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Abstract

Export of sinking particles from the surface ocean is critical for carbon sequestration and for providing energy to the deep-

ocean biosphere. The magnitude and spatial patterns of this flux have been estimated in the past by satellite-based algorithms

and ocean biogeochemical models; however, these estimates remain uncertain. Here, we present a novel analysis of a global

compilation of \textit{in situ} ocean particle size spectra from Underwater Vision Profiler 5 (UVP5) measurements, from

which we determine particulate carbon fluxes. Using a machine learning algorithm, we extrapolate sparse observations of

particle abundance by size to the global ocean from oceanographic variables that are more commonly observed. We reconstruct

global maps of particle size distribution parameters for large sinking particles (80 \textmu{}m to 2.6 cm), and combine them

with empirical relationships to calculate the sinking carbon flux from the euphotic zone and the wintertime mixed layer depth.

Our flux reconstructions are comparable to other estimates, but suggest a less variable seasonal cycle in the tropical ocean, and

a more continuous export in the Southern Ocean than previously thought. Because our estimates are not bounded by a specific

depth horizon, we reconstruct export at multiple depths, and find that export from the wintertime mixed layer globally exceeds

that from the euphotic zone. Our estimates provide a baseline for more accurate understanding of particle cycles in the ocean,

and open the way to fully three-dimensional global reconstructions of particle size spectra and fluxes in the ocean, supported

by the growing database of UVP5 observations.
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Abstract19

Export of sinking particles from the surface ocean is critical for carbon sequestration and20

for providing energy to the deep-ocean biosphere. The magnitude and spatial patterns21

of this flux have been estimated in the past by satellite-based algorithms and ocean bio-22

geochemical models; however, these estimates remain uncertain. Here, we present a novel23

analysis of a global compilation of in situ ocean particle size spectra from Underwater24

Vision Profiler 5 (UVP5) measurements, from which we determine particulate carbon25

fluxes. Using a machine learning algorithm, we extrapolate sparse observations of par-26

ticle abundance by size to the global ocean from oceanographic variables that are more27

commonly observed. We reconstruct global maps of particle size distribution parame-28

ters for large sinking particles (80 μm to 2.6 cm), and combine them with empirical re-29

lationships to calculate the sinking carbon flux from the euphotic zone and the winter-30

time mixed layer depth. Our flux reconstructions are comparable to other estimates, but31

suggest a less variable seasonal cycle in the tropical ocean, and a more continuous ex-32

port in the Southern Ocean than previously thought. Because our estimates are not bounded33

by a specific depth horizon, we reconstruct export at multiple depths, and find that ex-34

port from the wintertime mixed layer globally exceeds that from the euphotic zone. Our35

estimates provide a baseline for more accurate understanding of particle cycles in the ocean,36

and open the way to fully three-dimensional global reconstructions of particle size spec-37

tra and fluxes in the ocean, supported by the growing database of UVP5 observations.38

1 Introduction39

In the ocean, primary production and other complex biogeochemical processes in-40

teract to form the ocean’s biological pump. Aggregation of particulate organic matter41

into particles denser than seawater leads to gravitational settling (Alldredge & Gotschalk,42

1988), eventually storing inorganic carbon and nutrients in the deep ocean for timescales43

of decades to centuries (Boyd et al., 1999, 2019). The export of particulate organic car-44

bon provides energy to the deep ocean ecosystem (Siegel et al., 2014), influences atmo-45

spheric carbon dioxide and climate (Kwon et al., 2009; Palevsky & Doney, 2018), and46

indirectly affects on the ocean’s microbiome (Karl et al., 1984; Bianchi et al., 2018). Sev-47

eral studies have estimated this global particle flux from the euphotic zone, resulting in48

substantially variable estimates ranging from 3 to 10 PgC/y (Henson et al., 2011; Siegel49

et al., 2014; DeVries & Weber, 2017; Dunne et al., 2007).50

Current reconstructions of the sinking particle flux tend to vary in the total global51

export, depending on the methods used (Quay et al., 2020). Biogeochemical models yield52

a global export of 4-6 PgC/y when tuned to match particle observations, but could reach53

up to 10 PgC/y when tuned to match in situ profiles of nutrients and other biogeochem-54

ical tracers (Siegel et al., 2014; DeVries et al., 2017). Models that use satellite inputs and55

empirically derived export ratios tend to result in a larger flux (Dunne et al., 2007; Laws56

et al., 2011; Guidi et al., 2015), near 10 PgC/y. This is similar to annual net commu-57

nity production estimates at the base of the mixed layer, which include additional ex-58

port of dissolved organic carbon (Emerson, 2013; Quay et al., 2020).59

Although the globally integrated particle flux is similar when comparing model, geo-60

chemical, and satellite-based estimates, the regional patterns predicted by these meth-61

ods differ substantially. Differences in regional flux estimates have been attributed to method-62

ological limitations, including scarcity and variability of in situ data used to constrain63

models, variability in satellite-based primary production algorithms, and models not able64

to fully capture underlying physical and biological processes. Based on in situ geochem-65

ical observations, Quay et al. (2020) suggest a weaker meridional variability in export66

flux than other estimates, stressing the need for expanding and combining observational67

approaches and models to fully constrain particle export.68
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Recent studies have highlighted the importance of standardized methods and met-69

rics used to quantify particle fluxes (Buesseler et al., 2020). In particular, the depth hori-70

zon of export has been identified as a leading cause of diverging estimates (Palevsky &71

Doney, 2018). Two choices of export horizon have been commonly adopted: the base of72

the euphotic zone, either as a variable depth or global average (Buesseler & Boyd, 2009;73

Siegel et al., 2016, 2014; Bisson et al., 2018; Dunne et al., 2007; DeVries et al., 2017; Hen-74

son et al., 2011), and the mixed layer depth, both as seasonally varying and maximum75

depth (Emerson, 2013; Quay et al., 2020). These choices underlie different interpreta-76

tions of export fluxes: euphotic export takes an ecosystem view, while mixed layer ex-77

port takes a carbon storage view.78

Gravitational settling is thought to be the primary export mechanism globally, con-79

tributing to about 60% of the total carbon export, and about half of the carbon stor-80

age in the deep ocean (Boyd et al., 2019). Using both a euphotic viewpoint, and con-81

sidering only gravitational settling, particle flux estimates have begun to converge on a82

value of 5-6 PgC/y (Palevsky & Doney, 2018; Boyd et al., 2019).83

Advances in ocean optical observations have begun to provide a three-dimensional84

view into the life of particulate matter in the ocean (Stemmann & Boss, 2012; Kiko et85

al., 2017; Guidi et al., 2009). The Underwater Vision Profiler 5 (UVP5) is an optical par-86

ticle counter which provides the in situ particle abundance for large particles (80µm−87

2.6cm) in a given sampled volume (Picheral et al., 2010). The UVP5 consists of a cam-88

era attached to the CTD rosette, and quantifies the particle abundances at high frequency89

as it is lowered in the water column. Vertical profiles of particle size distribution (PSD)90

from the UVP5 are commonly taken at up to 20 images per second with downward speeds91

of 1m/s, with observations as deep at 6 km (Picheral et al., 2010). Since 2008, UVP5s92

have been routinely deployed on ocean expeditions, resulting in over 9,000 profiles to date,93

with observations from all ocean basins.94

Although the UVP5 cannot directly determine carbon flux, because particle sink-95

ing speed and carbon content are not measured, empirical relationships have been used96

to define these as a function of size, making flux estimates possible (e.g., as compiled in97

Kriest (2002) and Stemmann et al. (2004)). The vertical resolution of the UVP5, cou-98

pled with these empirical relationships, enables a unique high-resolution view into the99

three-dimensional ocean particle flux. Observations from UVP5 have been used to quan-100

tify particulate flux to the mesopelagic ocean on a regional basis (Guidi et al., 2008, 2009;101

Kiko et al., 2017), and a smaller dataset has been used to reconstruct global fluxes by102

large-scale biomes (Guidi et al., 2015). However, the expanded dataset has not yet been103

used to quantify fluxes from the surface ocean yet.104

In this study, we reconstruct global particle carbon export by training a supervised105

machine learning algorithm to extrapolate PSD from a rapidly growing dataset of UVP5106

observations and well-sampled oceanographic variables. We combine these estimates with107

in situ sediment trap and thorium-derived particle flux observations to better constrain108

empirical relationships between particle size, sinking speed and carbon content, produc-109

ing robust estimates of regional and seasonal flux variability. By comparing patterns in110

PSD and flux with observations of environmental drivers, we further gain insight into111

the mechanisms responsible for particle export and its variability. Finally, we exploit the112

high vertical resolution of UVP5 measurements to estimate particle fluxes at both the113

climatological euphotic zone and the maximum mixed layer depth, revealing the impor-114

tance of the export horizon for this quantity.115

The rest of the paper is organized as follows. Section 2 describes the machine-learning116

approach used to globally extrapolate PSD and reconstruct particle fluxes. Section 3 presents117

the reconstructions of particle distributions and export fluxes, and compares our results118

to previous studies at global and regional scales. Section 4 summarizes the main find-119
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ings, discussing the uncertainties and caveats inherent to our approach, and future di-120

rections.121

2 Methods122

The flux of particulate carbon (φ) at any given depth can be expressed as a func-123

tion of three size-dependent quantities: PSD (n(s), #
L·cm ), sinking speed (w(s), ms ), and124

particle carbon content (c(s), mgC), according to the following equation (Stemmann &125

