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Abstract

In this study, We construct the EMD-LSTM model, combined the Empirical Mode Decomposition algorithm (EMD) and the

Long Short Term Memory neural network (LSTM), to predict the variation of the >2MeV electron fluxes. The Pc5 power

and related geomagnetic indexes as input parameters are used to predict the >2MeV electron fluxes. Compared the prediction

results of the model with other classical prediction models, the results shows that the one-day ahead prediction efficiency of

the > 2MeV electron fluxes is above 0.80, and the highest prediction efficiency can reach 0.92 in 2011-2013, which is much

better than the prediction result of classical prediction models. Selected two high-energy electron flux storm events to verify,

the results indicates that the performance of the EMD-LSTM model in the period of the high-energy electron flux storm is also

relatively good, especially for the prediction of high-energy electron fluxes at extreme points, and the prediction is closer to

actual observation.
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Key Points: 10 

 Propose a prediction model of relativistic electrons using a deep learning algorithm,  11 

the EMD-LSTM model, to predict the >2MeV electron fluxes. 12 

 Use the ultralow frequency Pc5 power and related geomagnetic indexes as input 13 

parameters to predict the >2MeV electron fluxes. 14 

 The accuracy of storm-time forecasting is greatly improved, especially few time offset of 15 

between the observation value and the forecast value at the inflection point of lowest 16 

flux. 17 

Abstract: 18 

In this study, We construct the EMD-LSTM model, combined the Empirical Mode 19 

Decomposition algorithm (EMD) and the Long Short Term Memory neural network (LSTM), 20 

to predict the variation of the >2MeV electron fluxes. The Pc5 power and related geomagnetic 21 

indexes as input parameters are used to predict the >2MeV electron fluxes. Compared the 22 

prediction results of the model with other classical prediction models, the results shows that 23 

the one-day ahead prediction efficiency of the > 2MeV electron fluxes is above 0.80, and the 24 

highest prediction efficiency can reach 0.92 in 2011-2013, which is much better than the 25 

prediction result of classical prediction models. Selected two high-energy electron flux storm 26 

events to verify, the results indicates that the performance of the EMD-LSTM model in the 27 

period of the high-energy electron flux storm is also relatively good, especially for the 28 



prediction of high-energy electron fluxes at extreme points, and the prediction is closer to 29 

actual observation. 30 

Plain Language Summary: 31 

During the recovery of a magnetic storm, the relativistic electron fluxes at MeV energy from 32 

the outer radiation belt will be enhanced at geosynchronous orbit. In particular, the >2MeV 33 

electrons could penetrates the surface of satellites and accumulate inside. After a long period, 34 

the effect of such electron fluxes could result in satellites to be unable to operate or to be 35 

damaged completely. A new neural network, called EMD-LSTM, is established by 36 

combination of the EMD and the LSTM, which can process the influence of non-stationary 37 

and long term non-linear of data series. The prediction results of the EMD-LSTM model is 38 

also excellent in dramatic change of data series, and particularly the extreme points of data 39 

series is accurately predicted, and few time offset. 40 

1. Introduction 41 

The Geosynchronous orbit (GEO) is located in the region of the outer radiation belt which 42 

distributes generous relativistic electrons. At the same time, hundreds of satellites operate in 43 

this region. During recovery phase of a magnetic storm period, the relativistic electrons rise in 44 

count from 10 up to 105 (electrons Sr-1 s-1) (Sakaguchi et al., 2013). The deep-dielectric 45 

charging by relativistic electrons could damage satellites at GEO and pose a risk for space 46 

security (Wrenn et al., 2002). According to the statistics of faults, more than fifty failures of 47 

GEO satellites are caused by the accumulation of high-energy charged particles occurred from 48 

March 1992 to April 1994 (He et al., 2013). Therefore, the prediction of >2 MeV electron 49 

fluxes has important scientific and application value, which is the necessary measure to be 50 

taken in advance to reduce the harm of relativistic electrons to space instruments.  51 

