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Abstract

In prior work we found that precise approximation of the continuity constraint is crucial for accurate propagation of tracer data

when advected through a background incompressible velocity field (Sime et al., 2021). Here we extend this investigation to

compressible flows using the anelastic liquid approximation (ALA) and address four related issues: 1. exact conservation of tracer

discretized fields through a background compressible velocity; 2. exact mass conservation; 3. addition and removal of tracers

without affecting (exact) conservation to preserve a consistent number of tracers per cell; and 4. the diffusion of tracer data,

for example, as induced by thermal or chemical effects. In this process we also present an abstract formulation of the interior

penalty hybrid discontinuous Galerkin (HDG) finite element formulation for diffusion problems, and apply it to the advection-

diffusion and compressible Stokes systems. Finally we present numerical experiments exhibiting the HDG compressible Stokes

momentum formulation’s superconvergent compressibility approximation and reproduce community numerical benchmarks from

the literature for the ALA.
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Abstract15

In prior work we found that precise approximation of the continuity constraint is crucial for16

accurate propagation of tracer data when advected through a background incompressible ve-17

locity field (Sime et al., 2021). Here we extend this investigation to compressible flows using18

the anelastic liquid approximation (ALA) and address four related issues: 1. exact conser-19

vation of tracer discretized fields through a background compressible velocity; 2. exact mass20

conservation; 3. addition and removal of tracers without affecting (exact) conservation to21

preserve a consistent number of tracers per cell; and 4. the diffusion of tracer data, for ex-22

ample, as induced by thermal or chemical effects. In this process we also present an abstract23

formulation of the interior penalty hybrid discontinuous Galerkin (HDG) finite element for-24

mulation for diffusion problems, and apply it to the advection-diffusion and compressible25

Stokes systems. Finally we present numerical experiments exhibiting the HDG compressible26

Stokes momentum formulation’s superconvergent compressibility approximation and repro-27

duce community numerical benchmarks from the literature for the ALA.28

Keywords: Finite element analysis, tracer methods, compressible flow, mantle convection,29

geodynamics30

1 Introduction31

Plate tectonics causes continuous differentiation of the Earth’s mantle. At mid-oceanic32

ridges decompression melting forms a basaltic crust on top of a depleted peridotite. Melt-33

ing at subduction zones helps generate the continental crust and provides further chemical34

modifications to the subducting crust and mantle. Subduction introduces the newly formed35

heterogeneity to the deep mantle where it remixes with older subducted materials as well as36

the likely remnants of early Earth formation, differentiation, and magma ocean solidification37

(Elkins-Tanton, 2008; Labrosse et al., 2007). Large scale mantle convection associated with38

plate tectonics also remixes past and newly generated heterogeneities leading to a “mar-39

ble cake” mantle (Allègre & Turcotte, 1986; van Keken et al., 2014) with its complicated40

geochemical history expressed in the broad heterogeneity of mid-oceanic ridge and ocean41

island basalts (Hofmann, 2014; van Keken et al., 2002; Zindler & Hart, 1986), with indi-42

cations of preservation of heterogeneity caused by very early differentiation of the Earth’s43

mantle (Boyet & Carlson, 2005) even in modern basalts (Horan et al., 2018). The long-44

term recycling of oceanic crust mixed in with the depleted harzburgite-derived component45

and ambient mantle is an attractive explanation (Christensen & Hofmann, 1994; Jones et46

al., 2020) for the bulk of the seismologically observed Large Low Shear Velocity Provinces47

(LLSVPs: Garnero & McNamara, 2008) at the base of the mantle. However, it is as yet48

not clear how significant a contribution any primordial heterogeneity has to these LLSVPs49

(Ballmer et al., 2016; Li et al., 2014) and whether other, potentially more exotic, processes50

are at play to maintain chemical heterogeneity (Ballmer et al., 2017; Kellogg et al., 1999).51

To aid in the understanding of the thermal and chemical evolution of the Earth’s mantle52

we can test hypotheses using predictive models of mantle convection driven by thermal and53

chemical buoyancy forces. This requires reliable thermochemical methods that are based on54

the numerical solution of the governing equations following from conservation of momen-55

tum, mass, energy, and chemical species. Significant work has relied on the incompressible56

Boussinesq approximation (e.g., Brandenburg et al., 2008; Christensen & Hofmann, 1994;57

Li & McNamara, 2018; McNamara & Zhong, 2004; van Summeren et al., 2009; Zhong,58

2006). A more realistic approach, that also allows for better comparison with seismological59

observations and for use of realistic equations of state as determined from mineral physics60

(Stixrude & Lithgow-Bertelloni, 2011), is to use (weakly) compressible convection that takes61

into account the compression of the Earth’s mantle under its own weight. The anelastic liq-62

uid approximation (ALA) (Jarvis & McKenzie, 1980) has been used increasingly to take63

into account the effects of density increasing into the Earth’s interior, along with associated64

latent heat and buoyancy effects of solid-solid phase transitions, and the interplay of viscous65

–2–



manuscript submitted to Geochemistry, Geophysics, Geosystems

dissipation and adiabatic heating and cooling caused by work against gravity (Schubert66

et al., 2001). A growing body of work reflects the community’s interest in solving a more67

complete set of compressible equations, including ALA, instead of the simplified Boussinesq68

equations (Glatzmaier, 1986; Tackley, 1996; Tan & Gurnis, 2007; Nakagawa et al., 2010;69

Bossman & van Keken, 2013; Gassmöller et al., 2020).70

Aside from the solution of the Stokes and mass conservation equations we generally
need to solve time-dependent advection-diffusion equations for thermal and compositional
fields that, in their simplest form, can be written

∂φ

∂t
+ u · ∇φ−∇ · κφ∇φ = 0. (1)

Here φ is the physical quantity being advected and diffused, κφ is the thermal or chemical71

diffusivity, and u is the velocity field. A measure of the importance of the advective over72

diffusive terms is the Péclet number Peφ=LU/κφ where L and U are a representative length73

and velocity scales respectively. In typical models of whole mantle convection Peφ v O(104)74

for thermal advection-diffusion but becomes practically infinite for chemical species due to75

their very low effective diffusivity.76

Various methods have been used in geodynamics to solve (1) including: 1. field-based77

methods where temperature or composition are discretized on the mesh (e.g., Hansen &78

Yuen, 2000; He et al., 2017; Kellogg & King, 1993); 2. interface-tracking methods where79

boundaries between distinct thermal or compositional regions are advected through the80

mesh using, for example, the marker chain (Christensen & Yuen, 1984; Lin & van Keken,81

2006; Schmeling, 1987; van Keken et al., 1997), volume or moment of fluid (Pilliod & Puckett,82

2004; Robey & Puckett, 2019; Zalesak, 1979), or level-set (Hillebrand et al., 2014; Samuel83

& Evonuk, 2010; Suckale et al., 2010) methods; 3. tracer methods where individual tracers84

carry thermal or chemical information as they are advected pointwise (Brandenburg et al.,85

2008; Christensen & Hofmann, 1994; Gerya & Yuen, 2003; O’Neill et al., 2006; Tackley &86

King, 2003).87

While field-based methods are generally robust when the Péclet number is moderate,88

they tend to become unstable or unsuitable in the case of high Peφ and may suffer from nu-89

merical oscillations or numerical over-diffusion. Interface-tracking and tracer-based methods90

on the other hand are appropriate in zero-diffusivity scenarios but are more difficult to use91

when Peφ is finite. In the case of negligible diffusion, tracer methods are particularly well92

suited for the solution of (1) since the positions of tracers can be traced over time by solving93

ordinary differential equations after interpolation of the velocity field u at the tracers’ po-94

sitions. However, even when u is incompressible, its numerical approximation may not be.95

This incompressibility approximation error may cause tracers to drift apart, creating gaps96

in the data and requiring the addition or deletion of particles (e.g., Moresi et al., 2003).97

Unless treated carefully this can introduce issues with conservation and artificial diffusion98

or mixing.99

Tracer drift can be avoided in incompressible flows if the numerical velocity approxi-100

mation can be guaranteed to be pointwise divergence-free (Jenny et al., 2001; McDermott101

& Pope, 2008; Wang et al., 2015) and the mesh spacing is regular. These requirements en-102

sure that the number of tracers per cell remains roughly constant. In Sime et al. (2021) we103

demonstrated this using a hybrid discontinuous Galerkin (HDG) finite element (FE) method104

(Cockburn et al., 2010; Labeur & Wells, 2012; Maljaars et al., 2018; Rhebergen & Wells,105

