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Abstract

Export of sinking particles from the surface ocean is critical for carbon sequestration and for providing energy to the deep-
ocean biosphere. The magnitude and spatial patterns of this flux have been estimated in the past by satellite-based algorithms
and ocean biogeochemical models; however, these estimates remain uncertain. Here, we present a novel analysis of a global
compilation of \textit{in situ} ocean particle size spectra from Underwater Vision Profiler 5 (UVP5) measurements, from
which we determine particulate carbon fluxes. Using a machine learning algorithm, we extrapolate sparse observations of
particle abundance by size to the global ocean from oceanographic variables that are more commonly observed. We reconstruct
global maps of particle size distribution parameters for large sinking particles (80 \textmu{}m to 2.6 cm), and combine them
with empirical relationships to calculate the sinking carbon flux from the euphotic zone and the wintertime mixed layer depth.
Our flux reconstructions are comparable to other estimates, but suggest a less variable seasonal cycle in the tropical ocean, and
a more continuous export in the Southern Ocean than previously thought. Because our estimates are not bounded by a specific
depth horizon, we reconstruct export at multiple depths, and find that export from the wintertime mixed layer globally exceeds
that from the euphotic zone. Our estimates provide a baseline for more accurate understanding of particle cycles in the ocean,
and open the way to fully three-dimensional global reconstructions of particle size spectra and fluxes in the ocean, supported

by the growing database of UVP5 observations.
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Abstract

Export of sinking particles from the surface ocean is critical for carbon sequestration and
for providing energy to the deep-ocean biosphere. The magnitude and spatial patterns

of this flux have been estimated in the past by satellite-based algorithms and ocean bio-
geochemical models; however, these estimates remain uncertain. Here, we present a novel
analysis of a global compilation of in situ ocean particle size spectra from Underwater
Vision Profiler 5 (UVP5) measurements, from which we determine particulate carbon
fluxes. Using a machine learning algorithm, we extrapolate sparse observations of par-

ticle abundance by size to the global ocean from oceanographic variables that are more
commonly observed. We reconstruct global maps of particle size distribution parame-

ters for large sinking particles (80 um to 2.6 cm), and combine them with empirical re-
lationships to calculate the sinking carbon flux from the euphotic zone and the winter-

time mixed layer depth. Our flux reconstructions are comparable to other estimates, but
suggest a less variable seasonal cycle in the tropical ocean, and a more continuous ex-

port in the Southern Ocean than previously thought. Because our estimates are not bounded
by a specific depth horizon, we reconstruct export at multiple depths, and find that ex-
port from the wintertime mixed layer globally exceeds that from the euphotic zone. Our
estimates provide a baseline for more accurate understanding of particle cycles in the ocean,
and open the way to fully three-dimensional global reconstructions of particle size spec-

tra and fluxes in the ocean, supported by the growing database of UVP5 observations.

1 Introduction

In the ocean, primary production and other complex biogeochemical processes in-
teract to form the ocean’s biological pump. Aggregation of particulate organic matter
into particles denser than seawater leads to gravitational settling (Alldredge & Gotschalk,
1988), eventually storing inorganic carbon and nutrients in the deep ocean for timescales
of decades to centuries (Boyd et al., 1999, 2019). The export of particulate organic car-
bon provides energy to the deep ocean ecosystem (Siegel et al., 2014), influences atmo-
spheric carbon dioxide and climate (Kwon et al., 2009; Palevsky & Doney, 2018), and
indirectly affects on the ocean’s microbiome (Karl et al., 1984; Bianchi et al., 2018). Sev-
eral studies have estimated this global particle flux from the euphotic zone, resulting in
substantially variable estimates ranging from 3 to 10 PgC/y (Henson et al., 2011; Siegel
et al., 2014; DeVries & Weber, 2017; Dunne et al., 2007).

Current reconstructions of the sinking particle flux tend to vary in the total global
export, depending on the methods used (Quay et al., 2020). Biogeochemical models yield
a global export of 4-6 PgC/y when tuned to match particle observations, but could reach
up to 10 PgC/y when tuned to match in situ profiles of nutrients and other biogeochem-
ical tracers (Siegel et al., 2014; DeVries et al., 2017). Models that use satellite inputs and
empirically derived export ratios tend to result in a larger flux (Dunne et al., 2007; Laws
et al., 2011; Guidi et al., 2015), near 10 PgC/y. This is similar to annual net commu-
nity production estimates at the base of the mixed layer, which include additional ex-
port of dissolved organic carbon (Emerson, 2013; Quay et al., 2020).

Although the globally integrated particle flux is similar when comparing model, geo-
chemical, and satellite-based estimates, the regional patterns predicted by these meth-
ods differ substantially. Differences in regional flux estimates have been attributed to method-
ological limitations, including scarcity and variability of in situ data used to constrain
models, variability in satellite-based primary production algorithms, and models not able
to fully capture underlying physical and biological processes. Based on in situ geochem-
ical observations, Quay et al. (2020) suggest a weaker meridional variability in export
flux than other estimates, stressing the need for expanding and combining observational
approaches and models to fully constrain particle export.
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Recent studies have highlighted the importance of standardized methods and met-
rics used to quantify particle fluxes (Buesseler et al., 2020). In particular, the depth hori-
zon of export has been identified as a leading cause of diverging estimates (Palevsky &
Doney, 2018). Two choices of export horizon have been commonly adopted: the base of
the euphotic zone, either as a variable depth or global average (Buesseler & Boyd, 2009;
Siegel et al., 2016, 2014; Bisson et al., 2018; Dunne et al., 2007; DeVries et al., 2017; Hen-
son et al., 2011), and the mixed layer depth, both as seasonally varying and maximum
depth (Emerson, 2013; Quay et al., 2020). These choices underlie different interpreta-
tions of export fluxes: euphotic export takes an ecosystem view, while mixed layer ex-
port takes a carbon storage view.

Gravitational settling is thought to be the primary export mechanism globally, con-
tributing to about 60% of the total carbon export, and about half of the carbon stor-
age in the deep ocean (Boyd et al., 2019). Using both a euphotic viewpoint, and con-
sidering only gravitational settling, particle flux estimates have begun to converge on a
value of 5-6 PgC/y (Palevsky & Doney, 2018; Boyd et al., 2019).

