Native H2 exploration in the western Pyrenean foothills

Nicolas Lefeuvre¹, Laurent Truche², Frederic Victor DONZE¹, Maxime Ducoux³, Guillaume Barré⁴, Rose-Adeline Fakoury⁵, Sylvain Calassou⁶, and Eric Gaucher⁷

¹Université Grenoble Alpes ²ISTerre ³M&U sasu ⁴Université de Pau et Pays de l'Adour ⁵Total SA ⁶TOTAL ⁷Centre Scientifique et Technique

November 21, 2022

Abstract

Native hydrogen (H2) may represent a new carbon free energy resource, but to date there is no specific exploration guide to target H2-fertile geological settings. Here, we present the first soil gas survey specifically designed to explore H2 migration in a region where no surface seepage has been documented so far. We choose the Pyrenean orogenic belt and its northern foreland basin (Aquitaine, France) as a playground to test our strategy. The presence of a mantle body at shallow depth (< 10 km) under the Mauléon Basin connected to the surface by major faults is considered as a preliminary pathfinder for H2 generation and drainage. On this basis, more than 1,100 in situ soil gas analysis (H2, CO, CO2, CH4, H2S, and 222Rn) were performed at ~1 m depth at the regional scale along a 10 x 10 km grid spanning over 7,500 km2. The analysis campaign reveals several hot spots to the north of the Mauléon Basin where H2, CO2 and 222Rn concentrations exceed 1000 ppmv, 10 vol% and 50 kBq m-3, respectively. Most of these hot spots are located along the North Pyrenean Frontal Thrust and other related faults rooted in the mantle body. These results, together with evidence of fluid migration at depth, suggest that H2 may be sourced from mantle rocks serpentinization and carried to the surface along major thrusting faults. Hydrogen traps remain unidentified up to now but the presence of salt-related structures (diapirs) near these hot spots could play this role.

Native H₂ exploration in the western Pyrenean foothills

2 Nicolas Lefeuvre^{1,2,*}, Laurent Truche¹, Frédéric-Victor Donzé¹, Maxime Ducoux³,

- 3 Guillaume Barré^{2,4}, Rose-Adeline Fakoury², Sylvain Calassou², Eric C Gaucher²
- 4

1

- ⁵ ¹ Université Grenoble Alpes, CNRS, ISTerre, F-38058 Grenoble Cedex 9, France
- ⁶ ² Total SA, CSTJF, F-64018 Pau Cedex France
- 7 ³ M&U SAS, 38120 Saint-Egrève France
- ⁴ Université de Pau et Pays de l'Adour, E2S UPPA, CNRS, Total, LFCR, 64000, PAU,
- 9 France
- ^{*}Corresponding author: Nicolas Lefeuvre (nicolas.lefeuvre@univ-grenoble-alpes.fr)
- 11 Key Points:
- Soil gas mapping for H₂ targeting
- 13 Fertile area for H₂ production, migration
- Multiple gas analysis

15 Abstract:

16 Native hydrogen (H_2) may represent a new carbon free energy resource, but to date 17 there is no specific exploration guide to target H₂-fertile geological settings. Here, we present 18 the first soil gas survey specifically designed to explore H₂ migration in a region where no 19 surface seepage has been documented so far. We choose the Pyrenean orogenic belt and its 20 northern foreland basin (Aquitaine, France) as a playground to test our strategy. The presence 21 of a mantle body at shallow depth (<10 km) under the Mauléon Basin connected to the 22 surface by major faults is considered as a preliminary pathfinder for H₂ generation and 23 drainage. On this basis, more than 1,100 in situ soil gas analysis (H₂, CO, CO₂, CH₄, H₂S, and 24 ²²²Rn) were performed at ~1 m depth at the regional scale along a 10×10 km grid spanning over 7,500 km². The analysis campaign reveals several hot spots to the north of the Mauléon 25 Basin where H₂, CO₂ and ²²²Rn concentrations exceed 1000 ppmv, 10 vol% and 50 kBq m⁻³, 26 27 respectively. Most of these hot spots are located along the North Pyrenean Frontal Thrust and 28 other related faults rooted in the mantle body. These results, together with evidence of fluid 29 migration at depth, suggest that H₂ may be sourced from mantle rocks serpentinization and carried to the surface along major thrusting faults. Hydrogen traps remain unidentified up to 30 31 now but the presence of salt-related structures (diapirs) near these hot spots could play this 32 role.

33 Plain language Summary:

34 Native hydrogen (H2) is currently considered as a possible energy resource for the development of a carbon-free society. Throughout the world, and for over a century, 35 36 numerous natural H2-bearing geological fluids have been discovered, but to date, there is 37 neither exploration strategy nor any resource assessment, as practical guidelines for hydrogen 38 targeting are still missing. Here, we propose a new integrated approach dedicated to native H2 39 exploration, using the Pyrenean orogenic belt and its northern foreland basins as a 40 playground. On this basis, a soil gas (H2, CO2, CH4, radon) exploration campaign, 41 encompassing the major tectonic structures identified in the region has been carried out. This 42 survey reveals several hotspots where H2, CO2 and radon concentrations are by two orders of 43 magnitude above the regional background. These hotspots are mainly located along major 44 faults deeply rooted in the mantle body (~10 km depth) that is well imaged by geophysical 45 data. Therefore, the combined presence of soil gases significantly enriched in H2, CO2, and radon, a dense mantle body below the foreland basin potentially subject to active 46 47 hydrothermal alteration, and deep faults, represents a favorable geological setting for H2 48 generation and drainage.

49 **1 Introduction**

50 Several water-rock interaction processes producing molecular hydrogen (hereafter 51 "hydrogen" or "H₂") in the Earth are now well identified (Klein et al., 2020). Among these 52 processes, serpentinization of ultramafic rocks (Malvoisin et al., 2011; Marcaillou et al., 53 2011; Mayhew et al., 2013; McCollom et al., 2016) and water radiolysis (Lin et al. 2005a; 54 Truche et al., 2018) have drawn most of the scientific attention so far because they may fuel 55 deep microbial subsurface ecosystems and trigger the abiotic synthesis of organic molecules 56 (Etiope et al., 2015; Fiebig et al., 2007; Johnson et al., 2015; Lin et al., 2005b; McCollom, 57 2013; Sauvage et al., 2021; Schrenk et al., 2013; Sherwood Lollar et al., 2006; Sherwood 58 Lollar et al., 2021; Truche et al., 2020; Vandenborre et al., 2021). Recently, the growing 59 demand for carbon-free energy has sparked an unprecedented interest in naturally occurring H₂, as it could represent a potential alternative resource to fossil fuels (Donzé et al., 2020; 60

61 Gaucher, 2020; Murray et al., 2020; Prinzhofer et al., 2018; Truche and Bazarkina, 2019,

62 Smith et al., 2005).

63 The discoveries of hundreds of natural H₂ seepages, generally connected with 64 circulation of hydrothermal fluids through ultramafic rocks both through seafloors (Donval et 65 al., 1997; Charlou et al., 2010) and on continents (Abrajano et al., 1988; Deville & Prinzhofer, 2016; Monnin et al., 2009; Neal & Stranger, 1983; Vacquand et al., 2018; Zgonnik et al., 66 2020), raise important questions regarding the energy potential of natural hydrogen. Current 67 68 estimates of global H₂ flux, even if poorly constrained (reported value ranges from ~0.2 to 2.1 Tg yr⁻¹; Cannat et al., 2010, Charlou et al., 2010; Merdith et al., 2020; Sherwood Lollar et al., 69 70 2014; Truche et al., 2020; Worman et al., 2020) seems to be too low to support an industrial 71 production (~ 70 Tg of H₂ are manufactured annually worldwide). However, the recent 72 observations of intra-cratonic seepages with no obvious relationship with ultramafic 73 formations (Donzé et al., 2020; Larin et al., 2014; Moretti et al., 2021; Prinzhofer et al., 2019; 74 Zgonnik et al., 2015) have challenged our understanding of H₂ production and behavior in the 75 crust. Despite these questionings, the recent discovery of a H₂-rich (>90 mol% H₂), over-76 pressurized gas field from the shallow Bougou-1 well, Taoudeni Basin, Mali (Prinzhofer et 77 al., 2018) that is used for small-scale electricity generation, attests to the niche potential of 78 commercial H₂ exploitation.

79 Currently, there is neither specific exploration guide to target H₂ fertile geological 80 settings, nor robust resource assessment that can promote industrial interests. Identification of 81 circular depressions in intra-cratonic basins, ultramafic bodies exhumed at the surface (e.g. 82 ophiolites, greenstones belts) or buried under a sedimentary cover represents a promising 83 starting point for exploration, but our knowledge of the hydrogen system is still insufficient to design on purpose drilling campaigns based solely on this information. A combination of 84 85 geophysical, geochemical and geological data is definitively needed, but in the absence of clearly established exploration guidelines, the direct detection of H₂ seepages remains one of 86 87 the most straightforward and effective pathfinders. Indeed, the existence of focused seepages 88 at the surface testifies to the presence of active H₂ flux driven by conduits or faults connecting 89 potential leaking reservoirs or draining diffuse sources at depth. This can be done visually by 90 observing H₂-rich gas bubbles in rivers or streams (Chavagnac et al., 2013; Deville et al., 91 2011), or eternal flame burning H₂ like in Chimaera, Turkey (Etiope et al., 2011), but also by 92 monitoring soil gas emissions. Such a technique has already proven to be useful for the 93 detection of H₂ degassing in surface rounded depressions located in intra-cratonic basins 94 (Donzé et al., 2020; Larin et al., 2014; McCarthy et al., 1986; Moretti et al., 2020; Prinzhofer et al., 2019; Zgonnik et al., 2015). Soil gas monitoring (e.g. ²²²Rn, He, CH₄, CO₂, COS, CS₂, 95 H₂S and light hydrocarbons) combined with geophysical methods enables large areas survey 96 97 and has already been applied with great success for targeting mineral, geothermal, and 98 hydrocarbons resources (Disnar & Gauthier, 1988; Gao et al., 2011; Hinkle, 1994; McCarthy 99 and Reimer, 1986; Noble et al., 2018; Pereira et al., 2010; Polito et al., 2002). Furthermore, the geochemical characteristics and behavior of soil gases (²²²Rn, Hg, He, H₂, H₂S and CO₂) 100 in volcanic and seismically active areas have been investigated widely for correlating 101 102 geochemical variations with faults and earthquake activities (Ciotoli et al., 1999, 2007; Du et 103 al. 2008; Li et al., 2013; Lombardi & Voltattorni, 2010; Wiersberg & Erzinger, 2008; 104 Woodruff et al., 2009; Xiang et al., 2020).

