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Abstract

This study investigates the mechanisms by which small-scale turbulence and cloud physics determine the organization of large-

scale convection in radiative-convective equilibrium (RCE), an idealization of the tropical atmosphere. Under uniform forcings

similar to typical tropical conditions, the atmosphere in RCE might spontaneously separate into dry and moist regions on

scales of 100-1000 km, with convective clouds aggregating into a cluster in the latter. This phenomenon is known as convective

self-aggregation. Herein, we demonstrate that subtle changes in assumptions related to cloud physics and turbulence on scales

of ˜1 km can dictate the emergence or suppression of convective self-aggregation, resulting from a bifurcation of the dynamical

system. The bifurcation occurs when a small dry patch forms in the domain and is sustained because it contributes to negative

effective diffusivity of the circulation. Cloud-radiation feedbacks and turbulence circulation interactions govern the formation

of such dry patches, thereby modulating the bifurcation. This sensitive dependence on subgrid process models might be a

fundamental barrier to climate predictability in light of inherent uncertainties in microscale processes. Because without the

capability to include exact representations of those processes in climate models, slight differences in the different approximations

used by modelers can lead to qualitative changes in climate predictions, at least for some processes.
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Key Points:6

• Convective self-aggregation in the radiative-convective equilibrium exhibits nonlinear depen-7

dence on cloud and turbulence parameterizations.8

• Its emergence or suppression is governed by a bifurcation of the dynamical system, which is9

sensitive to subgrid processes in the gray zone.10

• Bifurcation mechanisms might be barriers to climate predictability due to inherent uncertain-11

ties in cloud and turbulence parameterizations.12
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Abstract13

This study investigates the mechanisms by which small-scale turbulence and cloud physics determine14

the organization of large-scale convection in radiative-convective equilibrium (RCE), an idealiza-15

tion of the tropical atmosphere. Under uniform forcings similar to typical tropical conditions, the16

atmosphere in RCE might spontaneously separate into dry and moist regions on scales of 100-100017

km, with convective clouds aggregating into a cluster in the latter. This phenomenon is known18

as convective self-aggregation. Herein, we demonstrate that subtle changes in assumptions related19

to cloud physics and turbulence on scales of ≤1 km can dictate the emergence or suppression of20

convective self-aggregation, resulting from a bifurcation of the dynamical system. The bifurcation21

occurs when a small dry patch forms in the domain and is sustained because it contributes to negative22

effective diffusivity of the circulation. Cloud-radiation feedbacks and turbulence circulation interac-23

tions govern the formation of such dry patches, thereby modulating the bifurcation. This sensitive24

dependence on subgrid process models might be a fundamental barrier to climate predictability in25

light of inherent uncertainties in microscale processes. Because without the capability to include26

exact representations of those processes in climate models, slight differences in the different approx-27

imations used by modelers can lead to qualitative changes in climate predictions, at least for some28

processes.29

Plain Language Summary30

The tropical atmosphere may self-organize into well-separated moist and dry regions, with31

clustered clouds and rain in the former and clear-sky and dry air in the latter. This phenomenon32

is called convective self-aggregation and could dramatically impact tropical weather and climate by33

changing rainfall patterns and clouds distribution. However, we found that in an advanced cloud-34

resolving model, the atmosphere may either stay in a homogeneous state or exhibit self-aggregation,35

depending on how clouds and turbulence are represented. All physical models we chose are state-of-36

the-art physical models, yet the equilibrium state of the atmosphere is susceptible to subtle details of37

the cloud and turbulence models. This sensitivity to cloud and turbulence representations may pose38

another kind of “butterfly effect”. Here, instead of facing uncertainties in initial conditions, what can39

potentially lead to qualitative, dramatic differences in predictions are the relatively small uncertainties40

in the physical models of cloud and turbulence. To the extent that our cloud and turbulence models41

can only be imperfect approximations and therefore have inherent uncertainties, the quest to reduce42

the disagreement between different climate models may eventually meet fundamental barriers.43

1 Introduction44

Thanks to the advances in computing power, modern numerical weather prediction (NWP) has45

achieved regional resolutions of ∼1 km (Lean et al., 2008; Seity et al., 2011; Raynaud & Bouttier,46

2017). Global simulations at kilometer-scale resolutions are also actively achieved by the modeling47

community (Wedi et al., 2020). However, grid spacings of such sizes also inhibit weather and48

climate models according to phenomena, such as turbulence in the gray zone (also known as terra49

incognita). The gray zone refers to situations in which themodel mesh cannot fully resolve turbulence50

and in which turbulence cannot be assumed to be mostly unresolved and in a quasi-equilibrium state51

(Wyngaard, 2004; Chow et al., 2019). Since such assumptions form the basis of traditional turbulence52

models in large-eddy simulations (LES) and NWPmodels, both LES-type and NWP-type turbulence53

models may underperform in the gray zone.54

Another challenge facing modern weather and climate models is the representation of mi-55

croscale cloud physics (Morrison et al., 2020). Kilometer-scale grid spacings are far from sufficient56

to resolve cloud particles per se; however, they can partially resolve cloud cells, at least for deep57

convection. In such convection-permitting simulations (CPM), turbulent motions and cloud droplets58

are expected to exhibit more direct interactions; thus, cloud physics could have a significant impact59

on the simulated weather system (Morrison et al., 2011; Bryan & Morrison, 2012; Adams-Selin60

et al., 2013). For this reason, more sophisticated cloud physics schemes have been implemented61

in recent CPM systems (Benjamin et al., 2016; Milbrandt et al., 2016). Yet, due to uncertainties62

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

in microphysical process rates, especially those of ice phase processes, further research into cloud63

microphysics is required (Morrison et al., 2020).64

In this study, we investigate the dependence of convection organization in CPM simulations65

of radiative-convective equilibrium (RCE). RCE is a widely accepted idealization for the tropical66

atmosphere; indeed, its use can be traced back to an early single-column model study by Manabe67

and Strickler in 1964 (Manabe & Strickler, 1964). Modern RCE studies have used CPMs as a tool68

to evaluate an extensive list of tropical dynamics problems, such as the hydrological cycle (Romps,69

