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Abstract

Continuous seismograms contain a wealth of information with a large variety of signals with different origins. Identifying

these signals is a crucial step in understanding physical geological objects. We propose a strategy to identify classes of seismic

signals in continuous single-station seismograms in an unsupervised fashion. Our strategy relies on extracting meaningful

waveform features based on a deep scattering network combined with an in- dependent component analysis. Based on the

extracted features, agglomerative clustering then groups these waveforms in a hierarchical fashion and reveals the process of

clustering in a dendrogram. We use the dendrogram to explore the seismic data and identify different classes of signals. To

test our strategy, we investigate a two-day-long seismogram collected in the vicinity of the North Anatolian Fault, Turkey. We

analyze the automatically inferred clusters’ occurrence rate, spectral characteristics, cluster size, and waveform and envelope

characteristics. At a low level in the cluster hierarchy, we obtain three clusters related to anthropogenic and ambient seismic

noise and one cluster related to earthquake activity. At a high level in the cluster hierarchy, we identify a seismic crisis that

includes more than 200 repeating events and high-frequent signals with correlated envelopes and an anthropogenic origin. The

application shows that the cluster hierarchy helps to identify particular families of signals and to extract subclusters for further

analysis. This is valuable when certain types of signals, such as earthquakes, are under-represented in the data. The proposed

method may also successfully discover new types of signals since it is entirely data-driven.
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Abstract12

Continuous seismograms contain a wealth of information with a large variety of signals13

with different origin. Identifying these signals is a crucial step in understanding physical14

geological objects. We propose a strategy to identify classes of seismic signals in continuous15

single-station seismograms in an unsupervised fashion. Our strategy relies on extracting16

meaningful waveform features based on a deep scattering network combined with an in-17

dependent component analysis. Based on the extracted features, agglomerative clustering18

then groups these waveforms in a hierarchical fashion and reveals the process of clustering19

in a dendrogram. We use the dendrogram to explore the seismic data and identify different20

classes of signals. To test our strategy, we investigate a two-day-long seismogram collected21

in the vicinity of the North Anatolian Fault, Turkey. We analyze the automatically inferred22

clusters’ occurrence rate, spectral characteristics, cluster size, and waveform and envelope23

characteristics. At a low level in the cluster hierarchy, we obtain three clusters related to24

anthropogenic and ambient seismic noise and one cluster related to earthquake activity. At25

a high level in the cluster hierarchy, we identify a seismic crisis that includes more than 20026

repeating events and high-frequent signals with correlated envelopes and an anthropogenic27

origin. The application shows that the cluster hierarchy helps to identify particular families28

of signals and to extract subclusters for further analysis. This is valuable when certain types29

of signals, such as earthquakes, are under-represented in the data. The proposed method30

may also successfully discover new types of signals since it is entirely data-driven.31

Plain Language Summary32

Seismic data most likely contain a wealth of crucial information about active geological33

structures such as faults or volcanoes. The growing seismic data collected nowadays cannot34

scale with a manual investigation, suggesting automatic algorithms for scanning continuous35

data streams. We develop a strategy based on artificial intelligence to scan continuous seis-36

mic data and infer patterns automatically. Our approach investigates how the data gather37

into families and how these families relate to each other. We employ a particular neural net-38

work, the scattering network, to ease the design and training of our algorithm. This paper39

explores two days of continuous seismic data collected in the vicinity of the North Anatolian40

fault, where we expect the content of seismic data to be complex, dominated mainly by noise41

and with rare events such as explosions or earthquakes signals. We compare and discuss our42

results with classical approaches for earthquake detection and noise description.43

1 Introduction44

Continuous seismograms contain a rich amount of information as a large variety of45

signals can be observed therein. Determining the origin of these different signals is crucial46

in understanding the physical geological objects. For example, faults and plate boundaries47

accommodate the tectonic loading by releasing energy in different fashions (Ide et al., 2007),48

the most known and well-understood signals being earthquakes, radiating seismic waves49

visible in most seismograms. Based on their signal characteristics, seismologists developed50

many tools to detect earthquakes in seismograms (e.g. STA/LTA). Only 20 years ago,51

a new signal with tectonic origin has been discovered and designated as a non-volcanic52

tremor because of the similarities with volcanic tremors (Obara, 2002). However, non-53

volcanic tremors are often of weak amplitude with poorly defined signal characteristics; their54

detection is a more challenging task than detecting earthquakes. Other than signals with55

tectonic origin seismometers also record the oceanic microseisms (see e.g. Ebeling, 2012,56

for a recent review), rockfalls and other mass movements (e. g. Lacroix & Helmstetter,57

2011; Deparis et al., 2008), ground and air traffic (e. g. Riahi & Gerstoft, 2015; Meng58

& Ben-Zion, 2018) or other kind of human-induced sources (such as church bells in Diaz,59

2020). The mixing of all these sources renders a complex seismic wavefield that makes the60
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analysis and interpretation of seismic records difficult, especially if seismic data are the only61

data available.62

As a response to this problem, seismologists have developed many processing tools for63

exploring these complex seismic data. Since the 1970s seismology benefits from artificial64

intelligence developments, bringing machine-learning-based solutions for exploring seismic65

data and recognizing patterns (e.g. Allen, 1978). More recently an unsupervised learning66

strategy called clustering was utilized to explore seismic data and find families of similar67

signals (Köhler et al., 2010; Holtzman et al., 2018; Mousavi et al., 2019; Seydoux et al.,68

2020; C. W. Johnson et al., 2020; Snover et al., 2020; Jenkins et al., 2021). In contrast69

to supervised learning strategies, clustering does not rely on a labeled training set and70

human expert knowledge (Goodfellow et al., 2016). Thus, clustering seismograms can help71

identifying families of signals which are not yet discovered or are poorly defined such as72

non-volcanic tremors.73

In the present paper, we introduce a new strategy to use clustering as an exploration74

tool for seismic data. Our strategy follows the idea that seismic signals are grouped in a75

hierarchy of classes following a specific similarity measurement, as schematized in Figure 1.76

Note that this illustration aims at sketching the concept rather than being complete or77

accurate. We consider the similarity between classes of signals to be measured on a set78

of signal characteristics that can be human-defined (such as mean frequency and signal79

duration) or learned with machine-learning tools, as we propose in the present paper. In80

the first place, one can imagine the seismic signal classes to split into long-term and short-81

term signals based on the duration of a signal (Figure 1). In the class of long-term signals,82

one could use a similarity measure based on frequency content to separate the primary from83

secondary microseism. We see that building a tree of classes lets us explore the data on84

different levels and that different signal characteristics may be relevant at each node of the85

tree.86

The sketch presented in Figure 1 also illustrates the problems of designing a class87

hierarchy by hand. The labels used in this sketch are the ones we created as seismologists88

based on our domain knowledge. That is problematic for those classes of signal that do89

not have a proper definition of signal and source properties, such as non-volcanic tremors.90