Here, we present the results of a soil gas regional monitoring campaign dedicated to H₂ exploration. Following synergies and results from the Convergence project, we use the Pyrenean orogenic belt and his northern foreland basins as a case study. This area gathers several promising characteristics that may define a H₂-fertile geological province such as the presence of mantle rock at shallow depth connected to the surface by several deeply rooted faults. The objective of this study is to identify the presence of a H₂ fertile zone through the

- direct observation of H₂ and associated gas (CH₄, CO₂, 222 Rn) emissions, and the comparison
- 112 of soil gas maps with georeferenced structural and geophysical data.
- 113 **2 Targeting H₂ emissions in the NW Pyrenees foothills**
- 114 The Pyrenees is an E-W-trending orogenic belt (Fig. 1) resulting from the inversion of
- a series of rift basins that formed along the Iberia-Europe divergent boundary during the late
- Jurassic to Early Cretaceous time (e.g., Clerc et al., 2012, 2013; Ducoux et al., 2019; Jammes
- et al., 2009, 2010a; Lagabrielle and Bodinier, 2008; Lagabrielle et al., 2010; Lagabrielle et al., 2014; Maytharasan et al
- 118 2016; Lescoutre and Manatschal, 2020; Masini et al., 2014; Mouthereau et al., 2014; Teixell
- 119 et al., 2018; Tugend et al., 2014, 2015b).

Figure 1. Tectonic setting of the Pyrenean-Cantabrian belt (modified from Pedrera et al., 2017 and Ducoux et al., 2019). (a) insert show the Iberian Peninsula and the Pyrenean belt in-between France and Spain. (b) Geological map of the Cantabrian Mountains and the Pyrenees, with location of the studied area (red rectangle) displayed on Figures 3 and 4. The black line corresponds to the trace of the cross section displayed on Figure 2 and 5.

126 After the Variscan orogeny, this area records several extensional phases, but the main 127 phase of divergence between the Iberian and European plates occurs during early Aptian to 128 early Cenomanian time. This main phase of divergence leads to hyperextension and mantle 129 exhumation as suggested by remnants of rift basins and several pieces of mantle exposures now exposed in the North Pyrenean Zone (NPZ) of the Pyrenees (e.g. Jammes et al., 2009; 130 131 Clerc et al., 2012, 2013; Fabries et al., 1991, 1998; Lagabrielle and Bodinier, 2008; Lagabrielle et al., 2016; Masini et al., 2014; Tugend et al., 2014; 2015b). Hyperextension and 132 133 mantle exhumation related to a major lithospheric thinning were evidenced by a high 134 temperature and low pressure metamorphism (Azambre and Rossy, 1976; Bernus-Maury, 1984; Clerc and Lagabrielle, 2014; Clerc et al., 2015; Dauteuil and Ricou, 1989; Ducoux et 135 136 al., 2019; Golberg and Leyreloup, 1990; Lescoutre et al., 2019; Ravier, 1959) as well as 137 emplacements of alkaline magma along the rift axis (Azambre and Rossy, 1976; Azambre et 138 al., 1992; Le fur-Ballouet, 1985; Rossy et al., 1992). The end of rifting was rapidly followed 139 by the onset of contractional deformation during the late Santonian with the deposition of the 140 early-orogenic sequence related to the inversion of the hyperextended rift system (García-141 Senz 2002; Garrido-Megias & Rios 1972; Gómez-Romeu et al., 2019; McClay et al., 2004; Mouthereau et al., 2014; Muñoz, 1992; Teixell, 1998; Vergés et al., 1995; Vergés & García-142 143 Senz, 2001). The main convergence phase (i.e. collision) occurred in Eocene-Oligocene times

- 144 (Mouthereau et al., 2014; Muñoz 1992, 2002; Vergès et al. 2002) and ended during the
- 145 Chattian (Ortiz et al., 2020). The present-day structure of the Pyrenean belt (Fig. 2) shows an
- 146 asymmetric double-verging tectonic wedge composed of Paleozoic rocks above the northward
- 147 underthrusting Iberian continental lithosphere inherited from the Cretaceous hyperextended
- 148 Pyrenean rift system (e.g., Chevrot et al., 2018; Choukroune and ECORS Team, 1989;
- 149 Mouthereau et al., 2014; Muñoz, 1992; Roure et al., 1989; Teixell, 1998; Teixell et al., 2016;
- 150 Vergés et al., 1995; Wang et al., 2016; Fig. 2)..

Figure 2. (a) Bouguer (Ayala et al., 2016) and magnetic anomalies (García-Senz et al.,
2019), and (b) Vs model obtained by full waveform inversion (modified from Wang et al.,
2016) along the same transect shown in Figure 1. NPFT – North Pyrenean Frontal Thrust

154 In this study we focus on the Mauléon and Arzacq Basins, located in the western NPZ 155 of the Pyrenees. During the rifting phase, these two rift basins bounded by detachment faults 156 were separated by the Grand Rieu ridge made of Paleozoic basement (Jammes et al., 2009; Lecoutre et al., 2019; Masini et al., 2014; Saspiturry et al., 2020; Tugend et al., 2014). The 157 158 Arzacq Basin sat on the hyperthinned continental crust whereas the Mauléon Basin lied 159 directly on top of exhumed mantle. At present-day, the rift architecture of the Arzacq Basin is 160 relatively well preserved, while the Mauléon Basin was highly deformed during subsequent 161 orogenesis. This latter corresponds to a pop-up structure (e.g., Labaume and Teixell, 2020; 162 Teixell et al., 2016;) that overthrusts the Arzacq Basin towards the north along the North Pyrenean Frontal Thrust (NPFT) and the Axial Zone towards the south along the North 163 164 Pyrenean Fault (NPF) (Fig. 2b). 165 Several geophysical studies have also revealed interesting characteristics of the

deepest structure of the western Pyrenees (i.e. beneath the Mauléon Basin) by processing gravimetric (Lacan, 2008), magnetic (Garcia-senz et al., 2019) and seismic data (Chevrot et al., 2015, 2018; Wang et al., 2016). First, a strong positive Bouguer gravity anomaly (> 20 mGal; Fig. 2) is observed below the Mauléon Basin. This anomaly is interpreted as the 170 presence of dense materials at relatively shallow depth such as lower crust or mantle pieces

- 171 (Grandjean, 1994; Pedreira et al., 2007, Pedrera et al., 2017; Vacher & Souriau, 2001).
- 172 Second, a significant positive magnetic anomaly (> 60 nT; Fig. 2) is located right below the
- 173 Mauléon Basin (Garcia-Senz et al., 2019). This magnetic anomaly, which is well correlated
- 174 with the Bouguer anomaly previously mentioned, provides key information on the nature of
- 175 mantle rocks because the magnetic susceptibility might be correlated to the serpentinization
- degree (Oufi et al., 2002; Toft et al., 1990). Indeed, the ultra-mafic rocks such as lithospheric
- 177 mantle acquire their para-magnetism during the serpentinization reaction, and the associated 178 formation of magnetite. Third, high seismic velocities (Vp \approx 7.3 km s⁻¹, Vs \approx 4.2 km s⁻¹) were
- 179 calculated by full waveform inversion under the western part of Mauléon Basin and are
- 180 attributed to an exhumed serpentinized mantle body located at 8 to 10 km depth (Christensen,
- 181 2004, Wang et al., 2016).
- All together, these geophysical data support the presence of a dense mantle body at ~8
 km depth below the Mauléon Basin inherited from the Cretaceous pre-collision
- hyperextended rift system. This dense mantle body was further incorporated into the accreting
 wedge during the orogenesis of the Pyrenean belt (e.g. Casas et al., 1997; Jammes et al.,
- 186 2010a; Wang et al., 2016; Lescoutre and Manatschal, 2020; Saspiturry et al., 2020).
- 187 Therefore, the combination of all these data indicating both the presence of a potential source
- 188 of H₂ through mantle rocks serpentinization and the existence of preferential conduits for fluid
- 189 migration makes the north Pyrenean foothills a promising geological setting for H₂
- 190 exploration.
- **3. Materials and Methods**
- 192

3.1 Soil gas analysis

193 The investigated area for soil gas analysis is located in the southwest of France 194 (Aquitaine region) along the Pyrenean belt and corresponds to approximately 7500 km² (Fig. 195 1). It encompasses the NPZ, the Mauléon Basin, the Arzacq Basin and the Grand Rieu ridge. 196 A total of 1106 soil gas in-situ measurements have been performed over 131 different 197 locations (Table A2). The sampling mesh was defined along a $\sim 10 \times 10$ km grid (Fig. 3a). 198 The concentration and nature of gases measured in soils may vary according to 199 meteorological (e.g. temperature, hygrometry) and pedological factors (e.g. soil composition, 200 vegetation, microbiology). The present regional soil gas survey is not intended to document 201 the effect of such parameters on soil gas composition. However, all the measurements have 202 been done during spring and summer seasons (April to August 2018, 2019 and 2020) in order 203 to limit the amplitude of hygrometry and temperature variation. Soils affected by 204 anthropogenic activities, such as ploughed soils, gardens or industrial areas have not been 205 sampled. Most of the sampling sites located to the western part of the NPZ have altitudes 206 between 50 to 400 meters above sea level and are mainly composed of grasslands and forest 207 soils. The sampling sites located in the Axial Zone have altitudes ranging from 400 to 1500 208 meters and are mostly composed of forests and meadows.

At each sampling site, 7 small boreholes were drilled in the soil over an area of 100 m^2 209 210 - 5 of them were devoted to H₂, CO, CO₂, CH₄, H₂S, and O₂ measurement using a GA-5000 (GeoTech[®]) multi-gas analyzer and the remaining 2 were dedicated to radon (²²²Rn) 211 measurement using an AlphaGuard DF2000 radon analyzer (Bertin instrument[®]). Additional 212 213 series of measurements have been carried out over time (2018, 2019 and 2020) on hot spots 214 where H_2 concentration was > 200 ppmv. Each borehole has a depth of ~1 m and a diameter of 1 cm. A portable drill (DH36DBL, Hitachi®) operating in percussion mode only (no 215 216 rotation of the drill bit) was used for this purpose. Numerous tests were conducted using 217 various drilling procedures on different lithologies and soils to determine the optimal drill

218 configuration. Thus, a specific drilling procedure was selected to minimize and even prevent

any production of H_2 through drill bit metamorphism and "mechano–radical" processes.