2011), tropical cyclogenesis (Wing et al., 2016), atmospheric boundary layer (D. Yang, 2018), and70

others (Wing et al., 2018).71

An interesting phenomenon in CPM simulations of RCE is that with uniform incoming solar72

radiation and sea surface temperature (SST) as boundary conditions, the simulation domain can73

sometimes exhibit a nonhomogeneous distribution of convective clouds. This process is referred to as74

convection self-aggregation, in which anomalously dry regions appear and convection spontaneously75

organizes into a single cluster (Bretherton et al., 2005). Self-aggregation in RCE is generally76

understood as the result of cloud-radiation interactions and surface enthalpy flux feedback (Bretherton77

et al., 2005; Emanuel et al., 2014; Beucler & Cronin, 2016). However, some authors have suggested78

that without radiation or surface enthalpy flux feedbacks, self-aggregation can still occur due to the79

effects of latent heating in the generation of available potential energy (D. Yang, 2019).80

Here, we use RCE to explore the impact of turbulence models and cloud microphysics on the81

simulation of convection in the gray zone. Two state-of-the-art cloud microphysics schemes and two82

classic turbulence models are utilized in Cloud Model 1 (CM1) (Bryan & Fritsch, 2002) to conduct83

four experiments with a 2×2 factorial design. We find that there is no definite answer with regard84

to which microphysics or turbulence scheme favors convection self-aggregation. Instead, turbulence85

(microphysics) schemes can either support or suppress the development of self-aggregation, depend-86

ing on with which microphysics (turbulence) scheme it is combined. We demonstrate that distinct87

behavior in simulations reflects a bifurcation of the underlying dynamical system. Homogeneous88

and clustered cloud distributions indicate different equilibrium states of the RCE, the latter of which89

forms and becomes accessible as the parameters of the dynamical system vary. Although cloud90

processes and turbulence are microscale phenomena, they modulate the macroscale parameters of91

the dynamical system of the atmosphere, thereby governing the probability of bifurcation.92

2 Model and Methods93

2.1 Experimental Design94

Our numerical experiments used the Cloud Model 1 (CM1) (Bryan & Fritsch, 2002) Release95

20.2. The simulation domain is 1080×1080km2 in the horizontal directions and 28 km in the vertical96

direction. The horizontal grid spacing is 3 km, and the vertical grid spacing ranges from 50 m near97

the surface to 500m in the upper levels. The simulation has a uniform SST fixed at 301K. Incoming98

solar radiation at the top of the atmosphere exhibits no diurnal cycle and is fixed at 650.83Wm−2,99

with a zenith angle of 50.5◦. Numerical experiments were integrated for 100 days. A fifth-order100

scheme was adopted for computing horizontal and vertical advections. For the computation of scalar101

advection, the fifth-order weighted essentially nonoscillatory scheme was employed.102

We adopted two PBL turbulence schemes and two cloud microphysics schemes to complete a103

total of four experiments. The microphysics schemes used were the Morrison (M) (Morrison et al.,104

2009) and Thompson (T) (Thompson et al., 2008) schemes. The former of which is a two-moment105

bulk microphysical approach that predict both the mass and number concentrations of cloud and106

precipitation species; and the latter has double-moment ice and rain. The PBL turbulence schemes107

include a Louis-type scheme (L) and an EDMF scheme (E). The former is a variant of the classic108

Smagorinsky scheme and considers only vertical mixing (Bryan & Rotunno, 2009); the latter was109

developed and adopted for operational weather forecast models (Hong & Pan, 1996). It can model110

counter-gradient (i.e., nonlocal) mixing and allows the vertical mass flux to penetrate the top of111
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the PBL and influence layers above the PBL. Combinations of these options yielded a total of four112

experiments: ML, TL, ME, and TE.113

2.2 Mesoscale Blocks and Low-Pass Filter114

We extensively used block averaging in our analysis to focus on mesoscale organization.115

Data from mesoscale blocks refer to the average results of horizontal partitioning of the simulation116

domain into 15× 15 (72× 72km2) blocks and the horizontal averaging of data within each block.117

This procedure followed the analysis detailed in (Bretherton et al., 2005).118

2.3 Frozen Moist Static Energy (MSE)119

Frozen MSE is conserved during moist adiabatic processes and is used in this study to indicate120

the state of an atmosphere column. We simply refer it as MSE throughout the text. The MSE (h f ) is121

defined as follows,122

h f = cpT +gZ + Lvqv − L f qi , (1)123

where cp denotes the specific heat of air at constant pressure,T is the temperature, g is the gravitational124

constant, Z is the geopotential height, Lv and L f are the latent heat of vaporization and sublimation,125

respectively, and qv and qi are the specific ratios of water vapor and cloud ice, respectively. For126

conciseness, we refer frozen MSE as MSE throughout the article. The vertically integrated MSE is127

H =
∫

ρh f dz , (2)128

and the budget equation of column MSE is129

∂H
∂t
= FSE +RSW +RLW + A, (3)130

where FSE denotes surface enthalpy flux, RSW and RLW are net heating to the column by shortwave131

and longwave radiations, respectively, and A is the advection term representing the net convergence132

of H due to circulation. Subtracting the horizontal mean from Equation (3) and multiplying the133

remaining equation by the deviation of column MSE yield the budget equation for column MSE134

variance as follows:135

1
2
∂[H ′2]
∂t

= [H ′F ′SE ]+ [H
′R′SW ]+ [H

′R′LW ]+ [H
′A′], (4)136

where the prime indicates deviations from horizontal mean and the square brackets denote the137

horizontal average.138

2.4 Linearization of Column MSE Equation139

Here we derive a linearized column MSE budget equation, which is used for statbility analysis140

later. Following the approach detailed in Bretherton et al. (2005), the deviation of radiative forcing141

from the horizontal mean of RCE can be parameterized as a function of precipitation anomaly (P′),142

which represents the degree of cloudiness that dominates radiation perturbations,143

R′ = R′SW +R′LW = CRLvP′ , (5)144

where CR denotes the strength of the cloud-radiation feedback. In Bretherton et al. (2005), the145

surface enthalpy flux anomaly was parameterized as a function of the precipitation anomaly as146

gustiness induces more surface evaporation. However, as will be shown in Fig. 3.1, evaporation in147

extremely dry regions can also be large due to the low relative humidity of the ambient air. Thus, we148

conceptually parameterize the surface enthalpy flux anomaly as a sum of two terms as follows:149

