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Abstract

Mineral dust is among the top contributors to global aerosol loads and is an active element in the Earth system. Ability of

non-photosynthetic vegetation (NPV) to suppress dust emission has been supported by observations and small-scale studies,

but current regional to global scale models fail to include NPV in the vegetation coverage input. In this study, we implemented

a satellite-based total vegetation dataset, which included NPV, into a regional atmospheric chemistry model and conducted

simulations of the entire year 2016 for the conterminous United States. We also conducted a control simulation using only

the photosynthetic vegetation (PV) to analyze the effects of NPV on dust emissions. Above 10% decreases in simulated

dust emissions are seen over most of the southwestern United States from spring to autumn due to NPV. Reductions in

dust concentrations are the largest in spring, and when compared to observations, attenuate the overpredictions of fine soil

concentrations at over 93% of the observation sites in the western U.S. Further analyses of essential parameters to the inclusion of

NPV indicate that sheltering the surface and increasing the threshold velocity through drag partitioning are major mechanisms

for the suppression of dust emissions. On the other hand, NPV causes the friction velocity to increase by more than 10% over

most erodible lands during autumn and winter, which can amplify the dust flux. This study highlights the necessity of including

NPV into the dust model and states that uncertainty analyses of total vegetation datasets are important.
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Key Points: 5 

• A satellite-based total vegetation dataset is implemented in a dust emission model  6 

• Non-photosynthetic vegetation (NPV) reduces dust concentrations by over 10% in most 7 

areas of the southwestern U.S. from spring to autumn  8 

• NPV suppresses dust emissions mainly by sheltering the ground surface and raising the 9 

threshold velocity  10 
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Abstract 11 

Mineral dust is among the top contributors to global aerosol loads and is an active element in the 12 

Earth system. Ability of non-photosynthetic vegetation (NPV) to suppress dust emission has 13 

been supported by observations and small-scale studies, but current regional to global scale 14 

models fail to include NPV in the vegetation coverage input. In this study, we implemented a 15 

satellite-based total vegetation data, which included NPV, into a regional atmospheric chemistry 16 

model and conducted simulations of the entire year 2016 for the conterminous United States. We 17 

also conducted a control simulation using only the photosynthetic vegetation (PV) to analyze the 18 

effects of NPV on dust emissions. Above 10% decreases in simulated dust emissions are seen 19 

over most of the southwestern United States from spring to autumn due to NPV. Reductions in 20 

dust concentrations are the largest in spring, and when compared to observations, attenuate the 21 

overpredictions of fine soil concentrations at over 93% of the observation sites in the western 22 

U.S. Further analyses of essential parameters to the inclusion of NPV indicate that sheltering the 23 

surface and increasing the threshold velocity through drag partitioning are major mechanisms for 24 

the suppression of dust emissions. On the other hand, NPV causes the friction velocity to 25 

increase by more than 10% over most erodible lands during autumn and winter, which can 26 

amplify the dust flux. This study highlights the necessity of including NPV into the dust model 27 

and states that uncertainty analyses of total vegetation datasets are important. 28 

Plain Language Summary 29 

Severe dust-emission events can interrupt traffic, damage infrastructure, and incur cleaning 30 

expenses locally. Dust particles that are lifted into the air by wind are also associated with global 31 

health problems and climate effects. Most of the global dust emissions come from arid or semi-32 

arid environments where the brown vegetation is abundant, and the amount of dust emissions is 33 

thus modulated by the presence of brown vegetation. However, current atmospheric models omit 34 

brown vegetation because it cannot be detected easily similar to green vegetation. In this study, 35 

we provided a total vegetation (sum of green and brown vegetation) dataset as an input to an 36 

atmospheric chemistry model, and simulated annual dust emissions over the conterminous 37 

United States. We find that the brown vegetation reduces the dust concentrations in air by above 38 

10% over most of the southwestern U.S. from spring to autumn. The reductions are mainly 39 

because the brown vegetation directly protects the surface from wind erosion, as well as reduces 40 

the drag on the surface such that a minimum wind speed needed to initiate dust emissions 41 

becomes higher.  42 

1. Introduction 43 

Mineral dust aerosols emitted by wind erosion play an active role in affecting human 44 

health and activities (Baddock et al., 2014; Nakao et al., 2018; Al-Hemoud et al., 2019), 45 

impacting the climate (Miller, 1998; Schepanski, 2018), and transporting nutrients and 46 

microorganisms (Csavina et al., 2012; Kellogg & Griffin, 2006). The global emissions of dust 47 

particles are mainly from arid or semi-arid environments (Knippertz, 2017) and are modulated by 48 

non-photosynthetic vegetation (NPV), which is predominant in these regions (Jacques et 49 

al.,2014). NPV includes dead leaves, crop residuals, and litters (Guerschman et al., 2009; Ji et 50 

al., 2020). Negative relations between the amount of dead leaves on the ground and the 51 

frequency of dust outbreaks are supported by interannual observations (Kurosaki et al., 2011; 52 

Nandintsetseg & Shinoda, 2015). Also, the relations between soil erosion and the coverage of 53 
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flat and standing crop residues were quantified, and the underlying mechanisms were studied on 54 

small scale uniform or experimental fields (Hagen, 1996; Lin et al., 2021).  55 

The challenge to extend this knowledge to regional-to-global scales lays in providing 56 

accurate information about the temporally and spatially variant vegetation to atmospheric 57 

models. In practice, the parameterization of vegetation in windblown dust schemes implemented 58 

in current chemical transport models or general circulation models relies on data for vegetation 59 

fractional coverage (Duncan Fairlie et al., 2007; Foroutan et al., 2017; LeGrand et al., 2019; 60 

Zhang et al., 2012). However, the vegetation fractional maps used by these models are often 61 

based on readily available vegetation indices from satellite retrievals which only represents 62 

photosynthetic vegetation (PV) (e.g., fraction of absorbed photosynthetically active radiation 63 