Advances in ocean optical observations have begun to provide a three-dimensional
view into the life of particulate matter in the ocean (Stemmann & Boss, 2012; Kiko et
al., 2017; Guidi et al., 2009). The Underwater Vision Profiler 5 (UVP5) is an optical par-
ticle counter which provides the in situ particle abundance for large particles (80um—
2.6cm) in a given sampled volume (Picheral et al., 2010). The UVP5 consists of a cam-
era attached to the CTD rosette, and quantifies the particle abundances at high frequency
as it is lowered in the water column. Vertical profiles of particle size distribution (PSD)
from the UVP5 are commonly taken at up to 20 images per second with downward speeds
of 1m/s, with observations as deep at 6 km (Picheral et al., 2010). Since 2008, UVP5s
have been routinely deployed on ocean expeditions, resulting in over 9,000 profiles to date,
with observations from all ocean basins.

Although the UVP5 cannot directly determine carbon flux, because particle sink-
ing speed and carbon content are not measured, empirical relationships have been used
to define these as a function of size, making flux estimates possible (e.g., as compiled in
Kriest (2002) and Stemmann et al. (2004)). The vertical resolution of the UVP5, cou-
pled with these empirical relationships, enables a unique high-resolution view into the
three-dimensional ocean particle flux. Observations from UVP5 have been used to quan-
tify particulate flux to the mesopelagic ocean on a regional basis (Guidi et al., 2008, 2009;
Kiko et al., 2017), and a smaller dataset has been used to reconstruct global fluxes by
large-scale biomes (Guidi et al., 2015). However, the expanded dataset has not yet been
used to quantify fluxes from the surface ocean yet.

In this study, we reconstruct global particle carbon export by training a supervised
machine learning algorithm to extrapolate PSD from a rapidly growing dataset of UVP5
observations and well-sampled oceanographic variables. We combine these estimates with
in situ sediment trap and thorium-derived particle flux observations to better constrain
empirical relationships between particle size, sinking speed and carbon content, produc-
ing robust estimates of regional and seasonal flux variability. By comparing patterns in
PSD and flux with observations of environmental drivers, we further gain insight into
the mechanisms responsible for particle export and its variability. Finally, we exploit the
high vertical resolution of UVP5 measurements to estimate particle fluxes at both the
climatological euphotic zone and the maximum mixed layer depth, revealing the impor-
tance of the export horizon for this quantity.

The rest of the paper is organized as follows. Section 2 describes the machine-learning
approach used to globally extrapolate PSD and reconstruct particle fluxes. Section 3 presents
the reconstructions of particle distributions and export fluxes, and compares our results
to previous studies at global and regional scales. Section 4 summarizes the main find-
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ings, discussing the uncertainties and caveats inherent to our approach, and future di-
rections.

2 Methods

The flux of particulate carbon (¢) at any given depth can be expressed as a func-
tion of three size-dependent quantities: PSD (n(s), %), sinking speed (w(s), ), and
particle carbon content (c(s), mgC), according to the following equation (Stemmann &

Boss, 2012):

o= [ ) wls) - cls) s, 1)

min

Here, s indicates the particle equivalent spherical diameter, or size (¢cm), Sy, and
Smaz are respectively the minimum and maximum size of particles considered for export.
We further assume that the quantities in Equation 1 can be approximated by power laws
that depend on particle size, each characterized by an intercept (the size-independent
coefficient) and a slope (the exponent for size-dependence) (Stemmann & Boss, 2012):

n(s) =mng-s " (2)
w(s) = wp - s (3)
c(s) = co - s, (4)

Thus, by using Equations 2-4, the total particle flux can be expressed as:

-

where we combined the intercepts and exponents of the sinking speed and carbon
content relationships by setting mo = wq - ¢g and u = n + (. We further approximate
mg and g with globally constant values.

Smaz Smaz
no - wo - co - 8 BT ds = / no-mg-s Pt ds (5)

min Smin

We use UVP5 observations to reconstruct PSDs (i.e., ng and ) at the chosen ex-
port horizon, by fitting Equation 2 to the observed particle abundance. We use a 20 me-
ter depth bin around the export horizon to average the observations and smooth out small-
scale noise and variability. We then extrapolate sparse UVP5 observations to a global
grid, by training a supervised learning algorithm to predict spatially-varying PSD from
well-sampled environmental predictors. To completely reconstruct fluxes based on Equa-
tion (1), we constrain the parameters of the combined sinking speed and carbon content
relationships, i.e., my and p, by optimizing predicted particle fluxes against in situ flux
estimates from sediment traps and thorium-uranium disequilibrium measurements.

We exploit the three-dimensional nature of UVP5 observations to perform these
calculation at two different export horizons: the base of the euphotic zone (here defined
by the 1% light level according to Morel et al. (2007)) and the annual maximum mixed
layer depth. The steps used to solve Equation (1) are illustrated in the workflow schematic
in Fig. 1, and are detailed in the following sections.
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Figure 1. Schematic diagram illustrating the general workflow of processing UVP5 observa-

tions into a flux reconstruction. Observations are ensembled onto a normal 1 degree grid, with

observation representing an average of a 20 meter vertical bin about the export horizon. All ob-

servations are the calculated values for the 105 pum to 5 mm size bins. Specific parameters are

globally extrapolated using the Random Forest algorithm. These new global data are used to

construct the flux, using equation 1.

2.1 Reconstructions of particle size spectra from UVP5 data

Observations from UVP5 provide particle counts for the 80 pm - 2.6 cm size range
at any specific location and depth. Under the power law assumption, the two parame-
ters ng and S are needed to fully capture the PSD (Equation (2)) (Brun-Cottan, 1971;
Stemmann et al., 2004; Stemmann & Boss, 2012; Devries et al., 2014).

The slope 8 quantifies the relative abundance of large vs. small particles, while the
intercept ng is a measure of the total abundance of particles for an arbitrary reference
size. We determine the slope for each UVP5 measurement by fitting a linear least-squares
regression through the log-transformed particle abundance and size. We determine the
intercept by using the particle biovolume (BV), which can be directly derived from UVP5
observations, and applying the following definition:

BV:/ ”%-no~s3_5ds.

min

(6)

By fixing the size range, we solve Equation 6 for the intercept as a function of slope

and biovolume:
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We set the minimum and maximum size for this equation to the same values used
to estimate the slope and biovolume from UVP5 observations. We use a minimum size
of 105 pum to avoid a potential slight instrument bias in the lowest size classes. We con-
strain the maximum size to 5 mm, which corresponds to the size where zooplankton start
to dominate the biovolume at a variety of locations sampled by UVP5 (Forest et al., 2012;
Stemmann et al., 2008; Stemmann & Boss, 2012). The sensitivity of our results to these
choices is discussed in Section 2.2.

