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Abstract

Earthquake monitoring and many seismological studies depend on absolute earthquake locations from phase arrival-times. We

present an absolute earthquake location procedure (NLL-SSST-coherence) which approaches the precision of waveform-based,

relative location and is applicable with few seismic stations. NLL-SSST-coherence is based on the probabilistic, global-search

NonLinLoc (NLL) location algorithm which defines a probability density function (PDF) in 3D space for absolute hypocenter

location and is highly robust to outlier data. NLL-SSST-coherence location first reduces velocity model error through iteratively

generated, smooth, source-specific, station travel-time corrections (SSST). Next, arrival-time error is reduced by consolidating

location information across events based on inter-event waveform coherency. If the waveforms at a station for multiple events

are very similar (have high coherency) up to a given frequency, then the distance separating these “multiplet” events is small

relative to the seismic wavelength at that frequency. NLL-coherence relocation for a target event is a stack over 3D space of the

NLL-SSST location PDF for the event and the PDF’s for other multiplet events, each weighted by its waveform coherency with

the target. NLL-coherence relocation requires waveforms from only one or a few seismic stations, enabling precise, absolute

relocation with sparse networks, for foreshocks and early aftershocks of significant events before installation of temporary

stations, and for older data sets with few waveform data. We show the behavior and performance of NLL-SSST-coherence

with synthetic and ground-truth tests, and through application and comparison to relative locations for California earthquake

sequences with dense and sparse station coverage.
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Key Points:

 We use source-specific station terms and waveform similarity to achieve high-precision 

earthquake location (NLL-SSST-coherence).

 NLL-SSST-coherence approaches the precision of relative location methods and can give 

better depth constraint when station coverage is poor.

 NLL-SSST-coherence requires waveforms from only one or a few stations and thus is 

applicable with sparse networks and older sequences.

Abstract

Earthquake monitoring and many seismological studies depend on earthquake locations from phase 

arrival-times. We present an extended,  arrival-time earthquake location procedure (NLL-SSST- 

coherence) which approaches the precision of differential-timing based, relative location methods 

and is applicable with few seismic stations. NLL-SSST-coherence is based on the probabilistic, 

global-search NonLinLoc (NLL) location algorithm which defines a probability density function 

(PDF) in 3D space for hypocenter location and is highly robust to outlier data. NLL-SSST-

coherence location first reduces velocity model error through iteratively generated, smooth, source-

specific, station travel-time corrections (SSST). Next, arrival-time error is reduced by consolidating 

location information across events based on inter-event waveform coherency. If the waveforms at a 

station for multiple events are very similar (have high coherency) up to a given frequency, then the 

distance separating these “multiplet” events is small relative to the seismic wavelength at that 

frequency. NLL-coherence relocation for a target event is a stack over 3D space of the NLL-SSST 

location PDF for the event and the PDF’s for other multiplet events, each weighted by its waveform

coherency with the target. NLL-coherence relocation requires waveforms from only one or a few 

2021-09-07 Lomax & Savvaidis, High-precision earthquake location 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28



manuscript submitted to Journal of Geophysical Research: Solid Earth

seismic stations, enabling precise relocation with sparse networks, for foreshocks and early 

aftershocks of significant events before installation of temporary stations, and for older data sets 

with few waveform data. We show the behavior and performance of NLL-SSST-coherence with 

synthetic and ground-truth tests, and through application and comparison to relative locations for 

California earthquake sequences with dense and sparse station coverage.

Plan language summary

Earthquake monitoring, early-warning, public information and understanding depend on standard 

locations of earthquakes in geographical space. Specialized, relative location methods extend 

standard locations to determine more precisely the positions of nearby earthquakes with respect to 

each other. We present a standard earthquake location procedure (NLL-SSST-coherence) which 

approaches the precision of relative location methods while being more generally applicable and 

efficient. NLL-SSST-coherence uses the NonLinLoc (NLL) location algorithms which determine an

earthquake location as a probability cloud in 3D space and work well with poor quality seismogram 

recordings. NLL-SSST-coherence location first reduces effects of limited knowledge of seismic 

wavespeeds in the Earth through spatial averaging of wavespeed errors (SSST). Next, it reduces 

effects of error in measuring the timing of earthquake energy arrival at seismic stations by 

consolidating location information between nearby earthquakes. Nearby events are identified by 

their seismogram waveforms which are very similar, wiggle for wiggle – they have high coherence. 

NLL-SSST-coherence relocation enables precise earthquake relocation with sparse networks, for 

foreshocks and early aftershocks of significant earthquakes, and for older earthquake sequences. We

show the performance of NLL-SSST-coherence with simulated and real data tests, and through 

application to California earthquake sequences with dense and sparse station coverage.

 1  Introduction

Earthquake locations are fundamental to earthquake, volcano, glacier and nuclear test 

monitoring, and much seismological research and understanding. These locations are obtained from 

arrival times of seismic phase energy and show where a seismic event occurred relative to tectonic, 

geographic and urban features, along with the time of the event (Li et al., 2020; Lomax et al., 2014; 

C. Thurber & Rabinowitz, 2000). Sets of earthquake locations form seismicity which defines 

faulting structures and areas of earthquake and volcanic hazard. Space-time patterns in seismicity 

determine the geometry and activity on individual faults, the stages of earthquake initiation and the 

causes of human induced seismicity.
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 Relative to the needs of modern seismological study, standard earthquake location (event by

event location using absolute arrival-times) often has low accuracy and precision, where accuracy is

closeness to a usually unknown ground-truth, and precision is relative location accuracy – the 

correctness of the relative positions of nearby hypocenters. For example, association of possibly 

induced seismicity with human activities require high accuracy in absolute epicenter and depth of 

seismicity (Lomax & Savvaidis, 2019), while earthquake and tsunami early-warning and rapid 

estimation of rupture and ground shaking hazard require accurate hypocentral depth determinations 

(Bernardi et al., 2015). Study of the complexity and fine scale structure of fault systems, and 

relating these to geologic structures, fracture systems, stress patterns and geo-fluids requires both 

high accuracy and high precision. Accurate determination of hypocentral depth is particularly 

difficult as it requires that seismic stations are well distributed above and around the seismicity, and

even then the obtained depths are strongly dependent on the accuracy of the used seismic velocity 

model (Gomberg et al., 1990).

Means for improving the accuracy and precision of standard earthquake locations include 

having stations close to and above the source zone (Billings et al., 1994; Buehler & Shearer, 2016; 

Gomberg et al., 1990; Hardebeck & Husen, 2010; Pavlis, 1986), use of 3D and geology-based, 

seismic velocity models (Darold et al., 2014; Latorre et al., 2016; e.g. Ryaboy et al., 2001; Wagner 

et al., 2013), station travel-time corrections (Lin & Shearer, 2005; Lomax, 2008, 2020a; e.g. Myers, 

2000; Nicholson et al., 2008; Nooshiri et al., 2017; Pavlis & Hokanson, 1985a; Richards-Dinger & 

Shearer, 2000), ground-truth calibration (Bondár & McLaughlin, 2009; Lomax & Savvaidis, 2019; 

Ritzwoller et al., 2003) and use of location algorithms robust to error in the velocity models or 

earthquake arrival-time data (Stauder & Ryall, 1967; Ishida & Kanamori, 1978; Shearer, 1997; 

Lomax, 2008; Lomax et al., 2014). 

High-precision, multi-event, relative location methods (Fehler et al., 2000; Frémont & 

Malone, 1987; Got et al., 1994; Lin et al., 2007; Nakamura, 1978; Poupinet et al., 1982; Rowe et al.,

2002; Shearer, 1997, 2005; Trugman & Shearer, 2017; Waldhauser & Ellsworth, 2000) require and 

build upon standard locations. Relative location methods use waveform similarity and precise, 

cross-correlation, differential timing between events at individual stations to determine fine-scale, 

inter-event spatial relations.  These methods can image seismicity in remarkable detail, showing 

narrow streaks, highly localized fault planes and sets of faulting structures (Got et al., 1994; 

Michele et al., 2020; Rubin et al., 1999; Waldhauser et al., 2004). However, these procedures 

depend on good station and ray coverage, and a model with accurate velocities and gradients of 

velocity (Gibbons et al., 2017; Matoza et al., 2013; Michelini & Lomax, 2004; Richards et al., 
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2006) and may fail to resolve meaningful differences between events in epicenter and especially 

depth (Hauksson et al., 2020; Schoenball & Ellsworth, 2017), perhaps because of poor station 

distribution and consequent poor ray coverage around the sources, or because of low accuracy and 

precision in the underlying standard locations.

