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Abstract

We explore the use of three advanced statistical and machine learning methods (a generalized linear model, random forest, and

neural network) to predict the occurrence and rain rate distribution of three tropical rain types (deep convective, stratiform,

and shallow convective) observed by the radar onboard the GPM satellite over the West Pacific at three-hourly, 0.5-degree

resolution. Temperature and moisture profiles from MERRA-2 were used as predictors. All three methods perform reasonably

well at predicting the occurrence and rain rate distribution of each rain type. However, none of the methods obviously distinguish

themselves from one another and each method still has issues with predicting rain too often and not fully capturing the high

end of the rain rate distributions, both of which are common problems in climate models.
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Abstract

Predicting rain from large-scale environmental variables remains a challenging problem for climate

models and it is unclear how well numerical methods can predict the true characteristics of rainfall

without smaller (storm) scale information. This study explores the ability of three statistical and machine

learning methods to predict 3-hourly rain occurrence and intensity at 0.5◦ resolution over the tropical

Pacific Ocean using rain observations the Global Precipitation Measurement (GPM) satellite radar and

large-scale environmental profiles of temperature and moisture from the MERRA-2 reanalysis. We also

separated the rain into different types (deep convective, stratiform, and shallow convective) because of

their varying kinematic and thermodynamic structures that might respond to the large-scale environment

in different ways. Our expectation was that the popular machine learning methods (i.e., the neural

network and random forest) would outperform a standard statistical method (a generalized linear model)

because of their more flexible structures, especially in predicting the highly skewed distribution of rain

rates for each rain type. However, none of the methods obviously distinguish themselves from one another

and each method still has issues with predicting rain too often and not fully capturing the high end of

the rain rate distributions, both of which are common problems in climate models. One implication of

this study is that machine learning tools must be carefully assessed and are not necessarily applicable to

solving all big data problems. Another implication is that traditional climate model approaches are not

sufficient to predict extreme rain events and that other avenues need to be pursued.

Keywords: Precipitation occurrence, Rain rate extremes, Convective storms, Generalized linear model,

Random forest, Neural network
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1 Introduction

Rainfall is fundamental to water resources, agriculture, and ecosystems and can cause massive damage in

the form of too little or too much rain. However, rainfall can vary strongly in space and time making it hard

to measure and even harder to predict. The rain rate distribution of most global climate models (GCMs)

is far different than observed, with too much weak rain and not enough heavy rain (e.g., Stephens et al.,

2010; Fiedler et al., 2020), which hinders predictions of extreme events. The goal of this study is to analyze

the ability of advanced statistical and machine learning techniques to predict the occurrence and rain rate

distribution of tropical rainfall using environmental temperature and humidity profiles as predictors. A

salient question is if any of these techniques can improve upon existing GCM parameterizations in producing

accurate rain characteristics from large-scale variables.

Rain is produced two main ways in GCMs. Convective rain is output from the convective parameter-

ization, which typically involves a trigger function to activate the convection and a closure assumption to

determine the intensity of the convection; convective parameterizations are used to represent the aggregate

effect of many subgrid-scale convective clouds (Arakawa, 2004). Some convective parameterizations have

shallow and deep schemes, while some models produce shallow convection in the boundary layer parame-

terization, although these clouds are often non-precipitating (e.g., Bretherton and Park, 2008). The rest of

the rain in a GCM is produced explicitly at the grid scale as large-scale rain using a microphysical scheme

(e.g., Dai, 2006). Recent studies have shown that the manner in which a GCM distributes rain between the

convective and large-scale components strongly impacts the model’s climate projections (e.g., Kooperman

et al., 2018; Stephens et al., 2019; Norris et al., 2021). Thus, it is important to analyze rain types separately

when assessing a GCM’s efficacy in producing realistic total rain fields, especially when considering changes

to precipitation extremes in a warming climate.

