that AD captures the source of carbon 15 
emissions within a system boundary well. For major sectors of FFCO2, such as energy production and 16 
traffic, the IPCC guideline suggests using the fuel statistics, which are often available for a country on an 17 
annual basis, and they are considered to be robust due to economic incentive (IPCC 2006). Therefore, 18 
annual emissions are often estimated by projecting the emission estimates for the most recent year using 19 
fuel statistical data (e.g. Myhre et al 2009, Oda et al 2018) with reasonably small estimation errors, 20 
regardless of the revisions to the statistical data (Friedlingstein et al 2020).  21 
   Recent studies (e.g. Le Quéré et al 2020a, Forster et al 2020, Liu et al 2020a, 2020b) employed 22 
innovative approaches to estimate daily emissions for the year 2020 and attempted to assess the impact of 23 
COVID-19 on human emissions. While there are differences among the methodologies and data used, 24 
those studies essentially extrapolated their reference emissions using unconventional non-fuel statistics 25 
AD, such as power plant operational data, economic indices, traffic congestion data and/or relevant 26 
indices that could indicate the traffic volume changes, and mobility data collected by tech companies, 27 
such as Apple Inc. and Google LLC, in order to estimate sectoral emission changes with a focus on the 28 
lockdown periods. Those studies have been the primary source for CO2 emission estimates under 29 
COVID-19, and have been used in a number of studies, including the recent United Nations (UN)’s 30 
Emission Gap Report (UNEP 2020) and the Global Carbon Balance report (Friedlingstein et al 2020). 31 
Also, several studies have used the near-real-time estimates for modeling applications (e.g. Zeng et al 32 
2020, Weir et al 2020) where COVID-19 impacts are examined using atmospheric observations in 33 
combination with atmospheric modeling.   34 
   While the near-real-time estimates were obtained in the same way as defined in eq. (1), the use of UAD 35 
and the emission information it aims to provide is beyond the scope of the IPCC guideline (annual 36 
country scale). Thus, the use of UAD should have been carefully evaluated, as suggested by the IPCC 37 
good practice guideline, since the validity of the use of UAD has not been assessed. Especially since the 38 
robustness of annual national emissions has been supported by the use of fuel data, the performance of 39 
UAD in the emission calculation at a time scale (daily) beyond what the guideline sets forth is the key for 40 
the robustness of their estimates. The use of UAD could open up a new path for providing near-real time 41 
emission estimates. However, such emission information should be provided with conservative 42 
uncertainty estimates, since the errors and uncertainties are expected to be larger than ones for our 43 
common FFCO2 estimates.  44 
    This study reports monthly CO2 emissions from the transportation (traffic) sector in Japan for the first 45 
six months of the year 2020, which includes the period of Japan’s state of emergency (7th of April - 27th of 46 
May, Prime Minister of Japan and His Cabinet 2020a, 2020b), and presents the impact of COVID-19 on 47 
the emissions using the 2019 emissions as a baseline. Our estimates are based on the fuel consumption 48 
data collected by a Japanese government agency and the common inventory calculation suggested by the 49 
IPCC guideline. We also examine the use of UAD for estimating CO2 emissions. We consider our 50 
estimates as the best estimate solely by the method and data we used, as discussed earlier, and thus use 51 
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them as a reference/truth to evaluate the performance of the UAD, such as Apple and Google data as well 1 
as traffic data, as an estimator for CO2 emission changes. We also assess the performance of Apple and 2 
Google data as an estimator of traffic count data and examine the assumption, commonly made in the 3 
recent studies, that CO2 emissions are proportional to traffic changes. We also compare our estimates to 4 
the recent near-real-time estimates in order to assess the accuracy and characterize/quantify possible 5 
errors and biases.   6 
 7 
 8 
2 Method 9 
 10 
2.1 Fuel-based emission calculation  11 
   We estimated monthly traffic CO2 emissions using fuel consumption data for the first six months of 12 
2020 and all of 2019 (total 18 months). We used the monthly fuel consumption data for automobile use 13 
collected by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) (MLIT 2021). The 14 
monthly fuel consumption data are reported for four fuel categories, such as gasoline, diesel, Liquified 15 
Propane Gas (LPG), and Liquified Natural Gas (LNG). Following the IPCC guideline (IPCC 2006), we 16 
calculated monthly traffic CO2 emissions as follows:  17 
 18 

!"#$$#%& = 	∑ [,/01! 	× 	!,!]!   --- (2) 19 
 20 
where Fuel is the amount of the fuel (fuel type a) consumed, and EFa is the emission factor for the fuel 21 
type a. We used country-specific EFs provided by the Ministry of the Environment, Japan (see values 22 
presented in Table S1 in Supplement Information). From a methodological point of view, our estimates 23 
can be considered to be the best estimates possible since they use the official fuel statistical data and 24 
country-specific EF values (Tier 2 emission estimates in the IPCC definition). Thus, our estimates serve 25 
as the truth in this study when other estimates are examined, as well as a reference to allow errors and 26 
uncertainties to be calculated in terms of deviations from our estimates.  27 
 28 
2.2. Unconventional, Activity Data (UAD)-based emission calculation 29 
   While the usage of the UAD in the recent studies, such as Le Quéré et al (2020a) and Liu et al (2020a), 30 
(2020b), are not exactly the same, the basic assumption in those studies is that changes in the activity 31 
levels are proportional to the emissions. The estimation can be done as follows:  32 
 33 