Boss, 2012):126

φ =

∫ smax

smin

n(s) · w(s) · c(s) ds, (1)127

Here, s indicates the particle equivalent spherical diameter, or size (cm), smin and128

smax are respectively the minimum and maximum size of particles considered for export.129

We further assume that the quantities in Equation 1 can be approximated by power laws130

that depend on particle size, each characterized by an intercept (the size-independent131

coefficient) and a slope (the exponent for size-dependence) (Stemmann & Boss, 2012):132

n(s) = n0 · s−β (2)133

w(s) = w0 · sη (3)134

c(s) = c0 · sζ , (4)135

Thus, by using Equations 2-4, the total particle flux can be expressed as:136

φ =

∫ smax

smin

n0 · w0 · c0 · s−β+η+ζ ds =
∫ smax

smin

n0 ·m0 · s−β+µ ds (5)137

where we combined the intercepts and exponents of the sinking speed and carbon138

content relationships by setting m0 = w0 · c0 and µ = η + ζ. We further approximate139

m0 and µ with globally constant values.140

We use UVP5 observations to reconstruct PSDs (i.e., n0 and β) at the chosen ex-141

port horizon, by fitting Equation 2 to the observed particle abundance. We use a 20 me-142

ter depth bin around the export horizon to average the observations and smooth out small-143

scale noise and variability. We then extrapolate sparse UVP5 observations to a global144

grid, by training a supervised learning algorithm to predict spatially-varying PSD from145

well-sampled environmental predictors. To completely reconstruct fluxes based on Equa-146

tion (1), we constrain the parameters of the combined sinking speed and carbon content147

relationships, i.e., m0 and µ, by optimizing predicted particle fluxes against in situ flux148

estimates from sediment traps and thorium-uranium disequilibrium measurements.149

We exploit the three-dimensional nature of UVP5 observations to perform these150

calculation at two different export horizons: the base of the euphotic zone (here defined151

by the 1% light level according to Morel et al. (2007)) and the annual maximum mixed152

layer depth. The steps used to solve Equation (1) are illustrated in the workflow schematic153

in Fig. 1, and are detailed in the following sections.154
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Process DataGrid data to 1 degree bins by month
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Figure 1. Schematic diagram illustrating the general workflow of processing UVP5 observa-
tions into a flux reconstruction. Observations are ensembled onto a normal 1 degree grid, with
observation representing an average of a 20 meter vertical bin about the export horizon. All ob-
servations are the calculated values for the 105 µm to 5 mm size bins. Specific parameters are
globally extrapolated using the Random Forest algorithm. These new global data are used to
construct the flux, using equation 1.

2.1 Reconstructions of particle size spectra from UVP5 data155

Observations from UVP5 provide particle counts for the 80 µm - 2.6 cm size range156

at any specific location and depth. Under the power law assumption, the two parame-157

ters n0 and β are needed to fully capture the PSD (Equation (2)) (Brun-Cottan, 1971;158

Stemmann et al., 2004; Stemmann & Boss, 2012; Devries et al., 2014).159

The slope β quantifies the relative abundance of large vs. small particles, while the160

intercept n0 is a measure of the total abundance of particles for an arbitrary reference161

size. We determine the slope for each UVP5 measurement by fitting a linear least-squares162

regression through the log-transformed particle abundance and size. We determine the163

intercept by using the particle biovolume (BV), which can be directly derived from UVP5164

observations, and applying the following definition:165

BV =

∫ smax

smin

π

6
· n0 · s3−β ds. (6)166

By fixing the size range, we solve Equation 6 for the intercept as a function of slope167

and biovolume:168

n0 =
6 ·BV
π

· ( s
4−β
max

4− β
− s4−βmin

4− β
)−1. (7)169
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We set the minimum and maximum size for this equation to the same values used170

to estimate the slope and biovolume from UVP5 observations. We use a minimum size171

of 105 µm to avoid a potential slight instrument bias in the lowest size classes. We con-172

strain the maximum size to 5 mm, which corresponds to the size where zooplankton start173

to dominate the biovolume at a variety of locations sampled by UVP5 (Forest et al., 2012;174

Stemmann et al., 2008; Stemmann & Boss, 2012). The sensitivity of our results to these175

choices is discussed in Section 2.2.176

We coarsen the temporal and spatial resolution of the 6856 UVP5 profiles by bin-177

ning them onto the standard monthly 1 degree-resolution grid of the World Ocean At-178

las (H. Garcia et al., 2018; H. E. Garcia et al., 2019). To this end, we combine profiles179

in a given grid cell and month together, thus reducing the noisy and episodic nature of180

particle observations. To reconstruct global PSDs, we calculate slope and biovolume for181

each grid cell, at a given export horizon, using the gridded dataset, and assume that these182

averages are representative of the climatological monthly PSD in each grid cell.183

Although the gridded observations reduce data patchiness in well sampled regions,184

many grid cells only contain one observation. For each grid cell with observations, we185

place an objective goodness of fit threshold to determine the robustness of the power law186

fit. If a power law fit has a correlation coefficient of less than 0.9, we remove the data187

point, as it likely does not follow a power law distribution. This quality control step re-188

moves less than 1% of data (Supplementary Information Fig. S1). The final processed189

UVP5 observation dataset contains 2,034 gridded observations at the export horizon, which190

together cover less than 10% of the ocean surface.191

2.1.1 Training and evaluating a Random Forest model192

Monthly flux reconstructions require extrapolation of PSD parameters to the whole193

ocean on monthly time scales. We use a Random Forest (RF) algorithm to reconstruct194

PSD slope and biovolume globally, following an approach similar to Yang et al. (2020).195

A RF deploys a decision tree learning scheme to solve a regression equation iteratively,196

and reports the ensembled average. Using a RF, each individual decision tree is trained197

on a subset of the available data, with a subset of predictors, but the power of the method198

emerges when considering the ensemble average. The RF is able to learn statistical re-199

lationships between target variables (here, UVP5-derived slope and biovolume) and a200

series of predictors (here, environmental variables), to make reconstructions that min-201

imize the error between predicted and observed data. Because a RF is highly non-linear,202

it runs the risk of overfitting the data, producing solutions with low error, but also lim-203

ited extrapolation power outside of the training dataset. To mitigate the risk of over-204

fitting, the RF does not use all data points for training. Instead, a bootstrapped sam-205

ple of the data is selected for each tree in the forest. The degree of overfitting is deter-206

mined by finding the error between the model and the data not used for training, i.e.,207

the “out-of-bag” data.208

The rank of predictors is given by the out-of-bag error coupled with an internally209

derived measure of importance, using a “recursive feature elimination” approach. A re-210

cursive feature elimination systematically removes the least important predictor and records211

the out-of-bag error to describe the contribution of each predictor to the final solution.212

When there is relatively no change in the out-of-bag error for every additional predic-213

tor, these predictors are considered not important for this RF (Supplementary Fig. S2).214

We determine statistical importance in order to establish a reduced set of predictors, re-215

ducing the risk of over-fitting while not losing predictive power. When interpreting the216

results, we apply qualitative understanding of the predictors, combined with the recur-217

sive feature elimination, to determine if a predictor is should be included in the final re-218

gression.219
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2.1.2 Environmental Predictors220

The RF algorithm relies on a set of predictors and target data at the resolution of221

the desired reconstruction. In our case, we use climatological monthly predictors at 1-222

degree spatial resolution. We include a variety of predictors that could be mechanisti-223

cally related to particle production and export in the surface ocean, ranging from phys-224

ical variables (e.g., temperature and salinity) to ecosystem-level quantities (e.g., primary225

production, euphotic zone depth). A list of all predictors used is shown in Table 1.226

Some of these predictors are obtained from satellite products at high spatial and227

temporal resolution (e.g., surface chlorophyll and net primary production), and include228

missing values caused by the presence of clouds or sea-ice. For these variables, we first229

average observations into monthly climatologies, then replace missing data by using a230

spherical interpolation algorithm (D’Errico, 2016). To avoid excessive extrapolation in231

high latitude regions in wintertime, only points with at least 8 months of satellite ob-232

servations are used for the final reconstruction, following the approach of Siegel et al.233

(2014). To process net primary production, we also calculate the critical depth, where234

light becomes too limiting to support photosynthesis, based on climatological chlorophyll235

concentration and incident shortwave radiation (Siegel et al., 2002). Net primary pro-236

duction is then set to zero at all points where the mixed layer depth exceeds the crit-237

ical depth, before interpolating. We also include the standard deviation of the primary238

production, as a proxy for intermittency and sub-seasonal variability. Similarly, we re-239

strict chlorophyll and net primary production based on climatological sea ice cover.240

We use three-dimensional variables (e.g., temperature, nutrients) to generate two-241

dimensional surface predictors based on mixed layer averages. We also include predic-242

tors that quantify the change of variables with depth, by calculating the average of the243

variable from the base of the mixed layer to 100m below it. For surface-only variables244

(e.g., chlorophyll, net primary production) and nutrients we also include predictors that245

quantify change in time, calculated by applying a finite-difference time derivative, be-246

cause change over time might be more indicative of export flux than the actual variable.247