The real world does not produce rain the same way as GCMs, but it is possible to separate observed

rainfall into types that have some analogies to GCM convective and large-scale rain. In particular, we

focus on the separation of rain into deep convective, stratiform, and shallow convective components using

radar measurements. Figure 1 shows an example convective system observed by the Global Precipitation

Measurement (GPM; Hou et al., 2014) spaceborne radar over the tropical West Pacific. The most intense

reflectivity in the horizontal and vertical indicates regions of active deep convection, while the more moderate

and more horizontally homongeneous reflectivity indicates regions of less convectively-active stratiform rain

(Houze, 1997; Schumacher and Houze, 2003a). Together, these rain types cover a region greater than 100 km

that can span multiple GCM grid boxes. It has been shown that over half of the total rainfall in the tropics

and warm season mid-latitudes comes from large, organized rain systems like this one (Nesbitt et al., 2006;

Schumacher and Rasmussen, 2020). Shallow convection is ubiquitous over the tropical ocean and occurs

regularly over some continental locations, but is much more isolated and does not produce nearly as much

rain (Schumacher and Houze, 2003b; Funk et al., 2013).

Radar-observed deep convection most closely aligns with rain produced by a model’s convective param-
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Figure 1: GPM radar reflectivity observations at 01 UTC on 4 February 2017. a) Black lines represent the
GPM radar swath, red box is the bounds of the study area over the West Pacific. b) Horizontal cross section
of reflectivity at 2 km AMSL near the red line in a). c) Vertical cross section of reflectivity taken along the
black line in b). Stratiform profiles are labeled as 1, convective profiles are labeled as 2. The far right cell
in the vertical cross section is considered shallow convection because its top is below the 0◦C level (typically
about 5 km in the tropics).

eterization. A similar argument can be made for radar-observed shallow convection if a shallow convective

scheme is included in the GCM formulation. GCM large-scale rain may also be equated to radar-observed

stratiform rain that forms in the extratropics when large-scale lifting (like a warm front) is the main synoptic

forcing and convection is minimal. In the tropics and warm-season midlatitudes, radar-observed stratiform

rain forms as a result of the deep convection (Houze, 1997), so is not equivalent to GCM large-scale rain

produced by a microphysics scheme that acts separately from the convective parameterization. Despite this

physical disconnect over large swaths of the globe, radar-observed stratiform rain is often compared to GCM

large-scale rain, but should only be done within the framework of comparing precipitation processes not

produced by the strongest convection (either in the model or real world). As discussed by Mapes et al.

(2006), these three rain types form the building blocks of larger convective systems ranging from mesoscale

convective systems (with scales on the order of 100 km and 12 h) to the Madden-Julian Oscillation (with

scales on the order of 1000 km and many weeks), so predicting each of these rain types is important to

studies of weather and climate. However, the ability of GCMs to simulate these building blocks and their
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interactions remains a challenge, which was a main motivation of this work.

There are currently a number of efforts to use tools from data science to improve the representation of

subgrid processes in climate models. Since there is often very limited amount of data available for unre-

solved processes, especially in situ measurements, many of these efforts apply machine learning techniques

to conventional model parameterizations or a large ensemble of higher resolution simulations (Brenowitz

and Bretherton, 2018; O’Gorman and Dwyer, 2018; Rasp et al., 2018). Training on conventional parame-

terizations can improve computational efficiency, but does not address the physical deficiencies. The higher

resolution simulations also have their own built-in assumptions about a different set of smaller scale unre-

solved processes.

Yang et al. (2019) considered a data-centric approach, using a large satellite rainfall data set and reanalysis

fields to show that a generalized linear model (GLM) can perform well at predicting the occurrence of different

rain types in the tropics, but it fails at capturing the tail of the rain rate distributions. This is mainly due to

the restriction of parametric probability distributions used for the rain rates. Although distributions such as

Gamma, log-normal, or Weibull are commonly used for rain rates due to their shape of density curves with

long tails, they are often not flexible enough to capture the heaviest rain rates. This study builds on Yang

et al. (2019) by applying two machine learning techniques, i.e., a random forest (RF) and deep feedforward

neural network (NN), to a similar data set to determine how well these methods compare to one another and

the GLM in predicting rain occurrence and capturing the high rain rate end of the distribution for multiple

rain types. RL and NN can potentially handle nonlinearities better ,and are not constrained to follow a

specific probability distribution like GLM. The purpose of the next section is to provide general background

on each method so that readers can better understand the implications of the results shown in Section 4.