Here we introduce a standard, arrival-time location procedure, NLL-SSST-coherence, 

modified to improve relative location accuracy through use of spatially varying, source-specific 

station travel-time corrections (SSST) and a new, waveform coherence based, multi-event location 

procedure. In a first relocation stage, an event catalog is iteratively relocated while generating 

smoothly varying, SSST corrections throughout a 3D volume, providing a source-position 

dependent correction for each station and phase type. The iteration uses Gaussian smoothing kernels

of decreasing size to produce final, NLL-SSST locations. Residuals from P and S arrivals and 

relocated events meeting minimum quality criteria are used for update at each iteration.

In a second relocation stage the relative location accuracy of the NLL-SSST locations is 

further increased by consolidating location information across events based on waveform coherence

between events. This coherence relocation is based on the concept that if the waveforms at a station 

for two or more events are very similar (have high coherence) up to a highest frequency, then the 

distance separating these “multiplet” events is small relative to the seismic wavelength at that 

frequency, the events may even correspond to stress release on the same, small fault patch (Geller &

Mueller, 1980; Nadeau et al., 1994; Poupinet et al., 1982, 1984). 

We present a synthetic test which shows that the NLL-coherence relocation procedure 

correctly and significantly reduces hypocenter scatter by grouping together multiplet events as well 

as shifting outlier hypocenters towards their multiplet centroid. However, the procedure may over-

cluster events, since well-located events strongly “attract” high-coherence multiplet events that are 

poorly constrained by insufficient or noisy arrival time data. We apply the NLL-SSST-coherence 

location procedure to a ground-truth, explosion dataset using only P arrival times and waveforms 

from a single station to show that the procedure gives nearly the same relative location accuracy as 

obtained with high-precision, correlation-based time-delay measurements and double-difference, 

relative relocation.

We next apply the NLL-SSST-coherence location procedure to the 2004 Mw 6.0 Parkfield,  

and 2020, Mw 5.8 Lone Pine California earthquake sequences and compare the results with other 

standard and relative location catalogs for these sequences. The NLL-SSST-coherence relocations 

generally show increased organization, clustering and depth resolution of seismicity over other 

standard location catalogs. Compared to relative location catalogs, the NLL-SSST-coherence 
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relocations recover well smaller scale patterns and features in the seismicity, with evidence of 

improved, larger scale  relative location accuracy when there are few stations over or near the 

seismicity. Application of NLL-SSST-coherence locations is also presented in Lomax (2020b) for 

the 2020 Mw 6.5 Monte Cristo, Nevada sequence. 

These results show that the NLL-SSST-coherence location procedure approaches the 

precision of cross-correlation based, relative location methods, while requiring less computing time 

and being applicable to sparser station distributions and studies with limited waveform data.

 2  The NLL-SSST-coherence procedure for high-precision earthquake location

We obtain high-precision earthquake relocations through the combined use of source-

specific, station travel-time corrections (SSST) and stacking of probabilistic event locations based 

on inter-event waveform coherence. We use the NonLinLoc location algorithm (Lomax et al., 2000,

2014); NLL hereafter), which performs efficient, global sampling to obtain an estimate of the 

posterior probability density function (PDF) in 3D space for hypocenter location. This PDF 

provides a complete description of likely hypocentral locations with comprehensive uncertainty 

information, and allows robust application of waveform coherence relocation. Within NLL, we use 

the equal differential-time (EDT) likelihood function (Font et al., 2004; Lomax, 2005, 2008; Lomax

et al., 2014; Zhou, 1994), which is highly robust in the presence of outlier data caused by large error

in phase identification, measured arrival-times or predicted travel-times.  We use a finite-

differences, eikonal-equation algorithm (Podvin & Lecomte, 1991) to calculate gridded P and S 

travel-times for initial NLL locations.

 2.1  Source-specific station term corrections

In a first relocation stage, NLL-SSST-coherence iteratively develops SSST corrections, 

which can greatly improve relative location accuracy and clustering of events (Pavlis & Hokanson, 

1985b; Richards-Dinger & Shearer, 2000; Lin & Shearer, 2005; Nooshiri et al., 2017).  In contrast 

to station static corrections (Ellsworth, 1975; Frohlich, 1979; Lomax, 2005, 2008; Tucker et al., 

1968) which give a unique time correction for each station and phase type, SSST corrections vary 

smoothly throughout a 3D volume to specify a source-position dependent correction for each station

and phase type. Spatial-varying, SSST corrections are most important when the ray paths between 

stations and events differ greatly across the studied seismicity, including when stations are inside 

the seismicity distribution, the extent of seismicity is large relative to the distance to the stations, or 

the depth range of events is large. SSST corrections increase in importance as error in the velocity 
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model increases, such as when a 1D, laterally homogeneous model or a large-wavelength, smooth 

model is used in an area with sharp, lateral velocity contrasts or small scale, 3D heterogeneity.

Within the NonLinLoc package (Lomax et al., 2000, 2014), SSST corrections are developed

iteratively with spatial smoothing of decreasing size using a Gaussian kernel (Fig. 1), this approach 

is similar to the shrinking box SSST approach of (Lin & Shearer, 2005).  Given an initial set of 

gridded travel-times and event locations, 3D grids of SSST corrected travel-times for each station-

phase are created iteratively by:

 At each node in the corrected travel-time grid and for each station-phase:

- Accumulate the weighted mean of residuals, R̄ , for the station-phase for each 

event location exceeding specified quality criteria. The weight, w, is given by a 

modified Gaussian kernel,

w = exp(-d 2/D 2) + ϵ, (1)

where d is the distance between the grid node and the event hypocenter, D controls 

the smoothing width, and ϵ is a small value to give finite weight for all events and 

thus non-zero corrections even if all event hypocenter are far from the grid node.

- Add R̄  as the current SSST correction to the previous travel-time for the station-

phase at the node and store at the node in the updated SSST corrected travel-time 

grid.

 Relocate all events using the updated SSST corrected travel-times.

 Reduce D and return to step 1 if D ≥ Dmin, the smallest required smoothing distance.

For the case of a grid node far from all event hypocenters, all weights, w, will be 

approximately ϵ, and R̄  will be close to the station static correction for the set of locations. 

Similarly, if the starting value of D is large relative to the extent of stations and hypocenters, then

R̄  for all station-phases will be close to the station static correction for the first SSST iteration. 

Dmin might be set so the corrections vary slowly on the scale of the smallest target features in the 

seismicity and are derived from numerous events (e.g. more than 10-100 within Dmin) in denser 

areas of seismicity. Additionally, a check for improvement in the suite of SSST relocation results 

with decreasing D may suggest that results at a larger D than Dmin should be used for further 

analysis.
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Fig. 1. Schematic of iterative development of SSST corrections. Given relocations with current

travel-time fields, the weighted mean of residuals (left) is obtained with smoothing width D for P 

phases at a station (black triangle). These SSST corrections are added to the current, P travel-

time field for the station to produce updated, SSST corrected travel-times (right). The smoothing 

width D is reduced and the process is iterated.

 2.2  Waveform coherency relocation method

In a second relocation stage, NLL-SSST-coherence invokes a new procedure which greatly 

reduces aleatoric location error by consolidating information across  event locations based on 

waveform coherency between the events. This coherency relocation, NLL-coherence, is based on 

the concept that if the waveforms at a station for two events are very similar (e.g. have high 

coherency) up to a given dominant frequency, then the distance separating these events is small 

relative to the seismic wavelength at that frequency (e.g., Geller & Mueller, 1980; Poupinet et al., 

1984), perhaps less than about ¼ of this wavelength (Geller & Mueller, 1980; Thorbjarnardottir & 

Pechmann, 1987). A pair of similar events is a doublet and a set of similar events may be called a 

cluster, multiplet or family, these events all likely occur on a small patch of a fault with similar 

magnitude and source mechanism (Cattaneo et al., 1997; Ferretti, 2005; Geller & Mueller, 1980; 

Ishida & Kanamori, 1978; Nadeau et al., 1994; Poupinet et al., 1982). In a high-precision, 

microseismic study (Goertz Allmann et al., 2017)‐  show for waveform windows spanning both P 

and S waves that correlation coefficients greater than about 0.7 indicate event multiplets locate 

within about 0.1 km, which is about ¼ wavelength for the typical dominant waveform frequency 

~20 Hz and wave velocity of ~2.5 km/s shown in their study.  The results of (Goertz Allmann et ‐

2021-09-07 Lomax & Savvaidis, High-precision earthquake location 7

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207



manuscript submitted to Journal of Geophysical Research: Solid Earth

al., 2017; their figs. 4 and 6) also show lack of clustering and separation of event pairs throughout 

the region of studied seismicity for correlation coefficients less than about 0.5.