Moreover, some splittings, such as between earthquakes and explosions, ask for a more91

complex similarity measure which will be hard to design by hand. Hierarchical clustering92

produces precisely this kind of tree, called a dendrogram, based on the exploration of the93

similarity of signals present in the input data. Therefore, we propose to represent seismic94

data as a dendrogram and utilize it to explore the data and interpret the clusters.95

In the following section, we present the workflow to build a dendrogram from con-96

tinuous single-station data. We introduce the concept of hierarchical clustering and how97

we transform continuous seismograms to a meaningful input (features) for the hierarchical98

clustering. In section 3, we introduce a data set to apply and test the proposed workflow.99

In section 4, we show and discuss briefly the resulting dendrogram. Section 5 is about100

navigating through the dendrogram and interpreting the clusters at different levels.101

2 Method102

A sketch of the hierarchical clustering workflow is depicted in Figure 2. In the follow-103

ing lines, we start with the concept of clustering in general and hierarchical clustering in104

particular. Then, we explain how we transform seismograms into a meaningful input for the105

cluster analysis.106
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Figure 1. Illustration of possible hierarchy in seismic data. The different branches represent

how a signal class splits into different subclasses depending on a given similarity measure. Here the

different classes of events are thought in a hierarchical way, based on arbitrary signals properties

(e.g. duration, frequency range or signal’s structure). This scheme aims at illustrating the expected

behavior of an optimal clustering algorithm, but does not depict the potential issues related to

clustering such as overlapping between different classes of signals or imbalance between classes.

Figure 2. Proposed workflow for hierarchically exploring continuous seismograms

. (a) Input continuous 3-component seismograms, as detailed in Section 3. (b) Deep scattering

spectrum of the seismograms, with a temporal resolution of about 20 s and a high number of

dimensions, detailed in Section 2.2. (c) Independent features extracted from the deep scattering

spectrum with independent component analysis, following the description in Section 2.3. (d) Den-

drogram calculated from a similarity metric in the feature space, as explained in Section 2.1.
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2.1 Hierarchical clustering107

In general, cluster analysis groups objects based on their similarity to each other108

(Kriegel et al., 2009). Objects in the same cluster are more similar to each other than109

objects in different clusters. The similarity between objects is measured on a set of certain110

characteristics called features. Finding the most relevant features for this task will be dis-111

cussed later.112

113

Various algorithms exist to find groups of objects in a data set. This study utilizes114

hierarchical clustering with a bottom up approach, namely agglomerative clustering. Hier-115

archical clustering relies on a similarity matrix, which defines the similarity (e.g., a specific116

distance in the feature space) between all objects in a data set (S. C. Johnson, 1967). With117

a bottom-up approach, all objects start in a singleton cluster. The clusters start merging118

based on the similarity matrix until all objects unify in a single global cluster. This process119

is summarized in a dendrogram, revealing the hierarchical structure of the entire data set.120

Such a strategy fits very well the nature of seismic data as depicted in Figure 1.121

122

The agglomerative clustering outcome depends mainly on the applied metric, which123

drives the merging of the cluster. In our approach, we use the Ward’s method (Ward Jr,124

1963). Given a distance d (here considered Euclidean), the Ward’s method aims at grouping125

objects xi into clusters such as the within-cluster variance remains minimal after merging126

different clusters. The within-cluster variance σ quantifies the spread of each cluster in127

the feature space (for more details see Appendix A). By minimizing the overall variance,128 ∑K
c=1 σc with K being the number of clusters, the Ward’s method allows for clusters of vari-129

able population sizes and variances. Thus, it may highlight clusters of high density located130

in the vicinity of more spread, low-density clusters. Therefore, Ward’s method is suitable131

for the expected seismic data partition, where often ambient seismic noise outweighs signals132

with a tectonic origin.133

134

2.2 Finding an appropriate representation of seismograms: the deep scat-135

tering spectrum136

In order to detect and identify classes of signals in continuous seismograms with hier-137

archical clustering, the seismograms have to be transformed into a meaningful input for the138

cluster analysis. For that purpose, we calculate features for fixed windows of the seismo-139

gram. Thus, each window will be assigned a cluster based on the features for this window.140

Note that this process simplifies the complexity of seismic data, since multiple types of141

signals can occur simultaneously. Common cluster analysis such as hierarchical clustering142

neglect this fact and can only assign a single cluster to an object. Besides the choice of143

the applied metric within hierarchical clustering, the choice of features is another important144

factor, which determines the outcome of the cluster analysis. Finding the most relevant145

features should be done according to the task at hand and can be done thanks to prior146

knowledge on the data or by defining proper algorithms to learn the most relevant features.147

We distinguish classical machine-learning algorithms that rely on human-defined features148

(Maggi et al., 2017; Malfante et al., 2018) or representation-learning algorithms where the149

features are learned from the data to optimize a given task (LeCun et al., 2015; Ross et al.,150

2018; Rouet-Leduc et al., 2020). While classical machine learning provides less accuracy in151

most cases, it provides interpretability since the features are known, which is an interesting152

aspect. Most algorithms that rely on representation learning are less easy to interpret since153

the features are more abstract, but they also provide more accurate results. In the present154

paper, we propose to use a hybrid approach between classical and representation learning155

algorithms that combines the advantages of both.156

157
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A time-frequency representation such as the spectrogram is one way to create a set158

of features for classifying seismic signals (C. W. Johnson et al., 2020; Snover et al., 2020;159

Jenkins et al., 2021). However, Andén and Mallat (2014) showed that a spectrogram gen-160

erated by the Fourier transform is not ideal for classification purposes since it is not stable161

to time-warping deformations, especially at short periods compared with the duration of162

the analyzing window. They introduce another time-frequency representation called a deep163

scattering spectrum which is computed by a scattering network. This type of network164

implements a cascade of convolutions with wavelet filters, modulus function, and pooling165

operations (see Figure 2a and b). Deep scattering spectra are locally translation invariant166

and preserve transient phenomena such as attack and amplitude modulation. These char-167

acteristics are beneficial when it comes to classifying any time series data. In Andén and168