2 Statistical and Machine Learning Methods

2.1 Generalized Linear Model

GLMs (McCullagh and Nelder, 1989) are a popular class of statistical models used to predict a response

variable whose mean is assumed to be some parametric function of covariates. It is a more general modeling

framework than multiple linear regression in that response variables may not follow a Gaussian distribution.

Furthermore, unlike multiple linear regression models, which often use the least squares method for model

fitting, GLMs are fitted using a maximum likelihood estimation (MLE) method. The MLE method utilizes

the distribution function of the response, thus giving generally better statistical properties of estimators

than the least squares method. A GLM does not necessarily assume a direct linear relationship between

the response and covariates, and often their nonlinear relationship is introduced by a link function. For

instance, a common log-link function assumes that the log transformed mean of the response can be written

as a linear combination of covariates. Widely used examples for distributions and link functions for GLMs

include logistic regression (a Bernoulli distribution for the response and log link), loglinear regression (a
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Poisson distribution for the response and log link), and Poisson regression (a Poisson distribution for the

response and log link).

In this work, we adopt the two-step modeling procedure used in Yang et al. (2019). Two separate GLMs,

a logistic regression and a Gamma regression, are employed to deal with rain occurrence and rain amount,

respectively. At a given time, let p(s) denote the probability of rain at a grid point s. Then the rain event

is assumed to follow a Bernoulli distribution with

log
{ p(s)

1− p(s)

}
= β0 + β1z1(s) + · · ·+ βpzp(s), (1)

where zi(s) denotes predictors (i.e. covariates) at the grid point s. If y(s) denotes the rain amount at s, we

assume that y follows a Gamma distribution with

log[E{y(s)}] = η0 + η1z1(s) + · · ·+ ηpzp(s). (2)

For both models, parameters, including the coefficients βi and ηi in (1) and (2), are estimated using the MLE

method. We fit the GLM models using data aggregated over space and time altogether, similar to Yang

et al. (2019). Although models (1) and (2) do not have explicit temporal structure in them, the temporal

structure of the covariates effectively account for that of the responses, and it did not seem necessary to add

more temporal terms in (1) or (2).

Statistical inference on the estimated parameters, including the significance of coefficients, is made pos-

sible by using GLMs, and the estimated coefficients are readily interpretable. On the other hand, a possible

drawback of the approach outlined above is the linearity assumption given in (1) and (2), as well as the distri-

bution assumption on rain amount. In particular, the Gamma distribution may be too restrictive to account

for some heavy rain events (Yang et al., 2019). Other commonly used distributions such as log-normal and

Weibull distributions have similar problems, due to their particular parametric forms and restrictions. In

view of the potentially restrictive nature of GLMs, we explore two popular machine learning methods, RF

and artificial NNs, which operate under much weaker (i.e., non-linear) assumptions compared to GLMs. RF

and NNs offer the most competitive predictive performances in many applications, and are now standard

tools for machine learning.

2.2 Random Forest

Random forest (Breiman, 2001) is an ensemble learning method that makes predictions based on multiple

decision trees. A random forest is built upon these many decision trees. A decision tree is a simple model

that predicts the label associated with a sample by a series of splitting rules. An example decision tree

is shown in Figure 2, where a tree is used to determine if a binary response Y is 1 or 0. The root node

has a splitting condition: “X1 > 0?” If the observation fulfills this condition, it will be passed to the next
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condition: “X2 < 10?” Otherwise, the tree predicts Y = 0. The procedure is applied recursively until the

tree reaches a prediction of Y . For the construction of a decision tree, we refer the readers to Breiman (2001).

In the above example, the underlying goal is classification, where the response is categorical. Decision trees

can also be modified to handle a regression problem, where the response is quantitative.

The core idea of ensemble methods like RF is to combine weak predictive models to achieve strong

predictive performance. A RF is usually trained with two “random” ideas. The first is bagging – for each

tree, the training set is formed by resampling from the original data set with replacement. The second is

feature randomness – each tree in a RF is trained with a random subset of features. Bagging lowers variance

while feature randomization reduces the dependence across trees. They are beneficial to ensemble learning.

The prediction of the RF is obtained by a majority vote over the predictions of the individual trees.

Similar to the GLM analysis, a two-step modeling procedure was implemented for RF in our work.