We refer to these depth- and time-change variables as “variations” in Table 1. We test248

the significance of each predictor, including vertical and time variations, with the recur-249

sive feature elimination. Finally, we group predictors into different categories, with vari-250

ations for selected variables (Table 1). If a predictor is in the universal category, it is al-251

ways included in all RF realizations. For all other categories, only one predictor is cho-252

sen for each realization, but if a predictor is chosen, all variations are included too.253

Based on the categories listed in Table 1, we use a total of 29 predictors for each254

RF realization (Table 1). We generate 100 realizations, with variable hyper-parameters255

(the number of trees and their complexity) and randomly chosen predictors from each256

category, and take the ensemble average as the final product, with the inter-model spread257

representing the error. Generating an ensemble of 100 RFs, with varying hyper-parameters258

and predictors, reduces biases and overfitting, making the results robust with respect to259

parameter tuning, and the choice of different data products. Thus, our reconstructions260

are not the result of tuning the hyper-parameters, or choosing only the best predictors.261

We evaluate the overall robustness of the predictions by considering goodness-of-fit statis-262

tics that include the correlation coefficient, the root mean square error (RMSE), and the263

average bias, calculated by comparing predictions to in situ data.264

2.2 Sinking Speed and Carbon Content265

Particle sinking speed and carbon content have been empirically estimated using266

power law relationships analogous to Equations (3) and (4). Most of these studies mea-267

sured a range of particles that does not wholly encompass the sizes detected by the UVP5.268

Also, these relationships are defined for specific particles types, which are not distinguished269

in the dataset used. Since estimates of total flux are sensitive to the sinking speed and270
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Table 1. Variables used to predict PSD parameters, their source and variations.The categories
are organized based on their predictor type where the universal predictors are used in every
random forest.

Category Variable Variations Source

Universal

Topography N.G.D.C (2006)

Temperature
below mixed layer Time Derivative Locarnini et al. (2019)

Chlorophyll Time Derivative NASA G.S.F.C (2014)

Oxygen
ML/ ML+100m
Time Derivative H. E. Garcia et al. (2019)

Shortwave Radiation Time Derivative C.C.C.S (2017)

Nitrate
ML/ ML+100m
Time Derivative H. Garcia et al. (2018)

Phosphate
ML/ ML+100m
Time Derivative H. Garcia et al. (2018)

Salinity ML/ ML+100m Zweng et al. (2019)

Mixed Layer

Mixed Layer depth Time Derivative Johnson et al. (2012)

Mixed Layer depth Time Derivative de Boyer Montégut et al. (2004)

Primary
Production

Eppley VGPM Time Derivative Antoine and Morel (1996)

VGPM Time Derivative Behrenfeld and Falkowski (1997)

CBPM Time Derivative Westberry et al. (2008)

CAFE Time Derivative Silsbe et al. (2016)

NPP Standard
Deviation

Eppley VGPM Antoine and Morel (1996)

VGPM Behrenfeld and Falkowski (1997)

CBPM Westberry et al. (2008)

Euphotic
Zone Depth

VGPM Morel et al. (2007)

CBPM Morel et al. (2007)

Iron

Soluble Iron Fraction Time Derivative Hamilton et al. (2019)

Labile Iron Fraction Time Derivative Myriokefalitakis et al. (2018)

–8–
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carbon content relationships, here encapsulated by the parameters m0 and µ, we apply271

an optimization procedure to keep our results consistent with in situ particle flux mea-272

surements. Specifically, we find the values of m0 and µ that minimize the sum of the square273

errors between particle flux predictions (Equation 5) and co-located in situ carbon flux274

measurements (Bisson et al., 2018).275

Because the size distribution of particles that contribute to the flux is poorly con-276

strained, we perform this optimization for a range of plausible minimum and maximum277

sizes for Equation (5), selecting reasonable combination for the final estimate. Ultimately,278

when optimizing the sinking carbon parameters, the global export flux is insensitive to279

the size range; however the resulting empirical relationships are (see Section 3.2 and Sup-280

plementary Fig. S5). The insensitivity of the carbon flux to the size range of that flux281

indicates a compensatory effect between the sinking carbon parameters and the size range282

selected. Thus, choosing different size combinations would result in a similar total flux,283

although it may slightly alter spatial or temporal patterns.284

Our final choice of size range is informed by average sinking speeds and carbon con-285

tent previously reported (Kriest, 2002). We assume the slope and intercept (calculated286

from the biovolume; Equation 7) of the particle size distribution to be constant for sink-287

ing particulate matter, and expand the minimum size to include all sinking particle sizes.288

Based on this analysis, we set the minimum size class to be 35 µm, where the average289

sinking speed is near 1 m d−1 (Smayda, 1970; Kriest, 2002), a size that is likely rapidly290

remineralized, making its contribution to the sinking flux negligible (Riley et al., 2012).291

Similar to the observation limitations, we choose 5 mm as the maximum size of sinking292

particles.293

2.3 Flux reconstruction and evaluation294

Using the PSD reconstructions and the optimized sinking carbon parameters, we295

calculate particle export fluxes following Equation (5). We evaluate these reconstructions296

by comparing them to in situ flux observations and previous global reconstructions. Specif-297

ically, we compare total fluxes, meridional averages, and seasonal cycles. For these com-298

parisons, we divide the ocean into 14 biogeochemically-consistent regions based on the299

boundaries identified by Weber et al. (2016), with an additional boundary along the equa-300

tor to separate Northern and Southern Hemispheres. We evaluate seasonal cycles by an-301

alyzing temporal correlations between reconstructions, and by introducing a seasonal-302

ity index defined by the ratio between the seasonal range and annual mean flux in each303

region.304

We first present results for fluxes estimated at the climatological euphotic zone depth,305

and then repeat the calculation at the maximum mixed layer depth. For the latter, we306

keep the same sinking speed and carbon content parameters as determined for the eu-307

photic zone depth. Thus, the only methodological difference between the two estimates308

is the depth used to calculate the export flux.309

3 Results310

3.1 Particle Size Distribution reconstructions311

Our global reconstructions capture most of the variability of UVP5-based PSD slope312

and biovolume data (Figs. 2 and 3), and robustly reproduce observations, with global313

average values of 0.6 ppm for biovolume (r2 = 0.91) and 3.9 for slope (r2 = 0.86). Ob-314

servations that are not used in the training (out-of-bag) are also robustly predicted, with315

a RMSE of 2.1 ppm for biovolume (r2 = 0.74) and 0.33 for slope (r2 = 0.68). Some316

of the remaining uncertainty in our reconstructions can be attributed to the episodic na-317

ture of particle production and export. Our method operates under the assumption that318

–9–



manuscript submitted to Global Biogeochemical Cycles

b) Annual Average Biovolume (ppm)

Volume of particles (ppm)

a) Observed Annual Average Biovolume (ppm)

c) Performance – predicted biovolume

r2 = 0.91

rmse = 1.51 

bias = 0.0

Observed

P
re

d
ic

te
d

d) Out-of-bag Performance – predicted biovolume

r2 = 0.74

rmse = 2.1

bias = 0.0

Observed

O
O

B

Figure 2. Observed and reconstructed Particle biovolume at the base of the euphotic zone.
(A) Map of the observations of intercept, for locations with observations in multiple months the
average is shown (B) Map of the biovolume reconstructions. (C) Performance of the RF recon-
struction shown as density scatter plots of predicted vs. observed Biovolume (colors indicate the
normalized density of grid points surrounding the given cell). (D) Same as B, but using out-of-
bag (OOB) predictions, i.e., predictions vs. observations withheld from training. Annotations in
B and C show the square of the correlation coefficient (r2), the RMSE and the global bias.

the input data (i.e., the UVP5 measurements) are monthly climatological averages, rather319

than snapshots. By ensembling these snapshot measurements into 2,034 monthly obser-320

vational data points, we reduce part of the episodic nature of these observations; how-321

ever some patchy behavior may still exist in the gridded data. Overall, the reconstruc-322

tions show slight underestimates of extreme values (i.e., a reduced range), but negligi-323

ble mean biases for both variables (Figs. 2 and 3).324

We find high biovolume in productive regions such as high latitudes, coastal wa-325

ters, and upwelling systems, and low biovolume in the oligotrophic suptropical gyres. These326

patterns mirror satellite-derived primary productivity and chlorophyll measurements (Sup-327

plementary Fig. S3), suggesting that phytoplankton and photosynthesis ultimately con-328

trol the total abundance of particles in any given region. Reconstructions of PSD slope329

show a similar but negative correlation with primary production and chlorophyll, with330

smaller slopes (i.e., “flatter” PSD) in more productive regions, and larger slopes (i.e., “steeper”331

PSD) in oligotrophic waters.332
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Figure 3. Observed and reconstructed PSD slope at the base of the euphotic zone. (A) Map
of the observations of PSD slope, for locations with observations in multiple months the average
is shown (B) Map of the PSD slope reconstructions, colored dots show the observations from A.
(C) Performance of the RF reconstruction shown as density scatter plots of predicted vs. ob-
served particulate slope (colors indicate the normalized density of grid points surrounding a given
cell). (D) Same as B, but using out-of-bag (OOB) predictions, i.e., predictions vs. observations
withheld from training. Annotations in B and C show the square of the correlation coefficient
(r2), the RMSE and the global bias.