2018) to discretize the incompressible Stokes equation. The first major goal of this paper is106

to extend our presentation of the HDG FE discretization of the Stokes equations to a more107

general and compressible mass-conservation equation and investigate its properties.108

Regardless of the discretization used, the physical dilation and contraction introduced109

by compressible flows means that tracer drift is unavoidable. It is also unlikely that the110

requirement of regular mesh spacing will be generally satisfied. It therefore becomes neces-111

sary to add and remove tracers to maintain data coverage across the domain. Appropriate112
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methods for doing this while maintaining other important properties, such as conservation,113

depend on how the compositional or thermal tracer data is transferred to the mesh for use114

in setting the buoyancy or other material parameters.115

Many transfer methods have been developed principally for application to composi-116

tional data and chemical buoyancy. In the Dirac delta source, or ‘Stokeslet’ method (e.g.,117

Christensen & Hofmann, 1994), each particle is normally associated with a mass that is118

used to derive the buoyancy source. When setting up the initial distribution or adding and119

subtracting tracers during a simulation, care must be taken to (re-)distribute this mass in a120

manner consistent with the background density field. Errors introduced during this process121

will affect both conservation and the flow field. The so-called tracer ratio or absolute meth-122

ods (Tackley & King, 2003), where tracers or their ratios are counted per cell, still require123

careful consideration of the positioning of new tracers to prevent artificial diffusion. The124

addition or removal of tracers will also generally adversely affect the conservation properties125

of the absolute method. The partial differential equation (PDE)-constrained l2 projection126

method (Maljaars et al., 2019, 2020) projects tracer data to the mesh under the constraint127

that it satisfies a PDE. When advecting compositional data we showed (Sime et al., 2021)128

that this method will guarantee conservation. The second major goal of this paper is then129

to demonstrate that it also allows particles to be added or removed without affecting these130

important conservation properties.131

We further note that operator-splitting (Lanser & Verwer, 1999) offers a mechanism to132

extend tracer methods beyond the zero-diffusion limit. These solve for the advective part133

of the problem on the tracers while diffusing the data on the mesh after projection. Care134

must be taken when discretizing each stage to ensure that accuracy is maintained but these135

methods are essential in bridging the gap between the negligible and small diffusion regimes,136

for example when chemical diffusion is present or in high Péclet number thermally-driven137

flows. They also offer the tantalizing possibility of exceeding the mesh-dependent Courant138

limit on time step size. The third major goal of this paper is then to demonstrate the use of139

the PDE-constrained l2 projection method to solve (1) from κφ=0 (as in Sime et al., 2021)140

to finite κφ. This also allows us to use tracer methods on the temperature field.141

Several approaches are available to estimate the accuracy and applicability of com-142

putational methods for mantle convection studies. These include community benchmarks143

(Blankenbach et al., 1989; Busse et al., 1994; King et al., 2010; van Keken et al., 1997),144

or internal convergence tests and comparisons with physical or manufactured analytical145

solutions (e.g., Curbelo et al., 2019; Kronbichler et al., 2012; Zhong et al., 2008). The com-146

parison with analytical solutions is attractive as it allows for direct determination of the147

error in approximation, but can be limited to the investigation of individual aspects of148

the governing equations rather than the full system. The fourth major goal of this paper149

is to present new manufactured solutions that satisfy the full set of coupled compressible150

convection equations to allow us to determine the absolute error of the numerical solution151

to the full coupled system, as well as the spatial and temporal orders of convergence. We152

hope these new manufactured solutions will be used to test existing and newly developed153

computational techniques for mantle convection modeling.154

1.1 Tracers in compressible flows with diffusion155

In our prior work (Sime et al., 2021) we highlighted the necessity for exact satisfaction of156

the continuity constraint in the incompressible Stokes system for precise advection of tracer157

data. When combined with a PDE-constrained l2 projection method (Maljaars et al., 2019)158

we are also able to exactly conserve mass when advecting chemical data without diffusion.159

Our aim here is to extend this work to the weakly compressible Stokes system coupled to the160

heat equation (such as described in the ALA benchmark of King et al., 2010). This requires161

us to achieve the following goals:162
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1. Satisfy the compressible continuity equation exactly (pointwise) to conserve mass.163

2. Achieve exact conservation of the field discretized by tracers in a compressible flow164

regime.165

3. Retain an approximately constant number of tracers per cell in a mesh for computa-166

tional efficiency and data resolution.167

4. Facilitate diffusion of the tracer discretized field.168

Point 1. is offered by the HDG discretization of the compressible Stokes system, which pro-169

vides a momentum approximation that exactly satisfies the continuity equation (shown in170

section 5). Assuming point 1. is achieved, point 2. follows in a straightforward manner from171

the PDE-constrained l2 projection method employed in Sime et al. (2021) and introduced172

by Maljaars et al. (2019). Maintaining exact conservation while achieving point 3. is ad-173

dressed in section 2.3 where we note that by discretizing a field by tracers, we may add or174

remove tracers without affecting mass conservation. The PDE-constrained l2 projection of175

the tracers to the underlying field ensures mass is exactly conserved. Point 4. is addressed in176

sections 4 and 6.3 for second order advection-diffusion problems. In this setting the advection177

and diffusion components are considered individually by operator splitting. The advection178

component is treated as in Sime et al. (2021) whilst we discretize the diffusion component179

employing the method introduced in Maljaars et al. (2018).180

A sketch of the issues we address is shown in figure 1. Here we have manufactured181

an anticlockwise rotational compressible velocity field FE approximation in a cylindrical182

annulus geometry with no flow through the internal or external boundaries. The system183

is evolved for approximately one quarter rotation. We show the impact of the compress-184

ible velocity field on the tracer distribution with and without tracer addition/removal and185

diffusion in figure 1(b) and figure 1(c), respectively. In figure 1(b) we note that tracers con-186

gregate and disperse in compressive and expansive flow regions, respectively. When using a187

PDE-constrained l2 projection, the congregation and dispersion of tracers has no bearing188

on the mass localized to those regions (cf. Maljaars et al., 2018; Sime et al., 2021). How-189

ever, the congregation of tracers leads to computational inefficiency by over prescription of190

data per cell, whilst dispersion of tracers yields insufficient data to resolve the underlying191

discretized field. Figure 1(c) depicts the benefits of the methods shown in this work by in-192

cluding diffusion effects and addition/removal of tracers to preserve approximately uniform193

tracer coverage in each cell of the mesh.194

1.2 HDG methods195

To accommodate the necessity for exact mass conservation we require a spatial dis-196

cretization scheme of the compressible Stokes system which exactly satisfies the continuity197

constraint at all points in the domain. Many FE methods exist with this property (Cockburn198

et al., 2007; Evans & Hughes, 2013; Guzmán & Neilan, 2014; Morgan & Scott, 2018; Scott199

& Vogelius, 1985). However we employ the HDG FE method (as developed in Rhebergen &200

Wells, 2020), where the projection of the continuity constraint onto the discontinuous pres-201

sure space matches with the formulation of the continuity constraint itself, yielding exact202

pointwise satisfaction (see Rhebergen & Wells, 2018).203

The HDG scheme has been applied to the discretization of the compressible Navier–204

Stokes system (La Spina et al., 2020; Peraire et al., 2010; Woopen et al., 2014) and the weakly205

compressible Navier–Stokes system (Vila-Pérez et al., 2021). However, we are concerned206

with the weakly compressible Stokes system. To this end we will present an abstract interior207

penalty (IP) HDG formulation of second order diffusion operators which will be applied to208

the weakly compressible Stokes system such as that found in the ALA model. This abstract209

formulation will further serve us by providing a means to discretize the diffusive component210

of the advection-diffusion equation. This advection-diffusion approximation is then used in211

updating tracer data.212
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(a) Initial state (b) Neither diffusion nor tracer
addition/removal

(c) Peφ≈103 diffusion and tracer
addition/removal

Figure 1: Here we sketch the challenges we address regarding tracer discretizations in com-
pressible velocity fields in this work. We manufacture a compressible system with a rotational
flow acting anti-clockwise in the cylindrical annulus geometry with no flow through the inner
and outer radii, 0.4292 and 1.4292 respectively. (a) The initial state of a field discretized by
an even coverage of tracers where color is added as a visual aid only. (b) After approximately
one quarter revolution that with no addition or removal the tracers congregate in regions
of compression and disperse in regions of expansion leading to inefficient tracer coverage.
(c) Even coverage is obtained by addition and removal of tracers and diffusion across trac-
ers as required by, for example, thermal or chemical diffusivity. The diffusion of the field
discretized by tracers can be seen in the transition zone from the orange to purple regions.