Namely, we trained an RF model on rain occurrence and another RF model on rain amount. For both

models, we used the default setting of the “randomForest” function from the R package“randomForest”,

except that we restricted the number of decision trees to 100 when predicting rain amount in order to

alleviate the computational burden. As opposed to GLM, RF is a nonparametric method and can produce

a highly nonlinear regression function. On the other hand, it is significantly more difficult to interpret the

results of the RF model, although RF provides a measure of variable importance. In practice, one might

also examine individual classification trees within the random forest to understand the results.

Figure 2: Illustrations for descision tree (left) and deep feedforward neural network (right).

2.3 Neural Network

In recent years, artificial NNs (especially those with deep architecture) have become one of the most promi-

nent models for complicated functions. A NN is based on a collection of connected nodes. Different ways to

connect the nodes result in different NN architectures, such as fully connected (Hsu et al., 1990), sparsely

connected (Ardakani et al., 2016), convolutional (Lo et al., 1995), and recurrent (Mikolov et al., 2010).

Nodes are typically organized into layers, which can be classified as input, hidden and output. Networks

with multiple hidden layers are said to have deep architectures, and are referred to as deep NNs. Deep

architectures are commonly used nowadays, due to their strong empirical performance in many areas.

In our analysis, we adopt a deep feedforward NN in which consecutive layers are fully connected (Svozil
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et al., 1997; Schmidhuber, 2015) because it is one of the most standard forms of deep NN. Figure 2 depicts

an example. We use X(l) ∈ Rnl to represent the nodes at layer l, where nl is the number of nodes at layer

l. Take X(0) as the input and X(L) as the output. The hidden and output layers are generated as follows.

Let x
(l)
k be the node k of layer l, where l = 1, . . . , L and k = 1, . . . , nl. Then

x
(l)
k = σ

(l)
k (b

(l)
k +

nl−1∑
i=1

w
(l)
i,kx

(l−1)
k ),

where σ
(l)
k is the activation function, and b

(l)
k and w

(l)
i,k are parameters to be trained by the data. For

simplicity, it is common to use the same activiations within the same layer: σ(l) := σ
(l)
k , for k = 1, ..., nl.

Similar to the previous two models (GLM and RF), we adopted the two-step approach for the NN analysis.

More specifically, we trained one NN to perform the binary classification on rain occurrence and another NN

using training samples with positive rain values only to predict the rain amount. We considered different

number of layers for NN. More specifically, we considered L = 2, 3, . . . , 10. Note that n0 = 80 and nL = 1

for all L since they are representing the input size and the output size. For any existing hidden layer, the

number of nodes are set as follows: n1 = 40, n2 = 20, n3 = · · · = nL−2 = 6 and nL−1 = 3. For instance,

for L = 1, there is only one hidden layer and so only n1 is relevant. For l = 1, . . . , L− 1, the corresponding

activation functions σ
(l)
k were chosen as the rectified linear unit (ReLU) functions (σ(x) = max(0, x)). The

activation function for the output layer had to be chosen based on the response type, i.e., classification or

regression. We used σ(L)(x) = 1/(1 + exp(−x)) for the classification, while we used the exponential function

for the regression since the response is positive. For the loss functions, we adopted the binary cross entropy

loss for the classification and the mean squared error for the regression. As for the estimation of the NN,

we adopted mean square error as the loss function and trained the network via the popular algorithm Adam

(Kingma and Ba, 2014).

To prevent over-fitting, we also adopted the dropout procedure, which is a common regularization method

for training deep neural networks (Baldi and Sadowski, 2013; Gal et al., 2017). In the dropout procedure,

neurons are stochastically dropped out during the training at each layer. In our implementation, the dropout

rate was set to be the same at every layer and three possible values 0, 0.2, 0.5 were considered. Both the

dropout rate and the number of layers, L, were regarded as the hyper-parameters and were chosen via a

validation procedure — we randomly separated 20% of the training data as the validation set to select the

best combination of dropout rate and number of layers.