220 Indeed, the increase in temperature of the drill bit may induce the cracking of the organic

221 matter and trigger H₂ production (Lewan et al., 1997; Li et al., 2017; Lorant et al., 2002). The

222 mechanical dissociation of the covalent Si-O bond in silicate minerals creates surface radicals 223 which react with water to produce H₂. This process, referred to as "mechano–radical", has

been experimentally demonstrated by friction experiments involving various silicate bearing

rocks saturated with water (Hirose et al., 2011) and is supposed to be at the origin of high

226 concentration of H₂ in soil gas associated with active tectonic faults (Kita et al., 1982; Sato et

al., 1984). Drilling boreholes in soils without drill bit rotation clearly prevent artificial

228 generation of H₂ as demonstrated by Halas et al. (2021), and by our plethora of measurements

where H₂ concentrations in soil gas is lower than 5 ppmv (Table A1). Immediately after
 drilling, a stainless-steel sampling probe was tightly inserted inside the borehole and

connected to one of the two gas analyzers either for ²²²Rn or for H₂, CO₂, CH₄ and O₂

measurements. Each gas analyzer is equipped with a pump set to operate at the same flow rate of 550 mL min^{-1} .

The multi-gas detector GA-5000 is equipped with two different sensors: 1) an electrochemical cell for H₂, CO, H₂S, and O₂ concentration measurements, and 2) a dual

236 wavelength infrared sensor for CO₂ and CH₄ concentration measurements. Uncertainties and

237 interferences are documented in Table 1. Galvanometric measurement of a gas mixture of H₂,

238 CO, and H₂S is subject to potential cross-interferences (Korotcenkov et al., 2009).

Gas	Range	Typical	accuracy
CH ₄	0 - 100 vol%	0 - 70 ± 0.5 vol%	70 - 100 ± 1.5 vol%
CO 2	0 - 100 vol%	0 - 60 ± 0.5 vol%	60 - 100 ± 1.5 vol%
O ₂	0 - 25 vol%	0 - 25 ± 1 vol%	
H ₂	0 - 1000 ppmv	2 ppmv	

Table 1. Gas concentration range and measurement accuracy for CH₄, CO₂, O₂ and H₂
 analysis by the GA-5000 instrument.

241 However, H₂ concentration measurement over the 0 - 1000 ppmv range is weekly 242 impacted (< 10 ppmv) by the combined presence of CO and H₂S provided their 243 concentrations remain < 300 ppmv and < 15 ppmv, respectively. Other species like HCN, NO_x or C₂H₄ may also interfere with the H₂ measurement, but their concentrations have never 244 245 been detected in the prospected soils. For all measurements done in the field, H₂S has never 246 been detected in the soil gases during our exploration campaign, neither using the GA-5000 247 gas analyzer nor by gas chromatography (see below), nor olfactorily for H₂S (human can 248 smell H₂S at few tens of ppb in the air). In addition, for every H₂ concentration recorded with 249 the GA-5000 analyzer at a value above 500 ppmv, a separate soil gas sample was taken in a gas tight Swagelok[®] stainless steel gas cylinder (40 mL). The cylinder was put under vacuum 250 first using a primary vacuum pump and then connected to the soil gas probe for sampling. The 251 252 gas composition was further analyzed in the lab regarding H₂, CO₂, CO, CH₄ using a Perkin 253 Elmer® CLARUS 500 Gas Chromatograph (GC) equipped with a thermal conductivity 254 detector (TCD) and a 2 m long column (RESTEK® Shin Carbon ST 80/100) with Ar as a 255 carrier gas. The GC was calibrated using several $Ar + H_2 + CH_4 + CO_2 + CO$ gas mixtures of different concentrations injected with a gas syringe of calibrated volume. The estimated 256 257 analytical error is $\pm 5\%$.

The AlphaGuard DF2000 device is equipped with a pulsed ionization chamber (internal volume of 0.62 L) and a fiberglass selective filter. The radon (²²²Rn) measurement range is between 2 to 2×10^{6} Bq·m⁻³ with uncertainty variability of 5 cpm at 100 Bq·m⁻³. The analysis is based on the decay of ²²²Rn to ²¹⁸Po resulting in the emission of α -particles which can be measured by the instrument. Relative humidity, atmospheric pressure and temperature are simultaneously measured.

264 3.2 Soil

3.2 Soil gas data processing

The statistics of the soil gas concentration sampled during the survey are reported in Table 2. The averaged concentrations of H₂, CO₂ and ²²²Rn were then interpolated and mapped using ArcGIS Pro (ESRI®) geographical information software (GIS). The natural neighbor interpolation method was used to define lines of equiconcentration of H₂, CO₂ and Radon. This method is based on the Voronoï tessellation of our discrete set of spatial gas concentration measurements (Sibson, 1981).

Gas	Ν	Mean	Standard deviation	Min	Max
H ₂ (ppmv)	1106	33	104	0	> 1000
CO 2 (vol%)	1106	0.85	1.2	0	10.5
222 Rn (Bq m ⁻³)	893	1002	9343	0	57316

272

Table 2. Main statistics of soil gas data acquired during this study.

4 Results

4.1 Soil gas mapping

275 The localization of each sampling site is shown in Figure 3a (red cross). These 276 131 locations constitute a sampling grid where a total of 1106 soil gas analyses have been 277 carried out over 3 years (Table A1). This sampling grid is superimposed to the geological map of the targeted area (Fig. 3a) and the associated H₂, CO₂, and ²²²Rn gas concentration contour 278 279 maps are also plotted (Fig. 3b, c and d, respectively). When looking at these 3 latter maps (Fig. 3b, c and d), one can observe that most of the highest H₂, CO₂, and ²²²Rn concentrations 280 281 are located along the NPFT or to the south of this major fault. In addition, these high gas 282 concentration data define 12 hot spots, with some of them being superimposed.

283 4.2 Hydrogen

284 Regarding H₂ concentrations, their values range from 0 to > 1000 ppmv. Among the 285 1106 concentration values reported in Table A1, 958 data (87 %) are < 50 ppmv, 146 data (6 286 %) are \geq 50 ppmv, with 73 data (7 %) being > 100 ppmv and 5 data being above the sensor 287 saturation (1000 ppmv) of the GA-5000 instrument. The high H₂ concentration values can be grouped into three main hot spots (Fig. 3b). The most significant hot spot is located between a 288 triangle defined by Orthez to the north east, Peyrehorade to the east and Sauveterre-de-Béarn 289 290 to the south. In this zone (133 km²), 10 neighboring sampling sites display mean H₂ 291 concentration values above 50 ppmv. In more details, among 298 measurements carried out 292 over 3 years in this area, 89 (30 %) display H₂ concentration above 50 ppmv. Four sampling 293 sites exhibit high H₂ concentrations: Le Bourguet (up to 547 ppmv), north and east Baigts-de-294 Béarn (up to 734 and 481 ppmv, respectively), Sauveterre-de-Béarn (up to 632 ppmv) and 295 Laborde (above the quantification limit of 1000 ppmv). At Sauveterre-de-Béarn, H₂ 296 concentration was independently measured by GC and was found to be as high as 822 ppmv. 297 The second hot spot is located to the south west of Asasp Arros. It corresponds to a single 298 location where 5 independents gas measurements were > 50 ppmv. The third hot spot, located 299 to the south of Pau, corresponds to two neighboring locations close to the NPFT. There, 6

- 300 independent measurements were > 50 ppmv of H₂ with a maximum value of 129 ppmv. In addition to these 3 H₂ hotspots, it was found that the soils surrounding two outcropping bodies 301 302 of lherzolite at Urdach and Turon de La Técouère (red squares on Fig. 3b) also display high 303 H₂ concentrations, but with high heterogeneities among the values. At Urdach, over the 9 304 measurements carried out, 2 were > 1000 ppmv. At Turon de la Técouère, 2 measurements 305 were > 1000 ppmv, 18 measurements were in-between 100 and 800, and the other 11 were <306 100 ppmv. These two locations are both very singular and very specific because of their 307 geological context. Thus, they are not included into the interpolation in order to avoid bias in
- 308 the interpretation of the map.

309 4.3 Carbon dioxide

310 Regarding the CO₂ concentrations, their values range from 0 to 10.3 vol% with the 311 following distribution: 815 values (74 %) are ≤ 1 vol%, 233 values (21 %) are in the range 1 312 to 3 vol% range, and 58 values (5%) are > 3 vol% with a maximum at 10.3 vol% (Table A1). 313 The spatial distribution of CO_2 concentration is less contrasted than for H_2 , but the high 314 concentrations zones lie mostly to the south of the NPFT (Fig. 3b). Among the five detected 315 hotspots where CO₂ concentration exceed 3 vol%, one display some overlaps with the 316 previously described H₂ hot spot located on the NPFT: i.e. close to Peyrehorade with a 317 maximum of 3.05 vol%. Another was located near Sauveterre-de-Béarn with a maximum of 318 10.3 vol%. Two others hot spots were located along faults, to the east of Asasp-Arros, and to 319 the south-east of Lourdes. Their maximum CO₂ concentrations are 2.9 and 3.8 vol%, 320 respectively. The last hot spot is located in the Arzacq Basin to the east of Orthez. It exhibits a

- 321 maximum CO₂ concentration of 2.5 vol%.
- 322

4.4 Methane, carbon monoxide and hydrogen sulfide

Methane (CH4) was also measured with the GA-5000 instrument, but its concentration was always below the quantification limits (0.5 vol%) and was not detected by GC analysis at Sauveterre-de-Béarn. Hydrogen sulfide (H₂S) was never detected, and carbon monoxide (CO) was rarely detected (38 values \geq 10 ppmv, maximum 79 ppmv), with a random spatial distribution. The oxygen (O₂) concentration was very close to 20 vol% (except when CO₂ concentration was > 5 vol%) indicating that all our samples were dominated by air.