FSE = CS1LvP′+CS2H∗r ′ (6)150

where H∗ denotes the column MSE when an entire column is saturated, r ′ is the column relative151

humidity (CRH) anomaly, H ′ = H∗r ′, and CS1 and CS2 are the sensitivity of surface enthalpy flux152
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to gustiness and relative humidity, respectively. The first term dominates in moist regions, whereas153

the second term dominates in dry regions. Subsequently, we seek an expression of P′ in terms of r ′.154

Because Bretherton et al. (2005) has demonstrated that precipitation in the RCE has an approximate155

exponential dependence on CRH, we can express precipitation as follows:156

P = PRCE exp(r ′) (7)157

where PRCE denotes the mean precipitation in the RCE, enabling the precipitation anomaly to be158

approximated as follows:159

P′ = PRCE(er
′

−1) ≈ r ′PRCE , (8)160

where r ′ is assumed to be small. Furthermore, we approximate the advection term by effective eddy161

diffusion as follows:162

A′ = ν∇2H ′ , (9)163

Combining Equations (3) and (5)–(9), we can express the linearized budget equation for H ′ as164

follows:165
∂H ′

∂t
= (βS + βR)H ′+ ν∇2H ′ , (10)166

in which,167

βS = CS1
LPRCE

H∗
+CS2 , βR = CR

LPRCE
H∗

, (11)168

are the strengths of surface enthalpy flux feedback and radiation feedback.169

3 Results170

3.1 Distinct Equilibrium States171

Figure 1 presents the distribution of convection at the end of each of the four simulation, ML,172

TL, ME, and TE. In the TL and ME simulations, convection self-organizes into an elongated cluster.173

Relatively low outgoing longwave radiation (OLR) in the TL experiment suggests that the deep174

convection in TL is more intense and produces colder cloud tops compared with that in ME (Fig.175

1F and G). Contrarily, ML and TE did not exhibit self-aggregation by day 100. The distributions176

of convection and clouds are highly homogeneous in ML. In TE, however, deep convection appears177

to be suppressed in some parts of the domain, whereas the overall distribution of convection is still178

random. We integratedML and TE until day 150, finding thatML exhibits no sign of self-aggregation179

by this time, whereas TE exhibits partial self-aggregation.180

As described in previous literature, convection self-aggregation features the formation of181

anomalously dry regions surrounding the convection cluster. This characteristic can be observed182

clearly in the distribution of vertically integrated frozen moist static energy (MSE) in Fig. 1E-H. The183

variability of MSE in a column is primarily controlled by the amount of moisture, i.e., the contours184

in Fig. 1F and H indicate sharp contrasts in water content between regions occupied by convection185

clusters and their surroundings. In ML, there is almost no column MSE gradient. In TE, a small186

dry patch (upper-right corner of Fig. 1H) was formed by day 100. This small dry patch enlarged in187

the continued simulation until it occupied approximately a quarter of the domain by day 150. Thus,188

the TE experiment is potentially capable of causing convection to self-organize into a single cluster;189

however, the growth of column MSE gradients is suppressed and slow.190

As mentioned above, the most surprising aspect in those four experiments is the nonlinear191

dependence of convection organization on the representation of microscale processes. It is not192

possible to unambiguously demonstrate whether one turbulence (or microphysics) scheme favors193

convection self-aggregation while the other does not. In Section 4, we argue that these intriguing194

results depend on how macroscale characteristic parameters of the atmosphere are influenced by195

microscale processes, i.e., whether or not bifurcation occurs.196

Another interesting result, as presented in Fig. 1A-D, is the dependence of surface evaporation197

on convection organization. In ML and TE, surface moisture flux is more intense below convection,198
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Figure 1. Distribution of convection at the end of the simulations. (A-D) Distribution of vertical velocity (w)
(green to red color by volume rendering) and surface evaporation (“qvflux”) (blue to white at the bottom of the
domain) in the four experiments on day 100. (E-H) Distribution of outgoing longwave radiation (OLR) (color
shading) and vertically integrated frozen moist static energy (MSE) (contours) in the four experiments on day
100. MSE contours are based on values from the mesoscale block and are given at intervals of 1×107 Jm−2.

which causes gustiness and enhances surface evaporation. However, in TL and ME, although the199

effect of gustiness still exists, the domain-scale variability of surface moisture flux is dominated by200

the construct between dry and wet regions. Due to their low atmospheric relative humidity, dry201

regions exhibit a much stronger surface evaporative flux than regions under deep convection.202

3.2 Column MSE Variance Budget203

The development of a horizontal gradient in columnMSE enables us to quantify the process of204

convection self-aggregation with variance of column MSE (Fig. 2A). Simulations were initialized205
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Figure 2. Variance of vertically integrated MSE (A) and its budget (B-E). The processes contributing to the
tendency of the vertically integrated MSE include surface enthalpy flux (B), shortwave radiation (C), longwave
radiation (D), and horizontal advection (E). The column MSE and budget terms are mesoscale block values. In
(E), the semi-transparent curves denote 6-hourly data of the advection contribution, whereas the solid curves
represent daily data with sub-daily variability filtered out.

from fields with very small amounts of random perturbations in potential temperature below 1 km.206

During the first 5 days, random deep convection bursts and column MSE variance increased from207

106 J2m−4 to 1011–1012 J2m−4. After this initial burst of convection, the self-aggregated simula-208

tions (TL and ME) exhibited continued growth of column MSE variance, reaching magnitudes of209

1015 J2m−4, whereas the other two simulations exhibited very slow or no further growth.210

Following Wing and Emanuel (2014), the time tendency of column MSE variance can be211

partitioned into contributions from four processes, namely, surface enthalpy flux, shortwave radiation,212

longwave radiation, and advection [Equation (4)]. Figure 2B–E presents the contributions of those213

processes.214
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Surface enthalpy flux contributions (Fig. 2B) are weakly positive for the ML and TE simu-215

lations, which have no significant self-aggregation, and mostly negative for the TL and ME runs.216

Notably, the ME simulation exhibits a significant positive surface flux contribution prior to day 40.217