Mallat (2014) and Peddinti et al. (2014), the authors have successfully classified audio data169

based on the deep scattering spectrum. Seydoux et al. (2020) have brought that repre-170

sentation into seismology and showed that small precursory signals of a landslide could be171

detected and classified in an unsupervised fashion. Other successful deep-learning classifiers172

inspired by deep scattering networks are presented in Balestriero et al. (2018) and Cosentino173

and Aazhang (2020).174

We use the strategy presented in Seydoux et al. (2020) for calculating the deep scattering175

spectrum. Considering the continuous input signal x(t) ∈ RC (where C is the number of176

channels), the scattering coefficients S(`) of order ` are obtained from the following cascade177

of wavelet convolutions and modulus operations (i.e. wavelet transforms):178

S(`)
(
t, f (1)n1

, f (2)n2
, . . . , f (`)n`

)
= max

[t,t+dt]

∣∣∣φ(`) (f (`)n`

)
?
∣∣∣. . . ? ∣∣∣φ(2) (f (2)n2

)
?
∣∣∣φ(1) (f (1)n1

)
? x
∣∣∣∣∣∣∣∣∣∣∣∣,

(1)179

where ? stands for the temporal convolution, | · | represents the modulus operator and180

φ(i)(f
(i)
ni ) is the wavelet filter at the layer i of the scattering network, with center frequency181

fni
. Here fni

refers to one of the center frequencies of the layer i indexed by ni = 1 . . . Ni,182

where Ni is the total number of wavelets at layer i. In contrast to the Fourier transform,183

the center frequencies of the wavelets are placed logarithmically. In this study, we only184

consider a scattering network with 2 layers (as depcited in Figure 2) since Andén and Mallat185

(2014) argued that more layers do not necessarily introduce new valuable information. Note186

also that each input channel from the seismic station is treated separately and their deep187

scattering spectrum are concatenated later into a vector after the pooling operation in each188

layer. The number of wavelets per layer and frequency range of each layer is discussed later.189

While the authors in Seydoux et al. (2020) implement a learnable wavelet filter φ(i)(f
(i)
ni )190

with respect to the clustering loss, we directly use a (non-learnable) Gabor filter, as originally191

presented in Andén and Mallat (2014). This choice was made principally because we do not192

perform a fixed cluster analysis in our study, but an exploration of the data instead where a193

loss function is harder to define. The maximum-pooling operation is performed over a time194

interval [t, t + dt] of duration dt over the continuous data; the data sampling rate and the195

pooling operation control the final sampling rate of the deep scattering spectrum. While the196

first-order scattering coefficients resemble a spectrogram based on a wavelet transform, the197

second-order scattering coefficients contain information about the attack and modulation.198

For the interested reader we refer to Andén and Mallat (2014) and Seydoux et al. (2020).199

2.3 Features extraction from deep scattering spectrum200

The deep scattering spectrum matrix can have more than 1,000 dimensions and, thus,201

the conditions for clustering are not favorable (Kriegel et al., 2009). Indeed, distances in202

very high-dimensional spaces give little information about the structure of the data (the203

so-called curse of dimensionality; Bellman, 1966). In addition, the representation is known204

to be highly redundant since the wavelet filters of the first scattering layer are often consid-205

ered with a strong frequency overlap in order to provide a dense first-order representation.206

Therefore, it is recommended to reduce the dimensions before clustering. In our case, we use207

an independent component analysis (ICA) to reduce the dimension of the representation.208
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In the following remarks, we explain the basic concept of ICA. For the interested reader we209

refer to (Comon, 1994).210

ICA is introduced as a statistical tool for blind source separation and feature extraction.211

The generative model of the ICA can be described as:212

x = sA, (2)213

where x ∈ RN×F are the N observations of dimension F , A ∈ RF×C is the mixing214

matrix, and s ∈ RC×N are the unmixed sources (namely, the C unmixed sources obtained215

from ICA). The observations x are therefore a linear combination of the independent sources216

s, with the mixing weights gathered in A. A test of statistical independence is required to217

solve Equation 2 while ensuring the sources s to be independent. This concept is illustrated218

in Figure 2, where the unmixed sources are considered as features in our workflow (therein219

called feature matrix). These sources are obtained from the projection of the deep scattering220

matrix onto the set of inferred mixing matrix. Among the different strategies, we can look221

for a minimum of mutual information, or similarly, a maximization of the non-Gaussianity.222

In our study, we apply the FastICA algorithm from the scikit-learn Python library, which223

uses the negentropy as a measure of non-Gaussianity (Hyvärinen & Oja, 2000). This analysis224

is similar to the principal component analysis, with the difference that the independent225

components are not orthogonal. In addition, there is no information about the variance226

explained by the different independent components, and are therefore delivered unsorted by227

the algorithm.228

3 Data229

We test our proposed workflow on continuous three-component seismic data from the230

station DC06 of the DANA experiment in Turkey (see for instance Poyraz et al., 2015, and231

the map shown in Figure 3a). Originally, the experiment was conducted to investigate the232

crustal structure beneath the western segment of the North Anatolian Fault. We choose233

the data set for mainly two reasons. First of all, the data set contains both seismic and234

anthropogenic activity, which is a typical situation in most seismological studies. Second235

of all, an existing template matching catalog provides labels for the seismicity in this area.236

The catalog was built following the methodology in Beaucé et al. (2019).237

We choose to analyze the seismic data from the 25th to the 27th of July 2012. During238

that period, a seismic crisis with 148 events occurred on and around the northern strand of239

the North Anatolian fault (see Figure 3a and b). The catalog explains the series of events240

with 17 templates having their hypocenters close to each other (Figure 3a, red dots). Since241

the seismic crisis resembles a repeating pattern with short time-warping deformations due242

to slight changes of the hypocenters, it is an interesting study case for our proposed method.243

Station DC06 is close to the seismic crisis and records the time period of interest without244

data gaps. Thus, we choose the three-component seismograms of this station. The sampling245

rate of the data is 50 Hz.246

The spectrogram of the east component of station DC06 is presented in Figure 3c. The247

oceanic microseism is visible around 0.2 Hz, where we can observe the dispersive nature of248

the oceanic gravity waves. At around 1.5 Hz we can identify a nonstationary monochromatic249

noise source, which seems to be more active during the first day. At frequencies higher than250

3 Hz we can see increased activity during daytime, most likely induced by anthropogenic251

noise sources. The main shock of the crisis during the evening of the 25th is also easy to252

spot in the spectrogram.253
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10 km

Figure 3. Geological context and seismic data used in the present study. (a) Map of the

North Anatolian fault zone showing station DC06 (black triangle), the seismic crisis (red dots)

including the identified mainshock (red star) and other seismic activity (blue dots); all detected

with a template matching strategy. The geological faults that ruptured after 1900 (black lines)

are adapted from Emre et al. (2011). (b) Cumulative detections of the seismic crisis (in red) and

other seismic activity (in blue) obtained with template matching. (c) Continuous spectrogram of

the east-component of station DC06, with a visual identification of (A) oceanic microseism, (B) a

non-stationary monochromatic noise source, and (C) daily high-frequency activity.