For detailed seismicity analysis, the precise hypocenter locations of events in multiplets can 

be assigned to a unique centroid point or coalesced in space through some statistical combination of

the initial hypocenter locations (Jones & Stewart, 1997; Kamer et al., 2015). Alternatively, precise, 

differential times between like-phases (e.g. P and S) for doublet events can be measured using time-

or frequency-domain, waveform correlation methods. Differential times from a sufficient number of

stations for pairs of doublet events allows high-precision, relative location between the events, 

usually maintaining the initial centroid of the event positions  (Got et al., 1994; Ito, 1985; Matoza et

al., 2013; Nadeau et al., 1994; Nakamura, 1978; Poupinet et al., 1982, 1984; Waldhauser & 

Ellsworth, 2000).

Here we use waveform similarity directly to improve relative location accuracy without the 

need for differential time measurements or many stations with waveform data. We assume that high

coherency between waveforms for two events implies the events are nearly co-located, and also that

all of the information in the event locations, when corrected for true origin-time shifts, should be 

nearly identical in the absence of noise. Then, stacking procedures can be used to reduce the noise 

in this information and improve the location precision for individual, target events.  We use the 

coherency between waveforms for pairs of events (i.e. the target event and all other events) at one 

or more stations to combine through stacking an initial set of location probability density functions 

(PDF's). This stack directly improves the hypocenter location for each target event by effectively 

combining and completing arrival time data over events and reducing noise (aleatoric error) in this 

data. 

We measure waveform coherence as the maximum cross-correlation between two 

waveforms (e.g., Aster & Scott, 1993), calculated using the xcorr function in the ObsPy Python 

package (Beyreuther et al., 2010; Krischer et al., 2015), which performs a normalized cross-

correlation in the time-domain. To form weights for stacking location PDF's (Fig. 2), positive 

coherences, C, above a minimum cutoff value, Cmin, (e.g. 0.5) up to a plateau cutoff value, Cplat, 

(e.g. 0.9) are mapped linearly to the range 0.0 to 1.0, wlin,

 wlin = (C – Cmin) / ( Cplat – Cmin). (2a)

and then mapped through a smooth, cosine taper to form 0.0 to 1.0 stacking weights, W,

 W = 0.5 cos(πwlin) + 0.5. (2b)
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Stacking weights for coherences C less than Cmin or greater than Cplat are set to W =0 or W =1, 

respectively.

For cross-correlation, we use a waveform window that includes P and S waves so that we 

maintain the S-P time interval, the P coda and part of the S coda, all of which better constrain 

waveform similarity for the purpose of quantifying the proximity of events (Fig. 2). When the 

waveforms for multiple stations are available for a pair of events, we use the maximum of inter-

event coherency over stations as the coherency for stacking. This choice is justified since the 

coherency for real, noisy waveforms is much less likely to be over-estimated than under-estimated. 

The number of event pairs for which coherence is calculated can be reduced by only considering 

pairs with initial inter-hypocenter separation within a maximum cutoff distance (e.g., Aster & Scott,

1993).

Fig. 2. Example traces showing waveform coherency, stack weights and PDF stack. (left) 

Raw seismograms for a set of aftershocks events. (middle) Corresponding, 2-pole, 2Hz – 10Hz 

bandpass filtered waveforms used for coherence calculations. Top trace is the target waveform; 

coherence (Coh) with the target is indicated to the upper right of each waveform. (right) Schematic

representation of coherences between the target and each waveform, corresponding stacking 

weight after cosine taper mapping of coherence, location PDF's forming the stack (color intensity 

indicates stack weight), and final NLL-coherence location PDF for the target event.

The NLL-coherence procedure requires a set of initial locations and corresponding PDF's 

for the spatial hypocenter locations. The NLL location PDF is a probability density function over 

possible, 3D spatial hypocenter locations which combines information in the observed data, the 

prior (location search volume), and the ability of the forward problem to predict the observed data 

(Lomax et al., 2014; Tarantola & Valette, 1982). For each target event, the procedure forms a 
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weighted stack of normalized PDF's over 3D space consisting of: the initial location PDF for the 

target event with a weight of 1, and the location PDF weighted by W for each of the other events 

that have inter-event coherency with the target event greater than Cmin. The PDF stack is raised to 

the power of the total sum of weights, which concentrates the PDF to show uncertainty in the 

relative location of multiplet events; without raising to this power, the PDF’s would show the 

generally much larger uncertainty of the original, standard locations.  

PDF stacking with weighting is established in probability theory as Bayesian model 

averaging, a procedure for combining forecasts from multiple possible solutions (Fragoso & Neto, 

2018; Hoeting et al., 1999). Given n = 0, N-1 similar events and invoking Bayesian model 

averaging, the NLL-coherence location likelihood (unnormalized PDF), Lcoh, for a target event in 

the set of similar events is,

Lcoh( x |d )=∑
n=0

N −1

Ln(x | W n ,d )W n , (3)

where x is spatial position, d is the set of waveform and pick data for all considered events, and Ln()

and Wn are the NLL-SSST location PDF and stacking weight, respectively, for event n.

This combined forecast is simply a weighted average of the NLL initial location PDF’s for 

each of the similar events. Formally, in Bayesian model averaging, the weights Wn are the posterior 

probabilities of the solutions Ln for each event n given the data d – a measure of how plausible the 

solution is given the data. For NLL-coherence, under the assumption that events with similar 

waveforms have similar hypocenter positions, we use each solution Ln as a proxy solution for the 

target event and use waveform coherence to define the plausibility Wn of each Ln for constraining 

the target event position.

The NLL-coherence PDF stack is raised to the power of the total sum of weights to make 

the shape and spread (and thus measures such as variance) of the final solution comparable to those 

of a product of PDF’s. This effect is illustrated by a sum of N normal distributions with zero mean 

raised to the power N,

[∑
0

N−1

e− x
2
/σ

2

]
N

= [N e− x
2
/σ

2

]
N , (4)

which is proportional to the product of the same normal distributions,
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∏
0

N−1

e−x
2
/σ

2

= [e−x
2
/σ

2

]
N . (5)

The NLL-coherence stack PDF forms the probabilistic, coherence relocation for the target 

event and defines all location information, such as origin time, location uncertainties, and arrival-

time residuals. The NLL-coherence procedure can be implemented as a workflow using modules of 

the NonLinLoc package.

The  stacking weights Wn can also be used to combine and, in effect, stack first-motion 

readings between multiplet events. A combined set of first-motion readings is formed from the 

target events readings with a weight of 1.0 and readings from each similar event n with weight Wn. 

This augmented set of readings produces a greater number of composite, better constrained focal-

mechanisms than do sets of single event readings, though these composite mechanism are locally 

correlated across multiplet events.

For an event that has coherency with all other events less than Cmin, the PDF stack and all 

location information will be identical to those for the initial location for the event. For an initial 

event that is poorly constrained with an extensive PDF, but which has high coherency with other, 

well constrained events, the stacked PDF location will closely match the locations of the well 

constrained events. Unlike differential-time based, relative location methods, NLL-coherence 

relocation can be performed with waveforms from few or even a single station. Consequently, NLL-

coherence relocation is computationally efficient, allows precise relocation of seismicity when the 

closest station is far from the seismicity and for sparse networks, enables precise relocation of 

foreshocks and early aftershocks in a mainshock sequence or swarm before nearby temporary 

stations are installed, and can be applied to historical sequences with little available waveform data.

Traces showing different values of waveform coherency for an example, target event, and a 

schematic of mapping from coherence to stack weight and the stacking of PDF’s to form the NLL-

coherence location are shown in Fig. 2. Fig. 3 shows example event PDF's before and after NLL-

coherence location and the event PDF's that are weighted by coherence and summed to form the 

NLL-coherence location for the example event. Fig. 3a shows the NLL-SSST hypocenter and PDF 

for a target event, Fig. 3b shows the hypocenters and PDF’s for the target event and all similar 

events, Fig. 3c shows the NLL-coherence location for the target event after coherence weighted 

stacking over all the event PDF’s in Fig. 3b. Fig. 3d shows the NLL-coherence locations for all 

similar events from Fig. 3b after coherence weighted stacking for each event; these epicenters and 

PDF's show how NLL-coherence location produces clustering and organization of similar event 

hypocenters along with greatly reduced PDF extent, which shows formal location uncertainty.
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a)  b) 

c)  d) 

Fig. 3. Example event PDF's before and after NLL-coherence location. Epicenters (large dots) 

and location PDF’s (yellow clouds) for NLL-SSST relocations for (a) a target event and (b) similar 

events with waveforms coherency C≥0.5 with respect to the target. Epicenters and stacked 

location PDF’s after NLL-coherence location for (c) the target event alone, and (d) all events 

similar to the target. The PDF's in (b) are summed with stacking weights, W, to give the target 

NLL-coherence location shown in (c).