!"#$$#%&	(4) = 	6)*(4) 	×	!"#$   --- (3) 34 
 35 
The emissions in the recent studies are estimated by scaling the reference (or baseline) emission (Eref) 36 
using the relative change in UAD at time t. We obtained emission values by scaling our January fuel-37 
based emission estimate using monthly relative changes indicated by UAD, as shown in the eq. (3). We 38 
collected two UAD that have been used in the previous publications (e.g. Le Quéré et al 2020a, Forster et 39 
al 2020), such as Apple’s Mobility Trends Reports (Apple Inc. 2021) and Google’s COVID-19 40 
Community Mobility Reports (Google LLC 2021), as well as actual traffic count data.  41 
   Apple’s Mobility Trends Report (hereafter, Apple data) is based on data sent from users’ devices to the 42 
Maps app service. Apple data is published on a daily basis and reports daily changes in requests for 43 
directions on the Maps app by three transportation types (driving, transit, and walking) for several spatial 44 
levels, such as countries/regions, sub-regions and cities (Apple Inc. 2021). The values were normalized by 45 
the value on the day 13 of January 2020. We used values reported for driving in Japan. Day in the Apple 46 
data is defined as midnight-to-midnight, Pacific time. However, we used the values as reported without 47 
any adjustment. The daily values before the day 13 of January (baseline) were assumed to be the same as 48 
the baseline (value = 100, which means no changes from the baseline). The values for the 11th and 12th of 49 
May, which were missing, were set as an average of the values for the 10th and 13th of May. 50 
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   Google’s COVID-19 Community Mobility Reports (hereafter, Google data) are similar to the Apple 1 
data, but intend to show how people’s movements change compared to a baseline (Google LLC 2021). 2 
The baseline was defined as the median values for the corresponding day of the week, during 3rd of 3 
January to 6th of February 2020 (5-week period). The mobility trends are reported for six categories, such 4 
as grocery & pharmacy, parks, transit stations, retail & recreation, residential, and workplaces. Following 5 
Forster et al (2020), we used values reported for the transit stations category. We are aware that the 6 
Google data has been updated over the past year. Thus, the values used in this study might not be exactly 7 
the same as ones used in Forster et al (2020).  8 
     The traffic count data we used in this study were collected from a nation-wide automated system. The 9 
raw traffic measurement (count) data were being collected at approximately 39k locations (an average of 10 
our study period) at a 5-min interval and compiled by Japan’s National Police Agency. The data are 11 
provided through the Japan Road Traffic Information Center (JARTIC) (JARTIC 2021). We calculated 12 
the national monthly total traffic counts for the first six months of 2020 and the entire year of 2019 (total 13 
eighteen months). We then used the relative changes from January to scale our January fuel-based 14 
estimate. We also used traffic count data for two additional purposes in this study: (1) to evaluate the 15 
performance of Apple and Google data as a proxy for traffic count and (2) examine the performance of 16 
traffic data as an estimator of CO2 emissions. (see 2.3) 17 
   We also collected the recent near-real time estimates made by Le Quéré et al (2020a) and Liu et al 18 
(2020a) and included in the emission comparison/evaluation in this study. 19 
 20 
2.3. Error and Uncertainty assessment 21 
   The percent uncertainty U associated with the emission estimate from eq. (1) can be calculated as  22 
 23 

6 =	76%&' + 6()'   --- (4) 24 
 25 
where UAD is the percent uncertainty for AD and UEF is the percent uncertainty for the EF (IPCC 2006). 26 
Using the reported uncertainty estimates for the fuel data and EF (5%, 2 sigma for both), the uncertainty 27 
for our emission estimates is calculated as 7% (2 σ).  28 
   Similarly, the uncertainty of the UAD estimates could be calculated in the way as seen in eq. (4) as a 29 
combination of the percent uncertainties by replacing the UEF with the uncertainty estimates of the 30 
reference emissions URef.  31 
 32 