–8–



manuscript submitted to JGR: Solid Earth

4 Results254

4.1 Feature space255

Firstly, we use the continuous three-component seismograms to calculate the deep scat-256

tering spectrum with a two-layered scattering network (as detailed in Equation 1). The257

network parameters are physics-driven and can be adjusted according to the goal. In this258

study, the first layer contains 24 Gabor wavelets with center frequencies between the Nyquist259

frequency of the seismogram (25 Hz) and 0.78 Hz with a spacing of 4 wavelets per octave.260

The second layer contains 14 Gabor wavelets with center frequencies between 25 Hz and261

0.19 Hz with a spacing of 2 wavelets per octave. This setup results in 24 wavelet trans-262

forms per channel in the first layer and 336 (24 ∗ 14) wavelet transforms per channel in the263

second layer. Because the deep scattering spectrum matrix is a concatenation of the first-264

and second-order scattering coefficient of each input channel, the total number of scattering265

coefficients is 1080 (dimension F in Figure 2). For the temporal pooling operation, we apply266

maximum pooling, since we are interested in detecting and classifying non-stationary events267

such as the seismic crisis. If the focus of classification is the background noise, average268

pooling might be the better choice (as suggested in Seydoux et al., 2020). The moving269

pooling window is 20.48 s large and does not overlap. Hence, the time resolution of the deep270

scattering spectrum matrix is also 20.48 s.271

For dimensionality reduction, we apply an independent component analysis using the272

FastICA algorithm from the scikit-learn Python library. In this study, we select the273

appropriate number of independent components according to the reconstruction loss between274

the original data and the reconstructed data after compression with an ICA (detailed in275

Appendix B). We emphasize that we look for a trade-off between keeping the most significant276

amount of information while using few independent components. From the study of the loss277

with increasing number of components shown in Appendix B and Figure B1 therein, we278

conclude that keeping ten independent components is a good compromise and constitute279

our choice in the present study. A visual representation of the ten unmixed sources building280

the feature space is depicted in Figure B2 in Appendix B.281

4.2 Dendrogram282

After transforming the continuous seismic data into a most relevant set of features, we283

can use this representation to explore the data with hierarchical clustering. By controlling284

the distance threshold, we can extract different numbers of clusters. The distance threshold285

sets the boundaries for the possible distances between points within a cluster. While a larger286

distance threshold allows larger and fewer clusters to form, a smaller distance threshold287

extracts smaller but many clusters. In Figure 4a we selected a distance threshold of 0.47288

in order to show a truncated dendrogram stopping at 16 clusters. At a distance of 0.9, we289

extract four main clusters labeled as A, B, C, and D. Figure 4b shows the averaged first-290

order scattering coefficients of these four clusters. These first-order scattering coefficients291

describe the frequency characteristics of each cluster. Figure 4c presents the normalized292

cumulative detection rate of each cluster, with the seismic crisis detection rate indicated293

as a reference. The relative size of each cluster compared to the size of the entire data set294

is depicted in Figure 4d. In the following remarks, we will analyze each of the four main295

clusters from left to right.296

Cluster A contains ca. 27 % of the data (Figure 4d) and is the first cluster to split from297

the whole data set, i.e., cluster A is the furthest away from the center of the data points298

(Figure 4a). Compared to the other clusters, its scattering coefficients for all frequencies are299

relatively low except for a local maximum around 1.5 Hz (Figure 4b). Looking at the cor-300

responding cumulative detection curve (Figure 4c), we see that this cluster is active mainly301

during the first day until the late afternoon, which seems to correlate with the monochro-302

matic signal around 1.5 Hz we have already identified in the spectrogram (Figure 3c).303
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Figure 4. Dendrogram analysis and statistical characteristics of the different clusters. (a) Den-

drogram calculated in the feature space (see Sec. 2.1 for explanations). The dendrogram is here

truncated in order to form 16 clusters. The clusters marked with a letter are considered the main

clusters, and the subclusters are indicated with numbers. The numbers in the parenthesis indicate

the number of samples in each cluster. (b, c, d and e) depict random examples of waveforms for

the four main cluster A,B,C and D, respectively. (f) Centroidal first-order scattering coefficients for

main clusters A, B, C and D. (g) Normalized cumulative detections of main clusters A, B, C and D,

and of the seismic crisis obtained from the multi-station template-matching catalog. (h) Relative

size of the main clusters compared to the size of the entire data set.
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Cluster B contains about 19 % of the data samples (Figure 4d) and has relatively304

large scattering coefficients for frequencies above 10 Hz (Figure 4b). The corresponding305

cumulative detection curve indicates that this cluster accumulates less detections during306

the beginning of a day than with later times of a day (Figure 4c). Combining these facts307

leads to the hypothesis that cluster B might be related to signals with an anthropogenic308

origin.309

Cluster C is the largest cluster with more than 50 % of the data points (Figure 4d).310

Compared to the other clusters, it also has the lowest scattering coefficients at all frequencies311

(Figure 4b). Looking at the cumulative detection curve (Figure 4c), we see this cluster shows312

an almost linear increase starting at the afternoon of the first day, exactly when cluster A313

becomes almost inactive. The cluster size and frequency content suggest that cluster C is314

related to samples containing only ambient noise.315

Finally, cluster D contains about 4 % of data set (Figure 4d) and is the smallest of the316

four clusters (Figure 4d). The corresponding first-order scattering coefficients show a local317

maximum around 5 Hz (Figure 4b). Its cumulative detection curve correlates well with the318

detections of the seismic crisis (Figure 4c), with additional detections before the seismic319

crisis starts. All these observations indicate that cluster D is probably related to nearby320

seismic activity in general.321

5 Discussion322

In this section, we will discuss and interpret the dendrogram’s representation and its323

clustering solution. While the main focus is on identifying how the seismic crisis occurs324

in the dendrogram, we will also discuss how the general seismicity is observed through325

this representation, and interpret the remaining clusters with anthropogenic activity and326

ambient seismic noise. To underpin the statement that the deep scattering spectrum is a327

superior representation for the task at hand than spectrograms, we also create and interpret328

a dendrogram based on spectrograms of the same data set (see Appendix D).329

5.1 Identification of the seismic crisis within the dendrogram330

Firstly, we identify all time segments containing onsets of the events of the seismic331

crisis and observe which clusters those time segments belong to. The template matching332

catalog contains 148 detections related to this seismic crisis. However, we only associate 136333

samples in the feature space with the seismic crisis, since one sample represents about 20 s of334

waveform data and, thus, can contain multiple events. Figure 5a shows that a large majority335

of the samples, which contain arrivals of the seismic crisis, fall into cluster D (92.6 %). On336

the other hand, only 40 % of cluster D is related to the seismic crisis, underpinning the337

statement that this cluster is related to general seismic activity. Cluster B and C share the338

remaining 7.4 % of the crisis. Compared to the large population sizes of clusters B and C, the339

contribution of the crisis almost vanishes (0.3 and 0.1 %). Cluster A contains no detections of340

the crisis. While cluster D contains the majority of the seismic crisis, the interesting aspect341

is to understand what the remaining 60 % samples of this cluster are related to (earthquakes342

from the same source region, different signals, etc). To answer that question, we investigate343

the subclusters visible in Figure 4a obtained with a distance threshold of 0.47; in particular,344

we will narrow the focus on the subclusters of cluster D, namely the four subclusters D.1 to345