329 4.5 Radon

Finally, the radon soil gas map (Fig. 3d) can be nicely superimposed to the H₂ and 330 CO₂ zones (Fig. 3b, and d, respectively). Among the 893 ²²²Rn concentration values (Table 331 332 A1), 177 (20 %) are \geq 1 kBq m⁻³, with a very high value of 57.3 kBq m⁻³ recorded at Sauveterre-de-Béarn. Most of the highest ²²²Rn concentrations are located along the NPFT 333 and to the south of this major fault. Seven hot spots exceeding ²²²Rn concentration of 5 334 kBq m⁻³ can be easily identified: 1) Peyrehorade with a maximum at 28.6 kBq m⁻³, 2) to the 335 north of Sauveterre-de-Béarn with a maximum at 57.3 kBq m⁻³, 3) to the north of Estérençuby 336 with a maximum at 13.4 kBq·m⁻³, 4) to the west of Asasp-Arros with a maximum of 33.2 337 kBq m⁻³, 5) to the south of Asasp-Arros with a maximum at 20 kBq m⁻³, 6) to the west of 338 Lourdes with a maximum at 14.4 kBq m⁻³, and 7) to the north-east and south-east of 339 Maubourguet with maximums of 12 and 8.2 kBq m⁻³, respectively. Interestingly, the large H₂ 340 341 and CO₂ hotspot previously identified in between Orthez, Peyrehorade and Sauveterre-de-342 Béarn, also corresponds to an area of high ²²²Rn concentration. 343

a)

0°0'W

Figure 3. (a) Geological map of the studied area with the localization of the Mauléon
and Arzacq Basins split apart by the Grand Rieu ridge and the NPFT faults networks (St-ST Saint-Suzanne Thrust; St-PT - Saint-Palais Thrust; Ducoux et al., 2021). Each red cross
corresponds to a measurement site. (b, c, and d) Contour maps of the mean concentration of
H₂, CO₂ and ²²²Rn soil gas measured at each sampling site, respectively.

351 **5** DISCUSSION

5.1 Soil gas background concentration and identification of gas anomaly
 thresholds

Statistical information about the soil gas survey is reported in Table 2 (min, max,
median, standard deviation). All the measurements were acquired under similar
meteorological conditions and can be compared to atmospheric gases concentrations of ²²²Rn
(0.01 kBq m⁻³), H₂ (531 ppb), and CO₂ (0.039 vol%) (Baubron et al., 2002; Novelli et al.,
1999).

359 Given the multiple potential sources of gases and the variability of their concentrations 360 with respect to the atmosphere, the soil gas anomaly thresholds cannot be determined in an 361 absolute way but a statistical approach can provide fruitful information (Ciotoli et al., 2016). 362 Here, the background level of the soil gas was determined from the quantile-quantile plot (Q-Q plot) as described by Sinclair (1991). This procedure requires the identification of both 363 364 quasi-linear segments on a probability curve and inflection points between the different linear trends (Lombardi et al., 2010; Reimann et al., 2005). The intersection between the different 365 straight lines corresponds to threshold values. It is a graphical method used to identify 366 367 different gas population above the background level which will be presented and used in the following sections (Fig. 4). 368

- Figure 4. On the left-hand side is shown the quantile-quantile plots (Q-Q plots)
 calculated for (a) H₂, (b) ²²²Rn and (c) CO₂ soil gas measurements. The corresponding
 anomaly threshold values are 74 ppmv, 4,200 Bq m⁻³ and 3 vol%, respectively. The spatial
 distribution of these anomalies is displayed on the right-hand side of each Q-Q plots. NPFT –
 North Pyrenean Frontal Thrust; NPF North Pyrenean Fault; St-ST Saint-Suzanne Thrust;
 St-PT Saint-Palais Thrust.
- 376

5.1.1 Hydrogen concentration anomalies

The Q-Q plot calculated for H₂ concentration highlights a non-linear evolution
indicating the presence of at least two origins or sources for this gas (Fig. 4a). The inflection
point between these linear trends indicates a soil gas concentration threshold anomaly at 74
ppmv.

The spatial distribution of H₂ concentrations is not random. Indeed, most of the measurements ranging from 1 to 74 ppmv (i.e. below the threshold) are located within the Arzacq and the Mauléon basins. The higher hydrogen concentrations (> 74 ppmv) are located near the main faults such as NPFT and NPF. The other anomalies, disconnected to these faults, are located close to the lherzolite bodies.

386 The hydrogen concentration below the threshold anomaly, i.e. the sharp change in 387 concentration, could be linked to a microbial production. Microbial H₂ can be produced from 388 different processes in soils such as fermentation, nitrogen fixation, anaerobic carbon 389 monoxide oxidation or phosphite oxidation (Sipma et al., 2006; Schwartz et al., 2013). 390 Hydrogen-producing microorganisms use metallo-enzymes such as [FeFe], [NiFe] and [Fe] 391 hydrogenase in their metabolisms (Gregory et al., 2019). These enzymes can also be used in 392 the reverse reaction for H₂ uptake and oxidation. These metallo-enzymes are present in 393 anaerobic bacteria and eukaryotes (Peters et al., 2015). Fermentation is the most common 394 process in nature to produce H₂ and may be important where organic matter is abundant. 395 However, H₂ is usually maintained at low concentration in superficial environments because 396 fermentative H₂ producer and respiratory H₂ consumers live in symbiosis or consortia in the 397 microbial mats (Gregory et al., 2019, Kessler et al., 2019; Thauer et al., 1996). Thus, the net 398 H₂ ecosystem flux is mainly controlled by soil uptake except during the leaf senescence in 399 Autumn (Meredith et al., 2016). The optimum uptake temperature is approximately 30 °C 400 (Ehhalt & Rohrer, 2011) and decreased with soil saturation, as water-filled pore spaces that 401 prevent the gas diffusion (Conrad & Seiler, 1985; Popa et al., 2011). The type of soil is an 402 important factor for both H₂ uptake and emission (Ehhalt & Rohrer, 2009). The uptake of H₂ 403 is mainly related to the amount of hydrogenase in soil bacteria and to environmental 404 conditions (Meredith et al., 2017). The rate of H₂ uptake is correlated to the abundance of H₂-405 oxidizing bacteria (Khdhiri et al., 2015). The highest uptake rates are recorded in forest soils 406 while in grasslands the rates are lower (Chen et al 2015; Ehhalt & Rohrer, 2009; Khdhiri et 407 al., 2015). Thus, the H₂ concentration in soils generally remains at low level, with lower 408 values in forest soils than in grassland: 500 and 2500 ppb, respectively (Chen et al 2015). In 409 this study, all H₂ concentration values below 10 ppmv can be the result of biological 410 processes, while the high concentration values (> 74 ppm) reflect the contribution of other 411 sources that may be deep-seated.

412 The hydrogen concentration ranging from 74 to > 1000 ppmv (i.e. above the threshold 413 anomaly) seems to be clustered to the north west of Grand Rieu ridge and above the Salies 414 salt diapir. These high H₂-concentrations may result from different sources than those below 415 the threshold concentration value. They could be linked to mechano-radical reactions 416 occurring along active faults or to a deeper production of H₂ through serpentinization, or 417 water radiolysis. The rock crushing along fault plans results in the formation fresh surfaces 418 that are extremely reactive. The reaction between these surfaces and water potentially 419 produces H₂ (Hirose et al., 2011; Kita et al., 1982). This mechanism is often invoked as the

- 420 source of H₂ in active tectonic areas (Dogan et al., 2007). However, several studies have
- 421 shown that the concentration of H₂ in the soil along active fault rarely exceed 100 ppm
- 422 (Dogan et al., 2007; Li et al., 2013). Currently, the Pyrenean belt is in a post-orogenic
- 423 situation, where earthquakes of low-magnitude occur currently. However, no earthquake with
- 424 magnitude > 2.9 was recorded by the BCSF RéNaSS seismic network near the surface along
- 425 the NPFT during the sampling campaign. Thus, we can safely exclude rock comminution and
- 426 mechano-radical process as major sources of H_2 in the targeted area. Therefore, others deep-427 seated origins for H_2 , such as mantle rocks serpentinization or water radiolysis can be
- 428 envisioned to explain the high H_2 concentration recorded near Sauveterre-de-Béarn. The role
- 429 of deeply rooted faults in H_2 drainage is emphasized in the next section.
- High concentration of H₂, i.e. > 1000 ppmv, are also recorded close to the two
 lherzolite bodies of Turon de la Técouère and Urdach (Table A1). The origin of these gas
 anomalies is probably not deep-sourced, but may correspond to low temperature
 serpentinization process, and to the release of gases entrapped in the rock as observed at a
 larger scale in numerous ophiolites worldwide (Etiope et al., 2011).
- 435

5.1.2 CO₂ concentration anomalies

The Q-Q plot calculated for CO₂ exhibits a non-linear evolution with an inflection point at 3 vol% that corresponds to a threshold anomaly (Fig. 4b). The CO₂ concentration below this value could be attributed to organic material oxidation, microorganisms or plants respiration (Romanak et al., 2014; Sugisaki, 1983). The CO₂ concentrations above this threshold anomaly could result from a mixing of potential deep sources such as mantle degassing, carbonate metamorphism, or carbonate dissolution with other surface sources as describe above (Cooper et al., 1997).

443 The locations for CO₂ anomalies both in the basins and in fault zones are presented in 444 Figure 4c. The anomalies observed in the basins are disconnected from the deep structure, 445 which lead us to suppose that they are mainly the result of biological processes as detailed in 446 the previous section. The others CO₂ anomalies are localized along faults (Fig. 4b) and are 447 particularly clustered near the Salies diapir and to the north west of Grand Rieu ridge. These 448 latter anomalies are also correlated with the H₂ and ²²²Rn anomalies at this location. This 449 clustering strengthens the scenario of an active gas-bearing fault zone where CO₂ acts as a carrier gas for other species (H₂ and ²²²Rn) from deep-seated sources. Note that H₂ can also 450 451 migrate independently from other gases because of the small size and high diffusivity of the 452 molecule.