6 =	96*%&' + 6+#$'   --- (5) 33 

 34 
URef could be assessed using the uncertainty estimates provided for the original estimates. If URef is 35 
obtained by disaggregating original estimates in time or space, one might need to add the associated 36 
disaggregation uncertainty and/or error (Oda et al 2015, 2019). As described in 2.2, our UAD-based 37 
estimates share ERef, which is our January fuel-based estimate, and thus, we focus on the assessment of 38 
UUAD. Another reason that we focus on the assessment of UUAD is because ERef in eq (3) is often subject to 39 
systematic errors due to revisions to the underlying statistical data (Marland et al 2009, Andres et al 40 
2014) and/or errors in them (Guan et al 2012). ERef will be updated when the new statistical data become 41 
available, while UAD is likely to remain the same. Such systematic errors are not often explicitly 42 
included in the common uncertainty.  An example of an exception is the assessment done by Andres et al 43 
(2014) for the global total emission estimates. The UUAD is often not directly measurable and any 44 
alternative data to serve as truth does not exist; the nature of proxy makes it more difficult to evaluate 45 
(Oda et al 2019). However, in this study, we could attempt to evaluate UUAD by comparing UAD (Apple 46 
and Google data) to traffic data as the UAD was used as a proxy for traffic under the assumption that 47 
traffic volume is proportional to emission changes. We acknowledge that our assessment is not able to 48 
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separate uncertainties in AD and errors due to the performance of AD, thus our estimate of UAD should 1 
include both.   2 
   We also identify uncertainties that are not captured in eq. (5), namely uncertainties associated with the 3 
emission calculation (or model). Such uncertainties include (1) conceptualization uncertainty and (2) 4 
model uncertainty (IPCC 2006). Following the suggestions from the IPCC guideline, we will examine 5 
those two uncertainties, which are often poorly characterized or may not be characterized at all, as seen in 6 
the recent near-real time estimates. We should be able to approach the uncertainties using our fuel-based 7 
estimates as a reference in combination with the traffic data. For example, the conceptualization 8 
uncertainty could be assessed by comparing the traffic-based estimates to the fuel-based estimates and the 9 
uncertainty should show up as the differences. The traffic-based estimates can be viewed as the case 10 
where UAD is the perfect estimator of traffic data. The model uncertainty due to the incomplete model 11 
representation could be examined by comparing UAD to traffic data, as described earlier. Errors and 12 
uncertainties associated with the mismatch of the system boundary in the calculation and spatial and 13 
temporal representativeness of UAD are difficult to clearly define, but should be captured in this 14 
assessment.  15 
  The sources of errors and uncertainties discussed here are challenging to disentangle and assess and 16 
provide statistically meaningful error and uncertainty estimates individually. This study attempts to assess 17 
them where possible. We also acknowledge there is no perfect single metric to show these degrees of 18 
errors and uncertainties, and thus we calculate and provide multiple metrics. The set of assessments we 19 
deliver in this study essentially corresponds to the QA/QC and Verification activities suggested by the 20 
IPCC guideline as a good practice (IPCC 2006). The IPCC guideline suggests that these assessment 21 
activities could happen not only after obtaining the emissions, but also during the emission development 22 
process. By doing so, one could obtain robust estimates by capturing error/uncertainty sources as much as 23 
possible and potentially mitigate them where possible.  24 
 25 
 26 
3 Results 27 
 28 
Traffic emissions in Japan during the first six month of the year 2020 29 
   Our monthly emission estimates are shown in Figure 1 (2020 as blue solid line with dots, and 2019 30 
dashed grey line, the calculated emission values are shown in Table S2 in Supplement Information). A 31 
summary of the emission comparisons is shown in Table 1. Our fuel-based calculation shows that the 32 
total traffic CO2 emission for the first six months of 2020 was 80.6 MtCO2, which was 11.4% lower than 33 
the total emissions from the same six-month period in 2019 (90.9 MtCO2). While the 2020 emissions 34 
started at the same level as the 2019 January emission (the difference was only 1.5%), the 2020 emissions 35 
started deviating from the 2019 reference values in March, and showed significant decline in April and 36 
May when Japan’s state of emergency was in place (7th of April -6th of May, and then extended to 27th of 37 
May). Japan’s state of emergency did not impose a physical lockdown for identified severe areas (seven 38 
prefectures), and the core of Japan’s approach has been to prevent the spread of the pandemic by avoiding 39 
the “Three Cs: Closed spaces, Crowded places, and Close-contact settings” (Government of Japan 2020) 40 
with a target of reducing the contact by 70-80% (Prime Minster of Japan and His Cabinet 2020c). Japan’s 41 
government asked their citizens and businesses to reduce the activity level, while maintaining the 42 
necessary businesses thorough citizens’ efforts rather than forcing them by penalty or fines (Prime 43 
Minster of Japan and His Cabinet 2020c). Essentially, the measures to decrease the spread of the virus 44 
were voluntary. Thus, Japan’s approach to the COVID-19 pandemic has been considered to be a soft 45 
approach compared to ones taken in many other countries. Its performance has been analyzed and 46 
discussed (e.g. Normile 2020, Feder 2020, Wingfiel-Hayes 2020, Gordon 2020, Nishimura 2020). In light 47 