The sudden acceleration of relativistic electrons is responsible for the increase in fluxes. 52 

At present, two types of acceleration mechanism of relativistic electrons have been proposed: 53 

the mechanism of radial diffusion (Li et al., 2001)and the local interaction of wave-particle 54 

(Simms et al., 2018). Based on the radial diffusion mechanism, Li et al. (2001) proposed a 55 

radial diffusion model that takes solar wind parameters and the interplanetary magnetic field 56 

as input parameters to predict the relativistic electron fluxes of the 1-2 day ahead. The 57 



prediction efficiency (PE) of the radial diffusion model is up to 0.64, however, that is not 58 

ideal during the solar maximum period. Turner & Li (2008) developed the LOW-E model, 59 

which uses the low-energy electron fluxes as an input parameter to predict the relativistic 60 

electron fluxes of the 1 day ahead, and the PE of that is up to 0.73. The Space Weather 61 

Prediction Center of the National Oceanic and Atmospheric Administration (NOAA), USA, 62 

developed a prediction model of relativistic electron fluxes (REFM). The REFM model uses 63 

the solar wind speed as an input parameter and provides forecasting values of >2MeV 64 

electron fluxes of the 1-3 day ahead. The prediction efficiency of the first day is 0.71, but 65 

that of the next days is poor because the outer radiation belt is rapidly variation in a magnetic 66 

disturbance period (Baker et al., 1990). 67 

Based on the wave-particle interaction mechanism, He et al. (2013) takes geomagnetic 68 

pulsation parameters as input parameters, and combines linear filter technology and Kalman 69 

filter to establish the relativistic electrons prediction model at the GEO. The PE of model for 70 

2004 is about 0.73, which is equivalent to the imitation REFM model. But, the prediction 71 

results is lower than other models in 2005, that PE is about 0.62. Potapov et al. (2014, 2016) 72 

combined the mechanisms of radial diffusion and wave-particle interaction to establish a 73 

daily prediction model using a multivariate regression method. This model takes the 74 

amplitude of Pc4-5 oscillation, the maximum for a day fluxes of seed electrons, and the IMF 75 

as input parameters to establish the model. The model is obviously characterized by an 76 

extreme prediction value ahead of the measured value. 77 

ULF Pc5 waves can migrate inward to lower L-shells and may accelerate low and medium 78 

energy electrons to relativistic energy via several proposed mechanisms (Simms et al., 2018). 79 

So, the Pc5 wave may be the key to electronic excitation at GEO. There are many studies 80 

show that Pc5 power has a good correlation with relativistic electrons fluxes ( Regi et al., 81 

2015; Lam, 2017). In this work, we use Pc5 power as one of parameters to predict the > 82 

2MeV electron fluxes.  83 

Since the relationship between the relativistic electron fluxes and each parameter is not 84 

completely linear, the variation of relativistic electrons is too complex to describe the 85 

relationship between the input parameters and the output of electron fluxes as a functional 86 



relationship. However, the neural network method has good learning ability and represents a 87 

better approach to solve the nonlinear problem. Fukata et al. (2002) and Ling et al. (2010) 88 

established a neural network model to predict the relativistic electron fluxes. The PE of 89 

Fukata's model is approximately 0.6. Ling's model is more efficient than Fukata's, and the 90 

PE of the model is close to 0.7, that of input parameters are the indexes of geomagnetic 91 

disturbance, however, ignored solar wind parameters. For the sudden enhancement and loss 92 

of high-energy electron fluxes, Qian et al. (2020) combined the EMD algorithm and Kalman 93 

filter algorithm to establish the EMD-KLM model for high-energy electron prediction. The 94 

average PE of > 2Mev electron fluxes can reach up to 0.8. Especially, the accuracy of 95 

forecast is excellent for the sudden decline of electron fluxes, but the accuracy of forecast 96 

needs to be improved during the sudden jump of electron fluxes.  97 

With the development of machine learning, deep learning neural networks are also used in 98 

the prediction of high-energy electron fluxes. Wei et al. (2018) established a prediction 99 

model based on the deep learning algorithm LSTM network, called the LSTM-FRK model. 100 