(FPAR) or normalized difference vegetation index (NDVI)).   64 

To the authors’ knowledge, there has been only one attempt to address this failure of 65 

accounting for NPV in the vegetation map used to simulate regional dust emissions (Kang et al., 66 

2014). The researchers estimated the NPV fractions in East Asia by assuming that the NPV 67 

fractions follow a linear decrease from the maximum fractions of green vegetation from last 68 

year. The conclusion that the approximated NPV fractions improved the simulation for a dust 69 

event can be further validated with a more realistic representation of NPV coverage that accounts 70 

for the non-linear growth-decay cycle of plants in different environments. The total vegetation 71 

(sum of PV and NPV) data was made available in the Multiscale Online Non-Hydrostatic 72 

AtmospheRe CHemistry (MONARCH) model version 2.0 model as recently reported (Klose et 73 

al., 2021) and more studies on the relations between NPV and dynamics of dust emissions are 74 

anticipated.     75 

Remote sensing techniques have a high potential to capture the heterogeneity of 76 

vegetation compared to field measurements or ecosystem modeling at a larger scale (Mougin et 77 

al., 1995). These techniques can identify NPV elements based on their different reflectance 78 

spectrum in the visible light to short-wave inferred regions, due to their lower pigments and 79 

water contents than PV, and higher cellulose and lignin contents than soils (Z. Li & Guo, 2015). 80 

Multispectral imagery is more widely used than hyperspectral imagery at large scales due to 81 

availability (Z. Li & Guo, 2015). Several vegetation indices that represent NPV coverage 82 

calculated from selected bands of multispectral reflectance have been developed, such as the 83 

Normalized Difference Senescent Vegetation Index (NDSVI) (Qi & Wallace, 2002), the Soil 84 

Adjusted Total Vegetation Index (SATVI) (Marsett et al., 2006), and the Dead Fuel Index (DFI) 85 

(Cao et al., 2010), but they are generally considered to be site-specific (X. Li et al., 2016). 86 

Another technique to acquire NPV fractions is the spectral mixture analysis (SMA) which uses 87 

all bands of the reflectance spectrum (Asner & Heidebrecht, 2002). The SMA method assumes 88 

that the surface reflectance is a combination of the reference reflectance of certain surface 89 

components or endmembers, and then resolves the fractions of all endmembers given their 90 

reference spectra. Variations of SMA methods (X. Li et al., 2016; Okin et al., 2013) mostly differ 91 

in the selection of reference spectra and comparisons among these variations showed that 92 

allowing the spectra for a certain endmember to vary among pixels improved the estimation of 93 

fractions.  94 

This study is aimed at testing the effects of NPV on the seasonal dust emissions, and 95 

understanding the underlying mechanisms. We implemented satellite-based maps for both PV 96 

and NPV fractions derived using a SMA method into the windblown dust scheme in the 97 

Community Multiscale Air Quality (CMAQ) model and conducted simulations for the entire 98 
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year 2016 over the conterminous United States (CONUS) (hereafter the TOTAL run). We also 99 

conducted a control run with PV only coverage data represented by the FPAR from the Moderate 100 

Resolution Imaging Spectroradiometer (MODIS) instrument (hereafter the FPAR run) and then 101 

contrasted the results. Section 2 describes the methods for generating the vegetation data, the 102 

parameterization of vegetation in our dust model, and the evaluation methodology. The results 103 

are presented and discussed in Section 3. Finally, summaries of our major findings, discussion of 104 

uncertainties, and future improvements are included in Section 4. 105 

2. Methods 106 

2.1. Vegetation Data  107 

In this study, we used two datasets for vegetation fractional coverage. The total 108 

vegetation data was obtained from the MODIS Nadir BRDF-Adjusted Reflectance (MCD43A4) 109 

product collection 5, which has a spatial and temporal resolution of 500 m and every 16 days, 110 

respectively. Details about the spectral unmixing analysis (SMA) method used to develop this 111 

dataset have been described in Guerschman et al. (2015) and Scarth et al. (2011). In brief, a 112 

linear unmixing method was performed to calculate the fractions of three pure surface 113 

components, namely PV, NPV, and bare soils based on the observed surface reflectance and the 114 

synthetic reference reflectance of the three components. Synthetic reference reflectance was 115 

derived from field measurements of vegetation fractional cover and satellite imagery using a 116 

multiple regression model. Seven bands of the reflectance from the MCD43A4 product were 117 

used to perform the unmixing, as well as their log transforms and interactive terms to account for 118 

the non-linear spectral mixing. To avoid overfitting, a subspace truncation method was applied to 119 

control the number of reflectance terms used for unmixing and that number was determined with 120 

a 100-fold cross-validation method. During the unmixing, the three fractions in each pixel were 121 

constrained to be non-negative and must add up to 100%. The resulting dataset includes monthly 122 

averaged vegetation fractions at 5 km resolution. It was re-gridded to 12 km over the study 123 

domain using the nearest-neighbor space-filling method. The processed monthly data was then 124 

transformed into daily data using linear interpolation, and meanwhile, some missing values were 125 

replaced using values from consecutive months. For a small amount of grid cells with missing 126 

values throughout the year, the total vegetation fractions were set to be 1. The rationale was that 127 

the missing values were likely due to snow cover because most of those grids were in the north 128 

of the study domain, and a complete coverage of vegetation would eliminate the dust emissions 129 

from these cells just as snow cover. Details about this dataset are discussed in Section 3.1.  130 

The other dataset uses an index for green vegetation, the fraction of photosynthetic active 131 

radiation (FPAR). The FPAR data was retrieved from the MODIS15A2GFS satellite product 132 

with 1 km resolution and every 8 days and then re-gridded and interpolated to a daily 12 km-133 

resolution dataset. This approach and the resulting dataset have been previously used in WRF-134 