of the “soft” approach, the emission reduction confirms that the citizens and businesses reduced the level 48 
of their economic activity in response to the request under the state of emergency. The mean emission 49 
reduction during the two months was 23.8% relative to the 2019 level.  50 
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   So how well was the emission reduction captured by the UAD-based approaches? Figure 1 also 1 
compares several values derived using UAD, such as traffic count (green), Apple data (pink), and Google 2 
data (dark green) and evaluates the performance of UAD for estimating emissions. In the figure, the errors 3 
due to the use of UAD are manifested as a deviation from our fuel-based approach. Table 1 shows several 4 
calculated metrics, such as R2, bias, and mean absolute error (MAE). Here, the traffic-based emissions 5 
also can help us to examine the performance of Apple and Google data as a proxy for traffic volume or 6 
estimator of CO2 emissions. Apple and Google data are used in the recent publications and thus this 7 
comparison should allow us to characterize the recent estimates in terms of the use of UAD, while our 8 
calculations do not fully replicate their daily values precisely. As described in the Method section, all the 9 
monthly values were obtained by scaling the same January fuel-based emission estimate. Thus, we can 10 
focus solely on the relative changes estimated by different UADs.   11 
   We confirmed that all the UAD indicated the decrease in the activity, thus the resulting emissions 12 
decreased towards the period of the state of emergency and started recovering in June. However, our 13 
comparison shows the emission seasonalities derived from different UADs can vary by a large degree (R2 14 
= 0.54 - 0.93; Bias = -11.2 - 11.0%; MAE = 10.6 - 12.7%, see Table 1). For example, the traffic count 15 
data and Apple data seem to be systematically overestimating the emissions in comparison to our fuel-16 
based estimates (reference). Both cases show an increase in February, especially in Apple data. The traffic 17 
volume in January is typically lower than other months, due to the significantly lower traffic volume 18 
during the New Year time in Japan (23% lower than the day 13 reference level in 2020). We speculate 19 
that the emission increase from January to February could be partially explained by the low traffic volume 20 
in January, while the traffic volume should have returned to normal level by the reference day for the 21 
Apple (13th of January). Also, as noted by Apple, Inc. (2021), the relative volume increase since January 22 
13th is consistent with their normal, seasonal usage of the Apple Maps app in many countries/regions, sub-23 
regions, and cities. While we are unable to identify the reason, these could show up as a significant 24 
overestimation in February and March, which is a good characteristic as a proxy for traffic (R2 = 0.75, see 25 
Table S2 in Supplemental Information), but not for CO2 (R2 = 0.54).  26 
   The emission seasonality from the Google data is closer to our fuel estimates (R2 = 0.93) than that from 27 
the Apple data (R2 = 0.54), and did not have the overestimation seen in the traffic-based estimates and 28 
Apple data-based estimates in February and correctly indicated the start of the emission decline in March, 29 
but significantly overestimated the emission reduction (by 9.9%). Just by looking at the values reported 30 
for the other five categories (see Figure S2 in Supplemental Information), the “workplaces” or “retail and 31 
recreation,” or the average of them could be an excellent estimator of CO2. On the other hand, “grocery 32 
and pharmacy” and “parks” seem to be in better agreement with the monthly traffic changes. The 33 
adequate information to understand and explain this is not available for evaluation due to the nature of the 34 
data provided (privacy policy), this shows a challenge of the use of UAD as a proxy, and the need for the 35 
evaluation of their performance. While the choice of “transit stations” for the CO2 estimation does make 36 
sense, the “workplaces” might not be the best estimator of traffic. However, it was not a big issue and the 37 
performance as an estimator for CO2 is more concerning.  38 
   Figure 1 also compares our fuel-based estimates to the recent near-real-time estimates, such as Le Quéré 39 
et al (2020a) (median values as solid, high values as dotted, and low values as dashed) and Liu et al 40 
(2020a) or the Carbon Monitor (Liu et al 2020b). We found that Carbon Monitor underestimated the 41 
emission reduction by 9.1% and Le Quéré et al (2020a) study overestimated the emission reduction by 42 
7.9% (median case) during the period of Japan’s state of emergency. The Le Quéré et al (2020) estimates 43 
(also see daily estimates shown in Figure S3 in Supplemental Information) show very different monthly 44 
changes from the Apple data case we created. We speculate that the Confinement Index (CI) function 45 
used in Le Quéré et al (2020a) must have had a strong impact in their near-real-time calculation. The CI 46 
was defined based on the policy implemented, rather than quantitative information (Le Quéré et al 47 
2020a). Emission estimations based on the information from expert judgement further makes the error 48 
and uncertainty assessment challenging. Interestingly, the Carbon Monitor emission change is a 49 
significantly good agreement with the one based on Traffic (R2= 0.95), rather than with our fuel-based 50 
estimates. The regressed sinusoidal function model, which was calibrated to the Paris data (Liu et al 51 
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2020b), seems to be a good estimator of traffic change in Japan at the national level, but not so much for 1 
CO2 we had hoped.   2 
 3 
 4 
 5 
 6 