D.4.346

Firstly, we look at the distribution of the samples containing the seismic crisis across347

the four subclusters in main cluster D. From Figure 5a, we know that more than 92 % of348

the crisis was found in cluster D. We observe in Figure 5b that this amount splits into ca.349

71.3 % in cluster D.1 and ca. 21.3 % in cluster D.4. The subclusters D.2 and D.3 contain350

no earthquakes from the seismic crisis and will be discussed later. If we look at the cumu-351

lative detection curve of each subcluster in D (Figure 5c), we see that cluster D.1 and D.4352
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Figure 5. Identification of the seismic crisis within the main and subclusters. (a) The dis-

tribution of the seismic crisis across the four main clusters. (b) The distribution of the seismic

crisis across the four subclusters in the main cluster D. (c) Normalized cumulative detection curves

for the subclusters in the main cluster D. (d) Centroidal first-order scattering coefficients for the

subclusters in the main cluster D.

share a very similar temporal pattern. The corresponding centroidal first-order scattering353

coefficients (Figure 5d) explain why the crisis got split into two clusters: across almost all354

frequencies the larger subcluster D.1 shows significantly smaller scattering coefficients than355

the smaller subcluster D.4. Hence, the magnitudes of the events seem to be the character-356

istics that separates the crisis into two clusters. Besides, we observe that 56 % of D.1 and357

97 % of D.4 can be explained by the cataloged crisis. This observation raises the question:358

what are the samples in D.1 and D.4 that cannot be related to the seismic crisis recorded359

by the catalog? We can answer this question by looking at the waveforms representing the360

corresponding data points of subclusters D.1 and D.4.361

Figure 6a, b and c show the corresponding waveforms of all 204 data points of the two362

subclusters D.1 and D.4. For presentation purposes we align the waveforms accordingly to363

their maximum correlation with a template waveform from the subcluster. For all waveforms364

we observe the P and S seismic phase arrivals of the earthquakes. The first 30 waveforms365

correspond to subcluster D.4. 29 of them are are also in the catalog (marked orange)366

while 1 of them is not in the catalog (marked magenta). The following 174 waveforms are367

from subcluster D.1. 98 of them are are also in the catalog (marked light blue) while 76368

of them are not in the catalog (marked blue). The waveforms are very similar to each369

other on all three channels. This indicates that these new detections are coming from the370

same source area. Note also that the first 30 waveforms representing subcluster D.4 have371

a better signal-to-noise ratio than the following waveforms of subcluster D.1. This agrees372

with our assumption that the crisis is split into two subclusters due to magnitude differences.373

The magnitude estimations of the template matching catalog confirms this assumption (see374

Figure 6d). While most of the events located in D.1 range between M0.5 and M1, the events375

located in D.4 range between M1 and M2.2.376
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Figure 6. (a,b,c) Waveform data from subcluster D.1 and D.4. The color code indicates the

according subcluster and if the event is mentioned by the catalog. (d) Magnitude estimations of

the cataloged events of the seismic crisis found in subcluster D.1 and D.4.

By investigating cluster D and its subclusters D.1 and D.4, we are able to identify two377

subclusters representing the seismic crisis. While D.1 contains many events with smaller378

magnitudes, D.4 contains fewer events with larger magnitudes. Together the two subclusters379

contain 92.6 % of the cataloged events and 77 new events, which have identical P and S380

wave arrivals as the cataloged ones. The new detections can be explained by the fact that381

we utilize a single station method and compare it to a catalog based on a multi station382

method. More details and a comparison with a single station template matching catalog383

based on station DC06 can be found in Appendix C.384

However, 7.4 % of the cataloged detections can not be found in subclusters D.1 or D.4.385

In the following remarks, we want to analyze the misidentified 7.4 % of cataloged events,386

which equal ten over 135 events. First of all, we want to know where these events are387

located in the feature space. Therefore, we calculate the Euclidean distance between the388

misidentified events and the centroids of each cluster in the feature space (see Figure 7a).389

In magenta, we highlight the distance between the sample and its respective subcluster. In390

cyan, we highlight the distance between the sample and subcluster D.1 containing the low391
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Figure 7. Analysis of the misidentified earthquake waveforms. (a) Distances between misidenti-

fied data points containing an event from the catalog and the centroids of all clusters. The magenta

points show the distance between the data point and the centroid of its own respective subcluster.

The cyan points show the distance between the data point and the centroid of D.1. The gray points

show the distance between the data point and the centroids of the other 14 subclusters. (b, c,

d) Corresponding aligned waveform data sorted according to the distance to the centroid of D.1

(respectively channels E, N, and Z). The color coding represents the distance to the centroid of

subcluster D.1. A purple color indicates a larger distance than a light blue color.

magnitude events of the crisis. In gray, we highlight the distances to all other remaining392

clusters as a comparison. We sorted the misidentified ten events according to the distance to393

the centroid of D.1. We see that for the first six events, the distance to the centroid of D.1 is394

smaller than to the centroid of its respective cluster. The corresponding waveform data also395

offer explanations for the misidentification (Figure 7b to d). Indeed, the P and S arrivals396

are noisy but visible for the first five events. Thus, some events might be misclassified397

because samples are grouped with the Ward’s method, which solves iteratively an objective398

function considering the Euclidean distance and the within-cluster variance. In other words,399

clusters can agglomerate samples which might be closer to the centroids of other clusters400

if we consider the pure Euclidean distance. After the first five events, when the distance401

to its respective cluster becomes smaller than the distance to D.1., the P and S arrivals402

are not visible anymore, or other large-amplitude events are present. Here the problem is403

related to the representation of the data as a deep scattering spectrum or in the feature404

space. Other large-amplitude transients can corrupt the representation since we perform a405

maximum pooling to extract the scattering coefficients. This is not a specific problem of406

maximum pooling but pooling in general since this operation reduces information in the407

data.408
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5.2 Neighboring clusters of the seismic crisis in the feature space409