The prediction efficiency of Wei’s model is in the range of 0.65-0.81, and it verifies the good 101 

effectiveness of the LSTM network in predicting high-energy electron fluxes. However, the 102 

model uses historical high-energy electron fluxes, Kp index, and daily average distances 103 

from the magnetosphere to model, which indicates that input parameters need to be further 104 

optimized. In addition, intelligent algorithms, including radial basis functions and support 105 

vector machines, are also used for the prediction of relativistic electrons (Xue & Ye, 2004; 106 

Guo et al., 2013). 107 

Although these models have achieved great success in predicting electron fluxes, there is 108 

still much room of improvement for the accuracy of the magnetic storm period and the 109 

prediction of the minimum inflection point of the >2MeV electron fluxes. Therefore, using 110 

geomagnetic pulsation parameters and related geomagnetic indexes, we propose a new 111 

combination model, named the EMD-LSTM model, to predict the >2MeV electron fluxes 112 

based on the combination of EMD and LSTM network. The EMD-LSTM model can solve 113 

the non-stationary and nonlinear problems of high-energy electron fluxes data, and 114 

geomagnetic pulsation parameters are easier to obtain and more stable than solar wind 115 



parameters. 116 

2. Data 117 

2.1 Data Source and Processing 118 

In this work, we use a daily value of the >2 MeV electron fluxes in order to eliminate the 119 

local time effects. The fluxes data derives from the relativistic electron fluxes of 5 min time 120 

resolution is obtained from the GOES10 satellite and can be available at the NOAA website 121 

(https://satdat.ngdc.noaa.gov/sem/goes/data). The daily Pc5 power datasets derives from 122 

ground magnetic data, which is collected by CANMOS observatories located in the auroral 123 

zone proximal to footprints of field lines, and the detail of the datasets is shown in Table1. 124 

To process the magnetic data, the band pass filter is first used to filter the tiny data to extract 125 

the variation of the Pc5 band. Then, use the Hanning window to calculate the fast Fourier 126 

transform to obtain the Pc5 power spectrum estimation based on the hourly data. Finally, the 127 

hourly power is integrated to obtain daily Pc5 power. 128 

     Table1. Coordinates of CANMOS Auroral Zone Observatories 129 

Code Station Geographic   

Latitude 

Geographic 

Longitude 

Geomagnetic 

Latitude 

Geomagnetic  

Longitude 

L 

 

FCC ForChurchill 58.8 N  94.1 W  68.8 N  94.1 W  
8.18

 

2.2 Selection of Input Parameters 130 

The previous studies indicated that Pc5 wave have strong correlation with energy electron 131 

fluxes increase at GEO (O'Brien et al., 2003; Borovsky & Deton, 2014; Regi et al., 2015; 132 

Lam, 2017; Simms et al., 2018). In fact, Simms et al. (2018) suggested that Pc5 waves is the 133 

main waves that drive electron acceleration. Lam (2017) analyzed the relationship between 134 

Pc5 wave and >2MeV electron fluxes in two solar cycles, and proposed that strong ground 135 

Pc5 is a precursor of enhanced relativistic electron fluxes at GEO by ahead 2-3 days for all 136 

phases. On the other hand, solar wind parameters are usually used in the prediction model of 137 

relativistic electron fluxes. Regi et al. (2015) proposes that the Pc5 power is highly 138 

correlation with solar wind pressure fluctuations and with the solar wind speed by several 139 

https://satdat.ngdc.noaa.gov/


hours offset. Comparison with solar wind parameters, the Pc5 power is derived from ground 140 

magnetic data, so it cost lower and is more stable than satellite data. So, we use the Pc5 141 

power as one of input parameters to predict > 2MeV electron fluxes. 142 

In this work, we also use the >0.6 MeV electron fluxes ( Potapov et al., 2016), 143 

geomagnetic indexes (Ap, Kp, AE) (Yousrfi et al., 2009, Sakaguchi et al., 2013) and the 144 

historical >2 MeV electron fluxes (X) as other input parameters to predict the >2 MeV 145 

electron fluxes 1 day ahead. Meanwhile, analyze the correlations between each input 146 

parameter and >2MeV electron fluxes. The result is shown in Figure1. 147 

 148 

Figure1 The correlations of between input parameters used and >2MeV electron fluxes. 149 