 

 

Figure 1. The year 2020 monthly traffic CO2 emission estimates in Japan. The blue line indicates emission 
estimates based on monthly fuel consumption data, which is considered to be the best monthly estimate solely 
by the method and data used. The error bars indicate the two sigma uncertainty range (5%). The grey dashed 
line indicates the 2019 monthly fuel-based emissions as a reference to show the emission reduction level in 
2020, including the period of Japan’s state of emergency (7th April - 25th May 2020). The green line indicates 
values obtained by scaling the January fuel-based estimate using monthly traffic volume changes relative to 
January. The pink and dark green lines are obtained in the same way using the Apple Mobility data (driving) and 
the Google COVID-19 report (transit stations), which served as the activity data (AD) examined and used in Le 
Quéré et al (2020a) and Forster et al (2020). The yellow line indicates monthly estimates taken from the Carbon 
Monitor (https://carbonmonitor.org/, Liu et al 2020b). The three red lines indicate the estimates made by Le 
Quéré et al (2020a) as denoted as LQ2020. The solid line shows the median values, and the dashed and dotted 
lines show the high case and low case respectively. All the emission values are given in the unit of 
MtCO2/month. To eliminate the impact of the days in a month, emission values are expressed as MtCO2/30days, 
where one month is uniformly represented by 30 days regardless of actual days of the month. Monthly total 
emission values are shown in Figure S1 and also listed in Table S2.  

 7 
 8 
 9 
 10 
 11 
 12 
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Table 1. A summary of the metrics to show the performance of those estimates. R2, bias (in %) and Mean Absolute 1 
Error (MAE, in %) are presented to give an idea of the performance of the existing estimates. Bias and MAE are 2 
calculated using the Fuel-based estimates (best estimates) as reference. The estimates of the total emission 3 
reductions are also calculated for different estimates (also in %). The CO2 estimates with an asterisk are adjusted 4 
using our fuel-based January emission estimates. The numbers in the parenthesis are biases (in %). The emission 5 
values and other metrics mentioned in the main text are listed in Table S2.  6 
 7 

 
CO2 estimates  

 
Fuel 
(Ref) 

UAD-based estimates Near-real time estimates  

Traffic Apple Google LQ2020* 
(Median) 

LQ2020* 
(Low) 

LQ2020* 
(High) 

Carbon 
Monitor* 

R2 - 0.74 0.54 0.93 0.79 0.65 0.84 0.88 

Bias - 10.0 11.0 -11.2 -3.4 4.0 -11.4 6.6 

MAE - 10.6 11.4 12.7 4.7 9.6 11.9 7.1 

Total emission  
reduction  

relative to 2019 

-11.4 -2.5 
(8.9) 

-1.7 
(9.7) 

-21.3 
(-9.9) 

-14.4 
(-3.0) 

-7.8 
(3.6) 

-21.5 
(-10.1) 

-5.5 
(5.9) 

Mean emission  
reduction during  

Apr & May 

-23.8 -11.2 
(12.6) 

-23.7 
(0.1) 

-43.4 
(-19.6) 

-31.7 
(-7.9) 

-25.6 
(-1.8) 

 

-37.8 
(-14.0) 

-14.7 
(9.1) 

 8 
 9 
Traffic emissions in Japan in the year 2019 10 
   We further examined errors and uncertainties in the traffic-based estimates and, more fundamentally, 11 
the basic assumption by looking at the values in 2019. Figure 2 shows our fuel-based CO2 emission 12 
estimates for 2019. The 2019 comparison further demonstrates the challenge in the use of traffic data for 13 
estimating CO2 emissions. As also shown in Figure 1, the traffic-based estimates are also systematically 14 
higher than the fuel-based estimates in 2019, while the seasonal patterns do have similarities in noticeable 15 
peaks, such as ones corresponding to the end of Fiscal year (March, i.e. peak season for moving), summer 16 
vacations (around July-August), and snow season (December). However, the correlation of the two are 17 
not so high. This could be attributable to the lack of the consideration of car/fuel types in the traffic-based 18 
approach, sampling bias in traffic data, and the lack of the regional specificities/differences. We see this 19 
as an error associated with the methodology. Because of the systematic bias, the emission reduction 20 
estimations solely based on the traffic-based approach, which fortunately none of the published studies 21 
attempted, could be further biased by 7.2% (18.6% emission reduction).  22 
   We also looked at the Carbon Monitor estimates, which showed a very good correlation with the traffic-23 
based approach in 2020. In fact, the Carbon Monitor emissions in 2019 looked very different from traffic-24 
based estimates this time. Unlike the 2020 estimates, the 2019 emission calculations in Carbon Monitor 25 
begins with annual sectoral total emissions (Liu et al 2020a, 2020b). In fact, their traffic emissions are 26 
scaled using a portion of the total 2019 emissions. Thus, these emissions are essentially constrained by 27 
the total and thus these emissions should be discussed separately from the 2020 estimates. Since the 28 
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emissions are disaggregated from a constrained sectoral total, the better agreement with our fuel-based 1 
estimates, compared to the case in 2020, was not surprising. Emissions differences among different 2 
estimates for established countries, often including Japan, are considered to be small and should agree 3 
very well (e.g. Andres et al 2012).  4 
   We also revealed that the Carbon Monitor estimates do not seem to capture the emission seasonality 5 
shown by our fuel-based estimates, even without the impact of COVID-19. This could be overlooked if 6 
monthly emissions are presented as monthly total emissions (see Figure S4 in Supplement Information). 7 
In that presentation, the month-to-month emission variations are largely explained by the different 8 
numbers of the days in a month and thus it would yield a higher correlation. The overlooked emission 9 
variations were small compared to the magnitude of monthly emissions due to the use of the 2019 sectoral 10 
total emission as a constraint. However, the systematic biases at monthly levels were likely to be aliased 11 
to the daily estimates via temporal downscaling, while errors in downscaled emissions by themselves can 12 
be expected to be much larger at higher temporal frequencies.  13 
 14 
 15 
 16 