 3  Synthetic test of NLL-coherency relocation

We test and illustrate the performance of the NLL-coherence relocation procedure using 

synthetic, noisy data for a set of irregularly clustered, multiplet, benchmark events within a realistic 

network station geometry. It is important to synthesize realistic epistemic and aleatoric arrival time 

and travel-time error, since NLL-coherence relocation is based on reducing the error in hypocenters 

obtained from such data.

2021-09-07 Lomax & Savvaidis, High-precision earthquake location 12

322

323

324

325

326

327

328

329

330

331

332

333

334

335



manuscript submitted to Journal of Geophysical Research: Solid Earth

To represent a realistic, clustered hypocenter distribution we form a set of benchmark events

irregularly spaced on a circle of radius 5 km at a depth of 3 km (Fig. 4). The benchmark 

hypocenters are randomly placed on the circle so as to produce dense clusters of events, more 

sparsely spaced events, and larger gaps between event groups. This distribution represents multiplet

events on small asperities, surrounding isolated events, and aseismic zones in between. The station 

distribution, derived from the TexNet network around Pecos, Texas (Savvaidis et al., 2019), 

consists of 30 stations to about 50 km distance and well distributed in azimuth around the 

benchmark events.

Epistemic and aleatoric errors arises from velocity model and travel-time error, noisy 

waveform phase onsets, phase mis-identification, and so on. To model realistically these errors, we 

create noisy, synthetic arrival times for the benchmark events. We first calculate exact travel-times 

for the benchmark hypocenters using a smooth, laterally homogeneous crustal model. Then, to 

introduce pseudo-realistic error and uncertainties for P and S arrival times for each event, we: 1) 

create a P or an S arrival time datum for each station with a probability of 0.3, 2) add a random, 

Gaussian timing error with standard deviation 0.04 sec for P or 0.1 sec for S to the exact arrival 

time, 3) randomly double this error with probability 0.5, and 4) for location, set a nominal Gaussian 

picking uncertainty with standard deviation of 0.02 sec for P and 0.05 sec for S. The use in step 4) 

of a smaller nominal uncertainty than the timing error added in steps 2) and 3) effectively 

introduces outlier arrival data and mimics mild to moderate epistemic error in the velocity model 

and arrival times. The above settings are chosen to mimic un-modeled error and resulting 

hypocenter scatter in the last iteration of NLL-SSST locations, not the typically much larger error 

and hypocenter scatter present in initial catalog locations.

Using a velocity model for relocation of this synthetic, noisy data that differs from the one 

used to calculate the exact travel-times for the benchmark hypocenters would reproduce large 

epistemic error due to velocity model error. However, we do not use a differing model here, 

because epistemic model error typically introduces an overall bias in hypocenter locations which 

would obscure the more interesting and important reduction of scatter and clustering of hypocenters

that the coherence location produces. A bias or strong distortion of hypocenter locations due to 

large scale, epistemic velocity model error will remain in NLL-coherence relocation, as it does in 

all other location procedures and algorithms.

As there are no waveforms for the benchmark events, but we know their “true” hypocenter 

positions, we create synthetic coherences between all pairs of events based on the benchmark 

distance between their hypocenters. This coherence C is defined by,
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C = exp(-x 2/X 2), (6)

where x is the true distance between two benchmark hypocenters and X is a characteristic distance, 

here set to 1 km.  Coherences, C, above a minimum cutoff value Cmin=0.5 are mapped to 0.0 to 1.0 

weights, W, for stacking similar event location PDF's, as described in Section 2.2 and Equation 2. 

Thus two events with true separation of 0.6 km will have a synthetic coherence of about 0.7 and a 

PDF stack weight of about 0.5.

The standard, NLL event locations using the noisy, synthetic arrival times gives the set of 

noisy, synthetic hypocenters shown in Fig. 4. Note the degree of scattering of these hypocenters 

around the circle of benchmark hypocenters, including the much larger scatter of hypocenters in 

depth than in epicenter, the general clustering of events around denser sets of benchmark 

hypocenters, and the presence of clear outlier hypocenters far from the true benchmark events. 

These standard NLL locations are used as starting locations for NLL-coherence relocation, 

shown in Fig. 4. The coherence relocations are performed with the synthetic coherence, PDF stack 

weights, other settings are similar to those used for relocation of California sequences in Section 4. 

Relative to the standard locations (Fig. 4), note the greatly reduced scatter of coherence hypocenters

around the circle of benchmark hypocenters, particularly in depth, the tight clustering of most 

events typically near denser sets of benchmark hypocenters, and the presence of few outlier 

hypocenters.

These results show several important aspects of NLL-coherence event relocation. Firstly, 

coherence relocation correctly and significantly reduces hypocenter scatter towards the true 

benchmark hypocenter locations. True epicenter error is reduced from a mean of 0.3 km for the 

noisy locations to a mean of 0.2 km with coherence location; true depth error standard-deviation is 

reduced from 0.5 km for the noisy locations to 0.2 km with coherence location. Secondly, NLL-

coherence relocation correctly and significantly shifts outlier hypocenters towards the benchmark 

hypocenter locations. True epicenter outliers up to 1.3 km for the noisy locations are reduced to no 

outliers > 0.6 km with coherence location; true depth outliers up to 2.5km for the noisy locations are

reduced to only one outlier > 0.5 km with coherence location. 

Thirdly, coherence relocation tends to cluster sets of events near denser sets of benchmark 

hypocenters – this implies that coherence relocation will correctly group together multiplet events 

as defined by coherence. However, coherence location tends to over-tightly cluster events, so that 

they often fill a smaller volume than the true spread of benchmark events. This is likely caused by 

the presence of sub-sets of well constrained, well located events with co-located PDF’s of small 
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extent which “attract” high-coherency, but poorly constrained, multiplet events with extensive 

PDF’s. Effectively, large arrival time error, or outlier and missing arrival time data for a poorly 

located event represent a loss of information which cannot be recovered, so improvement in 

location is obtained by substitution of the weighted stack of better constrained, multiplet event 

PDF's as a proxy location.

      

      

        noisy synthetic events  NLL-coherence relocations

Fig. 4. Synthetic circle test of NLL-coherence relocation. Map view (top row) and section view 

from south (bottom row). Red crosses show true benchmark hypocenters used for generating P 

and S arrivals. Left column shows noisy synthetic events (blue dots) obtained through standard 

location with realistic noise added to P and S arrivals. Right column shows NLL-coherence 

relocations (blue dots) of noisy synthetic events; events are shifted randomly 0.1 km to avoid 

overlapping symbols due to the discrete gridding of stored SSST PDF’s used for NLL-coherence 

relocations. Nearby station shown as inverted pyramids.

We additionally performed an identical synthetic test except using benchmark events drawn 

from a uniform random distribution instead of irregularly spaced on a circle. This test shows the 

NLL-coherence response to statistically unclustered seismicity and checks if the procedure 

produces artifacts such as those found by (Nicholson et al., 2000) for hypocenter coalescence 
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procedures based solely on original locations and their uncertainties. These artifacts include an 

overall shrinking of the cloud of seismicity towards its barycenter, and low density holes with 

surrounding high density webs and clusters of seismicity not present in the benchmark distribution. 

The results in Fig. 5 show that the NLL-coherence seismicity has a distribution similar to that of the

benchmark events and the noisy synthetic events. The NLL-coherence relocations do not show 

increased or decreased clustering relative to the noisy synthetic locations, and do not show any of 

the artifacts found by (Nicholson et al., 2000). The mean epicenter error relative to the benchmarks 

is 0.3 km for both the noisy and coherence locations. True depth error standard-deviation is reduced

slightly from 0.5 km for the noisy locations to 0.4 km with coherence location, primarily due to the 

coherence relocation correctly and significantly shifting several outlier hypocenters towards the 

benchmark hypocenter locations. Thus the NLL-coherence procedure does not introduce artifact 

clustering or de-clustering for unclustered, uniform random benchmark seismicity, but does detect 

and remove some outlier events in the corresponding noisy synthetic events.
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        noisy synthetic events  NLL-coherence relocations

Fig. 5. Synthetic uniform random test of NLL-coherence relocation. Map view (top row) and 

section view from south (bottom row). Red crosses show true benchmark hypocenters used for 

generating P and S arrivals. Left column shows noisy synthetic events (blue dots) obtained 

through location with realistic noise added to P and S arrivals. Right column shows NLL-

coherence relocations (blue dots) of noisy synthetic events. Nearby station shown as inverted 

pyramids.