We coarsen the temporal and spatial resolution of the 6856 UVP5 profiles by bin-
ning them onto the standard monthly 1 degree-resolution grid of the World Ocean At-
las (H. Garcia et al., 2018; H. E. Garcia et al., 2019). To this end, we combine profiles
in a given grid cell and month together, thus reducing the noisy and episodic nature of
particle observations. To reconstruct global PSDs, we calculate slope and biovolume for
each grid cell, at a given export horizon, using the gridded dataset, and assume that these
averages are representative of the climatological monthly PSD in each grid cell.

Although the gridded observations reduce data patchiness in well sampled regions,
many grid cells only contain one observation. For each grid cell with observations, we
place an objective goodness of fit threshold to determine the robustness of the power law
fit. If a power law fit has a correlation coefficient of less than 0.9, we remove the data
point, as it likely does not follow a power law distribution. This quality control step re-
moves less than 1% of data (Supplementary Information Fig. S1). The final processed
UVP5 observation dataset contains 2,034 gridded observations at the export horizon, which
together cover less than 10% of the ocean surface.

2.1.1 Training and evaluating a Random Forest model

Monthly flux reconstructions require extrapolation of PSD parameters to the whole
ocean on monthly time scales. We use a Random Forest (RF) algorithm to reconstruct
PSD slope and biovolume globally, following an approach similar to Yang et al. (2020).
A RF deploys a decision tree learning scheme to solve a regression equation iteratively,
and reports the ensembled average. Using a RF, each individual decision tree is trained
on a subset of the available data, with a subset of predictors, but the power of the method
emerges when considering the ensemble average. The RF is able to learn statistical re-
lationships between target variables (here, UVP5-derived slope and biovolume) and a
series of predictors (here, environmental variables), to make reconstructions that min-
imize the error between predicted and observed data. Because a RF is highly non-linear,
it runs the risk of overfitting the data, producing solutions with low error, but also lim-
ited extrapolation power outside of the training dataset. To mitigate the risk of over-
fitting, the RF does not use all data points for training. Instead, a bootstrapped sam-
ple of the data is selected for each tree in the forest. The degree of overfitting is deter-
mined by finding the error between the model and the data not used for training, i.e.,
the “out-of-bag” data.

The rank of predictors is given by the out-of-bag error coupled with an internally
derived measure of importance, using a “recursive feature elimination” approach. A re-
cursive feature elimination systematically removes the least important predictor and records
the out-of-bag error to describe the contribution of each predictor to the final solution.
When there is relatively no change in the out-of-bag error for every additional predic-
tor, these predictors are considered not important for this RF (Supplementary Fig. S2).
We determine statistical importance in order to establish a reduced set of predictors, re-
ducing the risk of over-fitting while not losing predictive power. When interpreting the
results, we apply qualitative understanding of the predictors, combined with the recur-
sive feature elimination, to determine if a predictor is should be included in the final re-
gression.
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2.1.2 Environmental Predictors

The RF algorithm relies on a set of predictors and target data at the resolution of
the desired reconstruction. In our case, we use climatological monthly predictors at 1-
degree spatial resolution. We include a variety of predictors that could be mechanisti-
cally related to particle production and export in the surface ocean, ranging from phys-
ical variables (e.g., temperature and salinity) to ecosystem-level quantities (e.g., primary
production, euphotic zone depth). A list of all predictors used is shown in Table 1.

Some of these predictors are obtained from satellite products at high spatial and
temporal resolution (e.g., surface chlorophyll and net primary production), and include
missing values caused by the presence of clouds or sea-ice. For these variables, we first
average observations into monthly climatologies, then replace missing data by using a
spherical interpolation algorithm (D’Errico, 2016). To avoid excessive extrapolation in
high latitude regions in wintertime, only points with at least 8 months of satellite ob-
servations are used for the final reconstruction, following the approach of Siegel et al.
(2014). To process net primary production, we also calculate the critical depth, where
light becomes too limiting to support photosynthesis, based on climatological chlorophyll
concentration and incident shortwave radiation (Siegel et al., 2002). Net primary pro-
duction is then set to zero at all points where the mixed layer depth exceeds the crit-
ical depth, before interpolating. We also include the standard deviation of the primary
production, as a proxy for intermittency and sub-seasonal variability. Similarly, we re-
strict chlorophyll and net primary production based on climatological sea ice cover.

We use three-dimensional variables (e.g., temperature, nutrients) to generate two-
dimensional surface predictors based on mixed layer averages. We also include predic-
tors that quantify the change of variables with depth, by calculating the average of the
variable from the base of the mixed layer to 100m below it. For surface-only variables
(e.g., chlorophyll, net primary production) and nutrients we also include predictors that
quantify change in time, calculated by applying a finite-difference time derivative, be-
cause change over time might be more indicative of export flux than the actual variable.
We refer to these depth- and time-change variables as “variations” in Table 1. We test
the significance of each predictor, including vertical and time variations, with the recur-
sive feature elimination. Finally, we group predictors into different categories, with vari-
ations for selected variables (Table 1). If a predictor is in the universal category, it is al-
ways included in all RF realizations. For all other categories, only one predictor is cho-
sen for each realization, but if a predictor is chosen, all variations are included too.

Based on the categories listed in Table 1, we use a total of 29 predictors for each
RF realization (Table 1). We generate 100 realizations, with variable hyper-parameters
(the number of trees and their complexity) and randomly chosen predictors from each
category, and take the ensemble average as the final product, with the inter-model spread
representing the error. Generating an ensemble of 100 RFs, with varying hyper-parameters
and predictors, reduces biases and overfitting, making the results robust with respect to
parameter tuning, and the choice of different data products. Thus, our reconstructions
are not the result of tuning the hyper-parameters, or choosing only the best predictors.
We evaluate the overall robustness of the predictions by considering goodness-of-fit statis-
tics that include the correlation coefficient, the root mean square error (RMSE), and the
average bias, calculated by comparing predictions to in situ data.