453

5.1.3 Radon concentration anomalies

The Q-Q plot calculated for ²²²Rn also highlights a non-linear spatial evolution 454 of its concentration with two inflection points indicating at least two possible threshold 455 anomalies, the first at 275 Bq m⁻³ and the second at 4200 Bq m⁻³ (Fig. 4c). Radon 456 concentrations below the first threshold anomaly at 275 Bq m⁻³ correspond to the background 457 level in the area as described by the French Institute for Radioprotection and Nuclear Safety. 458 Radon concentrations between 275 and 4200 Bq m⁻³ are randomly distributed above the 459 sedimentary basins and generally located far from the faults. The radon concentrations above 460 the second threshold anomalies (i.e. 4200 Bg m^{-3}) can be as high as 57 kBg m⁻³. These high 461 values are mainly localized along the faults (Fig. 4c) and more particularly to the north 462 463 western part of Grand Rieu ridge, around the Salies salt diapir, where high H₂ concentrations 464 are also recorded.Note that, The two anomalous values recorded within the core of the 465 Mauléon Basin are the only exceptions to this distribution along faults of the high ²²²Rn 466 concentrations.

- 467 Because of its short half-life (3.82 days), ²²²Rn must be carried rapidly upwards by
- 468 ascending fluid to remain at high concentration when escaping into the atmosphere. Its469 presence at elevated concentration in soils indicates both active fluid circulation and
- 469 presence at elevated concentration in soils indicates both active fluid circulation and 470 subsurface lithologies enriched in 238 U, 232 Th and 40 K (Baubron et al., 2002). It has been
- 470 subsurface inhologies enriched in O, Th and K (Baubion et al., 2002). It has been 471 already proven that ²²²Rn is a useful pathfinder to map hydrothermal systems and active faults
- 472 (Toutain & Baubron, 1999). Therefore, the high concentration of ²²²Rn correlated with high
- 473 H₂ and CO₂ concentrations near the Salies diapir, and along the NPFT near Sauveterre-de-
- 474 Béarn, is a strong evidence for an active fluid circulation in deep-seated formations.
- 475 Hydrogen may be at least partly sourced from water radiolysis, because these high ²²²Rn
- 476 concentrations testify for the presence of radioactive elements at depth.
- 477

5.2 Possible H₂ production system in the Pyrenean foothills

478 The western part of Pyrenean structure is characterized by a massive mantle body at 479 shallow depth (< 10 km) as inferred from geophysical data (Chevrot et al., 2015, 2018; 480 Garcia-Senz et al., 2019; Lacan, 2008; Wang et al., 2016). Another important observation is 481 the occurrence of quasi-periodic seismic activity located to the south of the NPZ beneath the 482 Mauléon Basin (Fig. 5). Numerous studies interpret these seismicity patterns as the result of 483 stress triggered by fluid flows (Faulkner et al., 2010; Hainzl, 2004; Hardebeck, 2012; Rigo et 484 al., 2008). Souriau et al. (2014) indicate that these earthquake clusters might be related to the 485 convective circulation of fluids along the NPF (Fig. 5). Fluid circulation in deeply rooted faults is confirmed by helium and ²²²Rn anomalies in soil gas (Baubron et al., 2002). 486 487 Furthermore, the presence of fluid has been detected by low electrical resistivity at 13 to 15 488 km depths (Campanya et al., 2012). Such a depth also corresponds to the location of the 489 seismic swarm identified by Souriau et al. (2014) (Fig. 5).

490 The regional geothermal gradient of 25.0 ± 2.7 °C km⁻¹ (Bonté et al., 2010) is 491 relatively modest, but the north western part of Mauléon Basin (Fig. 3a) displays anomalously 492 high temperatures above 65 °C at 1000 to 2000 m depth. An indication of this thermal 493 anomaly is the presence of numerous hydrothermal springs in the western part of Mauléon 494 Basin; such as Combo-les-Bains, or Salies-de-Béarn. Hot fluid circulation may create a 495 convection cell that drives heat upwards from deep thermal anomaly (Bonté et al., 2010). 496 Given the regional geothermal gradient value, one may also expect temperatures at the top of 497 the exhumated mantle at about 10 km depth to be around 250 °C (Saspiturry et al., 2020). 498 Such a temperature is optimum for efficient serpentinization of the mantle rocks, magnetite 499 formation, and H₂ generation (Malvoisin et al., 2011; Klein et al., 2020).

500 Therefore, the combined presence of both, a dense mantle body below the Mauléon 501 Basin potentially subject to an active serpentinization, and deeply-rooted faults corresponding 502 to the NPFT and the NPF zones (Fig. 2), represents a favorable geological setting for H₂ 503 generation and drainage. Water radiolysis may also contribute to H₂ production, but to date 504 we cannot discriminate this source from serpentinization. In the present case, we note 505 however, that the importance of water radiolysis may be secondary compare to 506 serpentinization in the global H₂ budget. Indeed, Warr et al. (2019) indicate that the 507 contribution of water radiolysis on H₂ production is higher in felsic environments whereas its 508 production by serpentinization comes mainly from mafic environments. Here, the presence of a large mantle body (i.e. ultra-mafic rocks) at shallow depth seems to provide the most fertile 509 510 environment for H₂ generation. We therefore assume that H₂ is more likely generated by

511 serpentinization than by radiolysis.

512Figure 5. (bottom) Geological interpretation of the tomographic model (modified513from Wang et al., 2016) superimposed to both a two-dimensional electrical resistivity model514(after Campanyà et al., 2012) and the projection of a deep seismic cluster (after Souriau et al.,5152014). The location of the section is shown on Figure 1. (top) H2 (circle), 222 Rn (diamond)516and CO2 (triangles) max concentrations obtained along this section. NPFT – North Pyrenean517Frontal Thrust; NPF – North Pyrenean Fault; St-ST - Saint-Suzanne Thrust; St-PT - Saint-518Palais Thrust

519 In fact, the high H_2 emission spots obtained from the soil gas measurements carried 520 out in the western Pyrenees agree well with the presence of this mantle body at shallow depth and the deep-rooted faults. The gas concentration along the western ECORS-Arzacq profile is 521 displayed in Figure 5. The highest H₂, CO₂ and ²²²Rn soil gas concentrations were recorded 522 along the NPFT and the Grand Rieu ridge at >1000 ppmv, 10 vol%, and 57 kBg m⁻³, 523 respectively. Such deeply rooted faults, described as weakened zones partly composed of 524 highly connected fracture networks, represent preferential pathways for fluid circulation 525 526 carrying H₂ and other gases from deep sources to the surface (Baubron et al., 2002; Donzé et 527 al., 2020; Gal & Gadalia, 2011). The gas concentration measurements carried out in the Mauléon and Arzacq Basins display lower values than within the Grand Rieu ridge (Fig 3a) 528 and show a strong variability in concentration between H₂, CO₂ and ²²²Rn. Hydrogen is nearly 529 absent from these basins while the ²²²Rn is only present in Mauléon Basin and CO₂ is present 530

in both basins. These basins were never connected during the Cretaceous rifting event,
because they were separated separated by the Grand Rieu. The Arzacq Basin is therefore not
connected to the mantle structure well identified below the Mauléon Basin (Masini et al.,
2014; Lescoutre et al., 2019). Hence, these major structural features explain very well the
contrasted in term of gas concentration patterns observed in-between these two basins.

536 In addition, the main hot spots located between Sauveterre-de-Béarn, Orthez and 537 Peyrehorade are close to or just above the Salies salt diapir whose roof is only at less than 70 538 m below the surface (Berard & Mazurier, 2000). Such a structural configuration may also 539 offer potential traps for deep-seated gases such as H₂. Indeed, salt formation is considered to 540 offer the most promising option for large scale H₂ storage, because of their excellent sealing 541 capacity and the relatively inert nature of salt with respect to H₂ (Sainz-Garcia et al., 2017; 542 Tarkowski, 2019; Zivar et al., 2020). High H₂ concentrations (up to 30 vol%) have already 543 been documented in evaporite formations and in particular in salt deposits (Warren, 2016). In 544 salt formations, H₂ may have several origins like production during early biodegradation of 545 organic matter, and water radiolysis due to elevated concentration of ⁴⁰K and ⁸⁷Rb, but the preponderant contribution of exogenic sources with subsequent migration into the evaporite 546 547 trap is the most satisfying explanation.

5486. Conclusions

549 Based on soil gas analysis and mapping we have discovered several hotspots of H₂, 550 CO₂, ²²²Rn where the concentration of these gases exceeds the regional background by two 551 order of magnitude and more. The sampling sites of high H₂ concentration (> 1000 ppmv), together with CO₂ (up to 10 vol%), and ²²²Rn (up to 60 kBq m⁻³) are mostly located close to 552 the North Pyrenean Frontal Thrust. The Crossing the information based on soil gas maps with 553 554 different geophysical and geological datasets led us to identify a possible fertile environment 555 for H₂ generation and drainage. First, outcrops of serpentinized peridotites in the NPZ are 556 good indicator of the presence of exhumed mantle rocks at depth . Second, the geophysical 557 observations reveal the presence of massive mantle body at shallow depth (< 10 km from tomographic, magnetic and gravimetric investigations) where active serpentinization may 558 occur. Third, the H₂ and ²²²Rn may be carried upward by CO₂ along major faults that connect 559 560 the mantle body to the surface. The Salies salt diapir whose roof is only at less than 70 m 561 below the surface represents an ideal gas trap for deep-seated gases such as H₂.

The discovery of these hotspots paves the way for detailed studies of noble gases and stable isotopes composition, but also for careful microbiological and pedological investigations to better constrain H₂ source(s) and migration path. The targeting approach deployed in our study may be applied elsewhere in the world and more particularly in orogenic belts presenting a geological configuration comparable to the western Pyrenean area. These orogenic areas, rich in ultramafic rocks, could be preferentially targeted for an industrial prospection of native H₂ resources.