Consistently, we find that slope and biovolume are negatively correlated (r2 = 0.4, p <333

0.01, Supplementary Fig. S3), roughly indicating that particle-rich regions (higher bio-334

volume) are also characterized by an excess of large particles over small particles (i.e.,335

flatter slope), relative to average oceanic conditions. Since large particles contribute pro-336

portionally more than smaller particles to export fluxes, because of their faster sinking337

speed, this relationship suggests that biovolume and slope will synergistically enhance338

export fluxes in particle-rich regions, and depress them in particle-poor regions.339

While this pattern of correlations holds true for most regions, we find few signif-340

icant exceptions where the PSD slope and biovolume do not co-vary as closely as expected.341

For example, in the North Pacific Subpolar Gyre, flatter slopes are found in the open342

ocean (Fig. 3), in particular close to the subpolar-subtropical transition, while the high-343

est biovolumes are found closer to the coast and in marginal seas. Similarly, slopes in344

coastal upwelling system, such as the California Current and the Arabian Sea upwelling,345
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are not as flat as the high biovolumes would suggest. We also find relatively flatter slopes346

in the North Pacific subtropical gyre as compared to other oligotrophic regions.347

The seasonal dynamics of biovolume and slope confirms the general anti-correlation348

of these two variables, and reveals significant seasonal cycles, with maximum biovolume349

and minimum slope generally found in spring, and minimum biovolume and maximum350

slope in late fall to winter (Supplementary Fig S4). Similar to the spatial distribution,351

we find significant deviations from the general anti-correlation between biovolume and352

slope. For example, in the North Atlantic, the peak in biovolume (May) precedes the min-353

imum in slope (July). In some of the tropical regions (e.g., in the North Pacific and North354

Atlantic) the anti-correlation is also less robust, with periods of several months where355

biovolume and slope increase or decrease simultaneously. As discussed above, spatial and356

temporal decoupling of the biovolume-slope relationship could have important consequences357

for the patterns of particle export flux.358

A recursive feature elimination suggests that multiple variables are required for a359

robust reconstruction of PSD (Supplementary Fig. S2). Among these, we highlight chloro-360

phyll, mixed layer depth, and oxygen, each with different importance for explaining bio-361

volume and slope variability. Interpretation of these rankings should be done with care362

because of the statistical nature of the RF algorithm. However, while a mechanistic un-363

derstanding of PSD patterns can not be directly tied to these rankings, highlighted pre-364

dictors can provide insights into the role of different processes that may be affecting PSDs.365

We note that certain predictors with mechanistic links to particle export, for example366

silicate, which serves as a proxy for diatom production, were deemed unimportant and367

are not included in the final RF regressions. It is likely that information contained in368

these predictors is shared by correlations with other variables, and is picked up by the369

main predictors used by the method.370

Multiple variables are significantly correlated with biovolume and slope (Supple-371

mentary Fig. S6). In particular, we find that biovolume correlates positively and robustly372

with chlorophyll (r2 = 0.25, p < 0.01, Supplementary Fig. S3). This is not surpris-373

ing, because phytoplankton are ultimately the main source of organic matter and sink-374

ing particles in the ocean. However, we find that chlorophyll is not as strong a predic-375

tor of slope, when the whole ocean is considered (r2 = 0.04, p < 0.01, Supplementary376

Fig. S3), and that additional predictors are needed for robust slope reconstructions. This377

result contrasts with previous findings based on UVP5 observations along a meridional378

section in the Pacific Ocean (Cram et al., 2018). Slope reconstructions also reveal a sig-379

nificant predictive power for subsurface oxygen. Although likely not directly related to380

the PSD, oxygen is a proxy of respiration in the water column, which in turn reflects the381

characteristics of both the surface community that drives export, and of the mesopelagic382

community responsible for this respiration. We note that the PSD slope is an emergent383

property that reflects the interaction of physical and biological processes that are still384

poorly understood. Not surprisingly, slope is harder to reconstruct than biovolume, and385

shows overall weaker correlations with other individual predictors (Supplementary Fig.386

S6).387

Spatial patterns in slope share several features with estimates of phytoplankton size388

spectra from observations and models (Kostadinov et al., 2009; Roy et al., 2013; Bar-389

ton et al., 2013; Ward et al., 2014), reflecting the importance of phytoplankton size struc-390

ture and composition for particle export. Satellite-based reconstructions of phytoplank-391

ton functional groups (e.g., Mouw et al., 2017) could be included as predictors. How-392

ever, methodological shortcomings and disagreement between different approaches cur-393

rently limit their applicability — something that may be mitigated by future advances.394

It is also likely that information related to phytoplankton composition implicitly enters395

the RF regression via relationships with predictors such as surface chlorophyll and tem-396

perature.397
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3.2 Particle export flux398

a)         Performance – This Study

c)     Performance – Henson et al. (2011) d)   Performance – Dunne et al. (2007)

b) Performance – Siegel et al. (2014)

r2 = 0.53
rmse = 3.22 
bias = 0.0

r2 = 0.35
rmse = 5.89 
bias = 0.17

r2 = 0.51
rmse = 5.37 
bias = 0.50

r2 = 0.46
rmse = 3.80 
bias = 0.0

Observed Flux Observed Flux

Observed Flux Observed Flux

Figure 4. Density scatter plots showing the relationships between in situ flux observations
and global flux reconstructions from (A) This study, (B) Siegel et al. (2014)l, (C) Henson et
al. (2011), (D) (Dunne et al., 2007). Colored dots represent the relative density of grid points
surrounding the data point, dashed line indicates a 1:1 ratio. Annotations show the correlation
coefficient (r2) RMSE, and average bias.

Based on the PSD reconstructions and Equation 5, we optimize for the particle sink-399

ing speed and carbon content parameters (m0 and µ) that produce export fluxes in best400

agreement with in situ observations (see Section 2.2). This approach results in a value401

of 27.65 mgC m s−1 for m0, and of 2.90 for µ, both in the range suggested by in situ ob-402

servations (Kriest, 2002), and comparable to values adopted by previous studies (Kriest,403

2002; Stemmann et al., 2004; Guidi et al., 2008; Kiko et al., 2017; Bianchi et al., 2018).404

The resulting carbon fluxes compare well with sediment trap and thorium-based405

observations (Fig. 4), performing in a similar way or better than previous estimates (Henson406

et al., 2011; Dunne et al., 2007; Siegel et al., 2014). Our estimate reduces the overall un-407

certainty (here expressed by the RMSE) compared to previous work, and shows negli-408

gible bias. However, our method also reduces the overall range of reconstructed fluxes,409

i.e., it overestimates the flux at low values and underestimates it a high values compared410

to observations. This bias may be related to the tendence of the RF algorithm to un-411

derpredict extremes in both biovolume and slope (Figs. 2 and 3).412
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Extrapolated to the whole ocean, our method reveals spatial patterns of export fluxes413

in broad agreement with previous studies, with some notable differences (Fig. 5). Sim-414

ilar to other estimates, particle fluxes tend to decrease from high to low latitudes, and415

from coastal regions to the open ocean. A local maximum of export is reproduced along416

the equator, and is particularly evident in the Pacific Ocean. Compared to previous work,417

our method produces somewhat weaker gradients between coastal and offshore waters,418

with relatively high fluxes even near the centers of subtropical gyres, and suggests an419

asymmetry between the subpolar Atlantic and Pacific Oceans, with more intense par-420

ticle export along the gulf of Alaska than in the North Atlantic (see also Section 3.2.1).421

We also reconstruct substantially stronger export than previously found in the South-422

ern Ocean, in particular south of 50S (see discussion in Section 3.3).423

Globally integrated, we estimate a particle export flux of 6.7 ± 0.4 PgC/y, in ex-424

cellent agreement with the range of observational and model-based estimates of the bi-425

ological gravitational pump (4-9 PgC/y, Boyd et al. (2019)). Compared to other spatially-426

resolved reconstructions, our global flux sits between the low-value estimate of Henson427

et al. (2011) (3.0 ± 0.3 PgC/y) and the high-value estimate of Dunne et al. (2007) (9.8428

± 0.4 PgC/y).429

a)        This Study

6.7 ± 0.4

c)             Devries and Weber (2017)

b) Bisson et al. (2018)

mg Carbon
m'・day

9.1 ± 0.2

5.7 ± 0.0

9.8 ± 0.4

f)                  Henson et al. (2011)

3.0 ± 0.2

d)                  Dunne et al. (2007)

e)                      Siegel et al. (2014)

Figure 5. Annual average particle export from the euphotic zone for the (a) Random forest
derived compared to the in situ data of (b) Bisson et al. (2018), the steady state satellite driven
model (c) SIMPLE-TRIM of DeVries et al. (2017), empirical models of (d) Dunne et al. (2007)
and (f) Henson et al. (2011) and the satellite-driven euphotic zone food web model of (e) Siegel
et al. (2014). Annotated in each figure is the calculated total export and uncertainty reported by
each study.
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3.2.1 Meridional variability430

We illustrate the main spatial differences between our and other reconstructions431

by considering zonally averaged export fluxes (Fig. 6). The largest export rates are ob-432

served around the equator, in the subpolar Pacific Ocean, and in the mid- to high-latitudes433

of the South Atlantic Ocean, while more uniform exports are observed in the Indian Ocean.434