 

Figure 2. Monthly traffic CO2 emission estimates in Japan for the year 2019 (non-COVID year). The blue line 
indicates the estimates based on monthly fuel consumption data, which should be considered to be the best 
estimate, and thus serve as a reference here. The green line indicates values obtained by scaling the January 
fuel-based estimate using monthly traffic volume changes relative to January. The yellow solid line indicates 
2019 monthly estimates taken from Liu et al (2020b) or the Carbon Monitor (https://carbonmonitor.org/). 
Unlike their 2020 estimates, their 2019 estimates are based on the disaggregation of an annual sectoral 
estimate. The yellow dashed line indicates values obtained by scaling the Carbon Monitor estimates using the 
January fuel-based estimates in order to focus on the month-to-month emission variations from different 
estimates. Values are given in the unit of MtCO2/month. To eliminate the impact of the days in a month, 
emission values are expressed as MtCO2/30days. The monthly total emission values are shown in Figure S4 and 
also listed in Table S3 (the year 2020 emission values are in Table S2).    

 17 
 18 
 19 
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4 Discussion 1 
 2 
     This study only looked at the traffic emissions for Japan, which is the fifth-largest emitting country in 3 
the world (3.2% of the world total in 2018 by IEA (2020)). The 2018 emission share of the road transport 4 
sector (IPCC sector code: 1A3b) was 17.0% (GIO and MOE 2020), which is less dominant compared to 5 
the energy industries sector (1A1, 43.9%) and the manufacturing industries and construction sector (1A2, 6 
24.4%). However, given the fact that traffic emissions in the recent studies are modeled systematically in 7 
a sort of generic way for most of the countries, the traffic emission estimates for other countries could be 8 
biased in the same or similar way as shown in this study for Japan. A similar error/assessment to emission 9 
estimates for other countries needs to be done in order to ensure the reasonable performance of the UAD-10 
based emission estimation.   11 
   The successful use of UAD might open up a path for expanding our ability to model human activities 12 
and the impact on the environment. Such ability would be critical for emission monitoring towards the 13 
Paris Agreement goal beyond the COVID-19 analysis. However, our results highlight the challenges and 14 
difficulties in the use of non-science data, and the importance of thorough error and uncertainty 15 
assessment. In general, the evaluation of the performance of UAD could be extremely challenging. In 16 
addition, the lack of details further prevents us from examining and understanding the non-scientific data, 17 
as the data tech companies collect also needs to be protected in a proper way. This challenge remains 18 
even though companies might be able to bring in more data to mitigate the errors associated with spatial 19 
and temporal representation.  20 
   Nevertheless, we should keep exploring the use of UAD with the hope of providing more accurate near-21 
real-time estimates. In fact, we mostly repurpose non-science data that are collected for some other 22 
purpose for emission calculation. We have dealt with such types of data and accumulated the knowledge. 23 
That is where the IPCC guideline comes in. While the IPCC’s original scope was annual country GHG 24 
estimates, the good practice guidance can still provide a good set of guidelines to allow us to develop 25 
emission estimations. The identification of errors seems to be one of the key steps suggested by the IPCC 26 
in the use of UAD. As mentioned earlier, since the new UAD approaches do not share the basic 27 
assumptions for the emission estimation with common estimates, it is critical to examine those sources of 28 
uncertainties and reduce or mitigate them to make the final estimates as error/uncertainty free as possible.  29 
  The limitations actually further highlight the importance of the use of atmospheric observation data for 30 
evaluating emission information. Our comparison-based emission information evaluation is likely not 31 
applicable, mainly due to the lack of data at subnational levels and beyond monthly levels. In fact, several 32 
studies have included the recent near-real time emission estimates in model simulations and examine the 33 
impact of the emission changes using atmospheric observations (e.g. Keller et al 2020, Weir et al 2020, 34 
Zeng et al 2020). The use of atmospheric observations also allows us to detect systematic biases and 35 
possibly assure the accuracy of emission estimates, which is more critical under the Paris Agreement 36 