2.2 Sinking Speed and Carbon Content

Particle sinking speed and carbon content have been empirically estimated using
power law relationships analogous to Equations (3) and (4). Most of these studies mea-
sured a range of particles that does not wholly encompass the sizes detected by the UVP5.
Also, these relationships are defined for specific particles types, which are not distinguished
in the dataset used. Since estimates of total flux are sensitive to the sinking speed and



Table 1.

Variables used to predict PSD parameters, their source and variations.The categories

are organized based on their predictor type where the universal predictors are used in every

random forest.

Category Variable Variations Source
Universal
Topography N.G.D.C (2006)
Temperature

below mixed layer

Time Derivative

Locarnini et al. (2019)

Chlorophyll

Time Derivative

NASA G.S.F.C (2014)

Oxygen

ML/ ML-+100m
Time Derivative

H. E. Garcia et al. (2019)

Shortwave Radiation

Time Derivative

C.C.C.S (2017)

ML,/ ML+100m

Nitrate Time Derivative H. Garcia et al. (2018)
ML/ ML+100m
Phosphate Time Derivative H. Garcia et al. (2018)
Salinity ML,/ ML+100m Zweng et al. (2019)

Mixed Layer

Mixed Layer depth

Time Derivative

Johnson et al. (2012)

Mixed Layer depth

Time Derivative

de Boyer Montégut et al. (2004)

Primary
Production

Eppley VGPM

Time Derivative

Antoine and Morel (1996)

VGPM

Time Derivative

Behrenfeld and Falkowski (1997)

CBPM

Time Derivative

Westberry et al. (2008)

CAFE

Time Derivative

Silsbe et al. (2016)

NPP Standard

Deviation
Eppley VGPM Antoine and Morel (1996)

VGPM Behrenfeld and Falkowski (1997)
CBPM Westberry et al. (2008)

Euphotic

Zone Depth
VGPM Morel et al. (2007)
CBPM Morel et al. (2007)
Iron

Soluble Iron Fraction

Time Derivative

Hamilton et al. (2019)

Labile Iron Fraction

Time Derivative

Myriokefalitakis et al. (2018)
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carbon content relationships, here encapsulated by the parameters mg and p, we apply

an optimization procedure to keep our results consistent with in situ particle flux mea-
surements. Specifically, we find the values of my and g that minimize the sum of the square
errors between particle flux predictions (Equation 5) and co-located in situ carbon flux
measurements (Bisson et al., 2018).

Because the size distribution of particles that contribute to the flux is poorly con-
strained, we perform this optimization for a range of plausible minimum and maximum
sizes for Equation (5), selecting reasonable combination for the final estimate. Ultimately,
when optimizing the sinking carbon parameters, the global export flux is insensitive to
the size range; however the resulting empirical relationships are (see Section 3.2 and Sup-
plementary Fig. S5). The insensitivity of the carbon flux to the size range of that flux
indicates a compensatory effect between the sinking carbon parameters and the size range
selected. Thus, choosing different size combinations would result in a similar total flux,
although it may slightly alter spatial or temporal patterns.

Our final choice of size range is informed by average sinking speeds and carbon con-
tent previously reported (Kriest, 2002). We assume the slope and intercept (calculated
from the biovolume; Equation 7) of the particle size distribution to be constant for sink-
ing particulate matter, and expand the minimum size to include all sinking particle sizes.
Based on this analysis, we set the minimum size class to be 35 ym, where the average
sinking speed is near 1 m d~! (Smayda, 1970; Kriest, 2002), a size that is likely rapidly
remineralized, making its contribution to the sinking flux negligible (Riley et al., 2012).
Similar to the observation limitations, we choose 5 mm as the maximum size of sinking
particles.

2.3 Flux reconstruction and evaluation

Using the PSD reconstructions and the optimized sinking carbon parameters, we
calculate particle export fluxes following Equation (5). We evaluate these reconstructions
by comparing them to in situ flux observations and previous global reconstructions. Specif-
ically, we compare total fluxes, meridional averages, and seasonal cycles. For these com-
parisons, we divide the ocean into 14 biogeochemically-consistent regions based on the
boundaries identified by Weber et al. (2016), with an additional boundary along the equa-
tor to separate Northern and Southern Hemispheres. We evaluate seasonal cycles by an-
alyzing temporal correlations between reconstructions, and by introducing a seasonal-
ity index defined by the ratio between the seasonal range and annual mean flux in each
region.

We first present results for fluxes estimated at the climatological euphotic zone depth,
and then repeat the calculation at the maximum mixed layer depth. For the latter, we
keep the same sinking speed and carbon content parameters as determined for the eu-
photic zone depth. Thus, the only methodological difference between the two estimates
is the depth used to calculate the export flux.

3 Results
3.1 Particle Size Distribution reconstructions

Our global reconstructions capture most of the variability of UVP5-based PSD slope
and biovolume data (Figs. 2 and 3), and robustly reproduce observations, with global
average values of 0.6 ppm for biovolume (r? = 0.91) and 3.9 for slope (r? = 0.86). Ob-
servations that are not used in the training (out-of-bag) are also robustly predicted, with
a RMSE of 2.1 ppm for biovolume (72 = 0.74) and 0.33 for slope (r? = 0.68). Some
of the remaining uncertainty in our reconstructions can be attributed to the episodic na-
ture of particle production and export. Our method operates under the assumption that
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Observed and reconstructed Particle biovolume at the base of the euphotic zone.

(A) Map of the observations of intercept, for locations with observations in multiple months the
average is shown (B) Map of the biovolume reconstructions. (C) Performance of the RF recon-
struction shown as density scatter plots of predicted vs. observed Biovolume (colors indicate the
normalized density of grid points surrounding the given cell). (D) Same as B, but using out-of-
bag (OOB) predictions, i.e., predictions vs. observations withheld from training. Annotations in
B and C show the square of the correlation coefficient (r2), the RMSE and the global bias.

the input data (i.e., the UVP5 measurements) are monthly climatological averages, rather
than snapshots. By ensembling these snapshot measurements into 2,034 monthly obser-
vational data points, we reduce part of the episodic nature of these observations; how-
ever some patchy behavior may still exist in the gridded data. Overall, the reconstruc-
tions show slight underestimates of extreme values (i.e., a reduced range), but negligi-

ble mean biases for both variables (Figs. 2 and 3).