In all basins, the minimum export rates are generally located at the latitude of the sub-435

tropical gyres. While export is nearly symmetrical around the equator in the Pacific Ocean436

(Fig. 6a), in the Atlantic Ocean it dramatically increases moving from the Northern to437

the Southern Hemisphere (Fig. 6b). These patterns reflect a combination of open-ocean438

and shelf enhanced particle export. Specifically, high exports in the Northern Pacific and439

Southern Atlantic Oceans are partly driven by large fluxes in the Bering Sea, the Sea440

of Okhotsk, and the Patagonian shelf. At lower latitudes, coastal upwelling systems sus-441

tain high export in the northern Indian Ocean and the tropical to subtropical Atlantic442

Ocean.443

Variations in export patterns reflect a combination of varying particle biovolume444

(Fig. 2) and PSD slope (Fig. 3). These two quantities generally correlate in such a way445

as to increase export fluxes in particle-rich waters, where large, fast-sinking particles tend446

to be relatively more abundant than small particles, and decrease them in particle-poor447

waters where small particles dominate (see Section 3.2, and Supplementary Fig. S3). High448

export in the eastern equatorial and tropical Pacific can be attributed to a substantial449

increase in biovolume, with a minor contribution from PSD slope, which appears to be450

more uniform across the region. The picture is somewhat different in the equatorial At-451

lantic Ocean, where a more substantial flattening of the PSD suggests a more important452

role of large particles in driving elevated export fluxes. A similar interaction of particle453

abundance and size-structure dramatically intensify fluxes in the subpolar North Pacific454

and Southern Ocean, and to a lesser extent the subpolar Atlantic, where a relative in-455

crease in particle abundance is followed by a shift of the PSD toward large particles. In456

contrast, along many coastal regions, including eastern boundary upwelling systems and457

the Arabian Sea upwelling, increase in particle biovolume, rather than substantial changes458

in size structure, appears to drive enhanced export fluxes.459

Our reconstruction shows broad meridional patterns similar to previous estimates460

(Fig. 6); however, significant regional-level discrepancies remain. For example, in the low461

latitudes, we predict somewhat less intense equatorial export peaks and subtropical lows,462

compared to the estimates of Dunne et al. (2007) and Siegel et al. (2014). In this respect,463

our reconstruction is more in line with the results of DeVries and Weber (2017). In the464

subpolar Pacific, our estimate shows a northward shift of maximum export that is com-465

parable to the results of Dunne et al. (2007). This is likely caused by intensification of466

particle fluxes in coastal waters and marginal seas, which may be related to regional pro-467

cesses such as iron leakage from shelves and marginal seas (Nishioka et al., 2020). In the468

Atlantic Ocean, the gradual increase of export from northern to southern latitudes (mostly469

driven by high export near the coast), and the rapid increase in the Southern Ocean (caused470

by high export near the Patagonian shelf), are similar to the reconstruction of Henson471

et al. (2011), although the magnitude is larger. In the Indian Ocean, our reconstruction472

matches other studies at low latitudes; however, it shows a more dramatic increase in473

export towards the Southern Ocean sector (see also Section 3.3).474

3.2.2 Seasonal cycle475

The seasonal cycle of particle export is comparable to previous studies (Fig. 7), when476

averaged over large-scale coherent biomes (Weber et al., 2016). However, significant dis-477

crepancies are also revealed. In general, our seasonal cycle is more muted than previous478

work, suggesting weaker month-to-month variability in some regions, while other regions479

match previous reconstructions more closely.480
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Figure 6. Zonally integrated annual export for the (a) Global Ocean, (b) Pacific Ocean, (c)
Atlantic Ocean, and (d) Indian Ocean. Each color represents a different study, as listed in the
legend (bottom ).

Similar to other estimates, we capture well-known seasonal export pulses associ-481

ated with spring phytoplankton blooms in the North Atlantic and North Pacific Oceans.482

Over most of the tropics, our reconstruction reveals nearly constant seasonal cycles, and483

a slight asymmetry about the equator with more pronounced seasonality in the North-484

ern Hemisphere compared to the Southern Hemisphere. The most significant discrep-485

ancy is observed in the Southern Ocean, in particular in the Antarctic Zone, where our486

reconstruction is substantially higher than previous estimates, with sustained export through-487

out winter months. We discuss this deviation in detail in Section 3.3.488

To better quantify seasonality and provide a more objective comparison to other489

studies, we define a seasonality index as the range of monthly export divided by the an-490

nual mean flux in each region (Supplementary Fig. S10). A higher seasonality index is491

indicative of a more dynamic export cycle, with more dramatic variations between low492

and high export periods. As expected, seasonality is larger in high latitudes, and decreases493

toward the tropics; the highest values are reached in the mid-latitude to subpolar North494

Pacific and Atlantic, and higher variability is confirmed in the tropics and subtropics of495

the Southern Hemisphere compared to the Northern Hemisphere.496

The relatively muted seasonality of our reconstruction, compared to previous work,497

is consistent with the weaker spatial gradients discussed in the previous sections, and sug-498

gests less dramatic gradients in net community production and export than previously499

assumed. The machine learning approach used in this study relies on non-linear relation-500

ships with multiple ocean variables to reconstruct particle export fluxes, which may re-501

veal compensatory relationships between different predictors. Surface chlorophyll, tem-502

perature, and net primary production have all been used in previous global reconstruc-503

tions (Dunne et al., 2007; Henson et al., 2011; Siegel et al., 2014), but rarely together504
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Figure 7. Annual seasonal cycle of particle flux from the euphotic zone for the regions spec-
ified in the map (top). Each line corresponds to a study shown in the legend (top right). The
same seasonal spatial mask was applied to each study.

with other variables that may be important in modulating spatial and seasonal export505

patterns. It is also possible that our method somewhat underestimates variability com-506

pared to previous work. As previously noted (see Section 3.1), RF ensemble reconstruc-507

tions appear to reduce extremes in both biovolume and PSD slope, potentially under-508

estimating variability in particle export fluxes derived from these quantities. When com-509

pared with other studies, our results show overall similar patterns in seasonal variabil-510

ity, but lower seasonality in most regions, particularly at higher latitudes (Fig. 7 and Sup-511

plementary Fig. S10).512
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3.3 Southern Ocean Export513

Export flux in the Antarctic Zone are substantially larger than other global recon-514

structions, especially during winter (Fig. 7). A regional study based on 10 years of bio-515

Argo measurements from 2006-2014, combined with satellite-based net primary produc-516

tion and export algorithms, similarly suggests higher than previously reported particle517

fluxes throughout the region (Arteaga et al., 2018), in better agreement with our results518

(Fig. 8). This similarity is mostly evident in the open ocean, and varies depending on519

the primary production algorithm chosen for the comparison. However, our estimate also520

reveals substantially higher export near landmasses, for example the Patagonian Shelf,521

South Georgia and the South Sandwich Islands, and the Kerguelen Plateau. Although522

estimates from Arteaga et al. (2018) do not show the same high flux in winter as our re-523

construction, they do demonstrate that export fluxes from the Antarctic Zone of the South-524

ern Ocean likely never decrease to the nearly negligible levels shown by other global es-525

timates in winter (Fig. 7).526

This discrepancy with prior global estimates in Antarctic Zone export could be due527

to a variety of factors. First, UVP5 observations in the Southern Ocean, particularly in528

winter, are extremely scarce. Similarly, satellite-based observations of predictors based529

on ocean color dwindle in wintertime. Other climatological variables, such nutrients and530

oxygen, are also the results of interpolation of fewer in situ observations relative to the531

rest of the ocean. The scarcity of observations to train our model result in strong inter-532

model variability, highlighting the spread between different RF realizations. Second, our533

reconstruction reveals significant export primarily next to land masses in the Atlantic534

and Indian sectors of the Southern Ocean. Proximity to land masses has been shown to535

increase productivity and carbon flux (Jouandet et al., 2014), presumably via iron fer-536

tilization from terrestrial and sedimentary sources in otherwise high-nutrient low-chlorophyll537

waters. It is possible that other flux reconstructions underestimate this rapid aggrega-538

tion of particles and increased particle export, in particular during winter, when obser-539

vations are scarce. Increasing the number of particle flux and size distribution observa-540

tions from the Antarctic Zone, in particular downstream of major land masses and in541

wintertime, together with a better regional understanding of export processes, could help542

shed more light on the patterns of export in the region.543

3.4 Mixed layer versus euphotic zone export544

By exploiting the high vertical resolution of UVP5 measurements, our approach545

allows reconstruction of particle export at arbitrary horizons. We illustrate this capa-546

bility by estimating particle fluxes at the depth of the maximum climatological winter-547

time mixed layer, and compare them to export from the climatologically-varying euphotic548

zone, shown in Fig. 5. We find that, globally integrated, the particulate carbon export549

from the mixed layer is 9.4 ±1.1 PgC/y, i.e., about 3 Pg/year larger than the global ex-550

port from the euphotic zone. This estimate is slightly lower than observational estimates551

of carbon export and sequestration from the same depth horizon based on ANCP and552