3 Training and Test Data

We used two years of observations from the GPM dual-frequency precipitation radar (DPR) to calculate

rain occurrence and rain rates, which were the predictands of the study. The full year of 2017 was used for

training and the full year of 2018 was used for testing. The rain type classifications (i.e., deep convective,

7



stratiform, and shallow convective; Funk et al., 2013) and associated rain rates were retrieved from 2ADPR

V6 files. Figure 1 shows an example orbit from the GPM radar with all three rain types present. We

regridded the DPR orbital rain observations, which are made at a 5-km footprint scale over a 245-km swath,

to 0.5◦ horizontal resolution and 3-hourly temporal resolution. Note that the 3-hourly rain rate represents an

instantaneous value and not a 3-hour average. The predictors for the study were temperature and humidity

fields at 40 pressure levels from the MERRA-2 reanalysis (Rienecker et al., 2011) for 2017 and 2018. The

MERRA-2 data was regridded to a similar horizontal and temporal resolution as the DPR data and points

were only analyzed if a DPR orbit occurred in a grid during the 3-hour period. We limited our domain to

the tropical West Pacific (130◦E− 180◦E, 20◦S− 20◦N; Figure 1a), but found similar results in the tropical

East Pacific (not shown). Overall, we had 569,596 training samples and 572,968 test samples.

The training and test data are generally similar to the observational data sets used in Yang et al. (2019).

However, we used rain observations from the GPM DPR instead of the Tropical Rainfall Measuring Mission

(TRMM) precipitation radar (PR) because of the DPR’s higher sensitivity to weaker rain rates and thus

better shallow convective rain retrievals (Hamada and Takayabu, 2016). We also used a slightly higher time

resolution (3 hours vs 6 hours) to better isolate environment-rain relationships and we used all times of day

instead of just 0-6 UTC to capture the full range of diurnal conditions (e.g., Hirose et al., 2008). We chose

a warm ocean region with only small land amounts (i.e., New Guinea and the northwest coast of Australia)

as a baseline test for our techniques, but a natural follow-on study would be over a tropical land region

such as the Amazon or Congo. Finally, we only used temperature and humidity as predictors because they

accounted for the majority of the predictive performance by the GLM in Yang et al. (2019), who also tested

other environmental variables such as horizontal wind profiles and surface fluxes. We further utilized the full

temperature and humidity profiles rather than just the first three empirical orthogonal functions so that the

machine learning techniques had more flexibility in determining the vertical relationship of the predictors to

the surface rain rate.

4 Prediction Results

4.1 Rain occurrence

When solving for occurrence, we treat grids with extremely small rain amounts as no-rain cases to avoid

retrievals from the radar likely associated with clutter or noise. For each rain type, we selected a rain rate

cutoff that accounts for less than 1% of the total rain amount in the training data. The cutoff values are

0.056, 0.0395, and 0.0087 mm/hr for deep convective, stratiform, and shallow convective rain, respectively.

As will be illustrated in the next section, the three rain types produce different ranges of rain rate intensity,

which is why separate cutoff values are needed for each rain type.

Rain does not very occur often at the time and space scales being considered in this study (i.e., 3 hourly

and 0.5◦), so there are significantly more no-rain cases than rain cases. To deal with this imbalanced clas-
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Table 1: The top four rows describe the performance of the occurrence predictions for each rain type by each
method. The values in each column are the fraction of the total cases that fall into each prediction category
and sum to one, while bold values are the highest correct predictions. The bottom two rows quanitify the
accuracy of the the rain rate (mm/hr) prediction in terms of root mean square error (RMSE) and mean
absolute error (MAE), with bold values representing the smallest errors among the three methods.

Deep convective Stratiform Shallow convective

GLM RF NN GLM RF NN GLM RF NN

True Negative 0.485 0.568 0.536 0.474 0.529 0.502 0.325 0.415 0.323
False Negative 0.036 0.054 0.054 0.052 0.069 0.076 0.084 0.137 0.106
True Positive 0.122 0.103 0.103 0.188 0.171 0.164 0.267 0.214 0.245
False Positive 0.357 0.275 0.387 0.286 0.231 0.306 0.324 0.234 0.325
RMSE 0.758 0.975 0.749 0.624 0.730 0.619 0.095 0.105 0.094
MAE 0.405 0.504 0.385 0.295 0.367 0.275 0.058 0.062 0.059

sification problem, we created a “balanced” training data set by using a random under-sampling procedure.

That is, we randomly sample the no-rain cases until we have the same number of no-rain and rain samples

in our training data set. Note that we classify rain/no-rain cases for each rain type separately.