The sign of the surface enthalpy flux contribution depends on whether the domain-scale variability218

of evaporation is dominated by gustiness or the relative humidity of the air. Gustiness exhibits a219

positive correlation with convection in space. Thus, it produces a positive contribution. Contrarily,220

relative humidity evaporation correlation is negative in space.221

Radiation contributions (Fig. 2C and D) are mostly positive, with larger magnitudes in the TL222

and ME simulations that exhibit self-aggregation. However, the details of those two experiments are223

different. In TL, the contributions from longwave radiation are several times larger than those from224

shortwave radiation. In ME, longwave radiation dominates before day 50, after which shortwave225

radiation contributes more and remains positive even when longwave contributions oscillate between226

opposite signs after day 75. The sign of the radiative contribution depends onwhether clouds produce227

relative heating (positive) or cooling (negative) in moist regions.228

The advective contribution depends onwhether circulation causes the convergence ofMSE into229

moist or dry columns. It exhibits significant high-frequency variability. After filtering out sub-daily230

signals, the advective contributions are always negative in ML and TE. In TL and ME experiments,231

advection suppresses the growth of columnMSE variance at the beginning and supports it throughout232

the intermediate stages; in later stages, the advection term oscillates between positive and negative233

signs but is negative on average.234

Overall, we found that, in self-aggregated simulations, radiative processes promote convection235

self-aggregation, although the partitioning between shortwave and longwave contributions varies.236

Surface enthalpy flux played a significant role in the ME run prior to day 35, but otherwise opposed237

convection clustering in ME and TL. Advection promoted convection self-aggregation throughout238

the intermediate stages, and notably, the positive contributions started at approximately the same239

time as surface enthalpy flux contributions became negative. For ML and TE, it seems plausible to240

consider that self-aggregation did not occur as the radiative and surface flux forcings were not strong241

enough. However, it seems also reasonable that no self-aggregation resulted from the opposing effect242

of the advection term.243

3.3 Linear Stability Analysis244

To evaluate the fundamental causes of self-aggregation, we considered linear stability analysis.245

Because H ′ = H∗r ′, Equation (10) can also be written as follows with the CRH anomaly r ′ as246

prognostic variable:247

∂r ′

∂t
= (βS + βR)r ′+ ν∇2r ′ , (12)248

This is a reaction-diffusion equation and allows us to conduct linear stability analysis if we assume249

that the coefficients are constant.250

Figure 3A-D, E-H, and I-L shows how radiative heating, surface enthalpy flux, and advec-251

tive contribution anomalies, respectively, depend on column MSE anomaly between days 10 and252

30 in the simulations. The predominant feature in these plots is the complexity of the relations253

between the represented variables. For the fixed values of MSE anomalies (or the Laplacian of254

anomalies), various terms exhibit notable amplitudes of variability. For example, when the column255

MSE anomaly is zero, the radiative heating anomaly can vary between −20 and 20Wm−2, with256

an approximately homogeneous probability distribution between −10 and 10Wm−2. These results257

reflect the randomness of the relationship between convection and column MSE.258

Nonetheless, we can still compute the expectation of the forcing terms for each bin of column259

MSE anomalies (or their Laplacian) based on their probability distribution functions (PDFs), which260

are presented as the black lines in Fig. 3A-L. In general, this shows that radiation anomalies are261

more sensitive than surface enthalpy flux anomalies, with the exception of the ME simulation, where262

surface flux sensitivity is smaller but nonetheless comparable to radiative heating anomalies. The263
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Figure 3. Feedback and circulation strengths for the linearized governing equation. Dependence of the
radiative forcing anomaly (A-D), the surface enthalpy flux anomaly (E-H), and the advection anomaly (I-L)
on the Laplacian of MSE anomalies between day 10 and 30 of the simulations. (M-O) Regressed coefficients
based on 5-day periods.

sensitivities of radiative heating and surface enthalpy flux are mostly positive, such that radiation264

and surface flux correlate with cloudiness and gustiness, respectively, and tend to make moist (high265

MSE) columnsmore moist and dry columns drier. However, exceptions are observed in very dry (low266

MSE) columns, where the sensitivity may become negative. In ML and ME, radiative heating tends267

to increase as columnMSE decreases near the left end of the diagrams, probably due to the spread of268

cirrus clouds into the dry regions. In TL, which exhibits a significant fraction of dry regions, surface269

enthalpy fluxes exhibit weak negative correlations with column MSE for dry columns, probably270

indicating the effect of the relative humidity of air on evaporation. Advection contributions exhibit271

mostly positive correlations with the Laplacian of column MSE, implying that advection tends to272

“diffuse”MSE frommoist regions to dry regions, suppressing the development of separation between273

moist and dry columns. However, an interesting result presented in Fig. 3I-L is that eddy diffusivity274

can become negative for anomalously dry regions. Dry (low MSE) anomalies generally correspond275

to higher values of the Laplacian of column MSE. Thus, the right-hand side parts of Fig. 3J and K276

suggest that the values of effective eddy diffusivity are highly uncertain in dry regions and negative277

on average.278
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Despite the involved complexities, if we assume that the coefficients in Equation (12) are279

spatially uniform values that slowly change with time, we can regress the forcing terms onto the280

column MSE anomalies or their Laplacian and estimate the linear stability of Equation (12). The281

results of this regression are presented in Fig. 3M-O.282

For cases in which the coefficients in Equation (12) are assumed to be constant, their solutions283

are the linear superposition of normal modes. By substituting the wave solution284

r ′ = Akl exp(ik x+ ily+σt) (13)285

into Equation (12), it can be found that the growth rate of the normal mode is286