We found in Sime et al. (2021) that precise approximation of the incompressibility,213

∇ · uh=0, of the velocity field approximation uh, is crucial for precise advection of tracer214

data. In the compressible scheme we therefore pay close attention to the compressibility215

approximation ∇·uh 6=0 error. In section 6.2 we show that the compressibility approximation216

error is superconvergent.217

1.3 Outline218

Our investigation proceeds as follows: In section 2 we will outline the compressible219

Stokes system underlying the numerical models we wish to discretize. Furthermore we will220

briefly cover the paradigm of temporal discretization of the advection-diffusion equation by221

operator splitting, and spatial discretization by subdivision of a finite domain into a mesh222

for computation of FE approximations. In section 2.3 we will reintroduce the concept of223

discretizing a field with tracers as previously investigated in, for example, Maljaars et al.224

(2018) and Sime et al. (2021). This includes the method by which we add and remove tracers225

during a simulation. Section 3 covers the detail of PDE-constrained l2 projection of tracer226

data to a field using the HDG FE method in the context of compressible flows.227

The abstract IP HDG formulation for the discretization of second order diffusion opera-228

tors is presented in section 2.4. This abstraction is then applied to the diffusion component of229

the advection-diffusion equation in section 4 and the compressible Stokes system in section 5.230

We complete the technical detail of the numerical scheme in section 6.3 by reproducing the231

result in Maljaars et al. (2019), in the context of compressible flow, which shows careful232

selection of intermediate states for the tracer projection component of the operator splitting233

is necessary to ensure a mathematically consistent formulation.234

Penultimately in section 7 we demonstrate numerical experiments. We show optimal235

convergence of our method by comparing computations of approximations of a compressible236

Stokes system with a manufactured solution. Additionally we replicate the ALA model237
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community benchmark from King et al. (2010) and compare our results. Finally in section 8238

we provide a summary of the numerical method’s highlights and some concluding remarks.239

While we focus in our development on the use of equation (1) for thermal fields, we240

note, and will demonstrate, that our new method is equally suited for solution of (1) under241

the limit κφ → 0. This provides therefore a new and highly precise approach to solve the242

general thermochemical convection equations for mantle convection.243

2 Preliminaries244

This section is dedicated to an overview of the compressible system and the means by245

which we handle spatial and temporal discretization. Specifically we will cover the HDG FE246

scheme in space and an operator splitting in conjunction with a θ differencing scheme in247

time. The remainder of this work discusses the technical detail and implementation of these248

numerical methods. Our complete method to solve the coupled Stokes, mass conservation,249

and heat advection-diffusion equations is outlined in algorithm 1.250

Algorithm 1: Summary of solution procedure

n← 0
t← 0
Initialize Th(x, t = 0)
Solve for initial momentum (ρu)h(x, t = 0) (section 5)
while t ≤ tF (in time loop) do

Compute ∆tn (section 6.1)
Balance number of tracers per cell (section 2.6)
foreach Runge–Kutta sub step do

Compute uh and advect tracers to new sub step position
Project advective component yielding Tn+1

a,h (section 3)

Solve diffusive correction yielding Tn+1
d,h (section 4)

Solve for updated momentum (ρu)h (section 5)

Update tracer data Tn+1
p , p = 1, . . . , Np (section 6.3)

t← t+ ∆tn
n← n+ 1

2.1 Approximate equations for thermal convection in a weakly compressible251

fluid252

The approximate, non-dimensionalized equations which govern velocity u, temperature
T , and pressure p are

−∇ · σ = f , (2)

∇ · (ρu) = 0, (3)

ρ
DT

Dt
−∇ · k∇T = H, (4)

where we have assumed a constant non-dimensional heat capacity of one. Here, the stress
and rate of strain tensors are

σ(u, p) = 2η

(
ε̇(u)− 1

3
(∇ · u) I

)
− pI, (5)

ε̇(u) =
1

2

(
∇u +∇u>

)
, (6)
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respectively, ρ(x) is the density, η(x, t) is the viscosity, k(x, t) is the thermal conductivity,
f(x, t) is the momentum source and H(x, t) is the heat source. The convective derivative is
defined by

DT

Dt
=
∂T

∂t
+ u · ∇T. (7)

2.2 Advection-diffusion on tracers by operator splitting253

Our goal is to discretize advection-diffusion problems such as the heat equation (4)254

using tracers. The case of pure advection (k = 0) has been specifically covered in Sime et al.255

(2021) where the l2 (least squares) and PDE-constrained l2 tracer projection methods were256

demonstrated. The latter method (introduced in Maljaars et al., 2019) was shown to exactly257

conserve mass (to machine precision). The case of advection-diffusion (k>0) requires some258

additional work. We will exploit the exact conservation of the PDE-constrained l2 projection259

method and augment our numerical scheme with the capability of diffusing thermal data260

between tracers (as introduced in Maljaars et al., 2018).261

The premise of the discretization scheme is to split the advective and diffusive compo-262

nents of the heat equation for individual consideration. For the advection terms we exploit263

the tracer projection method shown in Sime et al. (2021). We then compute the diffusive264

correction of the projected field followed by updating the tracer data. In sequence this265

involves:266

1. Advect tracer data in the background velocity approximation.267

2. Project advective component of the advection-diffusion equation (the material deriva-268

tive).269

3. Diffuse the intermediate advection field yielding the next time step’s field approxima-270

tion.271

4. Update the tracer data with the diffused field.272

As part of this procedure we split equation (4) into two parts and seek the advective
and diffusive field components, Ta and Td respectively, by solving

ρ
∂Ta
∂t

+ ρu · ∇Ta = 0, (8)

ρ
∂Td
∂t
−∇ · k∇Td = H, (9)

which will be coupled through temporal discretization.273

2.2.1 Coupling by temporal discretization274

Let t be the current model time with initial time t0=0 and final time t=tF . These limits
define the temporal interval of the simulation t ∈ It := [t0, tF ]. The simulation time interval
It is discretized into steps

I∆t := {t0, t1, . . . , tF } , t0 < t1 < . . . < tF . (10)

Employing the operator splitting method in the time interval I∆t we define the states
Tna = Ta(x, tn) and Tnd = Td(x, tn) to be used in a θ time differencing scheme where

Tn+θ
a = θTn+1

a + (1− θ)Tna and Tn+θ
d = θTn+1

d + (1− θ)Tnd , (11)

and θ ∈ [0, 1] is a constant. We approximate the time derivatives by

∂Ta
∂t
≈ Tn+1

a − T ∗,na
∆tn

and
∂Td
∂t
≈ Tn+1

d − T ∗,nd
∆tn

. (12)

Here T ∗,na and T ∗,nd are intermediate states and ∆tn = tn+1 − tn. A simple first choice for275

the intermediate states would appear to be T ∗,na = Tnd and T ∗,nd = Tn+1
a with the initial276
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state T ∗,0a = T (x, t0) (commensurate with Lie splitting), however, we will present a better,277

mathematically consistent choice in section 6.3.278

The time discretization seeks advective and diffusive temperature states, Tn+1
a and

Tn+1
d , respectively, such that

ρ
Tn+1
a − T ∗,na

∆tn
+ ρu · ∇Tn+θ

a = 0, (13)

ρ
Tn+1
d − T ∗,nd

∆tn
−∇ · k∇Tn+θ

d = Hn+θ. (14)

2.3 Tracer discretization of a field279

Our starting point is advecting a distribution of tracers which discretize the field T280

as introduced in Maljaars et al. (2018) and adopted in the context of purely advective281

geodynamic flows in Sime et al. (2021).282

Consider Np tracers with position and temperature data

X(t) :=
{
xp(t)

}Np
p=1

, (15)

T(t) :=
{
Tp(t)

}Np
p=1

, (16)

respectively. The initial values of these tracer data are interpolated from the initial temper-
ature field

T(t = 0) =
{
T (xp, t = 0)

}Np
p=1

. (17)

It is important to note that the tracer data do not carry a notion of mass or volume. They283

are simply pointwise discretizations of a continuum field. It is the conservation of these fields284

which is important when approximating underlying physical models.285

2.3.1 Tracer data advection286

Following Sime et al. (2021) we discretize the advection equation (13) by updating trac-
ers’ positions using a Runge–Kutta (RK) method of degree ` ∈ N to numerically integrate
the total derivatives in I∆t

dxp
dt

= u(xp, t), p = 1, . . . , Np. (18)