We find high biovolume in productive regions such as high latitudes, coastal wa-
ters, and upwelling systems, and low biovolume in the oligotrophic suptropical gyres. These
patterns mirror satellite-derived primary productivity and chlorophyll measurements (Sup-
plementary Fig. S3), suggesting that phytoplankton and photosynthesis ultimately con-
trol the total abundance of particles in any given region. Reconstructions of PSD slope
show a similar but negative correlation with primary production and chlorophyll, with
smaller slopes (i.e., “flatter” PSD) in more productive regions, and larger slopes (i.e., “steeper”
PSD) in oligotrophic waters.
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Figure 3. Observed and reconstructed PSD slope at the base of the euphotic zone. (A) Map
of the observations of PSD slope, for locations with observations in multiple months the average
is shown (B) Map of the PSD slope reconstructions, colored dots show the observations from A.
(C) Performance of the RF reconstruction shown as density scatter plots of predicted vs. ob-
served particulate slope (colors indicate the normalized density of grid points surrounding a given
cell). (D) Same as B, but using out-of-bag (OOB) predictions, i.e., predictions vs. observations
withheld from training. Annotations in B and C show the square of the correlation coefficient
(r2), the RMSE and the global bias.

Consistently, we find that slope and biovolume are negatively correlated (72 = 0.4,p <
0.01, Supplementary Fig. S3), roughly indicating that particle-rich regions (higher bio-
volume) are also characterized by an excess of large particles over small particles (i.e.,
flatter slope), relative to average oceanic conditions. Since large particles contribute pro-
portionally more than smaller particles to export fluxes, because of their faster sinking
speed, this relationship suggests that biovolume and slope will synergistically enhance
export fluxes in particle-rich regions, and depress them in particle-poor regions.

While this pattern of correlations holds true for most regions, we find few signif-
icant exceptions where the PSD slope and biovolume do not co-vary as closely as expected.
For example, in the North Pacific Subpolar Gyre, flatter slopes are found in the open
ocean (Fig. 3), in particular close to the subpolar-subtropical transition, while the high-
est biovolumes are found closer to the coast and in marginal seas. Similarly, slopes in
coastal upwelling system, such as the California Current and the Arabian Sea upwelling,
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are not as flat as the high biovolumes would suggest. We also find relatively flatter slopes
in the North Pacific subtropical gyre as compared to other oligotrophic regions.

The seasonal dynamics of biovolume and slope confirms the general anti-correlation
of these two variables, and reveals significant seasonal cycles, with maximum biovolume
and minimum slope generally found in spring, and minimum biovolume and maximum
slope in late fall to winter (Supplementary Fig S4). Similar to the spatial distribution,
we find significant deviations from the general anti-correlation between biovolume and
slope. For example, in the North Atlantic, the peak in biovolume (May) precedes the min-
imum in slope (July). In some of the tropical regions (e.g., in the North Pacific and North
Atlantic) the anti-correlation is also less robust, with periods of several months where
biovolume and slope increase or decrease simultaneously. As discussed above, spatial and
temporal decoupling of the biovolume-slope relationship could have important consequences
for the patterns of particle export flux.

A recursive feature elimination suggests that multiple variables are required for a
robust reconstruction of PSD (Supplementary Fig. S2). Among these, we highlight chloro-
phyll, mixed layer depth, and oxygen, each with different importance for explaining bio-
volume and slope variability. Interpretation of these rankings should be done with care
because of the statistical nature of the RF algorithm. However, while a mechanistic un-
derstanding of PSD patterns can not be directly tied to these rankings, highlighted pre-
dictors can provide insights into the role of different processes that may be affecting PSDs.
We note that certain predictors with mechanistic links to particle export, for example
silicate, which serves as a proxy for diatom production, were deemed unimportant and
are not included in the final RF regressions. It is likely that information contained in
these predictors is shared by correlations with other variables, and is picked up by the
main predictors used by the method.

Multiple variables are significantly correlated with biovolume and slope (Supple-
mentary Fig. S6). In particular, we find that biovolume correlates positively and robustly
with chlorophyll (2 = 0.25,p < 0.01, Supplementary Fig. S3). This is not surpris-
ing, because phytoplankton are ultimately the main source of organic matter and sink-
ing particles in the ocean. However, we find that chlorophyll is not as strong a predic-
tor of slope, when the whole ocean is considered (r? = 0.04,p < 0.01, Supplementary
Fig. S3), and that additional predictors are needed for robust slope reconstructions. This
result contrasts with previous findings based on UVP5 observations along a meridional
section in the Pacific Ocean (Cram et al., 2018). Slope reconstructions also reveal a sig-
nificant predictive power for subsurface oxygen. Although likely not directly related to
the PSD, oxygen is a proxy of respiration in the water column, which in turn reflects the
characteristics of both the surface community that drives export, and of the mesopelagic
community responsible for this respiration. We note that the PSD slope is an emergent
property that reflects the interaction of physical and biological processes that are still
poorly understood. Not surprisingly, slope is harder to reconstruct than biovolume, and
shows overall weaker correlations with other individual predictors (Supplementary Fig.

S6).

Spatial patterns in slope share several features with estimates of phytoplankton size
spectra from observations and models (Kostadinov et al., 2009; Roy et al., 2013; Bar-
ton et al., 2013; Ward et al., 2014), reflecting the importance of phytoplankton size struc-
ture and composition for particle export. Satellite-based reconstructions of phytoplank-
ton functional groups (e.g., Mouw et al., 2017) could be included as predictors. How-
ever, methodological shortcomings and disagreement between different approaches cur-
rently limit their applicability — something that may be mitigated by future advances.
It is also likely that information related to phytoplankton composition implicitly enters
the RF regression via relationships with predictors such as surface chlorophyll and tem-
perature.
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al. (2011), (D) (Dunne et al., 2007). Colored dots represent the relative density of grid points
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coefficient (r?) RMSE, and average bias.

Based on the PSD reconstructions and Equation 5, we optimize for the particle sink-
ing speed and carbon content parameters (mg and p) that produce export fluxes in best
agreement with in situ observations (see Section 2.2). This approach results in a value
of 27.65 mgC m s~ for mg, and of 2.90 for y, both in the range suggested by in situ ob-
servations (Kriest, 2002), and comparable to values adopted by previous studies (Kriest,
2002; Stemmann et al., 2004; Guidi et al., 2008; Kiko et al., 2017; Bianchi et al., 2018).