In Figure1, we can conclude that the best correlation of between each input and 150 

the >2MeV electron fluxes is 1-3 days ahead. So, the input parameters used in this work is 151 

shown in Table2. 152 

Table2. The input parameters of the EMD-LSTM model 153 

Inputs Correlation coefficient 

( 3)Ap t 
 

0.33 

( 3)AE t 
 

0.46 

)1(6.0  tMeV  0.36 

5( 3)Pc t 
 

0.43 



5( 2)Pc t 
 

0.40 

( 3)Kp t 
 

0.44 

( 1)X t 
 

0.81 

 154 

3. Method 155 

3.1 EMD Algorithm 156 

Due to the external squeeze of the solar wind, the high-energy electrons during a 157 

magnetic storm change very drastically. The non-stationary and nonlinear characteristics of 158 

the >2MeV electron fluxes data series is very obvious, which introduces great difficulties to 159 

accurate forecasting. Previous models use statistical methods to deal with the impact of 160 

nonlinear problems on forecast (Xiao et al., 2012), but the non-stationary problem of data 161 

series is not taken seriously. The EMD algorithm is a method that can well deal with the 162 

non-stationarity problem of high-energy electron flux data series, and the basic idea is that 163 

all complex signals are composed of simple eigenmode functions (IMF) (Huang et al., 164 

1998). These IMF components are arranged in the order of high frequency to low frequency, 165 

where each IMF is independent of each other (Sain & Stephan, 1997). The components of 166 

different scales in the high-energy electron flux data sequence is decomposed one by one 167 

by the EMD algorithm, and several data sequences with different characteristic scales are 168 

generated. These components of different characteristic scales are more regular than the 169 

original high-energy electron flux data sequence, that help to improve the prediction 170 

accuracy. Qian et al. (2020) introduced the EMD algorithm to process and forecast 171 

the >2MeV electron fluxes, called the EMD-KLM model, and found that the forecast 172 

results is greatly improved comparison with the prediction result of no the EMD algorithm. 173 

3.2 LSTM Network 174 

The high-energy electron flux usually increases significantly during the recovery phase 175 

of a magnetic storm, and sometimes it suddenly increases by 3-4 orders of magnitude. Most 176 

of the existing forecasting models is difficult to accurately follow the event of sudden increase 177 



in high-energy electron fluxes. However, with the development of machine learning (ML), 178 

deep learning neural networks is also used in the prediction of the >2MeV electron fluxes.  179 

The LSTM Network is a type of recurrent neural network(RNN). The iterative function 180 

loops is used by RNN to store information (Graves, 2012). They behave as loops, allowing 181 

information to pass from one unit of the network to the next. If this loop is unrolled, the RNN 182 

would be thought as multiple copies of the same network. This feature makes RNN can 183 

remember historical information (Tan et al., 2018). Thus, it is suitable to forecast the >2MeV 184 

electron fluxes during a magnetic storm period. 185 

However, if the information needed is too far in the past, the standard RNN is unable to 186 

learn how to connect the information each other. This problem is because of the vanishing 187 

gradient problem occurring during the training phase of RNN (Hochreiter & Schmidhuber, 188 

1990). The LSTM is designed to avoid the vanishing gradient problem, that can remember 189 

information for long periods of time. They have a chain-like structure like RNN, but the 190 

repeating module has a specific structure. Figure 2 shows an LSTM cell. The key of the 191 