We also note the total derivative of the temperature data

ρ(xp)
dTp
dt

= ρ(xp)

(
∂T (xp, t)

∂t
+

dxp
dt
· ∇T (xp, t)

)
,

= ρ(xp)

(
∂T (xp, t)

∂t
+ u(xp, t) · ∇T (xp, t)

)
,

= 0 p = 1, . . . , Np, (19)

by equation (8), where T = Ta.287

2.4 Abstract HDG FE formulation for diffusion problems288

Throughout this work we employ the HDG method for spatial discretization for its289

benefits of exact (global, local, and pointwise) conservation, in addition to lending itself290

well to global problem size reduction by static condensation1. However, the verbosity and291

1 The process by which the local degrees of freedom defined in mesh cells may be eliminated in favor of

global degrees of freedom defined on the mesh facets. Also known as Guyan reduction (Guyan, 1965).
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complexity of the formulations invite human error in their computational implementation.292

In an effort to alleviate these concerns we present here the abstract HDG FE formulation for293

diffusion problems. Employing this abstraction in computational symbolic algebra (Alnæs294

et al., 2014) allows for automatic formulation of HDG terms (using the techniques in Hous-295

ton & Sime, 2018). The abstract formulation follows from the techniques developed in the296

discontinuous Galerkin (DG) literature (Hartmann & Houston, 2006) and the work on the297

HDG formulation of the diffusion operator in Labeur and Wells (2012) and Rhebergen and298

Wells (2017).299

2.4.1 Domain discretization300

Let Ω ⊂ Rd, d ∈ {2, 3}, be the domain of interest with boundary ∂Ω which has unit301

outward point unit vector n. To impose boundary data we subdivide ∂Ω into Dirichlet and302

Neumann components, ∂Ω = ∂ΩD ∪ ∂ΩN , respectively, such that the Dirichlet component303

is non-empty and the Dirichlet and Neumann components do not overlap ∂ΩD ∩ ∂ΩN = ∅.304

The domain Ω is subdivided into conforming simplices (d=2 triangles or d=3 tetrahe-305

dra). Each simplex is called a cell or element κ in the mesh Th, such that Th := {κ}. The306

outward pointing normal unit vector on the boundary of each cell ∂κ is nκ. Each cell has307

size hκ measured by the diameter of the smallest circle or sphere in which the cell may be308

contained. We write the quantity h to be the maximum cell size of all cells in a mesh and309

the subscript h denotes a quantity which has been discretized conforming to an underlying310

mesh. Interior facets are those shared by two adjacent cells. Exterior facets are those cell311

boundaries for which ∂κ overlaps ∂Ω.312

2.4.2 HDG and EDG FE function spaces313

Here we define the FE function spaces we will use later for the spatial discretization of314

fields conforming to the mesh Th. Considering we are concerned with both the discretization315

of the heat equation and the compressible Stokes system, we present these spaces in an316

abstract setting. This abstraction will then be specialized for the individual cases in the317

later sections.318

Let w be the m ∈ N dimensional abstract solution of an appropriate PDE. The HDG319

formulation seeks the approximate solution composed of a hybrid of functions defined on320

the cells and facets, wh and wh, respectively. The choice of the FE function spaces in which321

these solutions are sought impact the numerical properties of the approximation. Consider322

the following FE function spaces in which we will seek our HDG approximations:323

1.
[
Wh,k

DG

]m
:= {m−dimensional piecewise polynomials of degree k defined and continu-324

ous in each κ ∈ Th, and discontinuous between elements},325

2.
[
W

h,k
DG

]m
:= {m−dimensional piecewise polynomials of degree k defined and contin-326

uous on each facet in Th, and discontinuous between facets},327

3.
[
W

h,k
CG

]m
:= {m−dimensional piecewise polynomials of degree k defined and contin-328

uous on each facet in Th, and continuous between facets}.329

The combinations (wh,wh) ∈
[
Wh,k

DG

]m
×
[
W

h,k
DG

]m
and (wh,wh) ∈

[
Wh,k

DG

]m
×
[
W

h,k
CG

]m
330

we call the hybrid discontinuous Galerkin (HDG) and embedded discontinuous Galerkin331

(EDG) methods, respectively.332

Throughout this work we exploit the EDG approximation for the reduced global prob-333

lem size owing to fewer degrees of freedom arising on the facets. However, as we shall specify334

later in section 5.1 we employ a combined EDG-HDG method for the Stokes system mo-335

mentum and pressure, respectively. This element pairing yields a pointwise divergence free336

momentum approximation.337
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2.4.3 Abstract diffusion problem338

Consider the following homogeneous second order PDE where we seek the m dimen-
sional solution w subject to appropriate Dirichlet and Neumann boundary data, wD and
wN , respectively,

−∇ · τ(w,∇w) = 0 in Ω, (20)

τ(w,∇w) · n = wN on ∂ΩN , (21)

w = wD on ∂ΩD. (22)

Here, τ(w,∇w) is an m× d tensor which is linear or nonlinear in w and linear in ∇w. For339

example, in the context of thermal diffusion, m = 1, w = T and τ = k∇T . In the context340

of the compressible Stokes system momentum equation m = d, w = u and τ = σ.341

2.4.4 Abstract IP HDG FE formulation342

The construction of the abstract HDG FE formulation demands we homogenize equa-
tion (20). To this end we construct the homogeneity tensor G(w) such that

(Gij)kl =
∂τ ij

∂ (∇w)kl
, i, k = 1, . . . ,m, j, l = 1, . . . , d, (23)

and the product and transpose product operations (using Einstein summation notation)
read

(G∇w)ij = (Gij)kl(∇w)kl = Gij : ∇w, (24)

(G>∇w)ij = (Gij)kl(∇w)ij . (25)

Employing the homogeneity tensor we seek the abstract solution variable approximation

(wh,wh) ∈
[
Wh,k

DG

]m
×
[
W

h,k
DG

]m
, such that

F :=
∑
κ∈Th

∫
κ

τ : ∇zh dx +
∑
κ∈Th

∫
∂κ

(ŵ −wh)⊗ nκ : G>∇zh ds

−
∑
κ∈Th

∫
∂κ

τ̂ : zh ⊗ nκ ds +
∑
κ∈Th

∫
∂κ

τ̂ : zh ⊗ nκ ds ≡ 0 (26)

for all (zh, zh) ∈
[
Wh,k

DG

]m
×
[
W

h,k
DG

]m
. Here the numerical flux functions are given by

ŵ = wh, (27)

τ̂ = τ +
CIP

hκ
G
(
(wh −wh)⊗ nκ

)
, (28)

where CIP ≥ CIP0
> 0 is an IP parameter independent of the mesh where the (typically343

unknown) minimum value CIP0 ensures stability of the numerical method. Specific choices344

of CIP will be stated in the following sections which are chosen based on observed stability345

thresholds of small computational experiments.346

2.4.5 Implementation347

We note here that construction of the homogeneity tensor and the residual formulation348

may appear daunting. However with the unified form language (UFL) (Alnæs et al., 2014)349

and the techniques described in Houston and Sime (2018) the specification of such formula-350

tions is straightforward. Furthermore, the symbolic computation of the Gâteaux derivative351

for use with Newton’s iterative method follows using automatic differentiation (available in352

the UFL). Specific examples applied to a range of problems for use with the components353

of the FEniCS project (Alnæs et al., 2015) are available in the public repositories Houston354

and Sime (2018) and Sime (2021).355
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2.5 Momentum as a solution variable356

The standard FE approximation of the compressible Stokes system equations (2) and (3)
would seek velocity and pressure approximations uh and ph, respectively. However, here we
instead compute momentum and pressure FE approximations (ρu)h and ph, respectively.
This is motivated by the HDG method momentum approximation of the compressible Stokes
system exactly satisfying the continuity constraint of equation (3) pointwise. By this we
mean that