The resulting carbon fluxes compare well with sediment trap and thorium-based
observations (Fig. 4), performing in a similar way or better than previous estimates (Henson
et al., 2011; Dunne et al., 2007; Siegel et al., 2014). Our estimate reduces the overall un-
certainty (here expressed by the RMSE) compared to previous work, and shows negli-
gible bias. However, our method also reduces the overall range of reconstructed fluxes,

i.e., it overestimates the flux at low values and underestimates it a high values compared
to observations. This bias may be related to the tendence of the RF algorithm to un-
derpredict extremes in both biovolume and slope (Figs. 2 and 3).
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Extrapolated to the whole ocean, our method reveals spatial patterns of export fluxes
in broad agreement with previous studies, with some notable differences (Fig. 5). Sim-
ilar to other estimates, particle fluxes tend to decrease from high to low latitudes, and
from coastal regions to the open ocean. A local maximum of export is reproduced along
the equator, and is particularly evident in the Pacific Ocean. Compared to previous work,
our method produces somewhat weaker gradients between coastal and offshore waters,
with relatively high fluxes even near the centers of subtropical gyres, and suggests an
asymmetry between the subpolar Atlantic and Pacific Oceans, with more intense par-
ticle export along the gulf of Alaska than in the North Atlantic (see also Section 3.2.1).
We also reconstruct substantially stronger export than previously found in the South-
ern Ocean, in particular south of 50S (see discussion in Section 3.3).

Globally integrated, we estimate a particle export flux of 6.7 + 0.4 PgC/y, in ex-
cellent agreement with the range of observational and model-based estimates of the bi-
ological gravitational pump (4-9 PgC/y, Boyd et al. (2019)). Compared to other spatially-
resolved reconstructions, our global flux sits between the low-value estimate of Henson
et al. (2011) (3.0 & 0.3 PgC/y) and the high-value estimate of Dunne et al. (2007) (9.8
+ 04 PgCly).

This Study b) Bisson et al. (2018)

mg Carbon
m?2 - day

Figure 5. Annual average particle export from the euphotic zone for the (a) Random forest
derived compared to the in situ data of (b) Bisson et al. (2018), the steady state satellite driven
model (c) SIMPLE-TRIM of DeVries et al. (2017), empirical models of (d) Dunne et al. (2007)
and (f) Henson et al. (2011) and the satellite-driven euphotic zone food web model of (e) Siegel
et al. (2014). Annotated in each figure is the calculated total export and uncertainty reported by
each study.
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3.2.1 Meridional variability

We illustrate the main spatial differences between our and other reconstructions
by considering zonally averaged export fluxes (Fig. 6). The largest export rates are ob-
served around the equator, in the subpolar Pacific Ocean, and in the mid- to high-latitudes
of the South Atlantic Ocean, while more uniform exports are observed in the Indian Ocean.
In all basins, the minimum export rates are generally located at the latitude of the sub-
tropical gyres. While export is nearly symmetrical around the equator in the Pacific Ocean
(Fig. 6a), in the Atlantic Ocean it dramatically increases moving from the Northern to
the Southern Hemisphere (Fig. 6b). These patterns reflect a combination of open-ocean
and shelf enhanced particle export. Specifically, high exports in the Northern Pacific and
Southern Atlantic Oceans are partly driven by large fluxes in the Bering Sea, the Sea
of Okhotsk, and the Patagonian shelf. At lower latitudes, coastal upwelling systems sus-
tain high export in the northern Indian Ocean and the tropical to subtropical Atlantic
Ocean.

Variations in export patterns reflect a combination of varying particle biovolume
(Fig. 2) and PSD slope (Fig. 3). These two quantities generally correlate in such a way
as to increase export fluxes in particle-rich waters, where large, fast-sinking particles tend
to be relatively more abundant than small particles, and decrease them in particle-poor
waters where small particles dominate (see Section 3.2, and Supplementary Fig. S3). High
export in the eastern equatorial and tropical Pacific can be attributed to a substantial
increase in biovolume, with a minor contribution from PSD slope, which appears to be
more uniform across the region. The picture is somewhat different in the equatorial At-
lantic Ocean, where a more substantial flattening of the PSD suggests a more important
role of large particles in driving elevated export fluxes. A similar interaction of particle
abundance and size-structure dramatically intensify fluxes in the subpolar North Pacific
and Southern Ocean, and to a lesser extent the subpolar Atlantic, where a relative in-
crease in particle abundance is followed by a shift of the PSD toward large particles. In
contrast, along many coastal regions, including eastern boundary upwelling systems and
the Arabian Sea upwelling, increase in particle biovolume, rather than substantial changes
in size structure, appears to drive enhanced export fluxes.

Our reconstruction shows broad meridional patterns similar to previous estimates
(Fig. 6); however, significant regional-level discrepancies remain. For example, in the low
latitudes, we predict somewhat less intense equatorial export peaks and subtropical lows,
compared to the estimates of Dunne et al. (2007) and Siegel et al. (2014). In this respect,
our reconstruction is more in line with the results of DeVries and Weber (2017). In the
subpolar Pacific, our estimate shows a northward shift of maximum export that is com-
parable to the results of Dunne et al. (2007). This is likely caused by intensification of
particle fluxes in coastal waters and marginal seas, which may be related to regional pro-
cesses such as iron leakage from shelves and marginal seas (Nishioka et al., 2020). In the
Atlantic Ocean, the gradual increase of export from northern to southern latitudes (mostly
driven by high export near the coast), and the rapid increase in the Southern Ocean (caused
by high export near the Patagonian shelf), are similar to the reconstruction of Henson
et al. (2011), although the magnitude is larger. In the Indian Ocean, our reconstruction
matches other studies at low latitudes; however, it shows a more dramatic increase in
export towards the Southern Ocean sector (see also Section 3.3).

3.2.2 Seasonal cycle

The seasonal cycle of particle export is comparable to previous studies (Fig. 7), when
averaged over large-scale coherent biomes (Weber et al., 2016). However, significant dis-
crepancies are also revealed. In general, our seasonal cycle is more muted than previous
work, suggesting weaker month-to-month variability in some regions, while other regions
match previous reconstructions more closely.
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Figure 6. Zonally integrated annual export for the (a) Global Ocean, (b) Pacific Ocean, (c)
Atlantic Ocean, and (d) Indian Ocean. Each color represents a different study, as listed in the

legend (bottom ).