timeline (e.g. Oda et al 2019). The importance of the use of atmospheric observations in support of the 37 
successful implementation of UNFCCC has been further recognized over the recent years (e.g. IPCC 38 
2019; Matsunaga and Maksyutov 2018). While UAD seems to be good at the timing of changes, the 39 
systematic biases are problematic. Such biases will be aliased into subsequent analyses and could hamper 40 
the assessment of climate mitigation efforts.     41 
 42 
 43 
5 Conclusion 44 
 45 
   This study provides estimates of the impact of the COVID-19 pandemic on CO2 emissions from traffic 46 
in Japan. Our estimates, which are based on a formal inventory calculation approach, show that the traffic 47 
emission in Japan during Japan’s state of emergency (April-May) was reduced by 23.8% compared to the 48 
emission level in the previous year, despite Japan’s soft approach in response to COVID-19.  49 
     We also evaluated potential errors of the UAD used in the recent estimates. We found that the basic 50 
assumption made in the recent studies, which is that traffic emissions are proportional to changes in 51 
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traffic (or proxy for traffic), is not supported well-enough to provide emission estimates with an adequate 1 
level of accuracy for use in subsequent research analyses and/or policy implication. The performance of 2 
the activity data as a proxy for traffic was not sufficient, and thus is the significant source of biases and 3 
uncertainties in the recent emission estimates. More fundamentally, the relative traffic volume change 4 
does not explain seasonal emission changes, even without the impact of COVID-19. Our comparison 5 
highlighted the challenges and difficulties in use of limited UAD for modeling human activities and their 6 
impact on the environment beyond the COVID-19 emission impact analysis.  7 
   The successful use of UAD might open up a path for expanding our ability to model human activities 8 
and estimate the resulting emissions beyond the conventional annual country scale. The established IPCC 9 
guideline seems to be able to keep providing guidance on the compilation of the emissions even beyond 10 
its original scope. It is worth noting that following the IPCC guideline does not automatically support the 11 
validity and/or accuracy of the reported emission information. The establishment of the methods should 12 
involve careful QA/QC and uncertainty analysis, as suggested by the IPCC guideline. This study provided 13 
a set of evaluations, such as QA/QC and uncertainty assessment activities, that are expected to be done in 14 
the IPCC-compliant emission development process. While this study can contribute to achieving better 15 
emission estimates, the implementation of QA/QC and uncertainty assessment activities still does not 16 
fully assure the accuracy of the reported emission information. That also suggests that the importance of 17 
the use of atmospheric measurements will be important to assure the sufficient accuracy of the reported 18 
emission estimates, especially at spatial and temporal scales where no data for evaluation are available.  19 
   We plan to continue to update our traffic emission estimates and assess the impact of COVID-19 on 20 
human emissions. We also plan to expand our emission estimation and analysis to other economic sectors, 21 
with a focus on the impact of the second state of emergency just announced early this year (2021). In our 22 
future work, we will explore better ways to use the UAD to inform emissions changes in responses to 23 
human activity changes beyond national scale and possibly at human scales.   24 
 25 
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Supplement Information  18 
 19 
Table S1. Emission factors (EFs) used in the CO2 calculation in this study. The country-specific EFs for gasoline, 20 
diesel, Liquified Propane Gas (LPG), and Liquified Natural Gas (LNG) are taken from the version 1 of the GHG total 21 
emission calculation guideline (in Japanese) published by the Ministry of the Environment (MOE) Japan (see Table 22 
5,  https://www.env.go.jp/policy/local_keikaku/data/guideline.pdf, last access: 2nd February, 2020).  23 
 24 

Fuel type Gasoline Diesel LPG LNG 

Emission factor (EF) 2.32 kg-CO2/L 2.58 kg-CO2/L 3.00 kg-CO2/kg 2.16 kg-CO2/m3 

 25 
 26 
 27 
 28 



 15 

 

Figure S1. The same as Figure 1 in the main text, except the values are not adjusted by the number of the days 
in a month. The month-to-month variations shown in the figure include changes/differences due to the 
difference in the number of the days in a month.   