CMAQ simulations by Ran et al. (2016) and Foroutan and Pleim (2017). 135 

2.2. Parameterization of Vegetation in the Dust Model   136 

The windblown dust scheme used in CMAQ is a physics-based model described in 137 

details by Foroutan et al. (2017). Here, we present a short overview of the scheme and focus on 138 

the representation of vegetation in the model. Saltation bombardment is deemed as the main 139 
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mechanism of aeolian dust emissions. The module calculates the bulk dust emission and assigns 140 

the total mass into fine and coarse modes. The total mass of vertical dust flux is determined 141 

based on a horizontal flux and a vertical-to-horizontal flux ratio. The latter is dependent on soil 142 

properties and scales with the friction velocity (Lu & Shao, 1999). The total horizontal dust flux 143 

is calculated by integrating the horizontal fluxes of particles in each size bin:  144 

𝐹𝐻(𝐷) = {
𝐶

𝜌𝑎

𝑔
𝑢∗

3 (1 −
𝑢∗,𝑡(𝐷)

𝑢∗
) (1 +

𝑢∗,𝑡(𝐷)

𝑢∗
)

2

, 𝑢∗,𝑡 < 𝑢∗ 

0, 𝑢∗,𝑡 ≥ 𝑢∗

(1) 145 

where C is a constant of proportionality set to 1.0, ρa is the air density, and u*,t is the threshold 146 

friction velocity.  147 

The threshold friction velocity governs the initiation of saltation. It is modeled as an ideal 148 

threshold friction velocity corrected with two factors for soil moisture and roughness elements.  149 

𝑢∗,𝑡 = 𝑢∗,𝑡0𝑓𝑚𝑓𝑟 (2) 150 

Here, u*,t0 is the ideal threshold velocity for dry and smooth surfaces. The fm and fr are 151 

correction factors for soil moisture and surface roughness, respectively, both of which are equal 152 

or greater than 1.0. The soil moisture factor is determined according to a model by F. FeÂcan 153 

(1999). The roughness factor is determined using a double drag partitioning concept to take both 154 

the solid elements and the vegetation into account (Darmenova et al., 2009; Raupach et al., 155 

1993). 156 

𝑓𝑟 = (1 − 𝜎𝑉𝑚𝑉𝜆𝑉)0.5(1 + 𝛽𝑉𝑚𝑉𝜆𝑉)0.5 (1 − 𝜎𝑆𝑚𝑆

𝜆𝑆

1 − 𝐴𝑉
)

0.5

(1 + 𝛽𝑆𝑚𝑆

𝜆𝑆

1 − 𝐴𝑉
)

0.5

(3) 157 

Here, σV and σS are the basal-to-frontal area ratios of vegetation and solid elements, βV and βS 158 

are ratios of drag coefficients on vegetation and solid elements to the drag coefficient on bare 159 

surface, mV and mS account for the differences between average surface stress and maximum 160 

surface stress, AV is the fractional coverage of total vegetation, and λV and λS are surface 161 

roughness density of vegetation and solid elements. We used the same values as Darmenova et 162 
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al. (2009) for σV, σS, βV, βS, mV, and mS. Values for λS for each landuse type were adapted from 163 

Xi and Sokolik (2015) and Darmenova et al. (2009). 164 

The λV is calculated from vegetation coverage, AV following a relation proposed by Shao 165 

et al. (1996). 166 

𝜆𝑉 = −0.35 ln(1 − 𝐴𝑉) (4) 167 

According to Foroutan et al. (2017), the surface wind friction velocity should be 168 

corrected for dust emissions calculations:  169 

𝑢∗ = 𝜅𝑈10 ln (
𝑧0

10
) (5) 170 

where κ is the von Kármán constant, U10 is the 10-m wind speed, and z0 is the surface roughness 171 

length relevant to dust emission processes.  172 

The z0 scales with the physical height of roughness elements on the surface. To determine 173 

z0, we adapted the empirical relation developed by Foroutan et al. (2017). 174 

𝑧0
ℎ⁄ = {

0.96𝜆1.07, 𝜆 < 0.2

0.083𝜆−0.46, 𝜆 ≥ 0.2
(6) 175 

where λ is the total roughness density, and it is defined as the sum of roughness density for solid 176 

elements and total vegetation (λ=λS+λV). The h is the total effective height of roughness 177 

elements. In this study, the effective heights of roughness components were updated with the 178 

inclusion of NPV. It was calculated as the weighted average of roughness heights based on 179 

roughness density:  180 

ℎ =
ℎ𝑃𝑉𝜆𝑃𝑉 + ℎ𝑁𝑃𝑉𝜆𝑁𝑃𝑉 + ℎ𝑠𝜆𝑠

𝜆𝑃𝑉 + 𝜆𝑁𝑃𝑉 + 𝜆𝑠

(7) 181 

The set of vegetation heights in Foroutan et al. (2017) basically represents the growth-182 

decay cycle of green vegetation and they were preserved to serve as the height for PV (hPV) in 183 

this study (Table 1). Since the phenological and geometric characteristics of dead plant and litter 184 

are different from that of PV, a look-up table for the NPV heights were predefined and added to 185 

the model. The assignment of the NPV heights considered the seasonal variation, which was 186 

implied from the trends of biomass observed in field measurements and modeling practices 187 

(Nandintsetseg & Shinoda, 2015; Pierre et al., 2015). The NPV heights reaches their peak in 188 

September or October, which is consistent with the evidence that the biomass of senescent plants 189 

in grassland peaked between September and November and that the interannual averaged 190 

senescence period for typical steppe plants was between September and October (Shinoda et al., 191 

2011). Considering the biomass of NPV did not exceed the biomass of PV, the maximum heights 192 
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for NPV were set to be lower than the maximum PV heights. These features were captured in the 193 

assigned heights for NPV as shown in Table 1. 194 

 195 

Table 1. Predefined Heights for PV and NPV. All units are in cm.    196 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Shrubland PV 5 5 15 15 12 12 10 10 10 5 5 5 
 NPV 6 6 5 5 5 5 5 5 6 8 8 6 
Grass  PV 5 5 5 10 20 15 12 12 10 5 5 5 
 NPV 8 5 5 5 5 5 5 5 10 10 8 8 
Barren  PV 5 5 10 10 10 10 10 10 10 10 5 5 
 NPV 4 4 4 3 3 3 3 3 5 5 5 5 
Crop  PV 5 5 5 5 10 30 50 50 30 10 5 5 
 NPV 8 8 5 5 5 5 5 5 15 15 10 10 