Similar to other estimates, we capture well-known seasonal export pulses associ-
ated with spring phytoplankton blooms in the North Atlantic and North Pacific Oceans.
Over most of the tropics, our reconstruction reveals nearly constant seasonal cycles, and
a slight asymmetry about the equator with more pronounced seasonality in the North-
ern Hemisphere compared to the Southern Hemisphere. The most significant discrep-
ancy is observed in the Southern Ocean, in particular in the Antarctic Zone, where our
reconstruction is substantially higher than previous estimates, with sustained export through-
out winter months. We discuss this deviation in detail in Section 3.3.

To better quantify seasonality and provide a more objective comparison to other
studies, we define a seasonality index as the range of monthly export divided by the an-
nual mean flux in each region (Supplementary Fig. S10). A higher seasonality index is
indicative of a more dynamic export cycle, with more dramatic variations between low
and high export periods. As expected, seasonality is larger in high latitudes, and decreases
toward the tropics; the highest values are reached in the mid-latitude to subpolar North
Pacific and Atlantic, and higher variability is confirmed in the tropics and subtropics of
the Southern Hemisphere compared to the Northern Hemisphere.

The relatively muted seasonality of our reconstruction, compared to previous work,
is consistent with the weaker spatial gradients discussed in the previous sections, and sug-
gests less dramatic gradients in net community production and export than previously
assumed. The machine learning approach used in this study relies on non-linear relation-
ships with multiple ocean variables to reconstruct particle export fluxes, which may re-
veal compensatory relationships between different predictors. Surface chlorophyll, tem-
perature, and net primary production have all been used in previous global reconstruc-
tions (Dunne et al., 2007; Henson et al., 2011; Siegel et al., 2014), but rarely together
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Figure 7. Annual seasonal cycle of particle flux from the euphotic zone for the regions spec-
ified in the map (top). Each line corresponds to a study shown in the legend (top right). The

same seasonal spatial mask was applied to each study.

with other variables that may be important in modulating spatial and seasonal export
patterns. It is also possible that our method somewhat underestimates variability com-
pared to previous work. As previously noted (see Section 3.1), RF ensemble reconstruc-
tions appear to reduce extremes in both biovolume and PSD slope, potentially under-
estimating variability in particle export fluxes derived from these quantities. When com-
pared with other studies, our results show overall similar patterns in seasonal variabil-

ity, but lower seasonality in most regions, particularly at higher latitudes (Fig. 7 and Sup-
plementary Fig. S10).
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3.3 Southern Ocean Export

Export flux in the Antarctic Zone are substantially larger than other global recon-
structions, especially during winter (Fig. 7). A regional study based on 10 years of bio-
Argo measurements from 2006-2014, combined with satellite-based net primary produc-
tion and export algorithms, similarly suggests higher than previously reported particle
fluxes throughout the region (Arteaga et al., 2018), in better agreement with our results
(Fig. 8). This similarity is mostly evident in the open ocean, and varies depending on
the primary production algorithm chosen for the comparison. However, our estimate also
reveals substantially higher export near landmasses, for example the Patagonian Shelf,
South Georgia and the South Sandwich Islands, and the Kerguelen Plateau. Although
estimates from Arteaga et al. (2018) do not show the same high flux in winter as our re-
construction, they do demonstrate that export fluxes from the Antarctic Zone of the South-
ern Ocean likely never decrease to the nearly negligible levels shown by other global es-
timates in winter (Fig. 7).

This discrepancy with prior global estimates in Antarctic Zone export could be due
to a variety of factors. First, UVP5 observations in the Southern Ocean, particularly in
winter, are extremely scarce. Similarly, satellite-based observations of predictors based
on ocean color dwindle in wintertime. Other climatological variables, such nutrients and
oxygen, are also the results of interpolation of fewer in situ observations relative to the
rest of the ocean. The scarcity of observations to train our model result in strong inter-
model variability, highlighting the spread between different RF realizations. Second, our
reconstruction reveals significant export primarily next to land masses in the Atlantic
and Indian sectors of the Southern Ocean. Proximity to land masses has been shown to
increase productivity and carbon flux (Jouandet et al., 2014), presumably via iron fer-
tilization from terrestrial and sedimentary sources in otherwise high-nutrient low-chlorophyll
waters. It is possible that other flux reconstructions underestimate this rapid aggrega-
tion of particles and increased particle export, in particular during winter, when obser-
vations are scarce. Increasing the number of particle flux and size distribution observa-
tions from the Antarctic Zone, in particular downstream of major land masses and in
wintertime, together with a better regional understanding of export processes, could help
shed more light on the patterns of export in the region.

3.4 Mixed layer versus euphotic zone export

By exploiting the high vertical resolution of UVP5 measurements, our approach
allows reconstruction of particle export at arbitrary horizons. We illustrate this capa-
bility by estimating particle fluxes at the depth of the maximum climatological winter-
time mixed layer, and compare them to export from the climatologically-varying euphotic
zone, shown in Fig. 5. We find that, globally integrated, the particulate carbon export
from the mixed layer is 9.4 +1.1 PgC/y, i.e., about 3 Pg/year larger than the global ex-
port from the euphotic zone. This estimate is slightly lower than observational estimates
of carbon export and sequestration from the same depth horizon based on ANCP and
POC export estimates (Emerson, 2013).

Overall, export at the wintertime mixed layer follows broad spatial patterns sim-
ilar to the export from the euphotic zone (Fig. 9a). However, tropics and subtropics show
larger export fluxes from the mixed layer (locally, up to a few times), while high latitudes
show overall weaker export fluxes (Fig. 9b). The low-latitude intensification of mixed
layer particle fluxes is similar in all ocean basins, and more than compensates for the re-
duction at high latitudes (Supplementary Fig. S12), thus producing an overall larger ex-
port from this horizon. Because of this low-latitude intensification, export from the mixed
layer shows stronger gradients between the tropics and high latitudes. Gradients between
the equatorial export peak and the subtropical export low are also intensified. Finally,
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Figure 8. Southern Ocean specific export for (a) This study, and (b-e) the various mod-
els from Arteaga et al. (2018), and (f) the mean from that study. Each model from Arteaga et
al. (2018) represents a different net primary productivity algorithm used to derive export. (g)

Seasonal cycle of export for each model in the Antarctic zone (shown in figure 7).

export from the mixed layer in the Southern Ocean is substantially depressed compared
to export from the euphotic zone.