POC export estimates (Emerson, 2013).553

Overall, export at the wintertime mixed layer follows broad spatial patterns sim-554

ilar to the export from the euphotic zone (Fig. 9a). However, tropics and subtropics show555

larger export fluxes from the mixed layer (locally, up to a few times), while high latitudes556

show overall weaker export fluxes (Fig. 9b). The low-latitude intensification of mixed557

layer particle fluxes is similar in all ocean basins, and more than compensates for the re-558

duction at high latitudes (Supplementary Fig. S12), thus producing an overall larger ex-559

port from this horizon. Because of this low-latitude intensification, export from the mixed560

layer shows stronger gradients between the tropics and high latitudes. Gradients between561

the equatorial export peak and the subtropical export low are also intensified. Finally,562
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a)      This Study

d)  Arteaga - Carr e)  Arteaga - Cbpm

b). Arteaga - vgpm c) Arteaga - Marra

f)  Arteaga - Mean

g)
Antarctic Zone (AAZ)

Figure 8. Southern Ocean specific export for (a) This study, and (b-e) the various mod-
els from Arteaga et al. (2018), and (f) the mean from that study. Each model from Arteaga et
al. (2018) represents a different net primary productivity algorithm used to derive export. (g)
Seasonal cycle of export for each model in the Antarctic zone (shown in figure 7).

export from the mixed layer in the Southern Ocean is substantially depressed compared563

to export from the euphotic zone.564

Differences between euphotic zone and mixed layer export can be best interpreted565

by considering the different depth of these horizons (Palevsky & Doney, 2018). The depth566

of the maximum mixed layer is shallower than the euphotic zone in the tropics and sub-567

tropics, and is deeper in high latitudes (Fig. 9c). This suggests that shallower export hori-568

zons are generally characterized by higher fluxes than deeper export horizons, likely be-569

cause of remineralization of particles in the upper layers of the ocean. Specifically, we570

identify three main latitudinal bands with different horizon depths and export patterns,571

roughly corresponding to tropics and subtropics, mid-latitudes, and subpolar regions.572

Over most of the tropics and the subtropics, the maximum wintertime mixed layer is shal-573

lower on average than the climatological euphotic zone (blue colors in Fig. 9c). Here,574

particle remineralization between the wintertime mixed layer and the euphotic zone depth575

reduces export from the latter horizon, indicating net heterotrophy in the deeper lay-576

ers of the euphotic zone. Over subpolar regions, the wintertime mixed layer is deeper577

on average than the climatological euphotic zone. Here, export fluxes reach maximum578

values within the euphotic zone, and decrease below it following remineralization. Fi-579

nally, over most of mid-latitudes, the wintertime mixed layer is deeper on average than580

the climatological euphotic zone; however, export fluxes from the mixed layer and eu-581

photic zone depth are very similar in magnitude, suggesting a close seasonal compen-582
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Ratio of Annual average POC flux from maximum 

Mixed Layer depth to Euphotic depth

Annual average POC flux from the 

wintertime Mixed Layer

9.4 ± 1.1
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Figure 9. (a) Annual mean particle export from the maximum mixed layer depth. (b) Ratio
of the export from the maximum mixed layer depth to the export from the euphotic zone. (c)
Ratio of the maximum mixed layer depth to the euphotic zone depth.

sations between enhanced euphotic zone fluxes when this horizon is found above the win-583

tertime mixed layer, and reduced euphotic zone fluxes when it is found below it.584

Ultimately, differences in export between the euphotic zone and the wintertime mixed585

layer are important when considering the role of the biological pump for carbon seques-586

tration (Palevsky & Doney, 2018). Our results suggest that more carbon is sequestered587

below the wintertime mixed layer than leaves the euphotic zone. The sensitivity of these588

fluxes to climate variability and change is also likely to differ (Palevsky & Doney, 2021).589

3.5 Caveats to our approach590

There are multiple sources of uncertainty and inherent limitations that could af-591

fect our estimates and call for further work. First, expanding the coverage of observa-592

tions with UVP5 and similar instruments, in particular in under-sampled regions char-593

acterized by large variability, such as the Southern Ocean, would improve the robust-594
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ness of our estimates, and shed additional light on regional export patterns not captured595

by previous work. Regional correlations between environmental properties and PSD may596

not be well captured by extrapolation with a RF algorithm trained on data from differ-597

ent regions, especially when non-linear relationships between variables are important.598

Second, supervised learning methods are only as reliable as the data used for train-599

ing; therefore, continued work on improving satellite reconstructions of surface chloro-600

phyll, net primary production, and other remotely-sensed variables, in particular at high601

latitudes, would help improve the robustness of these methods.602

Third, different machine learning approaches are likely characterized by different603

biases. Here, we note a slight underestimate of extreme values in reconstructed PSD prop-604

erties, which may affect the reconstructed variability in particle fluxes. Different machine605

learning methods that are better suited to capture extreme values should be tested to606

address this limitation, in conjunction with more detailed analyses of particle flux ob-607

servations, including at time-series stations.608

Finally, we use globally-averaged relationships between particle size, sinking speed,609

and carbon content, which we optimize against observations. However, these quantities610

are likely to depend on region and time of the year, reflecting variable underlying eco-611

logical processes. More work combining in situ and optical measurements should focus612

on constraining these quantities and their regional and temporal variability.613

4 Conclusions614

In this paper, we provide a new, data-constrained estimate of particle fluxes based615

on global UVP5 observations of PSDs. It captures regional and seasonal variability in616

observed PSD properties and export fluxes, and demonstrates the ability of statistical617

machine learning methods to extrapolate these quantities globally. Our approach also618

allows reconstruction of export fluxes from multiple depths, highlighting the importance619

of the choice of export horizon (Palevsky & Doney, 2018), and paving the way to fully620

three-dimensional particle flux reconstructions.621

We obtain a global particle export flux of 6.7 ± 0.4 PgC/year from the euphotic622

zone, in line with previous work, although with significant regional and temporal differ-623

ences. Our results suggest weaker spatial and seasonal variability in particle fluxes com-624

pared to previous studies, in particular in the open ocean, while highlighting the impor-625

tance of coastal waters and marginal seas for high latitude export. We also capture sim-626

ilar patterns of high latitude seasonal blooms in the Northern Hemisphere as previous627

studies, but less variable flux in the tropical to subtropical ocean, and substantially higher628

year-round export in the Southern Ocean, in better agreement with regional estimates629

(Arteaga et al., 2018). Results from the Southern Ocean suggest that processes that sus-630

tain elevated fluxes, in particular in wintertime, may not be completely captured by other631

global reconstructions, and that waters downstream of coasts and islands may harbor632

a significant source of carbon export to the deep ocean, which is only partially captured633

in one other model (Dunne et al., 2007).634

The statistical nature of our machine learning approach does not directly reveal635

mechanisms behind PSD and export fluxes. However, we are able to highlight globally636

coherent patterns, and the relative roles of particle abundance and size structure in driv-637

ing export fluxes. Specifically, we show that the total particle biovolume and the PSD638

slope show similar patterns, and are in fact correlated in such a way to act synergisti-639

cally on particle fluxes (Supplementary Fig. S3). We also suggest distinct deviation from640

these patterns, for example in the tropical and northern subtropical Pacific Ocean, where641

high availability of particles, rather than dominance of large vs. small particles, tends642

to drive elevated export.643
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We illustrate the ability of our method to reconstruct particle fluxes at multiple644

depth horizons by reconstructing and comparing carbon export from the euphotic zone645

and the wintertime mixed layer depth. Export from the base of the wintertime mixed646

layer is overall stronger than export from the euphotic zone in low and mid latitudes,647

and weaker in high latitudes, driving a significantly larger global particle export of 9.4648

±1.1 PgC/year. This suggests that more carbon is sequestered for decadal to centennial649

timescales than is available for remineralization in the twilight zone of the ocean.650

We attribute the disparity in flux from the euphotic zone and mixed layer to dif-651

ferences in their depths: maximum mixed layers are typically shallower than the euphotic652

zone over large swathes of the low latitude ocean, but deeper in high latitudes. Future653

three-dimensional reconstructions of particle fluxes would allow a closer investigation of654

the processes controlling transfer of carbon between the surface and the deep ocean, pro-655

viding further insights into particle transformation processes, transfer efficiency, and ocean656

carbon sequestration.657

Acknowledgments658

This material is based upon work supported by the U.S. National Science Foundation659

under Grant No. OCE-1635632. D.B. acknowledges support from the Alfred P. Sloan660

Foundation. A.M.P.M acknowledges support from NSF Award No. 1654663. T.W. was661

supported by NSF award OCE-1635414. RK acknowledges support via the BMBF funded662

project CUSCO, the EU project TRIATLAS (European Union’s Horizon 2020 programme,663

grant agreement No 817578) and a "Make Our Planet Great Again" grant of the ANR664

within the "Programme d’Investissements d’Avenir"; reference "ANR-19-MPGA-0012“.665

Data generated by this analysis has been uploaded to BCO-DMO, with a DOI pending.666

The individual UVP5 profiles used to generate the reconstructions can be obtained on667

the EcoTaxa website https://ecotaxa.obs-vlfr.fr/part/.668

References669

Alldredge, A. L., & Gotschalk, C. (1988). In situ settling behavior of marine snow.670