 197 

In general, it can be seen that the vegetation coverage is as an important component of 198 

the dust scheme which not only determines the fractions of available surface to wind erosion, but 199 

also alters the friction velocity u* (via surface roughness length, Eq. (6)) and its threshold value 200 

u*,t (via surface roughness factor, Eq. (3)). 201 

2.3. Model Setup  202 

The CMAQ model version 5.3 (Appel et al., 2020) was used in this study. The model 203 

domain consisting of the CONUS, as well as parts of Mexico and Canada (Figure 1) was 204 

discretized using a 12-km horizontal grid and 35 vertical layers. Simulations were performed for 205 

the entire year 2016 with a clean initial condition and 10-day spin-up time. The meteorological 206 

inputs to CMAQ were generated by a Weather Research and Forecasting (WRF) model version 207 

3.8 simulation and then processed with the Meteorology-Chemistry Interface Processor (MCIP) 208 

version 5.0. Anthropogenic emissions input data was provided by the emissions modeling 209 

platform run by US EPA and biogenic emissions were calculated in-line. The boundary 210 

conditions were derived from hemispheric simulations of CMAQv53. The Biogenic Emission 211 

Landcover Database version 3 (BELD3) was used in the dust scheme and three land use types 212 

were considered as erodible land, namely USGS_shrubland, USGS_shrubgrass, and 213 

USGS_sprsbarren. The total fractions of these three types of erodible lands are shown in Figure 214 

1. The soil type information was based on US State Soil Geographic (STATSGO) soil database 215 

(R. L. Miller, 1998) and four soil textures (clay, silt, fine-to-medium sand, and coarse sand) were 216 

identified for each soil type following Tegen et al. (2002). Ammonia bi-directional flux and 217 

updated M3dry model were used for deposition. CB06r3 chemical mechanism and AERO7 218 
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aerosol model were used for atmospheric chemistry. Details on all other settings as well as the 219 

model evaluation can be found in Appel et al. (2020). 220 

 221 

 222 
Figure 1. The total fractions of three types of erodible landuse (USGS_shrubland, 223 

USGS_shrubgrass, and USGS_sprsbarren) based on BELD3, along with annotations for 224 

geographic names used in this paper.  225 

 226 

2.4. Evaluation Methodology  227 

The windblown dust emissions in CMAQ are confined to erodible lands, so the 228 

evaluation of dust simulations was focused on the western states. Dust events are essential 229 

sources for minerals in the air. Therefore, we used observed “fine soil” (hereafter simply soil) 230 

concentrations as defined by the Interagency Monitoring of Protected Visual Environments 231 

(IMPROVE) sites (http://vista.cira.colostate.edu/Improve/) to evaluate the simulations. The 232 

IMPROVE network was designated to monitor the visibility in national parks and its sites 233 

concentrate in the western United States. The observatory data were available throughout 2016 234 
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every three days. The outputs from the CMAQ model were post-processed and the soil 235 

concentrations were calculated following the equation for soil adapted by the IMPROVE sites. 236 

[𝑆𝑜𝑖𝑙] = 2.2[𝐴𝑙] + 2.49[𝑆𝑖] + 1.63[𝐶𝑎] + 2.42[𝐹𝑒] + 1.94[𝑇𝑖] (8) 237 

This equation considered the chemical composition of the oxides for predominant elements in 238 

soil (Malm, 1994).  239 

The mean bias (MB), the normalized mean bias (NMB), the mean error (ME), the 240 

normalized mean error (NME), and the Pearson correlation coefficient between simulations and 241 

observations were used to access the simulated results. 242 

3. Results and Discussion  243 

3.1. Vegetation Coverage  244 

 245 

 246 
Figure 2. Spatial distributions of (a) the MODIS FPAR, (b) the PV fractions, (c) the NPV fractions, 247 

(d) the total vegetation fractions derived from MODIS surface reflectance using SMA, and (e) the 248 

ratio of NPV to total vegetation fractions at the 15th of the middle month in each season.  249 
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We present snapshots of the MODIS FPAR and the fractions of PV, NPV, and total 250 

vegetation obtained following procedures discussed in Sec. 2.1 in the middle of each season, as 251 

well as the ratio of NPV to total vegetation fractions in Figure 2. Clear contrasts between the 252 

eastern and the western parts of the region are seen in maps for green and brown vegetation 253 

(Figure 2(a)-(c)), which are most apparent in summer. The seasonal variation of both green and 254 

brown vegetation is higher in the east than in the west. Therefore, for the purpose of quantitative 255 

analysis, we averaged the vegetation fractions over the east and the west, separately. The 256 

separation was chosen to be along 97oW with consideration of both our vegetation maps and the 257 

shifted 100th meridian. The 100th meridian is a historical divide between the humid eastern and 258 

the arid western America, and it was found to shift eastwards due to climate change and human 259 

activities over past centuries (Seager, Feldman, et al., 2018; Seager, Lis, et al., 2018). The 260 

resulting averaged vegetation fractions from two datasets over the east and the west throughout 261 

2016 are shown in Figure 3.  262 

 263 

 264 

 265 
Figure 3. Averaged MODIS FPAR, PV, NPV, and total vegetation fractions over (a) the western 266 

and (b) the eastern study domain during 2016.   267 

 268 

The vegetation fractions derived using the same SMA method were evaluated for 269 

Australia, and the RMSE for PV, NPV, and bare soil fractions were 0.13, 0.18, and 0.16, 270 

respectively (Guerschman et al., 2015). But these uncertainties are unknown for the vegetation 271 

data over the North America. To understand the reliability of the total vegetation maps, we 272 

compared the green vegetation coverage from two datasets. The MODIS FPAR (Figure 2(a)) and 273 

the PV fractions derived using the SMA technique (Figure 2(b)) agree well in spatial distribution 274 

across all seasons. Both of the coverages are relatively high in the Rocky Mountains, the 275 