∇ · (ρu)h(x, t) = 0 ∀x ∈ T h, (29)

where (ρu)h is the momentum solution variable computed from the HDG formulation. Fur-357

thermore this property is a key component in our tracer projection method being exactly358

conservative. More detail is provided in section 5.359

2.6 Balancing the number of tracers per mesh cell360

By the nature of compressible flow, the distribution of tracers will congregate and361

disperse in compressive and expansive regions, respectively. In order to preserve an accurate362

approximation of a field discretized by tracers we strive to keep the number of tracers per363

cell roughly constant throughout a simulation.364

We remind ourselves that the field which our tracer method discretizes is the host365

of physical continuum data. Therefore we may add tracers with data interpolating their366

corresponding field and likewise delete tracers (maintaining a minimum resolution defined367

later) at will. We emphasize that this addition and removal of tracers will not impact368

conservation of the underlying field.369

To this end we define the following tracer addition and removal method. Let Npκ be370

the number of tracers in cell κ∈Th. Furthermore let the upper and lower limit of the number371

of tracers per cell be Nmax
pκ and Nmin

pκ , respectively, where Nmax
pκ ≥ Nmin

pκ > 0. In each cell372

κ ∈ Th:373

1. If Npκ > Nmax
pκ then Npκ −Nmax

pκ tracers with the shortest distances to a neighboring374

tracer are removed.375

2. If Npκ < Nmin
pκ then Nmin

pκ − Npκ tracers are added with positions generated from a376

uniform random distribution defined on the cell’s geometry, and their data set to the377

interpolant of the underlying field, Th(xpnew , t), for each new tracer at position xpnew .378

3 Advection of tracer data and their projection to a field379

First we consider the advection problem equation (13). We employ the methods which380

have been extensively detailed in Sime et al. (2021) regarding tracer advection and projection381

to a field. We will summarize this technique in this section by stating the PDE-constrained l2382

projection scheme in the context of compressible flow. Two key additions are the advection383

through the background momentum field (ρu)h and the choice of the intermediate state384

approximation T ∗,na,h (following Maljaars et al., 2019).385

PDE-constrained l2 projection minimizes the square distance between the field and the
tracers whilst constrained by the advection PDE (8). The full problem reads: find Tn+1

a,h ∈[
Wh,s

DG

]1
such that

min
Tn+1
a,h ∈W

h,s
DG

J (Tn+1
a,h ) :=

Np∑
p

1

2

(
Tn+1
a,h (xn+1

p )− Tnp
)2

(30a)

subject to:
ρ
∂Ta,h
∂t

+ (ρu)h · ∇Tn+θ
a,h = 0 in Ω,

Tn+1
a,h = TD(x, tn+1) on ∂Ωin,

(30b)
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where s ∈ N is the polynomial degree of temperature FE approximation, ∂Ωin = {x ∈ ∂Ω :386

uh · n < 0} is the inlet boundary and we define ∂Ωout = ∂Ω \ ∂Ωin as the outlet boundary.387

In order to distinguish the FE function spaces in which we seek the advective and
diffusive components of the temperature approximation, we define

Sh,sDG :=
[
Wh,s

DG

]1
, S

h,s
DG :=

[
W

h,s
DG

]1
, S

h,s
CG :=

[
W

h,s
CG

]1
, (31)

and the spaces enforcing Dirichlet temperature data TD(x, t) and homogenized boundary
data

S
h,s
BC := {s ∈ Sh,s : s|∂ΩD

= TD} and S
h,s
BC0

:= {s ∈ Sh,s : s|∂ΩD
= 0}, (32)

respectively. Adhering to the method and notation in Sime et al. (2021) we forego stating the
semi-discrete Lagrangian functional to be minimized and instead state the corresponding
discretization of the equivalent linear system by the HDG method. Employing the θ scheme
and time discretization discussed in section 2.2.1 and introducing a Lagrange multiplier

λh, the EDG discretization of equations (30a) and (30b) reads: find (Tn+1
a,h , T

n+1

a,h , λh) ∈
Sh,sDG × S

h,s
CG ×Wh,0

DG such that

Np∑
p=1

(
Tn+1
a,h (xn+1

p )− Tnp
)
sh(xn+1

p )−
∑
κ∈Th

∫
∂κ

β
(
T
n+1

a,h − Tn+1
a,h

)
sh ds

+

∫
Ω

ρ
sh

∆tn
λh dx− θ

∑
κ∈Th

∫
κ

(ρu)nh · ∇λhsh dx + θ

∫
∂Ωout

(ρu)nh · nλhsh ds = 0, (33)

∫
Ω

ρ
Tn+1
a,h − T

∗,n
a,h

∆tn
δλh dx

−
∑
κ∈Th

∫
κ

(ρu)nhT
n+θ
a,h · ∇δλh dx +

∑
κ∈Th

∫
∂κ\∂Ω

(ρu)nh · nT
n+1

a,h δλh ds

+

∫
∂Ωout

(ρu)nh · nTn+θ
a,h δλh ds +

∫
∂Ωin

(ρu)nh · nTn+θ
D δλh ds = 0, (34)∑

κ∈Th

∫
∂κ\∂Ωin

(ρu)nh · nκλhsh ds +
∑
κ∈Th

∫
∂κ

β
(
T
n+1

a,h − Tn+1
a,h

)
sh ds = 0, (35)

for all (sh, sh, δλh) ∈ Sh,sDG × S
h,s
CG ×Wh,0

DG (see Maljaars et al. (2019) and Sime et al. (2021)388

for derivation details).389

4 Heat equation discrete formulation390

In this section we define the backward Euler (θ = 1) HDG formulation of the heat391

equation specified in equation (14) using the time discretization scheme discussed in sec-392

tion 2.2.1. We show later in section 6.3 that employing the backward Euler method in the393

split scheme with careful choice of the intermediate state T ∗,na,h can be shown to yield second394

order accuracy in time (Maljaars et al., 2019).395

Reflecting on the abstract formulation in section 2.4 we note that in the case of the
isotropic heat equation wh = Th and τ = k∇Th. We further note that in this simple case

G>∇Th = G∇Th = k∇Th. The HDG FE residual formulation reads: find (Tn+1
d,h , T

n+1

d,h ) ∈
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Sh,sDG × S
h,s
BC such that

FT :=

∫
Ω

ρ
Tn+1
d,h − T

∗,n
d,h

∆tn
sh dx

+
∑
κ∈Th

∫
κ

k∇Tn+1
d,h : ∇sh dx +

∑
κ∈Th

∫
∂κ

(T̂d − Tn+1
d,h )k∇sh · nκ ds

−
∑
κ∈Th

∫
∂κ

k̂∇Td · nκsh ds +
∑
κ∈Th

∫
∂κ

k̂∇Td · nκsh ds

−
∑
κ∈Th

∫
κ

H(x, tn+1)sh dx ≡ 0 (36)

for all (sh, sh) ∈ Sh,sDG × S
h,s
BC0

. The numerical flux functions are given by

T̂d = T
n+1

d,h and k̂∇Td = k∇Tn+1
d,h +

CIPT

hκ
k
(
T
n+1

d,h − Tn+1
d,h

)
nκ, (37)

where CIPT is the penalty parameter selected specifically for the heat equation problem,396

chosen in this work (based on numerical experiment) to be CIPT = 24s2.397

5 Conserved momentum Stokes HDG formulation398

Careful consideration of the weakly compressible formulation of the Stokes system in399

equations (2) and (3) is required in the context of tracer advection. Previous work in the400

context of incompressible flows demonstrated the necessity for precise approximation of the401

continuity constraint (Sime et al., 2021). Furthermore in Jones et al. (2021) it was found that402

imprecise approximation of the incompressibility constraint would lead to spurious model403

results.404

5.1 Compressible Stokes EDG-HDG function spaces405

The EDG-HDG compressible Stokes formulation seeks momentum and pressure ap-406

proximations defined in the cells ((ρu)h, ph) and on the facets ((ρu)h, ph), respectively. The407

choice of the FE function spaces in which these solutions are sought impact the numerical408

properties of the approximation (see Rhebergen & Wells, 2020).409

As in Sime et al. (2021), we exploit the EDG-HDG formulation. In this setting we define
the following function spaces:

Vh,p
DG :=

[
Wh,p

DG

]d
, V

h,p

CG :=
[
W

h,p
CG

]d
, (38)

Qh,p−1
DG :=

[
Wh,p−1

DG

]1
, Q

h,p
DG :=

[
W

h,p
DG

]1
, (39)

where p ∈ N is the polynomial degree of the momentum FE approximation. Additionally the
following modified spaces which satisfy Dirichlet boundary data (ρu)D and homogeneous
boundary data are defined

V
h,p

BC := {v ∈ V
h,p

: v|∂ΩD
= (ρu)D} and V

h,p

BC0
:= {v ∈ V

h,p

CG : v|∂ΩD
= 0}, (40)

respectively. On the Neumann boundary we enforce the homogeneous condition σ · n|∂ΩN
=410