Having identified most of the seismic crisis in two neighboring subclusters already shows410

that the representation of the data and the distances between the data points are meaningful.411

As a next step, we want to analyze the neighborhood of these two subclusters to get a better412

understanding of the data representation. Since D.2 and D.3 share the same cluster with413

D.1 and D.4, we know that they are located next to each other in the feature space. This414

indicates that subcluster D.2 and D.3 might contain similar signals, such as seismic activity415

with a different origin than the seismic crisis.416

To verify this assumption, we can compare existing earthquake catalogs with the times-417

tamps of the samples in the subclusters. We extend the local template matching catalog418

with a regional catalog limited to events within a radius of 5° around station DC06. The419

regional catalog is downloaded from IRIS. For calculating the seismic phase arrivals at the420

station, we use the TauP module of ObsPy with the velocity model of Kennett and Engdahl421

(1991). We consider a sample related to an event of the catalog if the 20 s window of the422

sample overlaps with the window between the P wave arrival and the decaying coda.423

The waveform data of D.2 and D.3 are presented in Figure 8. Figure 8a indicates the424

samples which can be explained by arrivals of a regional or local event, and Figure 8b shows425

the samples which can not be explained by arrivals of a regional or local event. Note that426

one sample in the feature space represents ca. 20 s of waveform data and each horizontal427

waveform displayed in Figure 8 contains multiple consecutive 20 s windows. Subcluster D.2428

contains only nine samples corresponding to two seismic events indicated in blue in Figure 8a.429

The first event represented by eight consecutive samples at index 0 is a relatively distant430

M4 event. The other event represented by a single sample is a quarry blast from a local431

mine mentioned by the template matching catalog. At first sight, it might seem unexpected432

that these two events are found in the same subcluster. However, subclusters D.2 shows the433

largest scattering coefficients for frequencies below 5 Hz (see Figure 5d), and its centroid is434

the furthest away from the remaining data set as we can see from the inter-cluster distance435

matrix presented in Figure A1 in Appendix A. Moreover, the within-cluster variance σc in436

the top panel of Figure A1 indicates that the samples of subcluster D.2 are the most spread437

out compared to the other subclusters, This suggests that both events are seen as outliers438

in the data space due to their high amplitudes at lower frequencies.439

Moreover, we observe that the catalog can explain 67 % of all samples of D.3. However,440

we only show some waveforms in black in Figure 8a. The other 33 % are shown in Figure 8b,441

and some samples also show seismic phase arrivals (in particular, the seismograms shown442

at index six and nine). It is thus likely that the samples shown in Figure 8b contain443

uncataloged events. While subcluster D.1 and D.4 represent similar earthquakes from a444

similar source region, subcluster D.3 shows many kinds of signals, such as earthquakes with445

different magnitudes and distances to the station. We can interpret subcluster D.3 as an446

agglomeration of transient signals with increased energy between 1 and 5 Hz (see Figure 5d).447

Regional and local events also fall into this category. Thus, in the vicinity of the subclusters448

D.1 and D.4, related to the seismic crisis, other subclusters containing seismic activity can449

be found.450

5.3 Anthropogenic signals with high envelope correlation451

After identifying seismic activity in cluster D, we want to draw attention to the re-452

maining part of the seismic data set. Seismic activity induces short-term signals with a453

characteristic waveform and envelope shape. However, if we want to classify other types454

of signals like tremors, anthropogenic noise, or ambient noise, correlating waveforms are455

unlikely to be suitable for this task. One key feature of the deep scattering spectrum is the456

representation of the waveform’s envelope in the second-order scattering coefficients (Andén457

& Mallat, 2014). Consequently, we should find clusters with weakly correlating waveforms458

but strongly correlating envelopes.459
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Figure 8. Seismic waveforms identified in subclusters D.2 and D.3. (a) waveform data of D.2

and D.3 where the phase arrivals match the merged catalog. (b) waveform data of D.3 which do

not correspond to phase arrivals from the merged catalog.
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Figure 9. Interpretation of subcluster B.4. (a) Averaged correlation coefficient for the wave-

forms CCW and for the envelopes CCE for all 16 subclusters. (b,c,d) Aligned envelopes for the

three channels for subcluster B.4. (e) Number of detections per hour for subcluster B.4. (f)

Centroidal first-order scattering coefficients for subcluster B.4.

For that reason, we investigate the correlation coefficient of the waveform (CCW ) and460

the envelope (CCE) for all subclusters. Firstly, a template is defined by the closest sample461

to the centroid representing the most typical waveform of a cluster. Then, we calculate462

the correlation coefficient of the waveform data CCW and the correlation coefficient of the463

smoothed envelope CCE between the template and the remaining samples. The envelope is464

defined by the modulus of the analytic signal, which is a complex-valued representation of465

the waveform disregarding the negative frequencies from the Fourier transform. A median-466

filter smoothens the envelope. The averaged results are depicted in Figure 9a. We firstly467

observe that CCE is more significant than CCW for most subclusters. In particular, cluster468

B.4 shows the most significant discrepancy between CCE and CCW ; this subcluster is part469

of cluster B, which we related to high-frequent urban noise. In Figure 9b to d, we align the470

envelopes for each channel and each sample in B.4 to depict the shared characteristics. We471

see a very symmetric envelope that lasts around 5 s. The envelopes look very similar on all472

three components. Figure 9e shows a histogram of detections over the time of the day. We see473

that this cluster mostly appears during daytime with a clear peak around 14:00 local time.474

Figure 9f shows the averaged first-order scattering coefficients for all three channels. The475

frequencies above 5 Hz are very pronounced and peak between 10 and 15 Hz. In summary,476

we see that subcluster B.4 is related to non stationary urban noise which produced similar477

envelopes lasting 5 s. Nearby road traffic could produce these kind of signals.478

5.4 Long-lasting signals with low envelope correlation479

As the last example, we want to draw attention towards clusters A and C. Both clusters480

show relatively low correlation coefficients for the envelopes (see Figure 9). Cluster C481

contains more than half of the data, and the average scattering coefficients are the lowest482

for all frequencies compared to the other clusters (see Figure 4b and d). Moreover, the483

subclusters of C have a relatively low distance to each other, and their within-cluster variance484

is relatively low (see Figure A1 in Appendix A). This indicates that they contain similar485

signals. Combining these facts, we conclude that this cluster contains ambient noise without486

any significant activity of transient signals.487
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Figure 10. Fourier amplitude of all three channels calculated over 10 min windows in the fre-

quency range of 1.4 to 1.6 Hz together with the activation of the main cluster A

Cluster A seems to correlate with the monochromatic noise source around 1.5 Hz (see488