 4  Ground-truth test of NLL-SSST-coherence relocation

We further test and illustrate the performance of the NLL-SSST-coherence relocation 

procedure through application to regional recordings of a ground truth (GT) dataset of surface 

explosions in Finland in 2007 as reported by (Gibbons et al., 2020). The explosions have known 

coordinates and are located in two tight and one extended clusters, all within an area of about 0.3 x 

0.3 km (Fig. 6). (Gibbons et al., 2020) analyze and provide waveforms for 6 stations at about 59 to 

208 km from the explosion sources and with good azimuthal distribution and coverage to represent 

a realistic, sparse regional network. We automatically pick P arrivals on the waveforms using 

FilterPicker (Lomax et al., 2012) with default settings, and then manually check the picks, 
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modifying or adding a small proportion of the picks; this picking procedure mimics the automatic 

picking with manual revision of many regional networks. We do not pick S arrivals as they do not 

have clear onsets at most stations for most events.  In (Gibbons et al., 2020), all locations are 

performs with depth fixed, since the stations at regional distance provide no depth constraint, but 

here we allow depth to vary between -2 and 8 km depth to better model the poor depth control of 

many relocation studies. Following (Gibbons et al., 2020),  the ak135 velocity model (Kennett et 

al., 1995) is used for initial NLL locationsFig. 6. The initial locations  (Fig. 6a) form clusters and 

scattered events over an area of about 10 x 10 km  and from -2.0 km to about 6.3 km in depth.
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Fig. 6. Ground truth test of NLL-coherence relocation. Red squares show GT explosion 

epicenters, dots show relocated epicenters with color indicating hypocenter depth. (a) Initial NLL 

locations using auto and manual picked P arrivals; one event falls outside the plot about 8 km 

north-northeast of the GT events. (b) Relocations after 3 iterations of NLL-SSST using a very large

smoothing width D; one event falls outside the plot about 5 km east-southeast of the GT events. 

(c) NLL-SSST-coherence relocations. (d) Detailed view of NLL-SSST-coherence relocations; gray 

lines connect corresponding GT and relocated epicenters. In all panels the gray box is 0.8 km 

square and the relocated epicenters are shifted so the northeast cluster of 8 events in panel (d) 

aligns with the corresponding GT cluster; the absolute positions of the relocated events are 

approximately 0.8 km northwest of the GT locations.

For NLL-SSST relocations, since the source area is small relative to the station distances, 

we iteratively generate SSST corrections with a fixed, large smoothing distance, D, of 999 km, thus 

effectively calculating each weighted mean of residuals, R̄  , as a station static correction (mean 

of all residuals).  The quality criteria for an event location and station-phase to be used for 

calculating R̄  are: 68% error-ellipsoid principle-axis half-width ≤8.0 km, root mean square of 

residuals (rms) ≤0.075 sec, P residual ≤ 0.5 sec, S residual ≤ 0.5 sec. The final NLL-SSST 

relocations (Fig. 6b) merge the two principle clusters and most scattered events in the initial NLL 

locations (Fig. 6a) into one cluster within an area of about 1 km square and a depth range of -2.0 to 

0.6 km, one event remains about 5 km east-southeast of the GT events at a depth of about 6 km.

For NLL-coherence relocations, we measure coherency using vertical component 

waveforms from only the closest station, LP53, at about 59 km, channel XK.LP53.00.HHZ with 50 

Hz sampling. The waveforms are filtered from 2-25Hz in a window from 4 sec before the predicted 

P arrival to 4 sec after the predicted S arrival. Cross-correlation is applied between waveforms 

windows sliding from -2.0 to 2.0 sec, and the 0-1 stacking weight is set following Eq. 2 over 

coherency values from Cmin = 0.45 to 1.0. This procedure is applied to the final NLL-SSST 

relocations (Fig. 6b) for all event pairs. The NLL-SSST-coherence relocations are shown in Fig. 6c 

and in detail in Fig. 6d.

The NLL-SSST-coherence relocations for the explosion dataset (Fig. 6d) cover about the 

same extent as the GT epicenters and recover the two tight and one extended GT clusters with 

correct identification of  member events for each clusterFig. 6. The NLL-SSST-coherence 

epicenters show some distortion in the relative position of the clusters (~0.1 km) and in the relative 

positions of events within each cluster (< ~0.05 km). But, remarkably, these distortions are not 

much greater than those obtained with high-precision, correlation-based time-delay measurements 
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and double-difference relocation by (Gibbons et al., 2020; their fig. 5).  Distortion of relative cluster

positions is attributed by (Gibbons et al., 2020) to error in variations in velocity model slowness 

across the GT source region.

For the NLL-SSST-coherence relocations, ¼ of the seismic wavelength at the highest 

frequencies with signal energy, ~20 Hz, is about 0.075 km. This distance likely represents the lower

limit of inter-event separation resolvable by the NLL-coherence procedure, which agrees well with 

the good NLL-coherence resolution of the relative, horizontal cluster positions, which are separated 

by 2-3 times the ¼ wavelength distance, and poor resolution of intra-cluster, relative event 

positions, separated by much less than this distance. The intra-cluster, relative event positions are 

most likely noisy and not robust, affected by error in the arrival picks and NLL-SSST locations, and

by the tendency of NLL-coherence to over-cluster on the smallest scales.

 The depth range of the NLL-SSST-coherence relocations is about -1.7 to -1.2 km, much 

less than the range for the initial and NLL-SSST locations, though the error in depth range relative 

to GT (all GT sources at about -0.5 km depth) is larger than relative epicentral error due to very 

poor depth constraint from the used data. However, the striking improvements of relative depth and 

epicenters NLL-SSST-coherence over the initial locations provides further evidence that the 

combined SSST and coherence procedures can correctly shift noisy and strong, outlier locations 

towards similar event hypocenters.

 5  NLL-SSST-coherence relocation for California earthquake sequences

We next show how NLL-SSST-coherence relocation performs relative to established 

standard and relative location procedures using two recent earthquake sequences in California (Fig. 

7). First, we examine the 2004 Mw 6.0 Parkfield sequence, which was well recorded by numerous 

seismic stations around and above the seismicity, to show how NLL-SSST-coherence relocation 

improves on standard locations and approaches the precision of waveform, cross-correlation based, 

relative location methods. Then we examine the 2020 Mw 5.8 Lone Pine sequence to show how 

NLL-SSST-coherence relocation can produce higher precision locations and better depth control 

than waveform, cross-correlation based, relative location when there are no seismic stations above a

sequence and few nearby stations. Lomax (2020b) also presents analysis of NLL-SSST-coherence 

locations and comparison with routine catalog locations for the 2020 Mw 6.5 Monte Cristo, Nevada

sequence.
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Fig. 7.  Location in California of the Parkfield and Lone Pine study areas.  Green lines show 

faults from the USGS Quaternary fault and fold database for the United States. Background 

topography image from OpenTopography.org.

 5.1  2004 Mw 6.0 Parkfield, California

The 2004 Mw 6.0 Parkfield earthquake sequence occurred along a 40 km stretch of the San 

Andreas Fault Zone (SAFZ) in central California (Fig. 7) between a 150 km long, creeping section 

of the fault to the northwest and a locked section to the southeast that last ruptured in the 1857 Mw 

7.9 Fort Tejon earthquake (Bakun et al., 2005). The 2004 sequence was recorded by a large number 

of well-distributed seismic stations, including borehole and high sample-rate instruments. This 

seismic data has been used in numerous studies to examine the velocity structure in the area and for 

high-precision, waveform cross-correlation based, relative location methods (Michelini & 

McEvilly, 1991; Nadeau et al., 1994; C. Thurber et al., 2006; Waldhauser et al., 2004; Zhang et al., 

2009). The Parkfield sequence is therefore an excellent reference case for examining the 

performance of the NLL-SSST-coherence relocation procedure for obtaining high-precision 

hypocenter locations.

We obtain a catalog (USGS-NCSN Catalog) of 2828 events for the Parkfield area (latitude 

35.75º to 36.05 º, longitude -120.62º to -120.30º) with M ≥ 1.5 from 1984-01-01 to 2020-21-31 

from the Northern California Earthquake Data Center (NCEDC). The USGS-NCSN Catalog 
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standard locations (NCSN-ABS), obtained using localized velocity models and station travel-time 

corrections, and corresponding NCSN Double-Difference Catalog locations (NCSN-DD) based on 

the HypoDD, double-difference, relative location method (Waldhauser, 2009; Waldhauser & 

Ellsworth, 2000; Waldhauser & Schaff, 2008) are shown in Fig. 8. We also obtain from NCEDC P 

and S arrival times, time uncertainties, first-motions and waveforms for the catalog events to use for

NLL-SSST-coherence relocation.