Limnology and Oceanography , 33 (3), 339–351. doi: 10.4319/lo.1988.33.3.0339671

Antoine, D., & Morel, A. (1996, mar). Oceanic primary production: 1. Adap-672

tation of a spectral light-photosynthesis model in view of application to673

satellite chlorophyll observations. Global Biogeochemical Cycles, 10 (1),674

43–55. Retrieved from http://doi.wiley.com/10.1029/95GB02831 doi:675

10.1029/95GB02831676

Arteaga, L., Haëntjens, N., Boss, E., Johnson, K. S., & Sarmiento, J. L. (2018).677

Assessment of Export Efficiency Equations in the Southern Ocean Applied to678

Satellite-Based Net Primary Production. Journal of Geophysical Research:679

Oceans, 123 (4), 2945–2964. doi: 10.1002/2018JC013787680

Barton, A. D., Pershing, A. J., Litchman, E., Record, N. R., Edwards, K. F., Finkel,681

Z. V., . . . Ward, B. A. (2013). The biogeography of marine plankton traits.682

Ecology Letters, 16 (4), 522–534. doi: 10.1111/ele.12063683

Behrenfeld, M. J., & Falkowski, P. G. (1997, jan). Photosynthetic rates derived684

from satellite-based chlorophyll concentration. Limnology and Oceanography ,685

42 (1), 1–20. Retrieved from https://www.google.com/search?q=Engle+et+686

al.{\%}2C2000{\&}oq=Engle+et+al.{\%}2C2000{\&}aqs=chrome..69i57687

.11777j0j8{\&}sourceid=chrome{\&}ie=UTF-8http://doi.wiley.com/688

10.4319/lo.1997.42.1.0001 doi: 10.4319/lo.1997.42.1.0001689

Bianchi, D., Weber, T. S., Kiko, R., & Deutsch, C. (2018). Global niche of marine690

anaerobic metabolisms expanded by particle microenvironments. Nature Geo-691

science, 1–6. Retrieved from http://dx.doi.org/10.1038/s41561-018-0081692

-0 doi: 10.1038/s41561-018-0081-0693

Bisson, K. M., Siegel, D. A., DeVries, T., Cael, B. B., & Buesseler, K. O. (2018).694

–22–



manuscript submitted to Global Biogeochemical Cycles

How Data Set Characteristics Influence Ocean Carbon Export Models. Global695

Biogeochemical Cycles, 32 (9), 1312–1328. doi: 10.1029/2018GB005934696

Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., & Weber, T. (2019). Multi-697

faceted particle pumps drive carbon sequestration in the ocean. Na-698

ture, 568 (7752), 327–335. Retrieved from https://doi.org/10.1038/699

s41586-019-1098-2 doi: 10.1038/s41586-019-1098-2700

Boyd, P. W., Sherry, N. D., Berges, J. A., Bishop, J. K., Calvert, S. E., Charette,701

M. A., . . . Wong, C. S. (1999). Transformations of biogenic particu-702

lates from the pelagic to the deep ocean realm. Deep-Sea Research Part703

II: Topical Studies in Oceanography , 46 (11-12), 2761–2792. doi: 10.1016/704

S0967-0645(99)00083-1705

Brun-Cottan, J. (1971). Etude de la granulométrie des particules marines, mesures706

effectuées avec un compteur coulter. Cah. Oceanogr , 23 , 193–205.707

Buesseler, K. O., & Boyd, P. W. (2009). Shedding light on processes that con-708

trol particle export and flux attenuation in the twilight zone of the open709

ocean. Limnology and Oceanography , 54 (4), 1210–1232. doi: 10.4319/710

lo.2009.54.4.1210711

Buesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. (2020). Metrics that712

matter for assessing the ocean biological carbon pump. Proceedings of the713

National Academy of Sciences of the United States of America, 117 (18), 9679–714

9687. doi: 10.1073/pnas.1918114117715

C.C.C.S. (2017). Era5: Fifth generation of ecmwf atmospheric reanalyses of the716

global climate. Copernicus Climate Change Service Climate Data Store (CDS).717

Retrieved from https://cds.climate.copernicus.eu/cdsapp#!/home (ac-718

cessed: 11-13-2019)719

Cram, J. A., Weber, T., Leung, S. W., McDonnell, A. M., Liang, J. H., & Deutsch,720

C. (2018). The Role of Particle Size, Ballast, Temperature, and Oxygen in the721

Sinking Flux to the Deep Sea. Global Biogeochemical Cycles, 32 (5), 858–876.722

doi: 10.1029/2017GB005710723

de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., & Iudicone, D. (2004).724

Mixed layer depth over the global ocean: An examination of profile data and a725

profile-based climatology. Journal of Geophysical Research C: Oceans, 109 (12),726

1–20. doi: 10.1029/2004JC002378727

DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic car-728

bon uptake driven by weaker upper-ocean overturning. Nature, 542 (7640),729

215–218. Retrieved from http://dx.doi.org/10.1038/nature21068 doi:730

10.1038/nature21068731

Devries, T., Liang, J. H., & Deutsch, C. (2014). A mechanistic particle flux model732

applied to the oceanic phosphorus cycle. Biogeosciences, 11 (19), 5381–5398.733

doi: 10.5194/bg-11-5381-2014734

DeVries, T., & Weber, T. (2017). The export and fate of organic matter in735

the ocean: New constraints from combining satellite and oceanographic736

tracer observations. Global Biogeochemical Cycles, 31 (3), 535–555. doi:737

10.1002/2016GB005551738

Dunne, J. P., Sarmiento, J. L., & Gnanadesikan, A. (2007). A synthesis of global739

particle export from the surface ocean and cycling through the ocean inte-740

rior and on the seafloor. Global Biogeochemical Cycles, 21 (4), 1–16. doi:741

10.1029/2006GB002907742

D’Errico, J. (2016). Inpaint nans (matlab central file exchange, 2012).743

Emerson. (2013). Global Biogeochemical Cycles the biological carbon flux in the744

ocean. Global Biogeochemical Cycles, 14–28. doi: 10.1002/2013GB004680745

Forest, A., Stemmann, L., Picheral, M., Burdorf, L., Robert, D., Fortier, L., &746

Babin, M. (2012). Size distribution of particles and zooplankton across747

the shelf-basin system in southeast Beaufort Sea: Combined results from an748

Underwater Vision Profiler and vertical net tows. Biogeosciences, 9 (4), 1301–749

–23–



manuscript submitted to Global Biogeochemical Cycles

1320. doi: 10.5194/bg-9-1301-2012750

Garcia, H., Weathers, K., Paver, C., Smolyar, I., Boyer, T., Locarnini, R., . . . Rea-751

gan, J. (2018). World Ocean Atlas 2018. Volume 4: Dissolved Inorganic Nu-752

trients (phosphate, nitrate and nitrate+nitrite, silicate). NOAA Atlas NESDIS753

84 , 84 (July), 35.754

Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini,755

R. A., . . . Reagan, J. R. (2019). World Ocean Atlas 2018, Volume 3: Dissolved756

Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. NOAA Atlas757

NESDIS , 3 (83), 38 pp.758

Guidi, L., Jackson, G. A., Stemmann, L., Miquel, J. C., Picheral, M., & Gorsky,759

G. (2008). Relationship between particle size distribution and flux in the760

mesopelagic zone. Deep-Sea Research Part I: Oceanographic Research Papers,761

55 (10), 1364–1374. doi: 10.1016/j.dsr.2008.05.014762

Guidi, L., Legendre, L., Reygondeau, G., Uitz, J., Stemmann, L., & Henson, S. A.763

(2015, jul). A new look at ocean carbon remineralization for estimating764

deepwater sequestration. Global Biogeochemical Cycles, 29 (7), 1044–1059.765

Retrieved from http://doi.wiley.com/10.1002/2014GB005063 doi:766

10.1002/2014GB005063767

Guidi, L., Stemmann, L., Jackson, G. A., Ibanez, F., Claustre, H., Legendre, L.,768

. . . Gorsky, G. (2009). Effects of phytoplankton community on production,769

size and export of large aggregates: A world-ocean analysis. Limnology and770

Oceanography , 54 (6), 1951–1963. doi: 10.4319/lo.2009.54.6.1951771

Hamilton, D. S., Scanza, R. A., Feng, Y., Guinness, J., Kok, J. F., Li, L., . . . Ma-772

howald, N. M. (2019). Improved methodologies for Earth system modelling of773

atmospheric soluble iron and observation comparisons using the Mechanism of774

Intermediate complexity for Modelling Iron (MIMI v1.0). Geoscientific Model775

Development , 12 (9), 3835–3862. doi: 10.5194/gmd-12-3835-2019776

Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., & Quar-777

tly, G. D. (2011). A reduced estimate of the strength of the ocean’s bi-778

ological carbon pump. Geophysical Research Letters, 38 (4), 10–14. doi:779

10.1029/2011GL046735780

Johnson, G. C., Schmidtko, S., & Lyman, J. M. (2012). Relative contributions of781

temperature and salinity to seasonal mixed layer density changes and horizon-782

tal density gradients. Journal of Geophysical Research: Oceans, 117 (4). doi:783

10.1029/2011JC007651784

Jouandet, M. P., Jackson, G. A., Carlotti, F., Picheral, M., Stemmann, L., & Blain,785