0.411

5.2 Compressible Stokes EDG-HDG FE formulation412

The compressible Stokes system is composed of the conservation of momentum and413

mass, equations (2) and (3), respectively. The EDG-HDG formulation of the conservation414
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of momentum follows from the abstract formulation stated in section 2.4. The EDG-HDG415

formulation of the continuity equation is also presented (see e.g., Rhebergen & Wells, 2017).416

We remark that (by the quotient rule)

uh =
(ρu)h
ρ

and ∇uh =
ρ∇(ρu)h − (ρu)h ⊗∇ρ

ρ2
, (41)

which may be used in construction of the stress tensor σ in equation (5). Using the formu-
lation in section 2.4 we see that in the case of isotropic viscosity where d = 2, wh = (ρu)h,
τ = σ and

G =


(

2
ρ (η − 1

3 ) 0

0 − 2
3ρ

) (
0 η

ρ
η
ρ 0

)
(

0 η
ρ

η
ρ 0

) (
− 2

3ρ 0

0 2
ρ (η − 1

3 )

)
 . (42)

The residual EDG-HDG formulation of the Stokes system reads: find the momentum

and pressure approximations
(

(ρu)h, (ρu)h, ph, ph

)
∈ V h,pDG × V

h,p
BC × Qh,p−1

DG × Qh,pDG, such

that

Fρu :=
∑
κ∈Th

∫
κ

σ : ∇vh dx +
∑
κ∈Th

∫
∂κ

(ρ̂u− (ρu)h)⊗ nκ : G>∇vh ds

−
∑
κ∈Th

∫
∂κ

σ̂ : vh ⊗ nκ ds +
∑
κ∈Th

∫
∂κ

σ̂ : vh ⊗ nκ ds

−
∑
κ∈Th

∫
κ

f(x, tn+1) · vh dx ≡ 0, (43)

F∇·ρu :=
∑
κ∈Th

∫
κ

∇ · (ρu)hqh dx +
∑
κ∈Th

∫
∂κ

((ρu)h − (ρu)h) · nκqh ds ≡ 0, (44)

for all (vh,vh, qh, qh) ∈ V h,pDG×V
h,p
BC0
×Qh,p−1

DG ×Qh,pDG. Here the HDG numerical flux functions
are given by

ρ̂u = (ρu)h, (45)

σ̂ = σ(uh, ph) +
CIPρu

hκ
G

((
(ρu)h − (ρu)h

)
⊗ nκ

)
, (46)

where CIPρu is an IP parameter selected through experimentation to be CIPρu = 12p2.417

6 Discussion418

With the discretization schemes outlined in algorithm 1 now established, we provide419

pertinent topics for consideration in this section.420

6.1 Time step size and operator splitting error421

In our numerical experiments

hmin max
x∈Ω

∣∣uh(x, tn)
∣∣ > k.

Therefore we select our time step according to the hyperbolic Courant–Friedrichs–Lewy
(CFL) criterion

∆tn = CCFL
hmin

maxx∈Ω

∣∣uh(x, tn)
∣∣ . (47)

where CCFL is the desired maximum Courant number bound.422
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We also consider the numerical error incurred by operator splitting by writing equa-
tion (4)

ρ
∂T

∂t
+A(T ) +B(T ) = 0, (48)

A(T ) = ρu · ∇T, (49)

B(T ) = −∇ · k∇T −H (50)

and considering the discretization in equations (13) and (14). Analysis (LeVeque, 1999)
shows us we incur an error

Tn+1
d − Tn+1 =

(∆tn)2

2
(A ◦B −B ◦A)(Tn) +O(∆tn

3). (51)

In essence, if the operators A(·) and B(·) commute, then the splitting scheme is exact. It423

can be shown (following Lanser & Verwer, 1999) that A(·) and B(·) commute only in the424

case ρu and k are independent of x.425

Although the splitting scheme we use is globally first order accurate, in our numerical426

experiments in section 7 we observe that the splitting scheme error is a concern only when427

∆tn is larger than that prescribed by the CFL criterion. The splitting scheme in this work428

may be improved by employing higher order methods, such as globally second order accurate429

Strang splitting. However, higher order splitting methods will incur greater computational430

expense due to the increased number of global FE systems to be solved each time step.431

6.2 Superconvergence of the HDG compressibility approximation432

Superconvergent properties of the HDG method have been documented in, for example,
Giacomini et al. (2018) and Nguyen et al. (2011). Here we examine the superconvergence of
the HDG compressibility approximation. Consider the momentum variable ρu and its HDG
approximation (ρu)h. We define the L2(Th) norm

‖v‖L2(Th) =

√∑
κ∈Th

∫
κ

v2 dx, (52)

such that we have the property

‖∇ · (ρu)‖L2(Th) = ‖∇ · (ρu)h‖L2(Th) = 0. (53)

The precise advection of tracers through a velocity field is crucial for stable and accurate433

simulation. So we examine the accuracy of our approximation of both uh and ∇ · uh.434

Following from Rhebergen and Wells (2020, Theorem 3) we have a known, pressure
robust, bound on the error of the momentum approximation

‖ρu− (ρu)h‖L2(Th) ≤ Cρuhp+1‖ρu‖Hp+1(Ω), (54)

where Cρu is a constant independent of the mesh and ‖ρu‖Hp+1(Ω) is the Hp+1 norm of the435

momentum. We now consider the compressibility approximation error ‖∇·u−∇·uh‖L2(Th).436

First we note by the quotient rule and equation (53)

∇ · u = ∇ ·
(
ρu

ρ

)
=
ρ∇ · (ρu)− ρu · ∇ρ

ρ2
= −ρu · ∇ρ

ρ2
, (55)

where it follows that in terms of the HDG FE approximation

∇ · uh = ∇ ·
(

(ρu)h
ρ

)
= −(ρu)h ·

∇ρ
ρ2
. (56)
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We rewrite the HDG FE compressibility error

‖∇ · u−∇ · uh‖L2(Th) =

∥∥∥∥∇ · ρuρ −∇ · (ρu)h
ρ

∥∥∥∥
L2(Th)

,

=

∥∥∥∥((ρu)h − ρu) · ∇ρ
ρ2

∥∥∥∥
L2(Th)

,

≤
∥∥(ρu)h − ρu

∥∥
L2(Th)

∥∥∥∥∇ρρ2

∥∥∥∥
L2(Th)

. (57)

In essence we have that the HDG FE compressibility approximation converges at the same437

rate as the momentum approximation,O(hp+1), as in equation (54). The term ‖∇ρ/ρ2‖L2(Th)438

indicates that as the density field’s smoothness tends towards a constant we recover an ex-439

actly incompressible approximation. Evidently the compressibility approximation error may440

suffer from highly irregular density fields.441

This superconvergent error bound is enabled by the numerical property of equation (53).442

Standard FE methods for which ‖∇ · (ρu)h‖L2(Th) 6= 0 or ‖∇ · (ρuh)‖L2(Th) 6= 0 will not443

exhibit this phenomenon.444

We demonstrate the HDG method’s superconvergent compressibility approximation
where p = 2 in figure 2. Here we compute HDG momentum formulation and Taylor–Hood
(TH) (as defined in Sime et al., 2021) momentum and velocity formulations of the com-
pressible Stokes system with a manufactured solution for comparison. The system is solved
in the domain Ω = (0.5, 1.5)2 where the prescribed velocity and density fields are

u(x, t) =

(
y2

x2 + y2
+ 1

)(
−y
x

)
and ρ =

ρ0 +
√
x2 + y2

3− x2−y2
x2+y2

, (58)

respectively. We may examine the influence of the ‖∇ρ/ρ2‖L2(Th) term by adjusting the445

constant value ρ0 ≥ 0. We measure the error by computing the following functionals which446

we expect to converge at the stated rates in the case of the EDG-HDG discretization scheme:447

1. ‖u− uh‖L2(Th) v O(hp+1): velocity error,448

2. ‖ρu− (ρu)h‖L2(Th) v O(hp+1): momentum error,449

3. ‖∇ · u−∇ · uh‖L2(Th) v O(hp+1): superconvergent compressibility error,450

4. ‖∇ · (ρu)h‖L2(Th) = 0: mass continuity error,451

5. ‖∇u−∇uh‖L2(Th) v O(hp): velocity gradient error,452

6. ‖∇(ρu)−∇(ρu)h‖L2(Th) v O(hp): momentum gradient error.453

6.3 Choice of intermediate states454

In this section we specify how we choose the intermediate states of the advective and455

diffusive temperature updates, T ∗,na,h and T ∗,nd,h , respectively. The diffusive state is simply456

chosen as the most recent advective update T ∗,nd,h = Tn+1
a,h . However, more care must be457

taken regarding the choice of the advective update to maintain mathematical consistency.458