LSTM cell is as follows: 1. The cell state, and 2. The cell gate. The cell gate in green on 192 

figure 2 is like a conveyor belt which is connected to gates. Gates can add or remove 193 

information from the cell state depending on information required by the cell. Basically, three 194 

gates are used: an input gate in blue, a forget gate in purple and an output gate in red in Figure 195 

2. The detail algorithm is described in Wei et al. (2018). 196 

 197 



Figure 2 LSTM cell of schematic diagram. The cell state is in green, the forget in 198 

purple, the input gate in blue, and the output gate in red. 199 

The LSTM network can more easily capture the non-linear relationship in the data set of 200 

high-energy electron flux to predict the >2 MeV electron fluxes more accurately based on the 201 

useful information in the historical data series.  202 

Wei et al (2018) used the LSTM network to predict the daily integral values of the  203 

high-energy electron fluxes at GEO for the next day by inputting the historical high-energy 204 

electron flux, the geomagnetic index Kp, and the daily average value of the magnetopause. 205 

And the forecast results is better, which verifies the feasibility of using the LSTM network to 206 

predict the >2 MeV electron fluxes. However, the model can be further improved in the 207 

selection of predictors. 208 

 209 

3.3 EMD-LSTM Model 210 

The LSTM network is effective in dealing with the nonlinear problem of the data 211 

sequences. It has a memory function and can capture more complex nonlinear relationships 212 

in the data sets, which is more suitable for the prediction of the data sequences. At the same 213 

time, the EMD algorithm is very effective in dealing with the non-stationary problem of 214 

high-energy electron flux data series. Therefore, we combine the EMD algorithm and the 215 

LSTM network to predict the >2 MeV electron fluxes at GEO for the first time. The 216 

combined forecast model is named the EMD-LSTM model, which uses ultra-low frequency 217 

Pc5 power as one of input parameters to predict the >2 MeV electron fluxes. 218 

Figure 3 shows the main process of the combined forecast. The main steps is as follows: 219 

(1) Use the EMD algorithm to decompose the observed values of the >2 MeV electron 220 

fluxes to obtain n  IMF components and one margin; 221 

(2) Input the prepared predictor into the LSTM network； 222 

(3) Use the LSTM network to predict each component and get the predicted value of 223 

each component for the next day; 224 

(4) Add the predicted values of n  components to obtain the predicted value of the > 225 

2MeV electron fluxes for the next day; 226 



The EMD-LSTM model is a rolling forecast model, so the data sets needs to be 227 

re-decomposed in advance every day for the next forecast. The time step of the combined 228 

forecasting model is 3 steps and it means that the daily flux of the >2 MeV electron fluxes for 229 

the next day is predicted by the historical data of the previous three days.  230 

 231 

Figure 3 The flow chart of the EMD-LSTM model 232 

4. Results and Analysis 233 

4.1 The Evaluation of Forecasting >2MeV Electron Fluxes 234 

In this work, we use three indicators, like Root Mean Square Error( ), Correlation 235 

Coefficient (R), and the Prediction Efficiency(PE), to evaluate the performance of the >2 236 

MeV electron fluxes forecasting. In the experiments, we compare the performance indicators 237 

of between the EMD-LSTM model and the other classical models. They are defined as 238 

follows: 239 
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Where if is the forecast value, iF is the observation value, f is the mean of the forecast 243 

value, F is the mean value of the observation, and n is the number of samples. Each of these 244 

indicators evaluates the model on a different perspective. The indicates error and the R 245 

indicates the level of fitting between the prediction value and the observation. The PE 246 

evaluates the accuracy of the prediction of the >2 MeV electron fluxes. As such, the smaller 247 

 , the larger R and PE, are the better the prediction performance. We compare the  , R and 248 