The top four rows of Table 1 show how well the three statistical and machine learning methods described

in Section 2 predict no-rain and rain cases for each rain type. The actual time the GPM radar observed

each rain type over the West Pacific is indicated by adding the false negative and true positive values (i.e.,

about 16%, 24%, and 35% for deep convective, stratiform, and shallow convective rain, respectively). All

three methods do a reasonable job at distinguishing truly raining cases, with GLM slightly outperforming

the other two methods. However, all methods suffer from a relatively high false positive rate (i.e., predicting

rain too often), which is a persistent problem in most climate models as well (Fiedler et al., 2020). While

GLM had the best true positive predictions, it had the worst true negative predictions (i.e., predicting no

rain when no rain is observed). RF had the best true negative prediction and NN fell between the two

other techniques. The results discussed above are obtained by taking the cutoff probability as 0.5 for the

three methods. More specifically, when the predicted probability for a test case is larger or equal to 0.5,

we treat it as “rain”; otherwise, it is considered as “not rain”. One may also choose different cutoffs. We

provide the receiver operating characteristic (ROC) curves in Figure 4 in the Appendix, which illustrates

the performance of the three methods with respect to different cutoffs.

4.2 Rain rate distributions

We next apply the statistical and machine learning methods to predict the rain rate distribution of the three

rain types. Figure 3 compares the prediction of each method to the “True” distribution observed by the

GPM DPR. Note that the GPM-observed 99.9% rain rate varies by rain type with values of 14, 10, and

1.1 mm/hr for deep convective, stratiform and shallow convective rain, respectively. Even though shallow

convective rain has the highest occurrence, it has much smaller rain amounts over a 0.5◦ grid because shallow

convection doesn’t cover much of a grid and is composed of more lightly raining cells. Stratiform rain is also
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normally less intense than deep convective rain on a pixel-by-pixel basis but because it tends to cover more

area than deep convective cells, stratiform rain amounts approach deep convective values at 0.5◦ resolution.

Figures 3a and b show that all three methods (indicated by different green lines) tend to underestimate

weaker rainrates (i.e., around the 50% quantile or first tick mark) in the deep convective and stratiform

distributions, shifting to overestimations around the 90% quantile (or second tick mark). Between the 90

and 99% quantiles, there is a rapid drop off in prediction counts compared to the true distribution with NN

and GLM showing the most rapid decrease. RF is the only technique to produce predictions past the 99%

quantile for deep convective rain, the category associated with the most extreme rain amounts. All methods

do better predicting the shallow convective rain rate distribution (Figure 3c) with the drop-off in counts not

occurring until after the 99% quantile.

To provide context on how the observed and predicted rain rate distributions in Figure 3 compare to

standard GCM output, we obtained a year of data from the NCAR Community Atmospheric Model, version

5 (CAM5; Neale et al., 2013). We use model output for 2003 instead of 2018 because it was readily available.

While there may be small year-to-year variations in the rain rate distributions over the West Pacific, we do

not expect them to be large, especially since neither 2003 or 2018 experienced strong El Niño or La Niña

events. The original rain rate data had a 25 × 25km resolution so we aggregated rain rates to 0.5◦ grids

to match our analysis. Hourly total precipitation (PRECT) and convective (PRECC) precipitation rates

were also aggregated into 3-hourly rain rates. We use PRECC to represent deep convective rain and the

difference between PRECT and PRECC (PRECT-PRECC) to represent the large-scale rain (i.e., rain that

is produced from the grid-scale microphysics parameterization rather than via the subgrid-scale convective

parameterization). GCMs do not typically calculate a separate shallow convective rain rate, but there are

only small differences between the GPM convective deep rain rate distribution compared to when we combine

the observed deep and shallow convective rain rate distributions (i.e., deep convective rain dominates the

convective rain rate distribution in the tropical West Pacific). In addition, we included the MERRA-2

convective and large-scale + anvil rain rate distributions in Figure 3. Like CAM5, MERRA-2 does not

provide a separate shallow convective rain rate.