For initial NLL location (Fig. 8b), we use the 1D, P Parkfield – Middle Mountain (PMM) 

velocity profile with Vp/Vs=1.78 (Oppenheimer et al., 1993), linearly interpolated between depth 

nodes to form a smooth model. Following (Eberhart Phillips & Michael, 1993; Zhang et al., 2009)‐  

we modify the model with a 5% increase [decrease] in velocity for station to the southwest 

[northeast] of the San Andreas Fault to account for a well defined, average velocity contrast across 

the fault.

For the Parkfield NLL-SSST relocations (Fig. 8c), we iteratively generating SSST 

corrections using the NCEDC catalog events and arrival data with smoothing distances, D, of 32, 

16, 8, and 4km, spanning from the sequence size to larger than typical SSST cluster sizes and the 

target, sub-kilometer location precision.  The quality criteria for an event location and station-phase 

to be used for calculating R̄  are: 68% error-ellipsoid principle-axis half-width ≤5.0 km, root 

mean square of residuals (rms) ≤0.35 sec, number of readings ≥12, azimuth gap ≤ 135°, P residual ≤

1.0 sec, S residual ≤ 2.0 sec. Note the dramatic improvement in clustering and organization of the  

NLL-SSST relocations (Fig. 8c) relative to the initial NLL locations (Fig. 8b).

For the Parkfield NLL-coherence relocations, we measure coherency using waveforms from 

vertical component channels from four nearby stations over and around the main seismicity: 

NC.PHA.--.EHZ, BK.PKD.--.HHZ, BP.RMNB.--.DP1, NC.PWK.--.EHZ. The waveforms are 

filtered from 2-10Hz in a window from 4 sec before the predicted P arrival to 4 sec after the 

predicted S arrival. Cross-correlation is applied between waveforms windows sliding from -2.0 to 

2.0 sec, and the 0-1 stacking weight is set following Eq. 2 over coherency values from Cmin = 0.5 to 

1.0. This procedure is applied to the D = 4 km NLL-SSST relocations (Fig. 8c) for all event pairs 

with a maximum hypocenter separation of 5.0 km. The final NLL-SSST-coherence relocations are 

shown in Fig. 8d and are available as a CSV format table in DataSet S1.
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Fig. 8. 2004 M6.0 Parkfield, California earthquake sequence relocations. Map view and view 

from the southwest (N130W) of M ≥ 1.5, 1984-01-01 to 2020-21-31 hypocenters for the (a) 

NCSN-ABS, (b) initial NLL (NLL-init), (c) NLL-SSST D = 2 km relocations, (d) NLL-SSST-

coherence, (e) NCSN-DD relocations. Hypocenter color shows origin time, symbol size is 

proportional to magnitude. NLL-SSST-coherence hypocenters in (d) are shifted randomly 0.1 km 

to avoid overlapping symbols. Inverted pyramids shows nearby seismic stations used for 

relocation; stations used for NLL-coherence waveform correlation emphasized in white and 

labelled with station codes in panel (d). Green lines show faults from the USGS Quaternary fault 

and fold database for the United States, with SAFZ denoting the San Andreas Fault Zone, SWFZ –

Southwest Fracture Zone, MM – Middle Mountain, GH – Gold Hill.  Background topography image

from OpenTopgraphy.org.
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The Parkfield NCSN-ABS (Fig. 8a) and NLL-SSST (Fig. 8c) relocations are similar, both 

showing a concentration of seismicity around a near vertical plane under the SAFZ, large scale, 

horizontal banding at depth, and vertical scatter in epicenters likely due to location error. There are 

clear differences and distortions in these sets of standard locations due to the use of different 

velocity models, station corrections and location procedures in the two catalogs—the NLL-SSST 

hypocenters are roughly 1km shallower [deeper] than the NCSN-ABS hypocenters in the 

northwestern 2/3 [southeastern 1/3] of the study zone and there is a notable shift in epicenter and 

depth of the M6.0 2004 mainshock hypocenter. The NLL-SSST locations also image a single, 

almost planer SAFZ across the study area, while the NCSN-ABS epicenters suggest an SAFZ 

composed of several near-planar segments with slight differences in strike and dip. All of these 

differences in NCSN-ABS and NLL-SSST standard locations pass to and are preserved in the 

NCSN-DD and NLL-SSST-coherence locations, respectively.

The Parkfield NLL-SSST-coherence (Fig. 8d) and NCSN-DD relocations (Fig. 8e) show 

similar large scale organization and smaller scale clustering of seismicity, and similar improvement 

relative to the NLL-SSST and NCSN-ABS locations. But in most areas the NCSN-DD locations 

define clearer concentration and lineation of hypocenters on an intermediate scale (~1-3km) and 

fewer isolated hypocenters than NLL-SSST-coherence. These differences are likely due to the 

explicit mapping in DD locations of high-precision, cross-correlation, differential times to relative 

hypocenter positions, while the NLL-SSST-coherence procedure performs a more rudimentary 

coalescence of NLL-SSST hypocenters for similar events.

The larger scale organization and smaller scale clustering of NLL-SSST-coherence in depth 

section (Fig. 8d) resembles closely the results of (C. Thurber et al., 2006) obtained with double-

difference relocations in a 3D, tomographic velocity model. However, in contrast to (C. Thurber et 

al., 2006) and most other previous studies, and the NCSN-DD locations (Fig. 8e), the NLL-SSST-

coherence seismicity falls on a single, near-vertical and almost planer surface across the study area 

(Fig. 8d). These seismicity patterns and results show NLL-SSST-coherence captures well features 

of the seismicity on all scales, and suggests real improvement in larger-scale location precision over

the initial NLL locations and other studies, primarily due to corrections and resulting location shifts 

in the NLL-SSST procedure. Between Middle Mountain and Gold Hill, the near-vertical fault 

surface imaged by NLL-SSST-coherence underlies the surface trace of the Southwest Fracture Zone

(SWFZ) and not the main SAF trace to the northeast, in agreement with the (C. Thurber et al., 2006)

relocations and with observations of co-seismic slip on the SWFZ (Rymer et al., 2006). This largest 

scale position of epicenters, however, is mainly controlled by our imposed, 10% contrast across the 
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SAFZ in the model used for initial NLL location, and not by an overall shift in epicenters due to the

NLL-SSST-coherence procedures.

 5.2  2020 Mw 5.8 Lone Pine, California 

The 2020 Mw 5.8 Lone Pine, California earthquake sequence occurred along the Owens 

Valley fault zone (OVFZ) in eastern California (Fig. 7 and 8) near the southern end of the 1872 Mw

~7.5 Owens Valley earthquake rupture (Hauksson et al., 2020). The sequence includes mainly 

normal faulting events on an ~5 x 5 km, east-northeast dipping zone and has a distinct, multi-stage 

series of foreshocks including an Mw 4.6 event with aftershocks (Hauksson et al., 2020). The 2020 

Lone Pine sequence was recorded by only a few seismic stations within ~20 km and one station at 

~10 km from the mainshock, but no stations above the sequence, and thus demonstrates the 

performance of the NLL-SSST-coherence relocation procedure for the case of poor seismic network

coverage.

We obtain a catalog (USGS-SCSN catalog) of 1326 events (M 0.1-5.8) from 2020-01-01 to 

2021-02-15 for the area of the Lone Pine sequence (within 20km of latitude 36.45º, longitude -

118.00º) from USGS-earthquake hazards (Benz, 2017), with corresponding Southern California 

Seismic Network (SCSN) arrival phase types, times, time uncertainties, and first motions accessed 

from the Southern California Earthquake Data Center  (SCEDC, 2013) and USGS-earthquake 

hazards. Waveforms for NLL-SSST-coherence relocation were obtained from SCEDC. To stabilize 

hypocenter depths for the three largest events, only the earliest two S arrival times (for the Mw 4.7, 

2020-06-23 00:25 and Mw 5.8, 2020-06-24 17:40 events) or three S times (for the Mw 4.6, 2020-

06-24 17:59 event) are used for location.

For initial NLL relocations we calculate travel-times in a smoothed version (KS-smooth) 

(Lomax, 2020b) of the KS seismic P-wave velocity model used for 2008 Mogul, northwest Nevada 

sequence relocations (von Seggern et al., 2015), with constant Vp/Vs=1.73 to obtain S travel-times.