569 Acknowledgments, Samples, and Data

570 This work was conducted in the framework of the Convergence project

571 (https://convergent-margins.com/), funded by TOTAL S.E.. Magali Pujol, Dominique Duclerc

and Isabelle Mitteau are warmly thanks for support during the field investigation and

analytical measurements. Supplementary data reported in this study are given in supporting

574 information and all soil gas data are stored in EarthChem repository at **pending (will be**

575 **deposit after the review**)

- 576 Supplementary material
- 577 **Table A1.** All untreated soil gas data
- 578 **Table A2.** Average of soil gas data at each location
- 579

580 **References**

581 Abrajano, T. A., Sturchio, N. C., Bohlke, J. K., Lyon, G. L., Poreda, R. J., & Stevens, 582 C. M. (1988). Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or 583 shallow origin? Chemical Geology, 71(1-3), 211-222. https://doi.org/10.1016/0009-584 2541(88)90116-7 585 Azambre, B., & Rossy, M., 1976, Le magmatisme alcalin d'age cretace, dans les 586 Pyrenees occidentales et l'Arc basque; ses relations avec le metamorphisme et la tectonique. Bulletin de la Societe Geologique de France, S7–XVIII, 1725–1728. 587 588 https://doi.org/10.2113/gssgfbull.S7-XVIII.6.1725 589 Azambre, B., Rossy, M., & Albarede, F., 1992, Petrology of the alkaline magmatism 590 from the Cretaceous North-Pyrenean rift zone (France and Spain). European Journal of 591 Mineralogy, 4, 813–834. 592 Baubron, J.-C., Rigo, A., & Toutain, J.-P. (1999). Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth and 593 594 Planetary Science Letters, 13. https://doi.org/10.1016/S0012-821X(01)00596-9 595 Berard, P., Mazurier, C. (2000) Ressources en eaux thermales et minérales des stations 596 du département des Pyrénées-Atlantiques. Station thermale de Salies-de-Béarn. Rapport 597 BRGM/RP 50176-FR 598 Bernus-Maury, C., 1984, Etude des paragenèses caractéristiques du métamorphisme 599 mésozoïque dans la partie orientale des Pyrénées (French). Paris 6. 600 Bonté, D., Guillou-Frottier, L., Garibaldi, C., Bourgine, B., Lopez, S., Bouchot, V., & 601 Lucazeau, F. (2010). Subsurface temperature maps in French sedimentary basins: new data 602 compilation and interpolation. Bulletin de La Société Géologique de France, 181(4), 377-603 390. https://doi.org/10.2113/gssgfbull.181.4.377 604 Cannat, M., Fontaine, F., & Escartín, J. (2010). Serpentinization and associated 605 hydrogen and methane fluxes at slow spreading ridges. In P. A. Rona, C. W. Devey, J. 606 Dyment, & B. J. Murton (Eds.), Geophysical Monograph Series (Vol. 188, pp. 241–264). 607 Washington, D. C.: American Geophysical Union. https://doi.org/10.1029/2008GM000760 608 Casas, A., Kearey, P., Rivero, L., & Adam, C. R. (1997). Gravity anomaly map of the 609 Pyrenean region and a comparison of the deep geological structure of the western and eastern 610 Pyrenees. Earth and Planetary Science Letters, 150(1–2), 65–78. https://doi.org/10.1016/S0012-821X(97)00087-3 611 612 Charlou, J. L., Donval, J. P., Konn, C., Ondréas, H., Fouquet, Y., Jean-Baptiste, P., & 613 Fourré, E. (2010). High production and fluxes of H2 and CH4 and evidence of abiotic 614 hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In P. A. Rona, C. W. Devey, J. Dyment, & B. J. Murton (Eds.), 615 616 Geophysical Monograph Series (Vol. 188, pp. 265–296). Washington, D. C.: American 617 Geophysical Union. https://doi.org/10.1029/2008GM000752 618 Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C., & Hoareau, G. (2013). 619 Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites: Hyperalkaline Waters in Oman and 620 621 Liguria. Geochemistry, Geophysics, Geosystems, 14(7), 2496–2522. 622 https://doi.org/10.1002/ggge.20147 623 Chevrot, S., Sylvander, M., Diaz, J., Ruiz, M., Paul, A., & the PYROPE Working 624 Group. (2015). The Pyrenean architecture as revealed by teleseismic P-to-S converted waves

625 recorded along two dense transects. Geophysical Journal International, 200(2), 1094–1105. 626 https://doi.org/10.1093/gji/ggu400 627 Chevrot, Sébastien, Sylvander, M., Diaz, J., Martin, R., Mouthereau, F., Manatschal, 628 G., et al. (2018). The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports, 629 8(1), 9591. https://doi.org/10.1038/s41598-018-27889-x 630 Choukroune, P. (1989). The Ecors Pyrenean deep seismic profile reflection data and 631 the overall structure of an orogenic belt. *Tectonics*, 8(1), 23–39. 632 https://doi.org/10.1029/TC008i001p00023 Christensen, N. I. (2004). Serpentinites, Peridotites, and Seismology. International 633 634 Geology Review, 46(9), 795-816. https://doi.org/10.2747/0020-6814.46.9.795 635 Ciotoli, G., Sciarra, A., Annunziatellis, A., & Bigi, S. (2016). Soil gas geochemical 636 behaviour across buried and exposed faults dur- ing the 24 August 2016 central Italy 637 earthquake. ANNALS OF GEOPHYSICS, 14. https://doi.org/10.4401/ag-7242 638 Clerc, C., Lagabrielle, Y., Neumaier, M., Reynaud, J. Y., & de Saint Blanquat, M., 639 2012, Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic 640 deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de la Société géologique 641 de France, 183(5), 443-459. 642 Clerc, C., Boulvais, P., Lagabrielle, Y., & de Saint Blanquat, M., 2013, Ophicalcites 643 from the northern Pyrenean belt: a field, petrographic and stable isotope study. International 644 Journal of Earth Sciences, 103(1), 141-163. 645 Cooper, B. A., Raven, M. J., & Samuel, L. (1997). Origin and geological controls on 646 subsurface CO2 distribution with examples from western Indonesia. In Proceedings of the 647 Petroleum Systems of SE Asia and Australasia Conference, 877–92 648 Dauteuil, O., & Ricou, L. E., 1989, Une circulation de fluides de haute-temperature a 649 l'origine du metamorphisme cretace nord-pyreneen. Circ. High-Temp. Fluids Orig. North 650 Pyrenean Cretac. Metamorph. Geodinamica Acta, 3, 237–250. 651 Deville, E., & Prinzhofer, A. (2016). The origin of N2-H2-CH4-rich natural gas 652 seepages in ophiolitic context: A major and noble gases study of fluid seepages in New 653 Caledonia. Chemical Geology, 440, 139–147. https://doi.org/10.1016/j.chemgeo.2016.06.011 654 Disnar, J. R., & Gauthier, B. (1988). Exploration for concealed orebodies by the 655 analysis of volatile organic compounds contained in surface rocks: Trèves Zn-Pb deposit 656 (Gard, France), 18. https://doi.org/10.1016/0375-6742(88)90058-1 657 Dogan, T., Mori, T., Tsunomori, F., & Notsu, K. (2007). Soil H2 and CO2 Surveys at 658 Several Active Faults in Japan. Pure and Applied Geophysics, 164(12), 2449–2463. https://doi.org/10.1007/s00024-007-0277-5 659 660 Donzé, F.-V., Tsopela, A., Guglielmi, Y., Henry, P., & Gout, C. (2020). Fluid 661 migration in faulted shale rocks: channeling below active faulting threshold. European 662 Journal of Environmental and Civil Engineering, 1–15. 663 https://doi.org/10.1080/19648189.2020.1765200 664 Donzé, F.-V., Truche, L., Shekari Namin, P., Lefeuvre, N., & Bazarkina, E. F. (2020). 665 Migration of Natural Hydrogen from Deep-Seated Sources in the São Francisco Basin, Brazil. Geosciences, 10(9), 346. https://doi.org/10.3390/geosciences10090346 666 667 Ducoux, M., Jolivet, L., Callot, J. P., Aubourg, C., Masini, E., Lahfid, A., ... & 668 Baudin, T. (2019). The Nappe des Marbres unit of the Basque-Cantabrian Basin: the tectono-669 thermal evolution of a fossil hyperextended rift basin. Tectonics, 38(11), 3881-3915. 670 ECORS Team, Daignières, M., Séguret, M., & Specht, M. (1994). The Arzacq-671 Western Pyrenees ECORS Deep Seismic Profile. In A. Mascle (Ed.), Hydrocarbon and 672 Petroleum Geology of France (pp. 199–208). Berlin, Heidelberg: Springer Berlin Heidelberg. 673 https://doi.org/10.1007/978-3-642-78849-9 15

674 Ehhalt, D. H., & Rohrer, F. (2009). The tropospheric cycle of H2: a critical review. 675 Tellus B: Chemical and Physical Meteorology, 61(3), 500-535. 676 Ehhalt, D. H., & Rohrer, F. (2011). The dependence of soil H2 uptake on temperature 677 and moisture: a reanalysis of laboratory data. Tellus B: Chemical and Physical Meteorology, 678 63(5), 1040-1051. 679 Etiope, G., Judas, J., & Whiticar, M. J. (2015). Occurrence of abiotic methane in the 680 eastern United Arab Emirates ophiolite aquifer. Arabian Journal of Geosciences, 8(12), 681 11345-11348. https://doi.org/10.1007/s12517-015-1975-4 682 Etiope, Giuseppe, Schoell, M., & Hosgörmez, H. (2011a). Abiotic methane flux from 683 the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low 684 temperature serpentinization and implications for Mars. Earth and Planetary Science Letters, 685 310(1-2), 96-104. https://doi.org/10.1016/j.epsl.2011.08.001 686 Etiope, Giuseppe, Schoell, M., & Hosgörmez, H. (2011b). Abiotic methane flux from 687 the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low 688 temperature serpentinization and implications for Mars. Earth and Planetary Science Letters, 689 310(1-2), 96-104. https://doi.org/10.1016/j.epsl.2011.08.001 690 Fabriès, J., Lorand, J.-P., Bodinier, J.-L., & Dupuy, C., 1991, Evolution of the Upper 691 Mantle beneath the Pyrenees: Evidence from Orogenic Spinel Lherzolite Massifs. Journal of 692 Petrology, Special_Volume, 55–76. https://doi.org/10.1093/petrology/Special_Volume.2.55. 693 Fabriès, J., Lorand, J.-P., & Bodinier, J.-L. (1998). Petrogenetic evolution of orogenic 694 lherzolite massifs in the central and western Pyrenees. Tectonophysics, 292(1-2), 145-167. 695 https://doi.org/10.1016/S0040-1951(98)00055-9 696 Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., 697 Wibberley, C. A. J., & Withjack, M. O. (2010). A review of recent developments concerning 698 the structure, mechanics and fluid flow properties of fault zones. Journal of Structural 699 Geology, 32(11), 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009 700 Fiebig, J., Woodland, A. B., Spangenberg, J., & Oschmann, W. (2007). Natural 701 evidence for rapid abiogenic hydrothermal generation of CH4. Geochimica et Cosmochimica 702 Acta, 71(12), 3028-3039. https://doi.org/10.1016/j.gca.2007.04.010 703 Gal, F., & Gadalia, A. (2011). Soil gas measurements around the most recent volcanic 704 system of metropolitan France (Lake Pavin, Massif Central). Comptes Rendus Geoscience, 705 343(1), 43–54. https://doi.org/10.1016/j.crte.2010.11.008 706 Gao, Y., Wang, M., & Zhang, D. (2011). Application of 'metals-in-soil-gas' 707 techniques to mineral exploration in exotic overburden. Geochemistry: Exploration, 708 Environment, Analysis, 11(2), 63-70. https://doi.org/10.1144/1467-7873/09-IAGS-243 709 García-Senz, J., 2002, Cuencas extensivas del Cretacico Inferior en los Pireneos 710 Centrales - formacion y subsecuente inversion. [PhD thesis]. University of Barcelona, 711 Barcelona. 712 García-Senz, J., Pedrera, A., Ayala, C., Ruiz-Constán, A., Robador, A., & Rodríguez-713 Fernández, L. R. (2020). Inversion of the north Iberian hyperextended margin: the role of 714 exhumed mantle indentation during continental collision. Geological Society, London, Special 715 Publications, 490(1), 177-198. https://doi.org/10.1144/SP490-2019-112 716 Garrido-Megias, A., & Rios Aragues, L. M., 1972, Sintesis geologica del Secundario y 717 Terciario entre los rios Cinca y Segre (Pirineo Central de la vertiente sur pirenaica, provincias 718 de Huesca y Lerida). Boletín Geológico y Minero, 83, 1–47. 719 Gaucher, E. C. (2020). New Perspectives in the Industrial Exploration for Native 720 Hydrogen. *Elements*, 16(1), 8–9. https://doi.org/10.2138/gselements.16.1.8 721 Golberg, J. M., & Leyreloup, A. F., 1990, High temperature-low pressure Cretaceous 722 metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France).