As seen in Figure 3a, MERRA2 and CAM5 perform similarly and do not provide a good density estimation

for deep convective rain (and are, in fact, close to the GLM and NN distributions). Recent work has shown

that a stochastic version of the Zhang-McFarlane convective parameterization used in CAM5 can improve

the deep convective rain rate distribution (Wang et al., 2021), but stochastic techniques are still not regularly

implemented in standard GCM runs. CAM5 and MERRA2 large-scale rain appears to better characterize

the GPM stratiform rain distribution (Figure 3b), although as discussed in the introduction, large-scale rain

from GCMs and stratiform rain from radar are not considered to be be produced the same way in the tropics

so caution must be taken in this comparison. Our CAM5 results are consistent with Kyselỳ et al. (2016)

who showed that a suite of regional climate models highly underestimated extreme convective rain rates over

central Europe, with a much better representation of extreme rain in the large-scale rain field.
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Figure 3: GPM-observed and model-predicted 3-hourly, 0.5◦ rain rate distributions over the tropical West
Pacific for a) deep convective, b) stratiform, and c) shallow convective rain. Values in parentheses are the
total cases in the testing data that rain. Values on the x-axis for the three plots are the 50, 90, 99, and
99.9% quantiles of the rain rate distribution, respectively.

To further assess predicted rain amounts using GLM, RF, and NN, we calculated the following metrics

to measure the performance of the techniques:

1. Root mean squared error (RMSE) =
√∑N

i=1(ŷi − yi)2/N and

2. Mean absolute error (MAE) =
∑N

i=1 |ŷi − yi|/N ,

where yi is the observed rain amount for the i-th sample, and ŷi is the predicted rain amount for the i-th

sample, for i = 1, . . . , N . Here samples are aggregated over space and time, and thus there are a total of N

samples for each rain type. Note that MAE is in general less sensitive to large values compared to RMSE.

Table 1 shows that RF has the highest (and thus worst) RMSE and MAE among the three techniques for
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each rain type. NN usually provides the smallest errors among the three methods, and GLM usually performs

only slightly worse than NN.

5 Conclusions

Because of persistent GCM biases in rain occurrence and intensity, there is strong motivation to use empirical

data to help understand and fix these biases. While training and testing data can come from higher resolution

models, we chose to use a multi-year data set of rain observations from satellite radar along with temperature

and humidity fields derived from a model constrained by observations (i.e., reanalysis). There are also a

number of advanced statistical and machine learning techniques with which to analyze the available data.

We chose a representative set that ranged in ease of implementation and interpretability: a generalized linear

model, random forest, and deep feedforward neural network.

All three methods performed reasonably well in predicting the occurrence of each of the three tropical

building block rain types: deep convective, stratiform, and shallow convective. Each method still predicted

rain too often, although at moderate to strong rain rates instead of at the lightest rain rates more typically

overpredicted by GCMs. Due to the high complexity of the model structure, regularization is usually

needed for NN. With the dropout regularization, NN performed similarly to GLM in predicting the rain

rate distributions of each rain type, while RF was somewhat more flexible in modeling the true response.

However, RF produced the largest root mean square and mean absolute errors and the very highest rain

rates were still underpredicted by all methods.

Our original goal was to determine the best overall method in order to implement it in a GCM to improve

the representation of the full spectrum of tropical rain types. However, the results of each method were mixed

and would require some sort of trade-off in more accurately characterizing the occurrence and intensity of

each rain type. While there are other statistical and machine learning methods that could still be tested,

we feel that this study highlights innate limitations in trying to deterministically predict rainfall probability

distributions from standard grid-scale variables. That is, convection and its organization is simply not as

parameterizable as we would like it to be, especially when attempting to predict extreme events. It has

been argued that higher resolution climate models (on the order of a few km) may be necessary to solve

this problem by voiding the need for the convective parameterization (e.g., Fiedler et al., 2020), but this

path is computing intensive and doesn’t guarantee better solutions because of the remaining uncertainties

in unresolved microphysics and turbulence. Thus, we advocate the continued exploration of creative, less

resource-intensive solutions that include stochastic elements and unified schemes that don’t isolate rain types

from one another (e.g., Cardoso-Bihlo et al., 2019; Hagos et al., 2020)
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A ROC curves

Figure 4 presents the ROC curves of the three methods for different rain types. ROC curves are created by

plotting the true positive rate (TPR) against the false posifive rate (FPR) at various cutoff probabilities.