Wasatch Range, and the Mogollon Rim in the western U.S., and they decrease northwestwards 276 

from the southeast coast in the eastern U.S. The averaged MODIS FPAR and SMA derived PV 277 

fractions differ by less than 9% in the east and 2% in the west throughout 2016. The comparable 278 
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values of PV fractions and MODIS FPAR demonstrate that the SMA method is generally good at 279 

resolving green vegetation over the study domain. 280 

The NPV coverage in general has reversed spatial and temporal patterns relative to the 281 

green vegetation coverage. The percentage of NPV is relatively low in the forested regions in the 282 

west, and has a positive gradient in the Midwest. The average NPV fraction ranges between 26% 283 

and 40% over the western and between 7% and 36% over the eastern part of the CONUS (Figure 284 

3). The average NPV fractions are at the minimum in late-June or mid-July, start to increase in 285 

August, and reach a maximum from December to February. These seasonal trends resemble the 286 

accumulation and decay of senescent plant materials. Note that, the maximum average coverage 287 

of NPV (40%) in 2016 exceeds that of PV (31%) in the west. This suggests that there may be 288 

other sources of NPV in the winter in addition to withered green vegetation from the same year, 289 

probably perennial dead biomass. This might also suggest some overestimations of NPV 290 

coverage using the SMA method. In the southwestern U.S., the averaged NPV fractions are high 291 

over most arid or semi-arid areas including the Chihuahuan Desert, the Colorado Plateau, the 292 

Great Basin, and the northern Great. The NPV coverage varies around 40%-50% across the year 293 

in these areas. In forested areas in the southwest where PV fractions are relatively high, the NPV 294 

coverage varies around 30% in 2016.  295 

Maps for the ratios of NPV to total vegetation coverage or the relative ratios of NPV 296 

(Figure 2(e)) have similar spatial distribution as the NPV fractions, but with stronger contrasts. 297 

These maps highlight areas where NPV is the dominant component of vegetation. In the western 298 

U.S., the regions with high relative NPV ratio (nearly 100% in winter) greatly overlap with those 299 

with the erodible landuse. Most of these areas have high NPV coverage (> 40%in winter), except 300 

that the NPV fractions are relatively low (at around 30% in winter) in the Mojave Desert in the 301 

southmost corner of California. The relative ratios of NPV are constantly 100% in some 302 

southwestern desert lands all year round due to no detection of PV. In forested areas in the 303 

southwestern U.S., including the Mogollon Rim and the Rocky Mountains, the relative NPV 304 

ratio ranges between 20% and 70%.  305 

The total vegetation coverage seems quite stable over the year (Figure 2(d)), as a result of 306 

the opposite spatial and seasonal trend of PV and NPV coverage. The average total vegetation 307 

fraction varies slightly around 56% in the west and around 68% in the east over the year. As 308 

expected, the coverage is relatively low in desert lands in the southwest. The annual average of 309 

total coverage is around 30% in the Great Basin, the Red Desert, the Sonoran Desert, the 310 

Colorado Plateau, and the Chihuahuan Desert, and it gradually increases towards the edges of 311 

these dry lands, reaching around 60% at the rims.   312 

In the west, at places where NPV is abundant (both fractions and relative ratios), the PV 313 

is relatively sparse, and the total vegetation coverage is lower than other areas. These NPV-rich 314 
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regions highly overlap with regions with erodible landuse (see Figure 1). Therefore, NPV is 315 

expected to have an impact on dust emissions from these source regions. 316 

3.2 Seasonal Analysis of Dust Emissions 317 

 318 

 319 
Figure 4. Seasonal averages of modeled soil concentrations (μg/m3) over the western U.S. from 320 

(a) the TOTAL run and (b) the FPAR run. Row (c) presents the changes in soil concentrations (%) 321 

as percentage of soil concentrations from the FPAR run after replacing the MODIS FPAR data 322 

with the total vegetation data.  323 

 324 

We presented the seasonal averages of simulated soil concentrations from the TOTAL 325 

run and the FPAR run in Figure 4(a) and (b), respectively. Comparisons among all seasons 326 

reveal that spring has the highest soil concentration for both cases. In spring, simulations from 327 

the TOTAL run show that the average soil concentrations are higher (above 1.5 μg/m3) in the 328 

south, including most areas in Arizona and New Mexico, southern California, and northern 329 

Mexico, than other areas. As for the FPAR simulations, soil concentrations are consistently 330 

above 1.5 μg/m3 over the southwestern U.S. during spring and the most pronounced soil 331 

concentrations (above 3 μg/m3) are seen in several sub-regions with desert lands, including the 332 

Salt Lake Desert, the Colorado Plateau, the Sonoran Desert, and the Chihuahuan Desert. The 333 
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magnitude and spatial distribution of soil concentrations are comparable during summer and 334 

autumn for both cases, but more soils are emitted from the Great Basin in summer than in 335 

autumn in the FPAR run. The soil emissions in winter are similar to that in autumn, but less in 336 

northern states, probably due to snow cover. In general, simulations from both runs are able to 337 

capture the seasonal variation of dust emissions and highlight locations with high dust emissions. 338 

Then, we analyzed the differences in simulated soil concentrations between the two runs 339 

to understand how NPV modulates windblown dust emissions. Figure 4(c) shows the changes in 340 

soil concentrations as percentage of the simulations from the FPAR run. Spring witnesses the 341 

most dramatic percentage of changes in soil concentrations in terms of affected areas. With the 342 

total vegetation data, the seasonal averaged soil concentrations reduce the most (above 50%) in 343 

dust source regions that generate the most soils in the FPAR run (Figure 4(b)) as mentioned 344 

above. The transport of emitted dust aerosols results in above 30% of changes in soil 345 

concentrations over most areas in the southwestern U.S. During summer, averaged soil 346 

concentrations reduce by over 50% in the Sonoran Desert and the Salt Lake Desert, and by over 347 