PE of predicting the >2Mev electron fluxes by between the EMD-LSTM and the classical 249 

models in the next section.  250 

4.2 The Prediction Results of the EMD-LSTM model 251 

In this work, the data series of the >2MeV electron fluxes from 2001 to 2009 is used by 252 

the training set, and the electron fluxes from 2010 to 2013 is used by the test set. We use the 253 

seven parameters selected as the inputs of the EMD-LSTM model. Figure 4 shows the 254 

prediction results of the EMD-LSTM model during from January 2010 to December 2011 255 

(The red line represents the prediction value of the EMD-LSTM model and the black line 256 

represents the observation of the >2MeV electron fluxes). The forecast value of the 257 

EMD-LSTM model is close to the observation of the >2MeV electron fluxes. It is worth 258 

noting that the amount of log10(electron fluxes) is even up to 8-9, the prediction values of the 259 

EMD-LSTM model is still close to the observations. There are two main reasons. Firstly, 260 

when the amount of log10(electron fluxes) is up to 8 or 9, it is often caused by the sudden 261 

acceleration of relativistic electrons which is often related to the pc5 wave (Mathie & Mann, 262 

2000; Lam, 2017). So, in this work, we used the pc5 as one of input parameters, and the 263 

prediction results is ideal. Secondly, the LSTM network could capture the historical 264 

information to process nonlinear problems of data series, and the EMD algorithm could 265 

reduce the influence of non-stationary of data series (Qian et al., 2020). Therefore, even if the 266 

high-energy electron fluxes changes suddenly, the EMD-LSTM model can also fit the >2 267 

MeV electron fluxes well.  268 



 269 

 270 

Figure 4  The comparison of the EMD-LSTM prediction values with the observations 271 

from Jan 2010 to Dec 2011. 272 

Compared with the data sequences of the >2 MeV electron fluxes in 2010, the >2 MeV 273 

electron flux data series  changes more dramatically in 2011, so the levels of non-stationary 274 

and non-linearity are significantly enhanced. The EMD-LSTM model combines the EMD 275 

algorithm effectively process the non-stationary problem of data series, with the LSTM 276 

network improves the ability of the model to deal with nonlinear problems. Comparison with 277 

the standard RNN can only remember information in a short period, the LSTM network can 278 

remember data information within a long time, and captures useful information of training set  279 

to predict the >2 MeV electron fluxes of 1 day ahead. The LSTM network can record the 280 

characteristics of the changes of the >2 MeV electron fluxes during the historical high-energy 281 

electron storms and retains the useful information. Therefore, the LSTM network can deal 282 

with sudden change of the relativistic electron fluxes events. Figure 4 shows that the 283 

EMD-LSTM model can also fit actual observation of the >2 MeV electron fluxes reaching 284 

peak values during the high-energy electron flux storm. In the actual operation, the sudden 285 

enhancement of the high-energy electron fluxes should be paid more attention to forecast, to 286 

minimize the loss by protection measures taken to the satellite equipment. 287 

Table 3. the comparison of PE,   and R between the EMD-LSTM and other models  288 

Year Model PE   R 



2010 

LSTM 0.89 0.37 0.94 

EMD-KLM 0.88 0.35 0.93 

EMD-LSTM 0.92 0.32 0.96 

2011 

LSTM 0.75 0.39 0.88 

EMD-KLM 0.77 0.41 0.89 

EMD-LSTM 0.81 0.37 0.90 

2012 

LSTM 0.77 0.38 0.88 

EMD-KLM 0.79 0.39 0.89 

EMD-LSTM 0.84 0.33 0.92 

2013 

LSTM 0.79 0.37 0.89 

EMD-KLM 0.78 0.37 0.90 

EMD-LSTM 0.83 0.34 0.92 

 Table 3 shows the comparison of the EMD-LSTM model with the LSTM model and the 289 

EMD-KLM model (Qian et al., 2020) based on the same datasets. The results in Table 290 

3 indicates that the effectiveness of the EMD-LSTM model is greatly improved compared 291 

with the other two models, on the basis of the performance indicators of PE, and R. The 292 

data series of non-stationary and nonlinear characteristics are more obvious, which derive 293 

from the high-energy electron flux storms frequently occurs during from 2011 to 2013 294 

especially (Qian et al., 2020). The PE of the EMD-KLM model is comparable to that of the 295 