Figure 3c and 4c). To prove that cluster A contains only data with increased activity around489

1.5 Hz we depict the occurrence of cluster A and the Fourier amplitude of the three channels490

filtered between 1.4 and 1.6 Hz as a function of time in Figure 10. In general, an increased491

amplitude around 1.5 Hz correlates well with the appearance of cluster A. However, not all492

samples with an increased monochromatic activity fall into cluster A. This can be explained493

by the fact that a sample in the independent component space contains pooled information494

of ca. 20 s of waveform data which can contain many different signals. For example, if two495

different seismic data windows contain an increased monochromatic signal activity, but only496

one of the two windows also contains an earthquake or road traffic, the representation in497

the feature space will be different because of the pooling. Therefore, some samples with498

increased activity around 1.5 Hz will not fall into cluster A because other signals happening499

simultaneously will change their position in the independent component space. Moreover,500

it is interesting to note that subcluster A.1 and A.3 show larger correlation coefficients for501

the waveforms than for the envelopes (Figure 9a). This characteristic only applies to these502

two subclusters and is related to the dominance of the monochromatic signal.503

Cluster A and C show that the dendrogram representation based on features from the504

deep scattering spectrum also finds cluster of noise sources without strong correlation of the505

waveforms or envelopes.506

6 Conclusion507

In this study, we proposed a new way of exploring seismic data hierarchically with a508

dendrogram based on features extracted from the deep scattering spectrum. A primary509

advantage of the workflow compared to other machine learning algorithms for classifying510

continuous seismic data is the interpretability at each step. For an application in this study,511

we chose a 2-day long data set containing a nearby seismic crisis with 148 cataloged events.512

These labels served as a sanity check for the algorithm.513

Firstly, we calculated time-frequency features with the scattering network, decreasing514

the sampling period in time and increasing the number of dimensions. Due to the curse515

of dimensionality, we reduced the data into a ten-dimensional feature space with ICA. The516

retrieved features already revealed trends in the data set (see Appendix B). In the feature517

space, we created the dendrogram based on the Ward’s distance between data points and518

clusters. The dendrogram was then used to navigate through the data set and explore areas519

of interest. This approach is very different from conventional clustering, where a certain520

number of clusters has to be defined beforehand. Here, the number of clusters changes with521
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the depth of the dendrogram. This approach can retrieve different sized clusters, of which522

some would have been ignored by statistical analysis.523

At a significant distance threshold, we extracted the four main clusters A, B, C, and D.524

With the cluster size, the temporal detection, and averaged first-order scattering coefficients,525

we delivered a rough interpretation of each cluster and obtained a rough overview of the526

entire data set. We identified cluster D as the cluster containing earthquake signals. Inside527

cluster D, we found D.1 and D.4 containing 92.6 % of the seismic crisis. The main difference528

between the two subclusters is the magnitude of the events: D.4 contains events with a529

larger magnitude than D.1. 7.4 % (ten events) were found in subclusters of B and C due to530

poor signal-to-noise ratio or other significant amplitude signals in the pooling window. Here531

the problem is related to the pooling itself and the choice of similarity measure, which drives532

the iterative agglomeration. Nevertheless, we believe that Ward’s method is an appropriate533

choice as a similarity measure for the agglomeration process, since it is adapted to the class534

imbalance within seismic data. Moreover, the misidentified ten events are outweighted by535

the 77 new events found in subcluster D.1 and D.4. The similarity of the waveforms suggests536

that they come from the same source area. The case of the seismic crisis has shown that we537

can identify a repeating pattern with slight variations of the waveforms in an unbalanced538

data set.539

The other subclusters of D can also be primarily explained by seismic activity. D.2 is540

a minor outlier cluster containing a regional M4 event and a quarry blast from a nearby541

mine. 67 % of D.3 can be explained by a catalog containing local and regional events. These542

findings are very interesting when we talk about the meaning of neighborhood. Since we543

know that D.1 and D.4 contain the seismic crisis, we have reasons to assume that we can544

find similar types of signals (e.g., other types of earthquakes) in the neighborhood of these545

subclusters. However, we also need to keep in mind that subclusters from A, B, or C can546

also be in the vicinity of the subclusters D.1 and D.4. Further research needs to be done to547

understand better the meaning of neighborhood in this type of data representation.548

At last, we also analyzed clusters that are not related to seismicity. B.4 contains549

samples with a low correlation coefficient for the waveform data but a high correlation550

coefficient for the envelopes. Here we found a characteristic envelope that was symmetric551

and lasted for 5 s. The traffic of a nearby road could be a possible source for this cluster.552

This case shows the possibility to detect patterns that do not share the same waveform but553

the same envelope. This is particularly interesting for the detection and classification of554

volcanic and tectonic tremors, which often show similar envelopes but no seismic phases.555

Moreover, we relate Cluster A to a monochromatic signal around 1.5 Hz and cluster C to556

the general ambient noise. These examples show that the workflow also finds clusters with557

low correlating waveforms and envelopes.558

In general, the method can be used for various tasks. It is beneficial to get a general559

overview of an unknown data set. If there is a particular target of interest (e.g., earthquakes,560

urban noise sources, tremors), we can navigate the dendrogram and focus the analysis on a561

specific branch. The temporal detection curves of the clusters can be easily correlated with562

other time series such as GPS displacement or environmental parameters to check for signal563

classes related to certain physical processes. A specific interesting application would be the564

North Anatolian Fault, where seismologists assume the presence of non-volcanic tremors565

but conventional methods did only deliver null results so far (Pfohl et al., 2015; Bocchini566

et al., 2021). Moreover, the method can be helpful to extract particular types of noise for567

performing ambient noise cross-correlation. We also believe that the dendrogram can reveal568

clusters/classes human expert knowledge could not reveal yet and expand the classes of569

signals we know so far.570

Moreover, the analysis of the seismic data showed its multi-label characteristics. Multi-571

ple signals can arrive simultaneously and, thus, assigning a single label to a window does not572
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reflect the whole truth. Integrating this issue into clustering seismograms is an interesting573

aspect for future work.574

Appendix A Within-cluster variance and inter-cluster distance575

This section presents the way we calculate the inter-cluster distance dij between clusters576

i and j and the within-cluster variance σi of cluster i. The inter-cluster distance are defined577

by the Euclidean distances between the centroids of the cluster:578

dij = ‖µi − µj‖2, (A1)579

where µi = 1
Ni

∑
n∈i ŷn represents the centroid of cluster i with the samples ŷn ∈ RC

580

belonging to cluster i, and where ‖ · ‖2 represents the L2 norm. Similarly, the variance σi581

of cluster i is defined as:582

σi =
1

Ni

Ni∑
n∈i
‖ŷn − µi‖22. (A2)583

This analysis is inspired from the silhouette analysis (Rousseeuw, 1987) and helps to584

understand better the clustering results. The within-cluster variances and the Euclidean585

distances between the centroids are depicted in Figure A1.586

Appendix B Number of relevant independant components587

For dimensionality reduction, we apply an independent component analysis using the588