σ = (βS + βR)− ν(k2+ l2) (14)287

This implies that the mode is unstable when the sum of terms in the first pair of brackets is larger288

than the last term. Equation (14) indicates that there is a critical wavenumber,289

kc =

√
βS + βR

ν
(15)290

above which the corresponding mode becomes stable. This criterion means that perturbation is291

needed to have a sufficient spatial scale (low wavenumber); otherwise, diffusion is too strong to292

allow perturbation to grow.293

Figure 3M-O presents the regression coefficients for each 5-day period. This demonstrates that294

at the beginning of the simulations, coefficient values suggest that the critical wavelength is ∼70∆x,295

where ∆x = 3km is the horizontal grid spacing in the simulations. This wavelength is smaller than296

the domain size, 360∆x, such that all simulations can potentially become unstable if large-scale297

perturbations occur. Indeed, although the ML and TE experiments did not develop self-aggregation298

during the 100 days of simulation tested, TE eventually exhibited aggregation behavior when the299

time between days 100 and 150 was integrated. We also verified that seeding a quadrant of the ML300

domain with a 30% water vapor deficit relative to its initial condition causes the dry area to grow301

and increase to 4/3 of the domain within 50 days.302

Figure 3M-O demonstrates that TL and ME are destabilized by decreases in the effective303

diffusivity of the flow. In both simulations, the regression value of ν decreases with time, which is304

becoming close to zero or even negative. With such small diffusivity values, the critical wavenumber305

becomes very large, which means that small-scale perturbations can also be unstable and grow over306

time.307

Physically, negative diffusivity corresponds to the formation of dry patches in the simulation308

domain. When dry patches form, the cloudiness of the corresponding regions is significantly reduced;309

thus, the radiative feedback is also weakened (Fig. 3B), causing parameter βR to become small but310

still positive. Parameter βS , which is related to surface flux, becomes negative as dry patches form311

due to the dependence of surface flux on moisture deficits (Fig. 3N). During the later stages of312

simulations, βR and βS become significantly smaller in the TL and ME runs, which exhibit self-313

aggregation, than in the ML and TE runs, which do not. Thus, we cannot argue that ML and TE did314

not exhibit self-aggregation as their radiative and surface flux feedbacks are not sufficiently strong.315

Instead, we suggest that their eddy diffusivity did not fall to values small enough to destabilize316

small-scale perturbations.317

4 Bifurcation and Physical Parameterizations318

4.1 Bifurcation in a Heuristic Model319

Since Equation (13) is an eigenfunction of the Laplacian operator, we can heuristically express320

the diffusion term as a linear function of r ′ as follows:321

dr ′

dt
= (βS + βR)r ′+ νk2

0r ′ , (16)322

–10–
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where k0 denotes the characteristic wavenumber of the flow. In this ODE, assuming that the323

coefficients in brackets are constant, we conclude only that the stability of the system changes when324

the ratio of coefficients crosses one. However, from the above analysis, we know that the RCE is in a325

metastable state without self-aggregation. In Fig. 3M-O, we observe that when air columns become326

significantly dry or moist, βR and βS become smaller or even negative. Such radiative and surface327

flux feedbacks can be qualitatively represented by parameterizing the coefficients as a nonlinear328

function of CRH as follows:329

βS + βR = C(0.81r̃2− r̃4), (17)330

where C is a constant and r̃ is a scaled CRH perturbation that falls between approximately −1 and 1.331

Substituting this expression into Equation (16) yields332

dr̃
dt
= (0.81r̃2− r̃4)r̃ +αr̃ , (18)333

in which the constant C and scaling factor related to r̃ are absorbed into the definition of time and334

α = νk2
0C−1. In this heuristic model, the radiative and surface flux forcing terms are infinitesimal335

when the perturbation is small, reflecting the effect of the randomness of cloudiness and gustiness336

(Fig. 3A-H). They exhibit positive (negative) forcings as CRH increases (decreases); however, when337

the CRH anomaly becomes too large (small), the forcing weakens (strengthens) (see black curve in338

Fig. 4A). The decreasing (increasing) trend of the forcing term at extremely high (low) values of r̃339

Figure 4. Bifurcation in the heuristic model. (A) Shape and amplitude of the radiative and surface flux
forcing term (black curve) and the damping term (colored straight lines). (B) Fixed points of the model as a
function of −α; solid lines indicate stable fixed points, and dashed lines indicate unstable fixed points. (C) The
potential function V in the model as a function of −α.
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reflects the fact that other physical constraints in nature prevent a column from approaching 100%340

(0%) CRH, which may actually rely on a change in the damping coefficient α in extreme conditions.341

Here, we parameterize this effect in the forcing term for convenience. Such a simplification does not342

qualitatively change the explanation of bifurcation behavior detailed below.343

In Equation (18), α denotes the governing parameter, the inverse of which can be interpreted344

as a damping time scale. As presented in Fig. 4, when α is large, the amplitude of the damping term345

is larger than the forcing term for any CRH perturbation. When α becomes smaller, four fixed points346

(dr̃/dt = 0) other than the origin emerge in the diagram. When α is positive, the origin and the two347

fixed points with larger amplitudes are stable fixed points; thus, they attract states surrounding them348

in the phase space. The other two fixed points, i.e., those with smaller amplitudes, are unstable.349

When α crosses 0, the origin becomes unstable, the fixed points with larger amplitudes remain, and350

the unstable fixed points with smaller nonzero amplitudes disappear. In this situation, the RCE state351

with a uniform distribution of CRH is destabilized, and the system develops either a positive or352

negative large-amplitude CRH anomaly. The point at α = 0 therefore corresponds to a subcritical353

bifurcation, across which the stability of the system dramatically changes.354

We can derive a potentialV for the right side of Equation (18) to gain further insight as follows:355

dr̃
dt
= −

dV
dr̃

. (19)356

The shape of the potential function (Fig. 4C) helps us appreciate the nature of this bifurcation. When357

the damping coefficient α is large, only one potential well exists at the zero CRH anomaly. As the358

damping weakens, two additional potential wells form at nonzero CRH anomaly values. However,359

those two wells are initially shallower than that at the origin; thus, the system still favors the zero360

CRH anomaly state when random perturbations exist. Eventually, when the damping becomes very361

weak, the potential well at the origin enters a metastable state, whereas the other two wells with362

nonzero CRH anomaly become the most stable, such that the system favors self-aggregation. When363

the damping coefficient α becomes negative, the potential well at the origin disappears.364

The idea that convective self-aggregation corresponds to bifurcation was first proposed by365

Emanuel et al. (2014). However, they proposed that the SST was the governing parameter of366

the dynamical system. Here, focusing on the effects of physical parameterization schemes on367

simulations, our governing parameter is α, which describes the ratio of damping sensitivity to that368

of radiative and surface flux forcings. Although this heuristic model is simple, it approximates the369

behavior of numerical simulations. The initial critical wavelengths are smaller than the domain370

size, indicating the existence of metastable potential wells that correspond to self-aggregated states.371