- 723 Contributions to Mineralogy and Petrology, 104, 194–207.
- 724 https://doi.org/10.1007/BF00306443

Gomez-Romeu, J., Kusznir, N., Roberts, A., & Manatschal, G. (2020). Measurements
of the extension required for crustal breakup on the magma-poor Iberia-Newfoundland
conjugate margins. Marine and Petroleum Geology, 118, 104403.

Grandjean, G. (1994). Etude des structures crustales dans une portion de chaîne et de
leur relation avec les bassins sédimentaires. Application aux Pyrénées occidentales. *Bulletin Des Centres de Recherches Exploration-Production Elf-Aquitaine*, 18(2), 391–420.

- Gregory, S., Barnett, M., Field, L., & Milodowski, A. (2019). Subsurface Microbial
 Hydrogen Cycling: Natural Occurrence and Implications for Industry. *Microorganisms*, 7(2),
- 732 Flydrogen Cycling. Natural Occurrence and Implications for Industry. *Incroorganisms*, 7(2)
 733 53. https://doi.org/10.3390/microorganisms7020053
- Hainzl, S. (2004). Seismicity patterns of earthquake swarms due to fluid intrusion and
 stress triggering. *Geophysical Journal International*, *159*(3), 1090–1096.
- 736 https://doi.org/10.1111/j.1365-246X.2004.02463.x
- 737Halas, P., Dupuy, A., Franceschi, M., Bordmann, V., Fleury, J.-M., & Duclerc, D.
- (2021). Hydrogen gas in circular depressions in South Gironde, France: Flux, stock, or
 artefact? *Applied Geochemistry*, *127*, 104928.
- 740 https://doi.org/10.1016/j.apgeochem.2021.104928

Hardebeck, J. L. (2012). Fluid-Driven Seismicity Response of the Rinconada Fault
 near Paso Robles, California, to the 2003 M 6.5 San Simeon Earthquake. *Bulletin of the*

- 743 Seismological Society of America, 102(1), 377–390. https://doi.org/10.1785/0120110169
- Hinkle, M. E., Ryder, J. L., Sutley, S. J., & Botinelly, T. (1990). Production of sulfur
 gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz
- porphyry copper deposit near Casa Grande, Pinal County, Arizona. Journal of Geochemical
 Exploration, 38(1–2), 43–67. https://doi.org/10.1016/0375-6742(90)90092-O
- 748 Hirose, T., Kawagucci, S., & Suzuki, K. (2011). Mechanoradical H₂ generation
- during simulated faulting: Implications for an earthquake-driven subsurface biosphere: H₂
- GENERATION DURING EARTHQUAKES. Geophysical Research Letters, 38(17), n/a-n/a.
 https://doi.org/10.1029/2011GL048850
- Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary
 evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the
 western Pyrenees: EXTREME CRUSTAL THINNING IN THE PYRENEES. *Tectonics*,
 28(4), n/a-n/a. https://doi.org/10.1029/2008TC002406
- Jammes, S., Lavier, L., & Manatschal, G. (2010). Extreme crustal thinning in the Bay
 of Biscay and the Western Pyrenees: From observations to modeling: MODELIZATION OF
 EXTREME CRUSTAL THINNING. *Geochemistry, Geophysics, Geosystems, 11*(10), n/a-n/a.
 https://doi.org/10.1029/2010GC003218

Johnson, J. E., Mienert, J., Plaza-Faverola, A., Vadakkepuliyambatta, S., Knies, J.,
Bünz, S., et al. (2015). Abiotic methane from ultraslow-spreading ridges can charge Arctic
gas hydrates. *Geology*, 43(5), 371–374. https://doi.org/10.1130/G36440.1

Kessler, A. J., Chen, Y.-J., Waite, D. W., Hutchinson, T., Koh, S., Popa, M. E., et al.
(2019). Bacterial fermentation and respiration processes are uncoupled in anoxic permeable
sediments. *Nature Microbiology*, 4(6), 1014–1023. https://doi.org/10.1038/s41564-019-0391z

- Kita, I., Matsuo, S., & Wakita, H. (1982). H₂ generation by reaction between H₂ O
 and crushed rock: An experimental study on H₂ degassing from the active fault zone. *Journal of Geophysical Research: Solid Earth*, 87(B13), 10789–10795.
- 770 https://doi.org/10.1029/JB087iB13p10789
- Korotcenkov, G., Han, S. D., & Stetter, J. R. (2009). Review of Electrochemical
 Hydrogen Sensors. Chemical Reviews, 109(3), 1402–1433. https://doi.org/10.1021/cr800339k

773 Lacan, P. (2008). Activité sismotectonique plio-quaternaire de l'ouest des Pyrénées. 774 https://tel.archives-ouvertes.fr/tel-01783939 775 Labaume, P., & Teixell, A., 2020, Evolution of salt structures of the Pyrenean rift 776 (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics, 777 228451. 778 Lagabrielle, Y., & Bodinier, J.-L. (2008). Submarine reworking of exhumed 779 subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees: 780 Cretaceous exhumation of pyrenean mantle. Terra Nova, 20(1), 11–21. 781 https://doi.org/10.1111/j.1365-3121.2007.00781.x 782 Lagabrielle, Y., Labaume, P., & de Saint Blanquat, M. (2010). Mantle exhumation, 783 crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW 784 Europe): Insights from the geological setting of the lherzolite bodies: PYRENEAN 785 LHERZOLITES, GRAVITY TECTONICS. Tectonics, 29(4). 786 https://doi.org/10.1029/2009TC002588 787 Lagabrielle, Y., Clerc, C., Vauchez, A., Lahfid, A., Labaume, P., Azambre, B., 788 Fourcade, S., & Dautria, J. M., 2016, Very high geothermal gradient during mantle 789 exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean 790 palaeomargin (Lherz area, North Pyrenean Zone, France). Comptes Rendus Géoscience, 791 348(3-4), 290-300. 792 Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., & Larin, V. N. (2015a). 793 Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the 794 European Craton in Russia. Natural Resources Research, 24(3), 369–383. 795 https://doi.org/10.1007/s11053-014-9257-5 796 Le Fur Balouet, S., (1985). Les séquences paléovolcaniques du domaine pyrénéen 797 depuis le Stéphano-permien jusqu'au Crétacé: essai d'identification basé sur l'étude 798 géochimique des éléments en traces (Doctoral dissertation), Thesis 3 ème Cycle, Paris VI, pp. 799 320. 800 Lescoutre, R., Tugend, J., Brune, S., Masini, E., & Manatschal, G., 2019, Thermal 801 evolution of asymmetric hyperextended magma-poor rift systems: results from numerical 802 modelling and Pyrenean field observations. Geochemistry, Geophysics, Geosystems. 803 doi:10.1029/2019gc008600 804 Lescoutre, R., & Manatschal, G. (2020). Role of rift-inheritance and segmentation for 805 orogenic evolution: example from the Pyrenean-Cantabrian systemRôle de l'héritage associé 806 au rift et à sa segmentation pour l'évolution orogénique: exemple du système pyrénéo-807 cantabrique. Bulletin de la Société Géologique de France, 191(1). 808 Lewan, M. D. (1997). Experiments on the role of water in petroleum formation. 809 Geochimica et Cosmochimica Acta, 61(17), 3691–3723. https://doi.org/10.1016/S0016-810 7037(97)00176-2 811 Li, X., Krooss, B. M., Weniger, P., & Littke, R. (2017). Molecular hydrogen (H2) and 812 light hydrocarbon gases generation from marine and lacustrine source rocks during closed-813 system laboratory pyrolysis experiments. Journal of Analytical and Applied Pyrolysis, 126, 275-287. https://doi.org/10.1016/j.jaap.2017.05.019 814 815 Li, Y., Du, J., Wang, X., Zhou, X., Xie, C., & Cui, Y. (2013). Spatial Variations of 816 Soil Gas Geochemistry in the Tangshan Area of Northern China. Terrestrial, Atmospheric 817 and Oceanic Sciences, 24(3), 323. https://doi.org/10.3319/TAO.2012.11.26.01(TT) 818 Lin, L.-H., Slater, G. F., Sherwood Lollar, B., Lacrampe-Couloume, G., & Onstott, T. 819 C. (2005a). The yield and isotopic composition of radiolytic H2, a potential energy source for 820 the deep subsurface biosphere. Geochimica et Cosmochimica Acta, 69(4), 893–903. 821 https://doi.org/10.1016/j.gca.2004.07.032