20% also in the Mojave Desert, the Great Basin in Nevada, Wyoming, and western Colorado 348 

when using the total vegetation data. Changes in soil concentrations during autumn are less 349 

significant and over 50% of changes mainly occur over small areas in the Salt Lake Desert, 350 

northwestern Nevada, Wyoming, and eastern New Mexico. In winter, soil emissions are most 351 

suppressed by NPV in the same dust source regions as those for spring except for the Salt Lake 352 

Desert, and in eastern Montana additionally. The reductions in soil emissions by NPV, 353 

nevertheless, influence smaller areas downwind. Areas include the southern Nevada, western 354 

Utah, eastern Arizona, and western New Mexico experience less than 10% of change in soil 355 

concentrations, likely due to the relatively short-range transport of dust plumes.  356 

Most areas in the southwestern U.S. experience above 10% of reductions in soil 357 

concentrations after replacing the MODIS FPAR data with the total vegetation data during all 358 

seasons but winter. Highest percentage (above 50%) of changes in soil concentrations are seen in 359 

dust source regions with high NPV fractions (> 40% in winter). Regions with large percentage of 360 

differences across multiple seasons highlight places where the dust emissions are most 361 

susceptible to NPV. These regions include the Sonoran Desert in Baja California, Mexico, the 362 

Chihuahuan Desert in New Mexico, the Great Basin in northwestern Nevada, and the Colorado 363 

Plateau in southeastern Utah, where the seasonal averaged soil concentrations are significantly 364 

suppressed by NPV throughout the year. Besides, the reductions in soil emissions induced by 365 

NPV are significant in the Salt Lake Desert throughout the year except in winter.   366 

To shed light on the performances of the two model runs, we evaluated the simulations of 367 

soil concentrations from both runs with ground observations from the IMPROVE sites. The 368 

statistics of the models’ performances over selected western states during each season are 369 

presented in Table 2. Selected states are Wyoming, Nevada, Utah, Colorado, Arizona, and New 370 

Mexico, which cover most of the active dust source regions in the U.S.  371 

During spring, the normalized mean bias (NMB) of simulated soil concentrations from 372 

the TOTAL run (3.6%) is much smaller than that from the FPAR run (72.8%). The correlation 373 

coefficient between simulations and observations also increases from 0.44 to 0.52 when 374 

replacing MODIS FPAR with total vegetation. The similar results are seen in winter, when the 375 

NMB decreases by more than a half with total vegetation. In general, including NPV into the 376 



manuscript submitted to JGR: Atmospheres 

14 

 

model attenuates the overestimations of dust emissions during spring and winter. As discussed 377 

above, the effect of NPV on reducing dust overpredictions is more pronounced in spring than in 378 

winter, even though the NPV fractions are the highest in winter.  379 

Both simulations, however, underpredict dust emissions during summer. The accuracy of 380 

simulations from the TOTAL run drops compared to those from the FPAR run, with the mean 381 

error increasing by around 0.1 μg/m3. The underpredictions in summer are likely due to the 382 

inability of the model to capture small-scale convective storms, as discussed by several previous 383 

studies (Anisimov et al., 2018; Heinold et al., 2013; Pantillon et al., 2016). Foroutan and Pleim 384 

(2017) implemented lightning assimilation and sub-grid wind distribution in the CMAQ dust 385 

model to simulate convective storms, but these modifications were not included in this study, 386 

which probably explains the systematic negative biases. The effects of NPV on dust emissions 387 

after the convective storms are included need to be further analyzed. In autumn, the 388 

implementation of NPV slightly reduces the NME by 1.3%, but increases the magnitude of NMB 389 

by 9.8% and reduces the correlation coefficient by 0.06.  390 

 391 

Table 2. Seasonal statistics for simulated soil concentrations from the FPAR run and the TOTAL 392 

run. Statistics are calculated for the western states of Wyoming, Nevada, Utah, Colorado, Arizona, 393 

and New Mexico. Observations are from the IMPROVE sites. Observation and simulation values, 394 

MB, and ME are in μg/m3, and NMB and NME are in percent.   395 

 Spring Summer Autumn Winter 

 TOTAL FPAR TOTAL FPAR TOTAL FPAR TOTAL FPAR 

Observation  1.03 1.00 0.76 0.44 

Simulation  1.07 1.78 0.42 0.51 0.44 0.52 0.50 0.60 

MB  0.04 0.75 -0.59 -0.50 -0.32 -0.24 0.06 0.17 

NMB  3.6 72.8 -58.4 -49.5 -41.5 -31.7 14.5 37.9 

ME  0.59 1.01 0.62 0.57 0.52 0.51 0.43 0.48 

NME  57.4 97.9 61.8 56.4 67.9 66.6 98.4 110.0 

Correlation 0.52 0.44 0.41 0.42 0.25 0.31 0.29 0.27 

Number of 
observations 

1175 1142 1155 1113 

 396 

We further investigated the spatial distribution of differences in model biases between the 397 

two runs. The seasonal averaged changes in biases after using total vegetation data is shown in 398 

Figure 5. During spring, the averaged biases in soil concentrations are lower for the TOTAL run 399 

at 93% of all IMPROVE sites. From the statistics in Table 2, we know the that these are 400 

reductions in overpredictions. The improvements are the greatest (up to 1.8 μg/m3) in northern 401 