 1 
 2 
Table S2. The 2020 emission values used in this study, statistics and metrics calculated. Monthly emissions are 3 
given in the unit of MtCO2/month. The monthly values listed here are total monthly emissions, and are not 4 
adjusted by the numbers of days in a month. The bias/difference values are given in %. Mean Absolute Error (MAE) 5 
values are given in %. Values in the R2 w fuel row are correlation values with fuel-based emission estimates (this 6 
study), which should serve as a measure of the accuracy of other estimates. Values in the R2 w traffic row are 7 
correlation values calculated with traffic-based emission estimates, which should provide a measure for the UAD 8 
performance as a proxy for traffic.  9 
 10 

 
  

Fuel-based estimates UAD-based estimates Near-real time estimates  

Fuel  
2020  

Fuel  
2019 

Traffic Apple Google LQ2020* 
(Median) 

LQ2020* 
(Low) 

LQ2020* 
(High) 

Carbon 
Monitor* 

Jan 15.55 15.78 15.55 15.55 15.55 15.55 15.55 15.55 15.55 

Feb 14.4 13.92 15.00 17.69 14.59 14.02 15.46 12.59 14.61 

Mar 13.45 15.76 15.60 17.86 12.56 13.48 14.7 11.82 14.86 

Apr 11.86 15.06 13.44 11.59 8.83 9.15 9.84 8.46 12.85 
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May 11.37 15.41 13.61 11.65 8.43 11.66 12.83 10.48 13.15 

Jun 13.95 15.00 15.43 15.06 11.6 13.96 15.45 12.47 14.88 

Sum 80.58 90.93 88.63 89.4 71.56 77.82 83.83 71.37 85.9 

Total % 
diff. from 
Fuel 2020 

- 12.9 10.0 11.0 -11.2 -3.4 4.0 -11.4 6.6 

MAE w/ 
Fuel 2020 

- 15.3 10.6 11.4 12.7 4.7 9.6 11.9 7.1 

R2 w/ Fuel 
2020 

- 0.003 0.74 0.54 0.93 0.79 0.65 0.84 0.88 

R2 w/ 
Traffic 

0.74 0.02 - 0.75 0.68 0.80 0.79 0.67 0.95 

MAE w/ 
Fuel 2019 

12.3 - 5.9 14.9 22.6 14.5 12.3 21.4 7.0 

 1 
 2 

 

Figure S2. Monthly values obtained using six activity categories indicated in the Google Mobility Reports (Google 
LLC, 2021). Dark green with circles indicates the values based on the transit stations values, which is shown in 
Figure 1. Our best estimate (fuel-based) for the 2020 (solid blue line with circles) and the traffic-based emission 
values (solid light green with circles) are also shown for comparison along with five other Google categories.  
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 1 

 

Figure S3. Daily near-real estimates for Japan, as calculated by Le Quéré et al (2020a). The solid line shows the 
median values, and the dashed and dotted lines show the high case and low case respectively. Emission values 
have been updated, and thus values used here might not be exactly the same as ones published in Le Quéré et 
al (2020a). Emission estimates were obtained from the Integrated Carbon Observation System (ICOS) website 
(https://www.icos-cp.eu/gcp-covid19, Le Quéré et al 2020b) (last access: 6th of January 2021).  

 2 

 

Figure S4. The same as figure 2 in the main text, excepting the values are not seasonally adjudged.  The month-
to-month variations shown in the figure include changes due to the number of days in a month (i.e. January has 
more days than February).  
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 2 
Table S3. The 2019 emission values used in Figure S4. Values are given in the unit of MtCO2. These values are the 3 
monthly total emissions. Values are not adjusted by the number of days in a month. The month-to-month 4 
differences are thus largely explained by the numbers of days in a month, as also seen in Figure S4. Note the sums 5 
for the Carbon Monitor and the adjusted Carbon Monitor (Carbon Monitor*) are the sum of 11 months.  6 
 7 

 Fuel Traffic 
Carbon 
Monitor 

Carbon 
Monitor* 

Jan 15.78 15.78 16.23 15.78 

Feb 13.92 14.87 14.65 14.24 

Mar 15.76 17.06 16.20 15.75 

Apr 15.06 16.54 15.76 15.32 

May 15.41 16.71 16.32 15.86 

Jun 15.00 16.35 15.70 15.26 

Jul 15.60 17.27 16.28 15.83 

Aug 16.01 16.94 16.30 15.84 

Sep 15.32 16.22 15.70 15.27 

Oct 15.64 16.31 16.31 15.85 

Nov 15.00 16.63 15.88 15.43 

Dec 15.97 17.11 - - 

Sum 184.47 197.80 175.32 170.42 

 8 
 9 
Table S4. Some statistics calculated from different 2019 emission estimates/values. December values for the Fuel 10 
and Traffic cases were excluded in the calculation of the metrics listed in the table. The 11 months total emissions 11 
are given in the unit of MtCO2. The annual bias (Bias) and Mean Absolute Error (MAE) values are given in %. The 12 
values shown in the R2* row are the values calculated after the number of days was adjusted to 30 days (which are 13 
shown in Figure 2 in the main text).  14 
 15 

 Fuel Traffic 
Carbon 
Monitor 

Carbon 
Monitor* 

11 mon. 
total  

168.51 181.69 175.32 170.42 
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Bias in % - 7.2 4.0 1.1 

MAE in % - 7.3 4.1 1.4 

R2 - 0.53 0.88 0.88 

R2* - 0.0006 0.05 0.05 

 1 
 2 