LSTM model. Further more, the EMD-LSTM model, combined the EMD algorithm and the 296 

LSTM network, has a certain improvement in the PE compared with the other two models. 297 

This also fully shows that the EMD-LSTM model can deal with the effects of non-stationary 298 

and nonlinear characteristics, which derives from magnetic storms resulting in drastic 299 

fluctuations of the high-energy electron flux data series.  300 

Table 4. the comparison of PE between the EMD-LSTM and the previous classical 301 

models in the period of 2003-2006 302 

Model/Year 2003-2004 2005-2006 

NICT(PE) 0.72 0.79 

Low-energy(PE) 0.66 0.74 



RDF(PE) 0.64 0.75 

LSTM-FRK(PE) 0.74 0.81 

EMD-LSTM(PE) 0.79 0.83 

Table 4 shows the PE comparison of between the EMD-LSTM model and the previous 303 

classical models. It is indicates that the PEs of the EMD-LSTM model is higher than that of 304 

those models in the period of 2003-2006. Specially, the improvement of PE in 2003-2004 is 305 

the most obvious. There are 13 high-energy electron flux storm events occurred in 2003-2004, 306 

more than double times in 2005-2006. Therefore, the variation of the >2 MeV electron fluxes 307 

in 2003-2004 is more drastic, and the level of non-stationary and nonlinear of the data series 308 

is significantly enhanced. So, the PEs of all prediction models in 2003- 2004 is lower than 309 

that in 2005-2006. The EMD-LSTM model can deal with the non-stationary and nonlinear 310 

problems of data series well by the improvement of mathematical method. Therefore, even in 311 

the year with strong non-stationary and nonlinear level, the EMD-LSTM model can also 312 

achieve better PE performance. In addition, the most of models (Li et al., 2001; Turner and Li, 313 

2008; Wei et al., 2018) in Table 4, used solar wind as input parameters, but the EMD-LSTM 314 

model uses Pc5 and related geomagnetic indexes to forecast the >2 MeV electron fluxes . On 315 

the basis of the experimental results, it is found that geomagnetic pulsation parameters can 316 

also achieve a better forecast effect as a forecasting factor of the model. The prediction results 317 

of the EMD-LSTM model also verify the feasibility of geomagnetic pulsation parameter as a 318 

predictor of high-energy electron fluxes.  319 

4.3 Analysis of the >2 MeV Electron Fluxes During Magnetic Storms 320 

  During a geomagnetic storm, the high-energy electron fluxes changes dramatically, so the 321 

accurate prediction of the >2 MeV electron fluxes is very important to protect for satellite 322 

instruments to reduce the risk of damage. Here, two cases of the high-energy electron flux 323 

storm, during from 16 July to 25 July 2012 and from 28 May to 6 June 2013, are chose to 324 

analysis. The prediction results is illustrated in Figure 5. During an initial phase of magnetic 325 

storm, the >2 MeV electron fluxes will decrease greatly and then rise rapidly, which is 326 

consistent with the variation characteristics of the general electron flux storms. Specially, the 327 

extreme points of the data series, on 20 July 2012 and 1 June 2013, are very important to the 328 

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/8.9.6.0/resultui/html/index.html#/javascript:;


prediction, which indicate the high-energy electron fluxes begins to rapidly enhance. As can 329 

be seen in Figure 5, the prediction values of the EMD-LSTM model is consistent with the 330 

observation of the >2 MeV electron fluxes, and particularly the prediction values coincide 331 

with the observation values at the extreme points, few time offset.  332 

There are two reasons for highly effective in prediction. Firstly, the EMD algorithm greatly 333 

reduces the non-stationary problem caused by the drastic changes of the high-electron fluxes 334 