Arizona and New Mexico, southern Utah and Colorado, and west Wyoming. Slight reductions in 402 

overpredictions are also seen in southern California, Idaho and Montana. In contrast, simulations 403 

in southern Arizona are worsen because both cases underpredicted dust emissions here 404 

throughout the year. Reasons for the underpredictions might be the inability to model sub-grid 405 

dust events or the underestimation of amount of dust transported from outside the southeastern 406 
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border of the U.S. The changes in biases had the similar spatial distribution in winter but are less 407 

significant.  408 

During summer, slight increases in biases (by 0.1-0.3 μg/m3) from the TOTAL run are 409 

mostly seen in northwestern Arizona, Utah, northern Colorado, and northern Wyoming. Statistics 410 

from Table 2 reveal that inclusion of NPV intensifies the underpredictions of dust emissions in 411 

these areas. Averaged soil concentrations over autumn are comparable at most of the IMPROVE 412 

sites. The difference in biases fluctuates between -/+ 0.2 μg/m3 with no apparent spatial 413 

characteristics.  414 

 415 

 416 

 417 
 418 

Figure 5. Seasonal averaged differences between the biases of soil concentrations (μg/m3) from 419 

two runs. Observations are from the IMPROVE sites. Cold colors indicate that simulations from 420 

the TOTAL run have lower biases, thus the performance of TOTAL run is better. Warm colors 421 

indicate that the FPAR run performs better.   422 
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3.3. Mechanisms of Dust Emission Suppression 423 

Vegetation modulates windblown dust emissions through multiple pathways. An in-depth 424 

comparison between the FPAR run and the TOTAL run simulations allows us to understand 425 

different mechanisms by which NPV impacts windblown dust emissions. 426 

 427 

 428 
Figure 6. Seasonal averaged fractions of vegetation-free erodible lands from (a) the TOTAL run 429 

and (b) the FPAR run.  430 

 431 

First, the vegetation coverage directly controls the fraction of land susceptible to wind 432 

erosion. In the model, the total vertical flux of dust is calculated as the weighted sum of fluxes 433 

from three erodible landuse (see Figure 1) multiplied by the fraction of land that is not covered 434 

with vegetation in each grid cell. The mechanism considered here is that vegetation covering the 435 

bare soil prevents the saltating particles from impacting the surface and smaller dust particles 436 

from being ejected to the atmosphere.   437 

Figure 6 presents the fractions of vegetation-free land available for dust emissions from 438 

the two cases. The decrease in the fractions of land susceptible to dust emission is significant in 439 

all seasons after the PV is replaced with the total vegetation in the model. The reduction is the 440 

largest in autumn, followed by summer, and is comparable in spring and winter. Places with the 441 

most changes are the Salt Lake Desert, the northern Great Plain located in Nevada, Oregon, and 442 

Idaho, the northeastern Wyoming, and Montana, where the vegetation-free erodible lands 443 

decrease by over 50% in autumn. In most grid cells containing dust sources, the fractions of 444 

vegetation-free erodible lands decrease by over 0.2 in all seasons. Because the total emission of 445 

dust from each grid cell is proportional to the fractions of vegetation-free erodible land, these 446 

significant reductions suggest that one strong mechanism for NPV to reduce dust emission is to 447 
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prevent dust particles from leaving the surface. Nevertheless, potential underestimation of dust 448 

emissions when using total vegetation may occur due to two reasons. First, the actual fractions of 449 

land available to dust emission may be underestimated because the vegetation on non-erodible 450 

lands should not affect the exposed areas with erodible landuse. Higher resolution of landuse and 451 

vegetation inputs should help to address this issue. Second, this mechanism of dust suppression 452 

is only true for vegetation that is closer to the ground. Some NPV, such as standing dead trees, 453 

are detected by the satellite but cannot prevent soil erosion through this pathway.  454 

 455 

 456 
Figure 7. Seasonal averages of the roughness correction factors for the threshold velocity from (a) 457 

the TOTAL run and (b) the FPAR run. Values were calculated as the averages of roughness 458 

correction factors on three erodible landuse types weighted by the fractions of each landuse.  459 

 460 

Second, the initiation of dust generation is jointly controlled by the friction velocity and 461 

its threshold value (see Eqn. 1). Emissions of windblown dust can only occur and sustain when 462 

the friction velocity exceeds the threshold velocity. Our results show that several peaks in the 463 

simulated particle concentrations in the FPAR case are absent in the TOTAL case, especially 464 

during spring. This observation suggests that NPV may prevent a number of the dust events from 465 

happening by either increasing the threshold velocity or decreasing the friction velocity, or both. 466 

Given this, we investigated the differences in modeled threshold velocity between the two 467 

simulations. Vegetation can increase the threshold velocity by extracting the wind stress exerted 468 

on the ground surface through drag partitioning process (Foroutan et al., 2017). In our model, the 469 

threshold velocity was calculated as the ideal threshold velocity modified by correction factors 470 

for soil moisture and surface roughness (see Eqn. 2). The inclusion of NPV would not change the 471 

ideal threshold velocity or soil moisture (vegetation can affect soil moisture by intercepting 472 

rainfall and uptake soil water (Teuling, 2005), but these interactions were not implemented in our 473 
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model), so the change in the correction factor for surface roughness can reflect the change in 474 

magnitude of threshold velocity.  475 

We illustrate the seasonal averages of the correction factor for roughness calculated as 476 

the average of correction factors for three erodible landuse types weighted by the fractions of 477 

each type in Figure 7. In practice, the model actually uses the roughness correction factor 478 

separately over each landuse types, and the values shown here were not used directly in the 479 

model. However, they serve as a good representation of the magnitude of overall roughness 480 

correction factor. Seasonal averaged roughness factor is below 3 in most places across the year 481 

for the FPAR run, but significantly increases in most areas for the TOTAL run. Largest changes 482 

in roughness factor are seen in the northern Great Basin, Wyoming, Montana, western Colorado, 483 

and in the Chihuahuan Desert and the Sonoran Desert, where the averaged changes are over 4 in 484 

autumn. These NPV induced increases in roughness factor would raise the threshold velocity by 485 

over 50% in most areas and over 200% in places such as northeastern Wyoming, and hence 486 

lessen the potential for dust emissions in these regions.  487 

 488 

 489 
Figure 8. Seasonal averages of the friction velocity from (a) the TOTAL run and (b) the FPAR 490 

run. Values were calculated as the averages of the friction velocities on three edible landuse types 491 