The following derivation was originally developed in Maljaars et al. (2019) for advection-459

diffusion in incompressible flows, which we now frame in the context of the advection-460

diffusion splitting of equation (4).461

6.3.1 Tracer updates462

Consider the abstract HDG formulation equation (26) in the context of equation (4).463

In section 4 we stated the HDG FE formulation employing a fully implicit backward Euler464

method. Here we write the formulation employing a full θ scheme, and show why we choose465

the backward Euler method and retain second order accuracy.466
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Figure 2: Comparison of the p=2 HDG momentum formulation with the p=2 TH momentum
and velocity formulations using the manufactured solution in equation (58). The left and
right columns show the ‘weakly’ ρ0=0 and ‘strongly’ ρ0=100 compressible cases, respectively
(see section 6.2). In (a1) and (a2) we observe optimal convergence of both the momentum and
velocity formulations. In (b1) and (b2) we observe the HDG method’s superconvergent rate
of the compressibility approximation error due to pointwise satisfaction of the continuity
constraint (see section 6.2). The growth in the error of the HDG method’s satisfaction
of the continuity constraint is due to accumulation of floating point error. In (c1) and
(c2) we observe the standard optimal rates of convergence of the velocity and momentum
approximations’ gradients. The difference between the HDG and TH momentum formulation
error in plots (a1), (a2), (c1) and (c2) is indistinguishable at this scale.
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Let us design the θ scheme with θL∈[0, 1] which is separate and possibly different from
θ in equation (11) such that

Tn+1
d,h = θLT

n+1
I,h + (1− θL)Tn+1

E,h . (59)

Here Tn+1
I,h and Tn+1

E,h are the implicit and explicit components, respectively. We write the
abstract FE formulation of the diffusion problem∫

Ω

Tn+1
d,h − T

∗,n
d,h

∆tn
sh dx + θLF

n+1 + (1− θL)Fn = 0, (60)

where Fn+1=F (Tn+1
I,h , sh) and Fn=F (Tn+1

E,h , sh) are the HDG FE discretizations shown in
section 2.4 and equation (26). Therefore∫

Ω

Tn+1
d,h − T

∗,n
d,h

∆tn
sh dx = θL

∫
Ω

Tn+1
I,h − T

∗,n
d,h

∆tn
sh dx + (1− θL)

∫
Ω

Tn+1
E,h − T

∗,n
d,h

∆tn
sh dx,

= θL

∫
Ω

Ṫn+1
I,h sh dx + (1− θL)

∫
Ω

Ṫn+1
E,h sh dx,

= −(θLF
n+1 + (1− θL)Fn), (61)

where we have employed the notation Ṫn+1
·,h =(Tn+1

·,h − T ∗,nd,h )/∆tn. We can see that∫
Ω

Ṫn+1
I,h sh dx = −Fn+1 and

∫
Ω

Ṫn+1
E,h sh dx = −Fn, (62)

which implies that Ṫn+1
E,h =ṪnI,h.467

The update of the tracer data requires

Ṫn+1
p = Ṫn+1

d,h (xn+1
p ),

= θLṪ
n+1
I,h (xn+1

p ) + (1− θL)Ṫn+1
E,h (xnp ),

= θLṪ
n+1
I,h (xn+1

p ) + (1− θL)ṪnI,h(xnp ), p = 1, . . . , Np, (63)

which rearranged in terms of the unknown tracer update yields

Tn+1
p = Tnp + ∆tn

(
θLṪ

n+1
I,h (xn+1

p ) + (1− θL)ṪnI,h(xnp )
)
, p = 1, . . . , Np. (64)

We exploit this relationship by noting Tnd,h=TnI,h in our backward Euler formulation in equa-

tion (36). Provided we make the choice θL= 1
2 we obtain a second order accurate time dis-

cretization. We then only need to store Ṫn+1
d,h and Ṫnd,h between time steps in order to update

tracer data by:

Tn+1
p = Tnp + ∆tn

(
θLṪ

n+1
d,h (xn+1

p ) + (1− θL)Ṫnd,h(xnp )
)
, p = 1, . . . , Np. (65)

6.3.2 Deriving a mathematically consistent advective initial state468

We may now define the intermediate state of the advective update, T ∗,na,h . We do so
by enforcing mathematical consistency of the projection operators between the tracers and
the mesh. By this we mean the following: provided tracers do not move, the composition
of projection from field to tracers and back to field (and vice versa) yields the identity.
Therefore we define the field relation consistent with equation (63)

Ṫ ∗,na,h =
T ∗,na,h − Tna,h

∆tn
= θLṪ

n
d,h + (1− θL)Ṫn−1

d,h , (66)

which rearranged in terms of the intermediate state yields

T ∗,na,h = Tna,h + ∆tn

(
θLṪ

n
d,h + (1− θL)Ṫn−1

d,h

)
. (67)
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7 Numerical experiments469

In this section we present results from numerical experiments designed to verify the470

implementation of tracer projection and diffusion in the context of compressible geodynam-471

ics. These experiments comprise a system with a manufactured solution where we exactly472

quantify approximation error and reproductions of benchmarks established in the literature.473

In all cases the tracer configuration is generated with 15s tracers per cell whose ini-474

tial positions are drawn from a uniform random distribution defined on the cells’ geome-475

tries. Furthermore we maintain a minimum and maximum number of tracers per cell,476

(Nmin
pκ , Nmax

pκ ) = (15s, 20s), respectively, using the method described in section 2.6.477

The code used to generate all results presented in this section is available in the pub-478

lic repository Sime (2021). In our computational implementation we use the Lagrangian–479

Eulerian on Particles (LEoPart) library (Maljaars et al., 2021) for RK numerical integration,480

PDE-constrained l2 projection and assembly of HDG discretizations with static condensa-481

tion. We use this in conjunction with the components of the FEniCS project (Alnæs et al.,482

2015) facilitating the computation of FE solutions. The data structures and direct solver used483

to manage the underlying linear systems are provided by the Portable Extensible Toolkit for484

Scientific Computation (PETSc) (Balay et al., 2019b, 2019a) and the Multifrontal Massively485

Parallel Sparse Direct Solver (MUMPS) (Amestoy et al., 2000), respectively.486

7.1 Coupled manufactured solution487

Our implementation of advection and projection of tracers in a background velocity488

field using the RK` method and PDE-constrained l2 projection have been verified in Sime489

et al. (2021). In this section we take inspiration from the coupled manufactured solution490

experiment presented therein.491

7.1.1 Problem description492

Let the computational domain Ω := {(x, y) : r0 <
√
x2 + y2 < r1} be the annulus of

inner and outer radii r0 = 0.4292 and r1 = r0 + 1, respectively. Furthermore let It = [0, 0.5]
be the time domain. We prescribe analytic velocity and temperature fields

u(x, t) =

(
y2

x2 + y2
+ 1

)(
cos2 t+

1

2

)(
−y
x

)
, (68)

T (x, t) =
2

2 + 4kt
exp

(
−x

2 + y2

2 + 4kt

)
, (69)

and use these to set Dirichlet boundary conditions on the discrete momentum and temper-
ature solutions in addition to an initial condition on temperature. We further prescribe the
analytic density and pressure fields

ρ(x) =

√
x2 + y2

3− x2−y2
x2+y2

, (70)

p = 0. (71)

The following residual formulations then complete the system of equations for the manufac-
tured solution

H = 8k(1− ρ)
(2 + 4kt− (x2 + y2))

(2 + 4kt)3
exp

(
−x

2 + y2

2 + 4kt

)
, (72)

f = r − Td,hĝ, (73)

where the r is the residual function composed of the true temperature solution

r =
4

3(x2 + y2)2

(
cos2 t+

1

2

)(
5x2y − 2y3

5xy2 − 2x3

)
+ T ĝ. (74)
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The following functionals are employed to measure the error:493

1. ‖u− uh‖L2(Th): velocity approximation error,494

2. ‖∇ · u−∇ · uh‖L2(Th): compressibility approximation error,495

3. ‖ρu− (ρu)h‖L2(Th): momentum approximation error,496

4. ‖∇ · (ρu)h‖L2(Th): mass continuity error,497

5. ‖T − Th‖L2(Th): temperature approximation error,498

6. ε∆T =
∣∣∣∫Ω (ρTh(x, t)− ρTh(x, 0)