Without large-scale perturbations in the initial conditions, the state with the lowest potential has372

a uniform distribution of convection and moisture. Later, between days 20 and 30, TL and ME373

simulations develop near-zero or negative diffusivity, causing bifurcation to occur. The uniformly374

distributed convection then enters an unstable state, and self-aggregation occurs.375

4.2 Dry Plumes and Self-Aggregation376

From the analysis above, we argue that the reduction of effective flow diffusivity to near-zero377

or negative values marks a bifurcation point across which self-aggregated states become more stable.378

In this section, we investigate the physical process causing near-zero or negative diffusivity.379

As documented by previous studies (Bretherton et al., 2005; C. J. Muller & Held, 2012;380

C. Muller & Bony, 2015; B. Yang & Tan, 2020), the shallow circulation surrounding a dry patch381

exports moist low-level air out of the dry columns and imports relatively dry air from the middle382

and upper atmospheres. Thus, the formation of a dry patch is responsible for small or even negative383

diffusivity in the flow. Figure 5B–C presents the mesoscale circulation (arrows) on the cross sections384

of a growing dry patch. In three-dimensional space, it appears to be more appropriate to term the385

regions with low MSE “dry plumes,” since the bulk of the negative MSE anomaly extends from the386

top of the boundary layer to the mid-troposphere. Circulation in and around these dry plumes features387

low-level divergence and upper-level convergence. The near-surface outflow air is dry relative to388
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Figure 5. Dry plume dynamics and evolution. (A) Vertically integrated MSE in the TL simulation at Day
50. (B) and (C) Cross sections at the same time across the dry patch indicated with white lines in (A). Color
shading indicates MSE (103 J/kg), and arrows indicate mesoscale wind fields. (D–G) Depths of the deepest dry
plumes in the four simulations as functions of time. Light-blue shading indicates the bottom and top of the dry
plume with the lowest bottom height at a given time. One dry plume is defined as a connected region in which
the water vapor mixing ratio is less than 70% of the horizontal mean. (H) Mean profiles of equivalent potential
temperature (θe) between days 40 and 60 of the simulations.

near-surface air away from the dry plumes. However, by virtue of enhanced surface latent heat flux,389

when this air reaches the lateral boundaries of the dry plumes, its moisture content is very close to390

that of the air away from the dry region. In the upper levels, air flows into the dry columns. This391

inflow is not particularly dry compared with the horizontal mean of MSE. However, its MSE is lower392

than the outflow air in the boundary layer. Therefore, as described in previous studies, low-level393

circulation is primarily responsible for the divergence of MSE from the dry regions.394

Figure 5D–G presents the maximum depths of dry plumes in all simulations. Dry plumes395

can easily form in the upper troposphere as the atmosphere is absolutely stable above 5 km (Fig.396

5H). Thus, upper-level dry plumes extending from 5 to 11 km were found to exist throughout all397

simulations. The deepening of dry plumes in the TL simulation appeared to be smooth. However,398

in all other simulations, a significant resistance to the formation of low-level plumes was observed.399

In the ML simulation, the dry plume did not reach the ground. In the TE simulation, dry plumes400

reached the ground several times, but these plumes were short-lived and rapidly retracted to the upper401

troposphere. Stable deep dry plumes did not form in the TE simulation until after day 95.402

The formation of deep dry plumes in the ME simulation appears to differ from that in the ML403

simulation. Upper troposphere dry plumes formed in the ME simulation after approximately day 3.404

Although deepening occurred a few times, it was not successful. Eventually, between days 25 and 38,405

dry plumes reached the ground, but the plume was cut off from the middle and upper troposphere.406

Around day 40, deep dry plumes penetrating the troposphere formed in the ME simulation and407

advection began to support the growth of self-aggregation (Fig. 2E).408
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Figure 6. Clustering of convection without dry-moist patch separation in the ME simulation. Outgoing
longwave radiation (OLR) (color shading) and column MSE distribution (contours) in the ME simulation
between days 30 and 36. As in Fig. 1, contours are low-pass-filtered to reflect mesoscale patterns and are
provided at intervals of 1×107 Jm−2.

Further examination of the results from the ME simulation between days 30 and 36 (Fig. 6)409

revealed that convective motions during this period formed a single cluster, although column MSE410

anomalies were still relatively weak. This suggests that, if self-aggregation is defined only as the411

clustering behavior of convection, instead of including the clear separation between dry and moist412

regions, it has already reached a peak by day 35 in the ME simulation. Figure 3M–O demonstrates413

that this early “aggregation” in the ME simulation may reflect interactions between convection,414

gustiness, and surface enthalpy flux.415

Note that the definition of α in Equation (18) includes the coefficient C, which indicates the416

amplitude of the radiative and surface flux forcing terms. Destabilization can occur in two ways,417

either by enhancing the radiation and surface flux forcing terms or by reducing the effective diffusivity.418

Strictly speaking, the first approach is not a bifurcation as it decreases α but cannot directly produce419

negative α values. However, since perturbations in the simulation are of finite amplitudes instead of420

being infinitesimal, it is likely that the surface enthalpy flux feedback in theME simulation caused the421

uniform state potential well to become shallower and decreased the potential of nonuniform states,422

resulting in the emergence of a dry plume with of finite-amplitude perturbations and thus negative423

diffusivity.424

4.3 Cloud Microphysics425

In this section, we investigate the role played by cloud microphysics parameterizations in426

bifurcation modulation. Figure 3A–D provides some clues. An important difference between the427

simulations using the Morrison microphysics scheme (ML and ME) and those using the Thompson428

scheme (TL and TE) is that a negative correlation develops at lowMSE anomaly values for the period429

presented in Fig. 3. This local negative correlation between radiative heating and the MSE anomaly430
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indicates that dry, cold areas tend to be covered by high cirrus clouds, which leads to lower radiative431

cooling and favors convection.432

Figure 7 presents themean profiles of cloudwater, cloud ice, rain, and snow (including graupel)433

mixing ratios between days 10 and 30 in the simulations. Figure 7A and B presents the mean profiles434

when the entire domains are included. TheMorrison scheme experiments (ML andME) consistently435

predict more cirrus clouds near the tropopause, whereas the Thompson scheme experiments (TL and436