The performance of the three methods are similar. GLM and RF have slightly larger TPRs than NN given

the same FPRs.
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Figure 4: Receiver operating characteristic (ROC) curves obtained by GLM, RF and NN for a) deep con-
vective, b) stratiform, and c) shallow convective rain.

References

Arakawa, A. (2004). The Cumulus Parameterization Problem: Past, Present, and Future. Journal of

Climate 17 (13), 2493–2525.

Ardakani, A., C. Condo, and W. J. Gross (2016). Sparsely-Connected Neural Networks: Towards Efficient

VLSI Implementation of Deep Neural Networks. arXiv preprint arXiv:1611.01427 .

13

https://hprc.tamu.edu
https://hprc.tamu.edu
https://disc.gsfc.nasa.gov/


Baldi, P. and P. J. Sadowski (2013). Understanding Dropout. Advances in neural information processing

systems 26, 2814–2822.

Breiman, L. (2001). Random Forests. Machine learning 45 (1), 5–32.

Brenowitz, N. D. and C. S. Bretherton (2018). Prognostic Validation of A Neural Network Unified Physics

Parameterization. Geophys. Res. Lett. 45, 6289–6298.

Bretherton, C. S. and S. Park (2008). A New Bulk Shallow-cumulus Model and Implications for Penetrative

Entrainment Feedback on Updraft Buoyancy. Journal of the atmospheric sciences 65 (7), 2174–2193.

Cardoso-Bihlo, E., B. Khouider, C. Schumacher, and M. De La Chevrotière (2019). Using Radar Data to

Calibrate a Stochastic Parametrization of Organized Convection. Journal of Advances in Modeling Earth

Systems 11 (6), 1655–1684.

Dai, A. (2006). Precipitation Characteristics in Eighteen Coupled Climate Models. Journal of climate 19 (18),

4605–4630.

Fiedler, S., T. Crueger, R. D’Agostino, K. Peters, T. Becker, D. Leutwyler, L. Paccini, J. Burdanowitz, S. A.

Buehler, A. U. Cortes, et al. (2020). Simulated Tropical Precipitation Assessed across Three Major Phases

of the Coupled Model Intercomparison Project (CMIP). Monthly Weather Review 148 (9), 3653–3680.

Funk, A., C. Schumacher, and J. Awaka (2013). Analysis of Rain Classifications Over the Tropics by Version

7 of the TRMM PR 2A23 Algorithm. Journal of the Meteorological Society of Japan. Ser. II 91 (3), 257–

272.

Gal, Y., J. Hron, and A. Kendall (2017). Concrete Dropout. arXiv preprint arXiv:1705.07832 .

Hagos, S., Z. Feng, R. S. Plant, and A. Protat (2020). A Machine Learning Assisted Development of A

Model for the Populations of Convective and Stratiform Clouds. Journal of Advances in Modeling Earth

Systems 12 (3), e2019MS001798.

Hamada, A. and Y. N. Takayabu (2016). Improvements in Detection of Light Precipitation with the Global

Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). Journal of atmospheric

and oceanic technology 33 (4), 653–667.

Hirose, M., R. Oki, S. Shimizu, M. Kachi, and T. Higashiuwatoko (2008). Finescale Diurnal Rainfall Statistics

Refined from Eight Years of trmm pr Data. Journal of Applied Meteorology and Climatology 47 (2), 544–

561.

Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Naka-

mura, and T. Iguchi (2014). The Global Precipitation Measurement Mission. Bulletin of the American

Meteorological Society 95 (5), 701–722.

14



Houze, Jr, R. A. (1997). Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?

Bulletin of the American Meteorological Society 78 (10), 2179–2196.

Hsu, K.-Y., H.-Y. Li, and D. Psaltis (1990). Holographic Implementation of A Fully Connected Neural

Network. Proceedings of the IEEE 78 (10), 1637–1645.

Kingma, D. P. and J. Ba (2014). Adam: A Method for Stochastic Optimization. arXiv preprint

arXiv:1412.6980 .

Kooperman, G. J., M. S. Pritchard, T. A. O’Brien, and B. W. Timmermans (2018). Rainfall from Resolved

Rather Than Parameterized Processes Better Represents the Present-day and Climate Change Response

of Moderate Rates in the Community Atmosphere Model. Journal of advances in modeling earth sys-

tems 10 (4), 971–988.
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