For the Lone Pine NLL-SSST relocations, we iteratively generating SSST corrections using 

the USGS-SCSN catalog events and arrival data with smoothing distances, D, of 16, 8, 4, and 2km, 

spanning from larger than the sequence size to larger than typical SSST cluster sizes and the target, 

sub-kilometer location precision (Fig. 9b).  The quality criteria for an event location and station-

phase to be used for calculating R̄  are: 68% error-ellipsoid principle-axis half-width ≤5.0 km, 

root mean square of residuals (rms) ≤0.35 sec, number of readings ≥12, azimuth gap ≤ 135°, P 

residual ≤ 1.0 sec, S residual ≤ 2.0 sec.
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For the Lone Pine coherence relocations, we measure coherency using waveforms from 

vertical component channels from 7 nearby stations over a wide azimuth range: CI.CWC.--.HHZ, 

CI.DAW.--.HHZ, CI.CGO.--.HHZ, CI.WMF.--.HHZ, CE.44015.10.HNZ. Waveforms are filtered 

from 2-10Hz in a window from 4 sec before the predicted P arrival to 4 sec after the predicted S 

arrival. Cross-correlation is applied between waveforms windows sliding from -2.0 to 2.0 sec, and 

the 0-1 stacking weight is set following Eq. 2 over coherency values from Cmin = 0.5 to 1.0. This 

procedure is applied to the D = 4 km NLL-SSST relocations (Fig. 9b), which exhibit more 

organization than the D = 2 km locations, for all event pairs with a maximum hypocenter separation

of 5.0 km. The final NLL-SSST-coherence relocations are shown in Fig. 9c and Movie S1 and 

available as a CSV format table in DataSet S2.
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Fig. 9. 2020 Mw 5.8 Lone Pine, California earthquake sequence relocations. Map and cross 

section (A–A′) of 2020-01-12 to 2021-02-15 hypocenters from the (a) USGS-SCSN catalog, (b) 

NLL-SSST D = 4 km relocations, (c) NLL-SSST-coherence relocations. Hypocenter color shows 

origin time, symbol size is proportional to magnitude. NLL-SSST-coherence hypocenters in (c) are 

shifted randomly 0.05 km to avoid overlapping symbols. White triangle to the west show the only 

nearby seismic station (CI.CWC) available for relocation. Green lines show faults from the USGS 

Quaternary fault and fold database for the United States. The hypocenter colors and the 

orientation of the cross section (A–A′) correspond to Figs. 2 and 3b, respectively in (Hauksson et 

al., 2020). Background topography image from OpenTopgraphy.org.

We compare the NLL-SSST-coherence relocations for the Lone Pine sequence to the two 

sets of location results presented in (Hauksson et al., 2020): one set from a waveform relocation 

procedure (Hauksson et al., 2012) which clusters events from the USGS-SCSN catalog and then 

uses differential travel-times for relative relocation within each cluster (HS catalog, 1052 events; 

(Hauksson et al., 2020; their fig. 3), and a second set from application of template-matching (Ross 

et al., 2018) to augment the USGS-SCSN catalog with numerous, newly detected events followed 

by relative relocation with cross-correlation, differential times using GrowClust (Trugman & 

Shearer, 2017) (QTM catalog, 24;000 events; ∼ (Hauksson et al., 2020; their fig. 2).

The NLL-SSST-coherence hypocenters for the Lone Pine sequence (Fig. 9c) show a similar 

overall extent and shape, and similar areas of main clustering of seismicity and location of main 

events as the hypocenters from the USGS-SCSN catalog (Fig. 9a) and the HS and QTM epicenters 

of (Hauksson et al., 2020). On a smaller scale (< 1 km), the NLL-SSST-coherence epicenters show 

cluster shapes and lineations that roughly match most denser clouds of seismicity in the QTM and 

HS catalog, though the NLL-SSST-coherence epicenters are typically sparser with more 

concentrated clusters than those in the QTM and HS catalogs.

In (Hauksson et al., 2020) the depth distribution of events is only presented for the HS 

catalog, possibly because of a lack of constraint on depth in the QTM procedure due to lack of 

stations near or over the sequence. The HS catalog depth distribution in section view (Hauksson et 

al., 2020; their fig. 3) shows a broad zone of southeast dipping seismicity possibly composed of 

several more steeply southeast dipping segments. This distribution, along with fault-plane dips from

moment tensor inversion, is interpreted by (Hauksson et al., 2020) to show volumetric deformation 

during the sequence. The NLL-SSST-coherence hypocenters in the same section view (Fig. 9c) 

show a narrower, northeast dipping, main zone of seismicity with, at its base, an apparently 

connected, near-vertically dipping zone. Numerous, shallow NLL-SSST hypocenters above the 
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northeast dipping zone of seismicity and other scattered seismicity (Fig. 9b) are shifted as much as 

5 km into the main dipping zone by the NLL-coherence procedure (Fig. 9c).

An oblique view from the northwest, nearly along the slip direction on the preferred, east-

dipping fault-plane of the SCSN, mainshock moment-tensor (Fig. 10; Movie S1, last frame) gives 

clearer alignments of NLL-SSST-coherence hypocenters. This view suggests a complex “S”-shaped

faulting structure composed at its top and base of sub-parallel sets of steeply southeast dipping sub-

faults. These sets of sub-faults bracket a single faulting surface or narrower set of steeply dipping 

sub-faults that may have hosted much of the mainshock rupture. There are also several “satellite” 

structures parallel to the sub-faults and up to 5 km from the main faulting structure. This geometry 

agrees with the interpretation (Hauksson et al., 2020) of heterogeneous volumetric deformation, and

furthermore suggests that aftershock and perhaps mainshock faulting occurs on sets of steeply 

northeast dipping, sub-parallel faults with oblique, normal and right-lateral slip. These apparent 

fault sets and the preferred, mainshock fault plane align with the Sierra Nevada frontal fault to the 

northwest of the sequence and west of Lone Pine.
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Fig. 10. 2020 Mw 5.8 Lone Pine, California earthquake sequence relocations. Oblique view 

from N50°E and plunging 25° of 2020-01-12 to 2021-02-15 hypocenters from the NLL-SSST-

coherence relocations. Hypocenter color shows origin time, symbol size is proportional to 

magnitude. Other map elements as in Fig. 9. See also Movie S1, last frame.

The NLL-SSST-coherence results for the Lone Pine sequence (Fig. 9c) also show clearly a 

three-stage foreshock sequence starting in March 2020 with a first stage of seismicity along an 

~1km long, north-south trend north of the eventual Mw 5.8 hypocenter (dark yellow events). A 

second stage begins on 22 June when seismic activity shifts to a small cluster (green events) ~1km 

west of the future Mw 5.8 hypocenter. A third stage begins at this cluster with the Mw 4.6 

foreshock on 23 June followed by aftershock over an area of ~2 x 2 km (magenta events). 41 hours 

after the Mw 4.6 event the Mw 5.8 mainshock occurs on 24 June with aftershocks (blue events) 

covering an area of about 5 x 5 km. These results suggest a more concentrated and organized 

foreshock distribution that shown in the high-precision QTM catalog of (Hauksson et al., 2020).
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 6  Discussion

SSST and NLL-coherence together greatly increase relative location accuracy within a 

standard, arrival-time location framework. SSST does this by removing common-mode travel-time 

residuals at available stations as a function of hypocentral position, which reduces location bias 

between nearby events located with differing sets of stations or phase typess. NLL-coherence 

location achieves high precision by stacking probabilistic location PDF’s of nearly co-located, 

multiplet events, as measured by waveform similarity. This stacking of PDF’s effectively reduces 

aleatoric error and suppresses outliers in the underlying arrival times, while filling in missing arrival

time data across multiplet events, resulting in a spatial coalescence of location for events with 

similar waveforms. The similarity of the NLL-SSST-coherence and double-difference, cross-

correlation based, relative hypocenter positions for Parkfield at all but the smallest scales suggest 

that large and intermediate scale improvements in precision for relative location is possible solely 

through corrections such as SSST and coalescence of event multiplets guided by waveform 

similarity. However, our synthetic study, our comparison with double-difference relative location 

results for the 2004 Parkfield sequence, and results for the 2020 Monte Cristo sequence (Lomax, 

2020b) show that this coalescence may tend to over-tightly cluster events at smallest scales, while 

potentially not resolving lineations and other extended features of the seismicity at this scale. The 

Parkfield results also suggest possible improvement in larger scale, relative location accuracy, 

primarily due to the NLL-SSST procedure.