(Qian, et al., 2020). Secondly, the LSTM network can remember the variation characteristics 335 

of the high-energy electron storm events in the training set and extract the relevant 336 

information (Wei et al., 2018). Therefore, when the high-energy electrons suddenly drop, the 337 

LSTM network can accurately predict the subsequent values of the >2 MeV electron fluxes, 338 

based on the analysis of the information of the training set samples. This is very important in 339 

practical forecasting, to accurately predict the start time of high-energy electron storm and 340 

provide immediate protection for satellite equipment. 341 

 342 

 343 

 344 

Figure 5. The comparison of the EMD-LSTM model prediction with the observations 345 

during energy electron storm events   346 

5. Conclusion 347 

In this paper, we combine the EMD algorithm and the LSTM network to construct the 348 

EMD-LSTM model to predict the > 2MeV electron fluxes at GEO. The EMD-LSTM model 349 

can deal with the non-stationary and nonlinear of data series, and the effectiveness of the 350 
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model is improved compared with other classical models.  351 

The prediction results of the EMD-LSTM model is excellent during the high-energy 352 

electron fluxes storm, and particularly the extreme points of the >2 MeV electron fluxes data 353 

series is accurately predicted, and few time offset.  354 

 Pc5 and related geomagnetic indexes are used to predict the > 2MeV electron fluxes. The 355 

experimental results verify that the parameters of ground can achieve a better forecast effect 356 

as a forecasting factor of the model, and those data acquisition of parameters is stable and 357 

lower cost. 358 
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 473 

Figure1. The correlations of between input parameters used and >2MeV electron fluxes. 474 

 475 

Figure 2. LSTM cell of schematic diagram. The cell state is in green, the forget in purple, the 476 

input gate in blue, and the output gate in red. 477 



 478 

Figure 3. The flow chart of the EMD-LSTM model 479 

 480 

 481 

Figure 4. The comparison of the EMD-LSTM prediction values with the observations from 482 

Jan 2010 to Dec 2011. 483 
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Figure 5. The comparison of the EMD-LSTM model prediction with the observations during 486 

energy electron storm events. 487 

 488 

     Table1. Coordinates of CANMOS Auroral Zone Observatories. 489 

Code Station Geographic   

Latitude 

Geographic 

Longitud

e 

Geomagnetic 

Latitude 

Geomagnetic  

Longitude 

L 

 

FCC ForChurchill 58.8 N  94.1 W  68.8 N  94.1 W  
8.18

 

 490 

Table2. The input parameters of the EMD-LSTM model. 491 

Inputs Correlation coefficient 

( 3)Ap t 
 

0.33 

( 3)AE t 
 

0.46 

)1(6.0  tMeV
 

0.36 

5( 3)Pc t 
 

0.43 

5( 2)Pc t 
 

0.40 



( 3)Kp t 
 

0.44 

( 1)X t 
 

0.81 

 492 

Table 3. the comparison of PE,   and R between the EMD-LSTM and other models.  493 

Year Model PE   R 

2010 

LSTM 0.89 0.37 0.94 

EMD-KLM 0.88 0.35 0.93 

EMD-LSTM 0.92 0.32 0.96 

2011 

LSTM 0.75 0.39 0.88 

EMD-KLM 0.77 0.41 0.89 

EMD-LSTM 0.81 0.37 0.90 

2012 

LSTM 0.77 0.38 0.88 

EMD-KLM 0.79 0.39 0.89 

EMD-LSTM 0.84 0.33 0.92 

2013 

LSTM 0.79 0.37 0.89 

EMD-KLM 0.78 0.37 0.90 

EMD-LSTM 0.83 0.34 0.92 

Table 4. the comparison of PE between the EMD-LSTM and the previous classical models in 494 

the period of 2003-2006. 495 

Model/Year 2003-2004 2005-2006 

NICT(PE) 0.72 0.79 

Low-energy(PE) 0.66 0.74 

RDF(PE) 0.64 0.75 

LSTM-FRK(PE) 0.74 0.81 

EMD-LSTM(PE) 0.79 0.83 

 496 