)
dx
∣∣∣ / ∫Ω ρTh(x, 0) dx: conservation.499

7.1.2 Results500

For three cases where k ∈ {0, 10−3, 10−1} we show the error functionals in the time501

domain in figure 3. Additionally we show the error measured at time t = tF demonstrating502

convergence rates in figure 4. We emphasize the following observations in support of the503

numerical method development:504

1. We expect a second order accurate method in time. This is observed by examining505

the temperature approximation error in the case p=2, s=2, `=3. In the case k=0 we506

see third order accuracy in space and time. However increasing to k ∈ {10−3, 10−1}507

the rate of convergence deteriorates to second order (see figure 4(c1)).508

2. The compressibility approximation ‖∇ · u − ∇ · uh‖L2(Th) converges at the super509

optimal rate of p + 1 (see figure 4(b2)).510

3. The HDG compressible Stokes discretization scheme yields an exactly pointwise di-511

vergence free momentum approximation to machine precision (see figure 3(a2) and512

figure 4(a2)).513

4. In the case that k = 0 we achieve exact conservation of the temperature field (see514

figure 3(c2) and figure 4(c2)). When k>0 flux through the boundaries prescribed in515

the analytic solution prevents exact conservation.516

7.2 Benchmark reproduction517

The previous numerical example demonstrated and verified the implementation of the518

discretized advection diffusion operator on tracers in the compressible scheme. In this section519

we draw inspiration from King et al. (2010) by conducting a time-dependent evolution520

simulation of their ALA cases for two different choices of parameters.521

7.2.1 Problem description522

Let Ω := (0, 1)2 be the unit square. We seek the solution of the compressible system
where

f = ρ
(
Di p− Ra (T − Tref)

)
ĝ, (75)

H = −Di ρwα

(
T +

Tsurf

∆T

)
+

Di

Ra
σ : ∇u, (76)

where the reference density and temperature are

ρ = eDi z/γr and Tref =
Tsurf

∆T
eDi z, (77)

respectively. Here z=1−y is the depth, ĝ is the non-dimensional gravity (unit vector in523

the direction of increasing depth), w=−u·ĝ is the vertical velocity component, α=1 is the524

thermal expansivity, γr=1 is the reference Grüneisen parameter, Tsurf=273 is the surface525

temperature and ∆T=3000 is the dimensional temperature difference over the domain.526

Furthermore Ra and Di are the dimensionless Rayleigh number and dissipation number,527

respectively.528
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Figure 3: Computed error at time t computed from the coupled manufactured solution
experiment described in section 7.1. Here the smooth temperature function solution has
very little impact on the momentum and velocity approximation errors. Exact conservation
of the temperature field was found in the case of k=0 (so cannot be shown on these graphs).
Mass continuity is exactly satisfied to machine precision and the apparent increase in the
solenoidal momentum approximation error is due to the accumulation of machine error.
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Figure 4: Computed error at time t=tF from the coupled manufactured solution experi-
ment described in section 7.1. Here we demonstrate optimal convergence rates of the PDE-
constrained projection scheme. The difference between the momentum and velocity approxi-
mation errors at the specified values of k are indistinguishable at this scale. We highlight that
the temperature approximation convergence rate tends towards second order as the value of
k grows. Furthermore, in the case of k=0 the method exactly conserves energy (so cannot
be shown on these graphs). Additionally we see optimal convergence rates of the velocity
field approximation, ‘super convergent’ rates of the compressibility field approximation and
that the mass continuity equation is exactly satisfied to machine precision.
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The system is initialized with prescribed temperature field

T (x, t = 0) = z +
1

10
cos (πx) sin (πy) (78)

and the boundary conditions are:529

1. The temperature T |y=0=1 on the bottom and T |y=1=0 top boundaries. Furthermore530

k∇T · n=0 on the left and right boundaries (x=0 and x=1, respectively).531

2. The momentum is prescribed such that u · n=0 and (σ · n) · t=0 on ∂Ω, where t is a532

unit vector lying tangential to the boundary.533

The mesh consists of 64 × 64 quadrilaterals bisected into triangles. We employ local534

refinement towards the top and bottom of the mesh so as to better resolve the thermal535

boundary layers. On this locally refined mesh it is crucial we employ the tracer addition and536

removal scheme described in section 2.6 for computational performance.537

7.2.2 Time evolution of functionals538

In our first experiment we examine the impact of the choice of CCFL on the accuracy539

of the numerical approximation. We consider two cases:540

Case 1: Ra = 104 and Di = 0.25 such that ‖∇ρ/ρ2‖L2(Th) ≈ 0.222,541

Case 2: Ra = 105 and Di = 1.0 such that ‖∇ρ/ρ2‖L2(Th) ≈ 0.658.542

By considering the value of the dissipation number, Di, cases 1 and 2 can be seen as having543

‘mild’ and ‘strong’ compressibilities, respectively. The intent is to observe the impact of this544

degree of compressibility in terms of the noncommutativity of the advection and diffusion545

operators (see section 6.1).546

In figure 5 we show the computed values of Nu as compared with the reference val-547

ues taken from King et al. (2010). We compare the discretization scheme with (p, s, `) ∈548

{(1, 1, 2), (2, 2, 3)}. In essence second and third order methods in space and second and at549

best third order methods in time.550

We draw our attention first to the mildly compressible Case 1 (Ra=104 and Di=0.25)551

in figure 5. The computed values of Nu at the steady state (t>0.24) show agreement with552

the University of Michigan (UM) value of King et al. (2010). Furthermore in this case of553

‘mild’ compressibility, by comparing the convergence of low and high order approximations,554

we can see that we are able to resolve the transient process from the initial condition to555

the steady state well even when using CCFL>1. Clearly the choice of the RK method order556

` has significant influence on both the transient and steady state approximation error (see557

section 6.1).558

Now consider the strongly compressible Case 2 (Ra=105 and Di=1) in figure 5. Here559

we see that the choice of CCFL and ` is of crucial importance in accurate transient and560

steady state approximation. Choosing CCFL = 8 is clearly inadequate as the steady state561

approximation does not agree with the UM value and the transient evolution shows little562

correspondence with the higher order approximations. In the case CCFL=4, although we563

achieve a steady state value of Nu which roughly approximates the UM value, the transient564

behavior is not consistent with the higher order cases. Finally, with the choices CCFL=2 and565

CCFL=1 we achieve transient behavior which shows convergence and agrees well with the566

UM value after reaching the steady state.567

8 Summary568

In this work we have derived and demonstrated the following:569
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Figure 5: Evaluation of Nu from the numerical benchmark cases 1 and 2 described in
section 7.2. The left and right columns correspond to RK2 and RK3 methods, respectively.
The top and bottom rows in each case correspond to second (p=1, s=1) and third (p=2, s=2)
order HDG spatial discretizations, respectively. Here we emphasize the effect of the ‘degree
of compressibility’ incurred by larger values of Di and Ra. Should one wish to exceed the
CFL limit choosing CCFL>1 a corresponding increase in the order of the RK time integration
may be necessary.
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1. A generalization of IP HDG FE formulations of second order diffusive PDEs (sec-570

tion 2.4).571

2. Addition and removal of tracers using the PDE-constrained l2 projection scheme does572

not affect mass conservation (section 2.6).573

3. An HDG method by which the projection of tracer data to a field exactly conserves574

mass of a compressible fluid as required by the continuity equation (section 3).575

4. An HDG FE formulation of the weakly compressible Stokes system (section 5) which576

exhibits a superconvergent rate of the approximation of compressibility (section 6.2).577

5. The complete tracer-HDG numerical discretization scheme of the coupled compress-578

ible Stokes / advection-diffusion system provides approximate solutions which con-579

verge at optimal rates in space and second order in time (section 7.1).580

6. Tracer methods may allow us to robustly use time step sizes larger than required by581

the CFL criterion, however, care must be taken in the case of ‘strongly compressible’582

problems (section 7.2).583

Acronyms584

ALA anelastic liquid approximation585

CFL Courant–Friedrichs–Lewy586

DG discontinuous Galerkin587

EDG embedded discontinuous Galerkin588

FE finite element589

HDG hybrid discontinuous Galerkin590

IP interior penalty591

PDE partial differential equation592

RK Runge–Kutta593

TH Taylor–Hood594

UFL unified form language595
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