In contrast to the coherence-weighted stacking of PDF’s in NLL-coherence, cross-

correlation based, relative location methods such as HypoDD or GrowClust achieve high to very 

high precision through explicit, inter-event, differential location involving inversion of precise 

arrival-time differences mapped into differences in distance along available rays. For relocation 

studies with good station coverage, and thus good ray coverage around the hypocenters, these 

relative location methods should achieve higher precision than NLL-SSST-coherence. However, for

cases of poor station and ray coverage, NLL-SSST-coherence may produce higher  relative location

accuracy and better depth control than do cross-correlation based, relative location methods, as 

indicated by our results for the 2020 Lone Pine sequence and supported by the striking 

improvements of relative depths obtained for the Finland GT test.

NLL-coherence location requires waveform cross-correlation on only one or a few channels,

while cross-correlation based, relative location procedures often use cross-correlation on P and S 

arrival windows for vertical and horizontal channels at all or most available stations. For example, 

for HypoDD relocation of 20 years of Northern California seismicity with around 500 stations, 
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(Richards et al., 2006; Waldhauser & Schaff, 2008) perform about 26 billion P and S wave cross-

correlations on 100Hz, vertical-component channels between all event pairs within 5 km out of 

225,000 total events, giving a mean of about 230,000, 1-2 sec window cross-correlations per event. 

A similar procedure limited to 50 stations per event might still require around 23,000 cross-

correlations per event. For application of NLL-coherence with 50 Hz waveforms from 4 stations 

and about 1000 events within 5 km, as in our Lone Pine example, about 2000, ~10 sec window 

cross-correlations per event are performed. NLL-coherence thus typically requires less computing 

time and resources than cross-correlation based, relative location methods. Excluding waveform 

download, the NLL-SSST-coherence processing pipeline in this study requires about 1.5 hours for 

Lone Pine (1326 events) and 4 hours  for Parkfield (2793 events) on an 8 core, 3.6 GHz Intel® Core 

i9 workstation with shell or software parallelization of NLL location, NLL-SSST calculation and 

cross-correlations,  but not using a GPU. This efficiency and the need for few waveform channels 

means NLL-SSST-coherence can provide rapidly high-precision, near-realtime relocation of new 

seismicity if the SSST corrections have pre-calculated from previous events in the area.

Additionally, since NLL-coherence requires waveforms on a single (vertical) channel from 

only one or a few stations, it can be applied with foreshocks and early events in a sequence before 

temporary stations are deployed, to older sequences where limited, digital, waveform data is 

available, or even to historical sequences if good quality analog records can be digitized. NLL-

SSST-coherence relocation for over 12,000 events of 2020 Monte Cristo sequence (Lomax, 2020b) 

was successfully performed with only 2 waveform channels, one from a permanent station outside 

the sequence but available before and throughout the sequence, and another from a temporary 

station near the sequence and available from a few days after the mainshock.

The apparent tendency of NLL-coherence to over-tightly cluster events at smallest scales is 

an important issue, as it may limit the smallest scale at which NLL-coherence results should be 

interpreted. This scale may related to a fraction of the wavelength of the highest or dominant 

frequencies in the waveforms, e.g. 0.1 to 0.2 km for the California sequences presented here, but 

may also vary with the quality of the NLL-SSST locations and PDF’s. We have also noticed that 

very nearby stations with simple waveforms (short S-P interval, little wave scattering) may have a 

tendency to produce high coherence values for events that are not nearby relative to target scales in 

a study. Strictly, this does not necessarily violate the ¼ wavelength rule, as the simple waveforms 

often have a relatively low dominant period. But this phenomena can lead to some false shifting of 

poorly constrained events into nearby event clusters. Further understanding of both these issues to 

improve the NLL-coherence procedure requires analysis and better understanding of the variation of
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waveform coherence with different inter-event and stations distances and azimuths, and with 

differing event sizes and source properties.

Cross-correlation based, relative location procedures require standard location results to 

form starting locations, to identify nearby, potential multiplet events, and to constrain the centroid 

of relative location hypocenters. NLL-SSST or NLL-SSST-coherence can be used to get an optimal 

set of standard, starting locations for applications of such relative location procedures. These 

optimal starting locations may be of particular importance for seismicity studies with poor station 

coverage or depth control. All standard and relative location methods remain subject to absolute 

location error and loss of accuracy due to error in the reference velocity model and insufficient 

station coverage. This absolute location error is carried into relative location results from the 

underlying, starting, standard location results.

5 Conclusions

We have introduced a new procedure (NLL-SSST-coherence) for high-precision, 

probabilistic, standard earthquake location which uses source-specific station corrections (NLL-

SSST) and inter-event waveform similarity measured by cross-correlation coherence (NLL-

coherence). NLL-SSST and NLL-coherence together greatly increase location precision over initial 

seismicity catalogs. We illustrated the behavior and performance of the NLL-SSST-coherence 

procedure through a synthetic example, ground-truth relocations, and relocation of two California 

earthquake sequences.

These results show that NLL-SSST-coherence location approaches the precision of cross-

correlation based, relative location methods. Moreover, the results suggest that for sequences with 

few or no nearby stations NLL-SSST-coherence location may produce more stable and meaningful 

hypocenter locations, especially in depth, than cross-correlation based, relative location methods. 

NLL-SSST-coherence can also be used to get an optimal set of starting locations before application 

of relative location procedures.

NLL-SSST-coherence requires less computing time and resources than cross-correlation 

based, relative location methods, and can be applied with foreshocks and early events in a sequence 

before temporary station deployments and to older sequences with few waveform data.

Data and resources

The supporting information for this article includes a 3D, fly-around animation of the NLL-

SSST-coherence relocations of Lone Pine seismicity (Movie S1). CSV tables of the final, NLL-
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SSST-coherence earthquake relocation catalogs for Parkfield and Lone Pine are available at the 

Zenodo dataset repository (Lomax & Savvaidis, 2021b). An archive containing a directory 

structure, files and instructions for installing, configuring and running NLL-SSST-coherence for a 

subset of Parkfield events is available at the Zenodo dataset repository (Lomax & Savvaidis, 

2021a).

The earthquake catalogs and corresponding phase arrival times, waveforms and metadata 

were accessed: for the Finland GT study from (Gibbons et al., 2020) and through Résif-Epos at 

https://www.resif.fr (last accessed April 2021) and http://doi.org/10.17616/R37Q06 (last accessed 

April 2021); for the 2004 Parkfield relocations through the Northern California Earthquake Data 

Center (NCEDC), http://doi.org/10.7932/NCEDC (last accessed April 2021); for the 2020 Lone 

Pine relocations through USGS-earthquake hazards available at https://www.usgs.gov (last accessed

April 2021) and https://earthquake.usgs.gov/earthquakes/search (last accessed April 2021) and 

corresponding phase arrival times from SCEDC (2013) accessed from 

http://service.scedc.caltech.edu/fdsnws/event/1/ (last accessed April 2021) and 

https://earthquake.usgs.gov/earthquakes/search (last accessed April 2021). The USGS Quaternary 

fault and fold database for the United States is available at: 

https://www.usgs.gov/natural-hazards/earthquake-hazards/faults (last accessed April 2021).

All earthquake relocations were performed with NonLinLoc (Lomax et al., 2001, 2014); 

http://www.alomax.net/nlloc; https://github.com/alomax/NonLinLoc; last accessed April 2021). 

SeismicityViewer (http://  www.alomax.net/software  , last accessed April 2021) was used for 3D 

seismicity analysis and plotting, SeisGram2K (http://www.alomax.net/software, last accessed April 

2021) was used for seismogram analysis and plotting, ObsPy (Beyreuther et al., 2010; Krischer et 

al., 2015), (http://obspy.org, last accessed April 2021) for reading seismicity catalogs and for 

coherence calculations, and LibreOffice (https://www.libreoffice.org, last accessed April 2021) for 

word processing, spreadsheet calculations and drawings.
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	Fig. 9. 2020 Mw 5.8 Lone Pine, California earthquake sequence relocations. Map and cross section (A–A′) of 2020-01-12 to 2021-02-15 hypocenters from the (a) USGS-SCSN catalog, (b) NLL-SSST D = 4 km relocations, (c) NLL-SSST-coherence relocations. Hypocenter color shows origin time, symbol size is proportional to magnitude. NLL-SSST-coherence hypocenters in (c) are shifted randomly 0.05 km to avoid overlapping symbols. White triangle to the west show the only nearby seismic station (CI.CWC) available for relocation. Green lines show faults from the USGS Quaternary fault and fold database for the United States. The hypocenter colors and the orientation of the cross section (A–A′) correspond to Figs. 2 and 3b, respectively in (Hauksson et al., 2020). Background topography image from OpenTopgraphy.org.
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