weighted by the fractions of each landuse.  492 

 493 

Third, vegetation can impact the friction velocity itself. Friction velocity is not only 494 

associated with the initiation of dust events, but also essential in determining the dust flux. The 495 

horizontal flux of dust is proportional to the third power of the friction velocity (Eq. (1)) and is 496 

thus very sensitive to its value. Vegetation elements that protrude the ground can alter the wind 497 

profile and thus change the friction velocity exerted on the surface. The effect of vegetation on 498 
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wind profile was accounted for using roughness length, which has a non-linear relation with 499 

roughness density or fractional cover of vegetation (Eqn. (5, 6)).  500 

We present the seasonal averages of the weighted mean friction velocity in Figure 8, 501 

calculated using the same method as for the roughness factor. Non-linear effects of NPV on the 502 

friction velocities are observed. During spring and summer, the friction velocity increases by less 503 

than 0.02 m/s (below 10%) in most places, by 20-30% in the Salt Lake Desert, and decreases in 504 

northeastern Wyoming and southeastern Colorado with the inclusion of NPV. In autumn and 505 

winter, the increases in friction velocity due to NPV are more significant, reaching 0.03-0.05 m/s 506 

(10-20%) on most erodible lands. Considering that the friction velocity increases in most of the 507 

erodible lands with inclusion of NPV, which would facilitate the initiation of saltation, we can 508 

conclude that the observed preventions of dust events are mainly attributed to the increases in 509 

threshold velocity. However, a sensitivity analysis (Darmenova et al., 2009) showed that the 510 

percentage of increase in friction velocity could lead to up to two orders of magnitude increase in 511 

the dust flux when the wind velocity is low (less than 0.05 m/s), which is our case. So the 512 

increases in friction velocity caused by NPV could potentially amplify the dust flux by 513 

considerable amounts.  514 

4. Conclusions 515 

This paper analyzed the effects of NPV on the amount of windblown dust emissions, and 516 

the underlying mechanisms on a regional scale. We implemented satellite-based total vegetation 517 

data, which include both photosynthetic (PV) and non-photosynthetic vegetation (NPV), in the 518 

dust module in CMAQ version 5.3 and conducted simulations for a domain covering the 519 

conterminous United States for the entire year 2016. The fractional coverage of total vegetation 520 

was derived from the MODIS surface reflectance data using a spectral mixture analysis (SMA) 521 

method. A control run was conducted using the Moderate Resolution Imaging Spectroradiometer 522 

(MODIS) Fraction of Absorbed Photosynthetically Active Radiation (FPAR) data which merely 523 

presented PV fractions.  524 

The PV fractions derived from the SMA approach and the MODIS FPAR have similar 525 

spatial distributions across all seasons, and the difference between their averages over the 526 

western U.S. are less than 2% for the entire year. The average NPV fraction over the western part 527 

of the study domain is maximum from December to February and shows a minimum from June 528 

to August, ranging between 26% and 40%. Higher peak in the NPV coverage compared to that of 529 

the PV coverage indicates that there are sources for NPV other than senescent plant materials 530 

from the same year, probably perennial dry vegetation. The NPV coverage was around 40%-50% 531 

over most of the arid and semi-arid areas in the southwestern U.S. throughout the year. The areas 532 

with high NPV-to-total-vegetation ratios highly overlap with the areas covered by erodible 533 

landuse, suggesting that consideration of NPV was important for dust emissions from the source 534 

regions.  535 

Simulations of soil concentrations from both the TOTAL run and the FPAR run present 536 

the seasonal variation of dust emissions and highlight locations with high dust emissions. We 537 

analyzed the averaged percentage of differences in simulated soil concentrations between the two 538 

simulations for all seasons. Simulated soil concentrations decrease by above 10% due to NPV in 539 

most areas in southwestern U.S. from spring to autumn, and these affected areas are more 540 



manuscript submitted to JGR: Atmospheres 

20 

 

confined in winter. NPV induced reductions in soil concentrations are most significant in spring. 541 

Regions with above 50% of reductions in soil concentrations over the entire year exclusively 542 

have high NPV fractions (< 40% in winter), including parts of the Sonoran Desert, the 543 

Chihuahuan Desert in New Mexico, the Great Basin in northwestern Nevada, and the Colorado 544 

Plateau in southeastern Utah. Evaluation of soil concentrations against the IMPROVE 545 

observations reveals that inclusion of NPV in the dust model attenuates the overpredictions at 546 

93% of the sites during spring, except for those near southern Arizona. In summer, however, the 547 

underpredictions in soil concentrations are accentuated, especially in Utah, Colorado, and 548 

Wyoming, which potentially could be improved by implementing convective storms simulations 549 

in the dust model.  550 

Analyses of several parameters in the dust model to the inclusion of NPV provide 551 

insights into the mechanisms by which NPV modulates dust emissions. The fraction of land 552 

susceptible to wind erosion is reduces by 20% in most grid cells due to NPV, indicating that 553 

NPV effectively prevents dust particles from being ejected from the ground by covering the land 554 

surface. The prevention of several dust events resulted from NPV are associated with the 555 

increases in threshold velocity and, in limited places, the decreases in friction velocity. On most 556 

erodible lands, however, the friction velocity increases by above 10% in autumn and winter, 557 

which could potentially amplify the dust flux by a few times. 558 

This paper points out that dust emissions from a large portion of erodible lands are 559 

modulated by the NPV. Therefore, replacing the green vegetation data currently used in many 560 

dust models with the total vegetation data derived from satellite-based surface reflectance is a 561 

promising approach to improve the simulations of dust emissions, and thus advance the 562 

knowledge of the health impact, climate effects, and global cycling of nutrients associated with 563 

windblown dust aerosols. Meanwhile, more evaluation of the calculated NPV and total 564 

vegetation fractions is needed to better understand the uncertainties associated with the 565 

vegetation input, which will facilitate the implementation of NPV into atmospheric dust models. 566 
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