TE) predict more snow. Figure 7C and D presents the mean profiles when only the driest mesoscale437

blocks in each time slice are included. The ML simulation still exhibits a significantly larger amount438

of cloud ice compared with others.439

All cloud and precipitation species can affect the radiation budget of the atmosphere. However,440

due their smaller sizes, cloud ice particles are more efficient in altering radiative fluxes compared441

with snow. Figure 7E and F presents the relationships between column integrated ice and snow mass442

and corresponding OLR in ML and TL simulations. Those two panels do not demonstrate the same443

distributions and relationships, possibly due to their differing predictions of liquid water below the444

ice and snow. Nonetheless, Fig. 7E and F demonstrates that small amounts of change in cloud ice445

mass can cause large changes in OLR; if caused by snow mass variability, a change in snow mass of446

one order of magnitude is required.447

Therefore, the critical difference between the Morrison and Thompson schemes is their predic-448

tion of cloud ice, which is influenced by how they partition condensate between cloud ice and snow,449

among other species. The Morrison scheme tends to produce more cirrus clouds, which results in a450

radiative heating anomaly that triggers convection. When cirrus clouds extend to dry blocks, their451

Figure 7. Cloud and precipitation profiles and radiative effect. (A) and (C) Mean profiles of the mixing ratios
of cloud water and ice. (B) and (D) Rain and snow (including graupel) in all-domain averaged blocks (A) and
(B) and in only the driest mesoscale blocks (C) and (D). (E) and (F) Relationship between OLR and column
integrated ice and snow (including graupel) from the entire domains. Data between day 10 and day 30 of the
simulations are used for all panels.
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radiative effects prevent the formation of dry plumes. Thus, in Fig. 5D, dry plumes form in the stable452

upper troposphere but never extend downward to the conditionally unstable lower troposphere.453

Why did the ME simulation lead to the formation of dry patches? From Fig. 7C, we can454

observe that the cirrus clouds in the ME run did not significantly intrude dry blocks. As argued in455

the previous section, the formation of dry patches in the ME appears to result from the interactions456

among convection, gustiness, and surface enthalpy fluxes. It is likely that the relative radiative457

heating in the ME simulation developed a coupling with surface enthalpy flux, and together, these458

phenomena caused the development of very intense convection cells in the ME. As a result, the459

downdraft in the dry region in ME is also stronger than that in other simulations and was sufficient460

to dissipate the cirrus cloud cover.461

4.4 Turbulence Parameterization462

The parameterization of turbulence in the planetary boundary layer (PBL) also played a463

significant role in bifurcation modulation in the RCE. As presented in Fig. 5H, the lower troposphere464

in the RCE is conditionally unstable. Once triggered, moist convection can bring moist, warm air465

upward, and tend to destroy dry plumes. It should be noted that Fig. 5H presents data between466

days 40 and 60 of the simulations, during which dry patches had already formed in the TL and ME467

simulations. In other words, the formation of dry patches does not alter the conditional unstable468

stratification in the lower troposphere of the RCE. Instead, their formation merely suppresses the469

triggering of moist convection.470

Figure 8A–D demonstrates this relationship between the lower troposphere static stability and471

dry patch formation. ∆θe in Fig. 8 denotes changes in equivalent potential temperature from 1472

to 4 km above the surface in each column of the simulation domains. In simulations without dry473

patch formation (ML and TE), most columns have ∆θe close to −10K, indicating that the lower474

troposphere is conditionally unstable. Under certain rare conditions, the lower troposphere becomes475

moist neutral (∆θe = 0). Such columns correspond to areas of intense convection. In the ME and TL476

simulations, the distributions of ∆θe develop into bimodal ones as dry patches form. Dry patches477

correspond to the mode centered around −20K, and regions with clustered convection form another478

mode, which is close to moist neutral due to convection-driven vertical mixing.479

The difference between the Louis-type and EDMF turbulence schemes is implied by the upper480

and lower boundaries of the PDFs in Fig. 8B and C. In the TL simulation, the minimum ∆θe reaches481

−30K during the later stage of the run, whereas the maximum rarely exceeds 0K. Contrarily, ∆θe in482

the ME simulation is larger than −20 K for most of the simulation and reaches −25K only by the end483

of day 100. The maximum ∆θe in the ME simulation exhibits significant probability for values larger484

than 0 K. These differences indicate that the EDMF scheme favors the triggering of more intense485

and frequent convection than the Louis-type scheme.486

The essential difference between the Louis-type and EDMF schemes is that the EDMF scheme487

can represent counter-gradient (i.e., nonlocal) vertical mixing instead of being restricted by local488

down-gradient transport. Moreover, EDMF can extend its effects above the capping inversion of the489

PBL. Thus, these two PBL schemes have significantly different capabilities for triggering convection490

in the conditionally unstable lower troposphere. Figure 8E–H presents the joint PDFs of turbulence491

tendency due to PBL schemes and vertically integrated moisture anomalies between 0.5 and 1.5 km492

above surface. Both with and without the formation of dry patches, the tendency due to the Louis-493

type scheme is very close to zero in this layer, which lies immediately above the boundary layer.494

Contrarily, the EDMF scheme tends toward significant moistening. The EDMF scheme is also more495

sensitive to moisture variability in this layer, such that its tendency increases (decreases) significantly496

when the layer dries (moistens).497

In summary, the TE experiment was demonstrated to be very slow in developing dry patches498

due to the effects of convection triggering in the EDMF scheme. For the same reason, when dry499

patches form in the TL and ME simulations, the latter has a relatively more stable lower troposphere500

than the former (Fig. 8B and C). Although the ML simulation does not exhibit significant moistening501
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Figure 8. Lower troposphere stability and PBL turbulence tendency. (A-D) Logarithm of PDFs of change
in equivalent potential temperature ( θe) from 1 to 4 km above the surface in mesoscale blocks. Black lines
indicate the horizontal mean ∆θe at a given time. Panels (E-H) show the time tendency of mesoscale block
moisture integrated between 0.5 and 1.5 km above the surface in the PBL turbulence schemes for days 10 to 30.
Black lines indicate the mean tendency for each bin of moisture anomaly.