S. (2014). Rapid formation of large aggregates during the spring bloom of Ker-786

guelen Island: Observations and model comparisons. Biogeosciences, 11 (16),787

4393–4406. doi: 10.5194/bg-11-4393-2014788

Karl, D., Knauer, G., Martin, J., & Ward, B. (1984). Bacterial chemolithotrophy in789

the ocean is associated with sinking particles. Nature, 309 (5963), 54–56.790

Kiko, R., Biastoch, A., Brandt, P., Cravatte, S., Hauss, H., Hummels, R., . . . Stem-791

mann, L. (2017). Biological and physical influences on marine snowfall at the792

equator. Nature Geoscience, 10 (11), 852–858. doi: 10.1038/NGEO3042793

Kostadinov, T. S., Siegel, D. A., & Maritorena, S. (2009). Retrieval of the particle794

size distribution from satellite ocean color observations. Journal of Geophysical795

Research: Oceans, 114 (9), 1–22. doi: 10.1029/2009JC005303796

Kriest, I. (2002). Different parameterizations of marine snow in a 1D-model and797

their influence on representation of marine snow, nitrogen budget and sedimen-798

tation. Deep-Sea Research Part I: Oceanographic Research Papers, 49 (12),799

2133–2162. doi: 10.1016/S0967-0637(02)00127-9800

Kwon, E. Y., Primeau, F., & Sarmiento, J. L. (2009). The impact of remineraliza-801

tion depth on the air–sea carbon balance. Nature Geoscience, 2 (9), 630–635.802

Laws, E. A., D’Sa, E., & Naik, P. (2011). Simple equations to estimate ratios of new803

or export production to total production from satellite-derived estimates of sea804

–24–



manuscript submitted to Global Biogeochemical Cycles

surface temperature and primary production. Limnology and Oceanography:805

Methods, 9 (DECEMBER), 593–601. doi: 10.4319/lom.2011.9.593806

Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M.,807

Garcia, H. E., . . . Smolyar, I. V. (2019). World Ocean Atlas 2018, Volume 1:808

Temperature. A. Mishonov, Technical Editor. NOAA Atlas NESDIS , 1 (81),809

52pp.810

Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., & Franz, B. A.811

(2007). Examining the consistency of products derived from various ocean812

color sensors in open ocean (Case 1) waters in the perspective of a multi-813

sensor approach. Remote Sensing of Environment , 111 (1), 69–88. doi:814

10.1016/j.rse.2007.03.012815

Mouw, C. B., Hardman-Mountford, N. J., Alvain, S., Bracher, A., Brewin, R. J.,816

Bricaud, A., . . . others (2017). A consumer’s guide to satellite remote sensing817

of multiple phytoplankton groups in the global ocean. Frontiers in Marine818

Science, 4 , 41.819

Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol, M. C., Mahowald,820

N. M., . . . Duce, R. A. (2018). Reviews and syntheses: The GESAMP atmo-821

spheric iron deposition model intercomparison study. Biogeosciences, 15 (21),822

6659–6684. doi: 10.5194/bg-15-6659-2018823

NASA G.S.F.C . (2014). Modis-aqua ocean color data. NASA Goddard Space Flight824

Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. doi: dx825

.doi.org/10.5067/AQUA/MODIS_OC.2014.0826

N.G.D.C. (2006). 2-minute gridded global relief data (etopo2) v2. National Geophys-827

ical Data Center, NOAA. (accessed: 11-13-2019) doi: 10.7289/V5J1012Q828

Nishioka, J., Obata, H., Ogawa, H., Ono, K., Yamashita, Y., Lee, K., . . . Yasuda,829

I. (2020). Subpolar marginal seas fuel the North Pacific through the interme-830

diate water at the termination of the global ocean circulation. Proceedings of831

the National Academy of Sciences of the United States of America, 117 (23),832

12665–12673. doi: 10.1073/pnas.2000658117833

Palevsky, H. I., & Doney, S. C. (2018). How Choice of Depth Horizon Influ-834

ences the Estimated Spatial Patterns and Global Magnitude of Ocean Car-835

bon Export Flux. Geophysical Research Letters, 45 (9), 4171–4179. doi:836

10.1029/2017GL076498837

Palevsky, H. I., & Doney, S. C. (2021). Sensitivity of 21st century ocean carbon ex-838

port flux projections to the choice of export depth horizon. Global Biogeochem-839

ical Cycles, e2020GB006790.840

Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., & Gorsky, G.841

(2010). The underwater vision profiler 5: An advanced instrument for high842

spatial resolution studies of particle size spectra and zooplankton. Limnology843

and Oceanography: Methods, 8 (SEPT), 462–473. doi: 10.4319/lom.2010.8.462844

Quay, P., Emerson, S., & Palevsky, H. (2020). Regional Pattern of the Ocean’s Bi-845

ological Pump Based on Geochemical Observations. Geophysical Research Let-846

ters, 47 (14), 1–10. doi: 10.1029/2020GL088098847

Riley, J. S., Sanders, R., Marsay, C., Le Moigne, F. A., Achterberg, E. P., & Poul-848

ton, A. J. (2012). The relative contribution of fast and slow sinking particles849

to ocean carbon export. Global Biogeochemical Cycles, 26 (1), 1–10. doi:850

10.1029/2011GB004085851

Roy, S., Sathyendranath, S., Bouman, H., & Platt, T. (2013). The global distribu-852

tion of phytoplankton size spectrum and size classes from their light-absorption853

spectra derived from satellite data. Remote Sensing of Environment , 139 ,854

185–197. Retrieved from http://dx.doi.org/10.1016/j.rse.2013.08.004855

doi: 10.1016/j.rse.2013.08.004856

Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R., Boss, E.,857

Brzezinski, M. A., . . . Steinberg, D. K. (2016). Prediction of the export and858

fate of global ocean net primary production: The exports science plan. Fron-859

–25–



manuscript submitted to Global Biogeochemical Cycles

tiers in Marine Science, 3 (MAR), 1–10. doi: 10.3389/fmars.2016.00022860

Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld, M. J., &861

Boyd, P. W. (2014). Global assessment of ocean carbon export by combining862

satellite observations and food-web models. Global Biogeochemical Cycles,863

28 (3), 181–196. doi: 10.1002/2013GB004743864

Siegel, D. A., Doney, S. C., & Yoder, J. A. (2002). The North Atlantic spring phyto-865

plankton bloom and Sverdrup’s critical depth hypothesis. Science, 296 (5568),866

730–733. doi: 10.1126/science.1069174867

Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J., & Westberry,868

T. K. (2016). The CAFE model: A net production model for global ocean869

phytoplankton. Global Biogeochemical Cycles, 30 (12), 1756–1777. doi:870

10.1002/2016GB005521871

Smayda, T. J. (1970). The Suspension and sinking of phytoplankton in the sea.872

Oceanography Marine Biology, Annual Review(8), 353–414.873

Stemmann, L., & Boss, E. (2012). Plankton and Particle Size and Packaging:874

From Determining Optical Properties to Driving the Biological Pump. An-875

nual Review of Marine Science, 4 (1), 263–290. Retrieved from http://876

www.annualreviews.org/doi/10.1146/annurev-marine-120710-100853877

doi: 10.1146/annurev-marine-120710-100853878

Stemmann, L., Jackson, G. A., & Ianson, D. (2004). A vertical model of par-879

ticle size distributions and fluxes in the midwater column that includes880

biological and physical processes - Part I: Model formulation. Deep-Sea881

Research Part I: Oceanographic Research Papers, 51 (7), 865–884. doi:882

10.1016/j.dsr.2004.03.001883

Stemmann, L., Youngbluth, M., Robert, K., Hosia, A., Picheral, M., Paterson, H.,884

. . . Gorsky, G. (2008). Global zoogeography of fragile macrozooplankton in the885

upper 100-1000 m inferred from the underwater video profiler. ICES Journal886

of Marine Science, 65 (3), 433–442. doi: 10.1093/icesjms/fsn010887

Ward, B. A., Dutkiewicz, S., & Follows, M. J. (2014). Modelling spatial and tem-888

poral patterns in size-structured marine plankton communities: Top-down889

and bottom-up controls. Journal of Plankton Research, 36 (1), 31–47. doi:890

10.1093/plankt/fbt097891

Weber, T., Cram, J. A., Leung, S. W., DeVries, T., & Deutsch, C. (2016). Deep892

ocean nutrients imply large latitudinal variation in particle transfer efficiency.893

Proceedings of the National Academy of Sciences of the United States of Amer-894

ica, 113 (31), 8606–8611. doi: 10.1073/pnas.1604414113895

Westberry, T., Behrenfeld, M. J., Siegel, D. A., & Boss, E. (2008). Carbon-based896

primary productivity modeling with vertically resolved photoacclimation.897

Global Biogeochemical Cycles, 22 (2), 1–18. doi: 10.1029/2007GB003078898

Yang, S., Chang, B. X., Warner, M. J., Weber, T. S., Bourbonnais, A. M., Santoro,899

A. E., . . . Bianchi, D. (2020). Global reconstruction reduces the uncertainty900

of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle. Pro-901

ceedings of the National Academy of Sciences of the United States of America,902

117 (22). doi: 10.1073/pnas.1921914117903

Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Antonov, J. I., Locarnini,904

R. A., . . . Smolyar, I. V. (2019). World Ocean Atlas 2018, Volume 2: Salinity.905

NOAA Atlas NESDIS , 2 (82), 50.906

–26–