Differences between euphotic zone and mixed layer export can be best interpreted
by considering the different depth of these horizons (Palevsky & Doney, 2018). The depth
of the maximum mixed layer is shallower than the euphotic zone in the tropics and sub-
tropics, and is deeper in high latitudes (Fig. 9c). This suggests that shallower export hori-
zons are generally characterized by higher fluxes than deeper export horizons, likely be-
cause of remineralization of particles in the upper layers of the ocean. Specifically, we
identify three main latitudinal bands with different horizon depths and export patterns,
roughly corresponding to tropics and subtropics, mid-latitudes, and subpolar regions.
Over most of the tropics and the subtropics, the maximum wintertime mixed layer is shal-
lower on average than the climatological euphotic zone (blue colors in Fig. 9c). Here,
particle remineralization between the wintertime mixed layer and the euphotic zone depth
reduces export from the latter horizon, indicating net heterotrophy in the deeper lay-
ers of the euphotic zone. Over subpolar regions, the wintertime mixed layer is deeper
on average than the climatological euphotic zone. Here, export fluxes reach maximum
values within the euphotic zone, and decrease below it following remineralization. Fi-
nally, over most of mid-latitudes, the wintertime mixed layer is deeper on average than
the climatological euphotic zone; however, export fluxes from the mixed layer and eu-
photic zone depth are very similar in magnitude, suggesting a close seasonal compen-
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Figure 9. (a) Annual mean particle export from the maximum mixed layer depth. (b) Ratio
of the export from the maximum mixed layer depth to the export from the euphotic zone. (c)

Ratio of the maximum mixed layer depth to the euphotic zone depth.

sations between enhanced euphotic zone fluxes when this horizon is found above the win-
tertime mixed layer, and reduced euphotic zone fluxes when it is found below it.

Ultimately, differences in export between the euphotic zone and the wintertime mixed
layer are important when considering the role of the biological pump for carbon seques-
tration (Palevsky & Doney, 2018). Our results suggest that more carbon is sequestered
below the wintertime mixed layer than leaves the euphotic zone. The sensitivity of these
fluxes to climate variability and change is also likely to differ (Palevsky & Doney, 2021).

3.5 Caveats to our approach

There are multiple sources of uncertainty and inherent limitations that could af-
fect our estimates and call for further work. First, expanding the coverage of observa-
tions with UVP5 and similar instruments, in particular in under-sampled regions char-
acterized by large variability, such as the Southern Ocean, would improve the robust-
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ness of our estimates, and shed additional light on regional export patterns not captured
by previous work. Regional correlations between environmental properties and PSD may
not be well captured by extrapolation with a RF algorithm trained on data from differ-
ent regions, especially when non-linear relationships between variables are important.

Second, supervised learning methods are only as reliable as the data used for train-
ing; therefore, continued work on improving satellite reconstructions of surface chloro-
phyll, net primary production, and other remotely-sensed variables, in particular at high
latitudes, would help improve the robustness of these methods.

Third, different machine learning approaches are likely characterized by different
biases. Here, we note a slight underestimate of extreme values in reconstructed PSD prop-
erties, which may affect the reconstructed variability in particle fluxes. Different machine
learning methods that are better suited to capture extreme values should be tested to
address this limitation, in conjunction with more detailed analyses of particle flux ob-
servations, including at time-series stations.

Finally, we use globally-averaged relationships between particle size, sinking speed,
and carbon content, which we optimize against observations. However, these quantities
are likely to depend on region and time of the year, reflecting variable underlying eco-
logical processes. More work combining in situ and optical measurements should focus
on constraining these quantities and their regional and temporal variability.

4 Conclusions

In this paper, we provide a new, data-constrained estimate of particle fluxes based
on global UVP5 observations of PSDs. It captures regional and seasonal variability in
observed PSD properties and export fluxes, and demonstrates the ability of statistical
machine learning methods to extrapolate these quantities globally. Our approach also
allows reconstruction of export fluxes from multiple depths, highlighting the importance
of the choice of export horizon (Palevsky & Doney, 2018), and paving the way to fully
three-dimensional particle flux reconstructions.

We obtain a global particle export flux of 6.7 = 0.4 PgC/year from the euphotic
zone, in line with previous work, although with significant regional and temporal differ-
ences. Our results suggest weaker spatial and seasonal variability in particle fluxes com-
pared to previous studies, in particular in the open ocean, while highlighting the impor-
tance of coastal waters and marginal seas for high latitude export. We also capture sim-
ilar patterns of high latitude seasonal blooms in the Northern Hemisphere as previous
studies, but less variable flux in the tropical to subtropical ocean, and substantially higher
year-round export in the Southern Ocean, in better agreement with regional estimates
(Arteaga et al., 2018). Results from the Southern Ocean suggest that processes that sus-
tain elevated fluxes, in particular in wintertime, may not be completely captured by other
global reconstructions, and that waters downstream of coasts and islands may harbor
a significant source of carbon export to the deep ocean, which is only partially captured
in one other model (Dunne et al., 2007).

The statistical nature of our machine learning approach does not directly reveal
mechanisms behind PSD and export fluxes. However, we are able to highlight globally
coherent patterns, and the relative roles of particle abundance and size structure in driv-
ing export fluxes. Specifically, we show that the total particle biovolume and the PSD
slope show similar patterns, and are in fact correlated in such a way to act synergisti-
cally on particle fluxes (Supplementary Fig. S3). We also suggest distinct deviation from
these patterns, for example in the tropical and northern subtropical Pacific Ocean, where
high availability of particles, rather than dominance of large vs. small particles, tends
to drive elevated export.
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We illustrate the ability of our method to reconstruct particle fluxes at multiple
depth horizons by reconstructing and comparing carbon export from the euphotic zone
and the wintertime mixed layer depth. Export from the base of the wintertime mixed
layer is overall stronger than export from the euphotic zone in low and mid latitudes,
and weaker in high latitudes, driving a significantly larger global particle export of 9.4
+1.1 PgC/year. This suggests that more carbon is sequestered for decadal to centennial
timescales than is available for remineralization in the twilight zone of the ocean.

We attribute the disparity in flux from the euphotic zone and mixed layer to dif-
ferences in their depths: maximum mixed layers are typically shallower than the euphotic
zone over large swathes of the low latitude ocean, but deeper in high latitudes. Future
three-dimensional reconstructions of particle fluxes would allow a closer investigation of
the processes controlling transfer of carbon between the surface and the deep ocean, pro-
viding further insights into particle transformation processes, transfer efficiency, and ocean
carbon sequestration.
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