and destabilization due to the PBL scheme, as discussed above, it did not form dry patches as a result502

of column heating anomalies related to cirrus clouds over dry blocks.503

5 Summary and Discussion504

Through a matrix of numerical experiments employing two cloud microphysics schemes and505

two boundary layer turbulence schemes, we demonstrated that the emergence of self-aggregation in506

the RCE is not simply tied to a certain kind of parameterization. Instead, self-aggregation, which is507

defined here as the formation and clear separation of dry andmoist columns, is related to a bifurcation508

of the underlying dynamical system of the RCE.509

In the linearized equation of vertically integrated MSE, the stability of the spatially uniform510

MSE state is governed by the strengths of radiative and surface enthalpy flux feedbacks as well as511

the effective eddy diffusivity of the flow. In all simulations, linear stability analysis suggests that suf-512

ficiently large-scale perturbations are unstable. However, without seeding large-scale perturbations513
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in the initial conditions, such phenomena may not occur spontaneously. Critical for destabilizing514

the uniform RCE state is the formation and maintenance of dry patches, which lead to the formation515

of shallow circulation and lower the effective horizontal eddy diffusivity to zero or even negative516

values. With near-zero eddy diffusivity, the RCE atmosphere can easily be destabilized by radiative517

and surface enthalpy feedbacks, even though their strengths weaken with the spatial expansion of dry518

patches.519

By representing RCE dynamics with a heuristic ODE model, we demonstrated that self-520

aggregation in RCE corresponds to the bifurcation of the dynamical system. When feedback strengths521

are relatively weak and diffusion is relatively strong, the uniform state has the lowest potential. When522

diffusion weakens and dry patches form, anomalously moist states gain relatively lower potentials523

and can enter a more stable state. When eddy diffusion becomes negative (i.e., a counter-gradient),524

uniform moisture distribution becomes an unstable solution.525

Thus, we show that bifurcation in the RCE is marked by the formation and maintenance of dry526

patches, which may be more accurately termed dry plumes as they correspond to a three-dimensional527

volume with anomalously low moisture. Different physical schemes can certainly alter feedback528

strengths and thereby accelerate or decelerate relevant processes. However, our analysis suggests529

that the role played by these schemes in creating or destroying dry plumes is more critical. Because530

the lower troposphere in the RCE is conditionally unstable, the formation of dry plumes depends on531

its capacity to suppress or trigger moist convection when dry plumes from the upper troposphere532

extend to touch the ground, irrespective of the physics scheme used. The Morrison scheme tends to533

produce more cirrus clouds, which introduce radiative heating anomalies over dry regions and trigger534

convection. This, in turn, destroys dry plumes (ML). However, when an abundance of cloud ice535

combines with an active turbulence scheme, their coupling can generate intense convection clusters,536

increasing downward flow and forcing the formation of a low-level dry plume (ME). The Thompson537

scheme does not produce excessive ice over dry blocks. Therefore, when paired with the less-active538

Louis PBL scheme, dry plumes form quite easily (TL). However, when paired with the EDMF539

scheme, which models the counter-gradient, PBL-penetrating turbulence fluxes, i.e., low-level dry540

plumes, were destroyed by the moist convection frequently triggered by the EDMF scheme (TE).541

Our study increases the understanding of the complexity of physical parameterization in the542

gray zone of weather and climate models. The nonlinear characteristics of the dynamics of the543

tropical atmosphere enable the same kind of convection organization to be tuned via multiple544

pathways, i.e., through the modification of cloud microphysics, PBL turbulence, or both. The need545

to unify turbulence and cloud parameterization has been recognized in recent years (Bodenschatz546

et al., 2010; Bogenschutz & Krueger, 2013; Thayer-Calder et al., 2015). However, contrary to547

previous studies, which highlight the interaction of turbulence and cloud physics at the microscale,548

our study documents how these two processes can, either by themselves or by interaction, influence549

the macroscale organization of convection. In spite of the fact that they share the same prescribed550

SST, the RCE states of our four simulations (Fig. 1) exhibit drastically different intensities and551

distributions of albedo, OLR, precipitation, and evaporation. Thus, for both weather and climate552

prediction in the gray zone, the representation of microscale physical processes can modulate the553

simulation of large-scale phenomena in notable ways.554

The numerical simulations presented here used idealized setups; therefore, it is unknown555

whether and how the bifurcation mechanism outlined here may interact with preexisting large-scale556

perturbations in the tropical atmosphere. It is possible that large-scale perturbations are dominant557

over microscale processes (Durran & Gingrich, 2014), such that microphysics and turbulence play a558

lesser role in influencing the large-scale characteristics of the simulated atmosphere. However, we559

consider it more likely as we have learned that turbulence and cloud processes have dramatic impacts560

on large-scale climate (Bretherton, 2015; Schneider et al., 2017, 2019).561

Developing turbulence and cloud parameterizations for the gray zones are challenging tasks562

that we need to confront for advancing our weather and climate models further. The bifurcation563

mechanism discussed herein poses a possible fundamental barrier to our efforts to improve the repre-564

sentation of subgrid-scale processes. When large-scale circulation has a sensitive and discontinuous565
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dependence on subgrid-scale processes, nonlinearity in their relationship may render parameter566

tuning very difficult. Furthermore, some fundamental limits might exist on the uncertainties of567

microscale process parameters that cannot be narrowed down, for example, due to the randomness568

of turbulence. In this situation, deterministic parameterizations may possess some limitations in569

their predicting capabilities because the fixed choices of parameters might rule out some qualita-570

tively different system states from a model’s solutions. As the NWP community did for overcoming571

initial condition uncertainties, ensemble-based approaches, (e.g., Grell & Freitas, 2014), may also572

be necessary for physical parameterizations to mitigate the nonlinear effects.573

We are familiar with using Lorenz’s iconic phrase “the butterfly effect” to describe the sen-574

sitive and possibly discontinuous dependence on initial conditions, which sets potential limits to a575

system’s predictability (Palmer et al., 2014). The nonlinear dependence on subgrid-scale process576

parameters in our discussion herein is another kind of the butterfly effect. This second kind of577

butterfly effect might represent fundamental barriers to the predictability of climate. We may never578

represent the exact physics of cloud and turbulence in climate models due to computational cost, or579

limitations of our knowledge, or both. Therefore, through bifurcation mechanisms, slight differences580

in the approximations adopted by different modelers may always cause significant differences in the581

predicted climates, at least for some processes.582
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