FastICA algorithm from the scikit-learn Python library. Setting the number of dimen-589

sions in the reduced data space is always an exploratory task, and it is appropriate to590

estimate the information loss as a guideline for that. In this study, we use a reconstruction591

loss ε between the original data x and the reconstructed data x̂(n), obtained from Equation 2592

with n independent components, as593

ε(n) =

∑N
i=0 |xi − x̂

(n)
i |

N
. (B1)

Figure B1 depicts the reconstruction loss ε(n) for an increasing number of indepen-594

dent components n. The reconstruction loss decreases rapidly with the first components.595

With a more significant number of components, the rate of error decrease becomes smaller.596

The choice of the number of dimensions in the reduced data space is a trade-off between597

keeping the dimensions low and retaining most of the information. Thus, ten independent598

components seem like a good compromise to us.599

The time series of the ten unmixed sources calculated from the data set are shown in600

Figure B2. To see if single source already show a clear distinction between the seismic crisis601

and the rest of the data, we marked in blue the samples containing at least one earthquake602

from the crisis. We see that all unmixed sources show very different trends. For example603

the ninth unmixed source seems to separate the seismic crisis from the rest of the data.604

This observation raises the question if other trends, such as the background noise, can be605

correlated with specific unmixed sources.606

If we compare with the spectrogram of Figure 3c we see that the second unmixed source607

seems to correlate with the variations around 0.2 Hz and the eighth unmixed source seems to608

correlate with the monochromatic noise source around 1.5 Hz. This quick visual inspection609

shows us that the reduced data space can already be physically interpreted, and the ICA610

separates different signals on its different unmixed sources, which is favorable for further611

analysis by clustering algorithms.612
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Figure A1. Inter-cluster distances and within-cluster variances. (a) Within-cluster variance

according to equation A2 for all 16 subclusters. (b) Inter-cluster distance according to equation A1

between all 16 subclusters.
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Figure B1. Reconstruction loss with independent component analysis from the deep scattering

spectrum. The reconstruction loss ε(n) is calculated from Equation B1 as a function of the number

of independent components n.
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Figure B2. Time series of the ten unmixed sources of the deep scattering spectrum for the

overall seismic data set. The samples containing one or more arrivals of the earthquake from the

nearby seismic crisis are highlighted with blue dots.
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Figure C1. Comparison between the earthquake catalog from clusters D.1 and D.4 (thick brown

line), and the single-station (DC06) template matching catalog (dashed blue line). (a) Normalized

cumulative number of events. (b) Cumulative number of events. The single-station template

matching catalog documents about 50% more events.

Appendix C Comparison with Single-station Template Matching613

Station DC06 recorded higher signal-to-noise ratio S-waves from the seismicity crisis614

than the more proximal stations. Therefore, we are able to detect about twice more events615

by running the matched-filter search only on station DC06, with respect to the multi-station616

(ten stations) matched-filter search. The single-station template matching catalog captures617

a seismicity pattern similar to clusters D.1 and D.4, but reports about 50% more events (see618

Figure C1). Both the single-station and multi-station template matching catalogs were built619

with a detection threshold of eight times the root-mean-square of the correlation coefficient620

time series. The 20-second time resolution of the clustering method presented in this work621

sets a hard constraint on revealing the details of low magnitude seismicity. Nevertheless, we622

recall that producing a fine resolution earthquake catalog is not the first goal of our method,623

which instead aims at unraveling signals of different nature with no prior knowledge of the624

data set.625

Appendix D Qualitative Comparison with hierarchical clustering based626

on spectrograms627

In our study, we use a deep scattering spectrum instead of a Fourier-transform spec-628

trum, since it is more suitable for classification purposes (Andén & Mallat, 2014). In the629

following lines, we create and interpret a dendrogram based on Fourier-transform spectral630

features to verify this claim for seismograms. For the sake of comparison, the window size of631

the Fourier-transform equals the pooling window of the scattering network, which is 20.48 s.632

Moreover, the considered frequency range of the Fourier-transform is adapted to the fre-633

quency range of the first order scattering coefficients. The three-component spectrogram is634
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then used to calculate ten independent components, which resemble the feature space for635

the dendrogram. Thus, we only replaced the scattering coefficients with spectral coefficients636

of comparable time and frequency properties.637

To compare the clustering outcome, we retrieve 16 subclusters, which can be grouped into638

the three main clusters A’,B’ and C’ (see Figure D1a). The time evolution curves and the639

cluster sizes in Figure D1b and c show if the retrieved main clusters are the same as in640

Figure 4. Cluster A’ matches very well with cluster A in terms of cluster size and temporal641

detection curve. Thus, Cluster A’ is also related to the monochromatic signal. Cluster642

B’ matches with the detection curve of Cluster C, however, Cluster B’ contains more data643

than Cluster C. Thus, Cluster B’ is also related to ambient signals but possibly contains644

also additional types of signals. The normalized detection curve of Cluster C’ matches with645

Cluster B, however, Cluster C’ is not even half of the size of cluster B. Hence, Cluster C’646

is probably related to high-frequent urban signals. Cluster D, which is related to general647

seismicity, does not appear within the main clusters based on spectral coefficients. In fact,648

most of the seismic crisis is within cluster B’, which is mainly related to ambient signals649

(see Figure D1d). Hence, we can assume that Cluster C and D are unified here in Cluster650

B’. Retrieving subclusters at a lower distance threshold than the three main clusters could651

possibly reveal a few subclusters related to the seismic crisis. However, 11 out of 16 subclus-652

ters contain events from the seismic crisis (see Figure D1e). It is not possible to identify a653

few clusters which are purely related to the seismic crisis. Subcluster B’.1 and B’.2 contain654

more than 20 % of the cataloged seismic crisis respectively, however, most of the subcluster655

(>95 %) is not related to the cataloged seismic crisis.656

This example shows that a deep scattering spectrum delivers a better representation for657

classification purposes than the spectrogram. This is particularly true for classifying reoc-658

curring transient signals in a relative large data set such as the events of the seismic crisis659

within the continuous seismogram.660
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