822 Lin, L.-H., Hall, J., Lippmann-Pipke, J., Ward, J. A., Sherwood Lollar, B., DeFlaun, 823 M., et al. (2005b). Radiolytic H 2 in continental crust: Nuclear power for deep subsurface 824 microbial communities: radiolytic H₂ in continental crust. Geochemistry, Geophysics, 825 Geosystems, 6(7), n/a-n/a. https://doi.org/10.1029/2004GC000907 826 Lombardi, S., & Voltattorni, N. (2010). Rn, He and CO2 soil gas geochemistry for the 827 study of active and inactive faults. Applied Geochemistry, 25(8), 1206–1220. 828 https://doi.org/10.1016/j.apgeochem.2010.05.006 829 Lorant, F., & Behar, F. (2002). Late Generation of Methane from Mature Kerogens. 830 Energy & Fuels, 16(2), 412–427. https://doi.org/10.1021/ef010126x 831 Malvoisin, B., Carlut, J., & Brunet, F. (2012). Serpentinization of oceanic peridotites: 832 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. 833 Journal of Geophysical Research: Solid Earth, 117(B1). 834 https://doi.org/10.1029/2011JB008612 835 Marcaillou, C., Muñoz, M., Vidal, O., Parra, T., & Harfouche, M. (2011). 836 Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar. Earth and 837 Planetary Science Letters, 303(3-4), 281-290. https://doi.org/10.1016/j.epsl.2011.01.006 838 Masini, E., Manatschal, G., Tugend, J., Mohn, G., & Flament, J.-M. (2014). The 839 tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-840 Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 841 103(6), 1569–1596. https://doi.org/10.1007/s00531-014-1023-8 842 Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P., & Templeton, A. S. 843 (2013). Hydrogen generation from low-temperature water-rock reactions. *Nature Geoscience*, 844 6(6), 478–484. https://doi.org/10.1038/ngeo1825 845 McCarthy, J. H., & Reimer, G. M. (1986). Advances in soil gas geochemical 846 exploration for natural resources: Some current examples and practices. Journal of 847 Geophysical Research: Solid Earth, 91(B12), 12327–12338. 848 https://doi.org/10.1029/JB091iB12p12327 849 McCollom, T. M. (2013). Laboratory Simulations of Abiotic Hydrocarbon Formation 850 in Earth's Deep Subsurface. Reviews in Mineralogy and Geochemistry, 75(1), 467–494. 851 https://doi.org/10.2138/rmg.2013.75.15 852 McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquó, T. S., Jöns, N., et 853 al. (2016). Temperature trends for reaction rates, hydrogen generation, and partitioning of iron 854 during experimental serpentinization of olivine. Geochimica et Cosmochimica Acta, 181, 855 175-200. https://doi.org/10.1016/j.gca.2016.03.002 856 Meredith, L. K., Commane, R., Keenan, T. F., Klosterman, S. T., Munger, J. W., 857 Templer, P. H., ... & Prinn, R. G. (2017). Ecosystem fluxes of hydrogen in a mid-latitude 858 forest driven by soil microorganisms and plants. Global change biology, 23(2), 906-919. 859 Monnin, C., Chavagnac, V., Boulart, C., Ménez, B., Gérard, M., Gérard, E., et al. (2014). Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony 860 861 Bay (New Caledonia). Biogeosciences, 11(20), 5687-5706. https://doi.org/10.5194/bg-11-862 5687-2014 863 Moretti, I., Prinzhofer, A., Françolin, J., Pacheco, C., Rosanne, M., Rupin, F., & 864 Mertens, J. (2021). Long-term monitoring of natural hydrogen superficial emissions in a 865 brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. 866 International Journal of Hydrogen Energy, 46(5), 3615–3628. 867 https://doi.org/10.1016/j.ijhydene.2020.11.026 868 Mouthereau, F., Filleaudeau, P.-Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., 869 et al. (2014). Placing limits to shortening evolution in the Pyrenees: Role of margin 870 architecture and implications for the Iberia/Europe convergence: Plate convergence in the 871 Pyrenees. Tectonics, 33(12), 2283-2314. https://doi.org/10.1002/2014TC003663

872 Muñoz, J. A., 1992, Evolution of a continental collision belt; ECORS-Pyrenees crustal 873 balanced cross-section. In K. R. Mcclay (Ed.), Thrust tectonics, (pp. 235-246). London, 874 United Kingdom: Chapman & Hall 875 Muñoz, J.A., 2002, The Pyrenees. In: Gibbons, W., Moreno, T. (eds.). The Geology of 876 Spain. The Geological Society of London, 370-385 877 Murray, J., Clément, A., Fritz, B., Schmittbuhl, J., Bordmann, V., & Fleury, J. M. 878 (2020). Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-879 sous-Forêts geothermal site, France. Applied Geochemistry, 119, 104631. 880 https://doi.org/10.1016/j.apgeochem.2020.104631 881 Neal, C., & Stanger, G. (1983). Hydrogen generation from mantle source rocks in 882 Oman. Earth and Planetary Science Letters, 66, 315-320. https://doi.org/10.1016/0012-883 821X(83)90144-9 884 Noble, R. R. P., Lintern, M. J., Townley, B., Anand, R. R., Gray, D. G., & Reid, N. 885 (2013). Metal migration at the North Miitel Ni sulphide deposit in the southern Yilgarn 886 Craton: Part 3, gas and overview. Geochemistry: Exploration, Environment, Analysis, 13(2), 887 99-113. https://doi.org/10.1144/geochem2012-131 Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., Myers, R., & Elkins, J. W. 888 889 (1999). Molecular hydrogen in the troposphere: Global distribution and budget. Journal of 890 Geophysical Research: Atmospheres, 104(D23), 30427–30444. 891 https://doi.org/10.1029/1999JD900788 892 Ortiz, A., Guillocheau, F., Lasseur, E., Briais, J., Robin, C., Serrano, O., & Fillon, C., 893 2020, Sediment routing system and sink preservation during the post-orogenic evolution of a 894 retro-foreland basin: The case example of the North Pyrenean (Aquitaine, Bay of Biscay) 895 Basins. Marine and Petroleum Geology, 112, 104085. 896 Oufi, O. (2002). Magnetic properties of variably serpentinized abyssal peridotites. 897 Journal of Geophysical Research, 107(B5), 2095. https://doi.org/10.1029/2001JB000549 898 Pedreira, D., Pulgar, J., Gallart, J., & Torné, M. (2007). Three-dimensional gravity and 899 magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian 900 Mountains. Journal of Geophysical Research: Solid Earth, 112(B12). 901 https://doi.org/10.1029/2007JB005021 902 Pedrera, A., García-Senz, J., Ayala, C., Ruiz-Constán, A., Rodríguez-903 Fernández, L. R., Robador, A., & González Menéndez, L. (2017). Reconstruction of the 904 Exhumed Mantle Across the North Iberian Margin by Crustal-Scale 3-D Gravity Inversion 905 and Geological Cross Section: Mantle Along the Basque-Cantabrian Basin. Tectonics, 36(12), 906 3155-3177. https://doi.org/10.1002/2017TC004716 907 Pereira, A. J. S. C., Godinho, M. M., & Neves, L. J. P. F. (2010). On the influence of 908 faulting on small-scale soil-gas radon variability: a case study in the Iberian Uranium 909 Province. Journal of Environmental Radioactivity, 101(10), 875-882. 910 https://doi.org/10.1016/j.jenvrad.2010.05.014 911 Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broderick, J. 912 B., et al. (2015). [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853(6), 1350–1369. 913 914 https://doi.org/10.1016/j.bbamcr.2014.11.021 915 Polito, P. A., Clarke, J. D. A., Bone, Y., & Viellenave, J. (2002). A CO 2 -O 2 -light 916 hydrocarbon-soil-gas anomaly above the Junction orogenic gold deposit: a potential, 917 alternative exploration technique. Geochemistry: Exploration, Environment, Analysis, 2(4), 918 333-344. https://doi.org/10.1144/1467-787302-035 919 Potter, J., & Konnerup-Madsen, J. (2003). A review of the occurrence and origin of 920 abiogenic hydrocarbons in igneous rocks. Geological Society, London, Special Publications, 921 214(1), 151–173. https://doi.org/10.1144/GSL.SP.2003.214.01.10

922 Prinzhofer, A., Tahara Cissé, C. S., & Diallo, A. B. (2018). Discovery of a large 923 accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of 924 Hydrogen Energy, 43(42), 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193 925 Prinzhofer, A., Moretti, I., Françolin, J., Pacheco, C., D'Agostino, A., Werly, J., & 926 Rupin, F. (2019). Natural hydrogen continuous emission from sedimentary basins: The 927 example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy, 928 44(12), 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119 929 Qureshi, A. A., Samad Beg, M. A., Ahmed, F., & Khan, H. A. (1988). Uranium 930 exploration in Pakistan using alpha sensitive plastic films (ASPF). International Journal of 931 Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation 932 Measurements, 15(1-4), 735-739. https://doi.org/10.1016/1359-0189(88)90240-3 933 Ravier, J., 1959, Le metamorphisme des terrains secondaires des Pyrenees, Memoires 934 Soc. Geol. Fr. Nouv. Ser., (Vol. 38). Paris: Société géologique de France. 935 Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: 936 critical comparison of methods of determination. Science of The Total Environment, 346(1-937 3), 1-16. https://doi.org/10.1016/j.scitotenv.2004.11.023 938 Rigo, A., Béthoux, N., Masson, F., & Ritz, J.-F. (2008). Seismicity rate and wave-939 velocity variations as consequences of rainfall: the case of the catastrophic storm of 940 September 2002 in the Nîmes Fault region (Gard, France). Geophysical Journal International, 941 173(2), 473–482. https://doi.org/10.1111/j.1365-246X.2008.03718.x 942 Romanak, K. D., Bennett, P. C., Yang, C., & Hovorka, S. D. (2012). Process-based 943 approach to CO 2 leakage detection by vadose zone gas monitoring at geologic CO 2 storage 944 sites: process-based leakage detection. Geophysical Research Letters, 39(15). 945 https://doi.org/10.1029/2012GL052426 946 Rossy, M., Azambre, B., & Albarède, F., 1992, REE and Sr/1bNd isotope 947 geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone 948 (France-Spain). Chemical Geology, 97, 33-46. https://doi.org/10.1016/0009-2541(92)90134-949 Q 950 Roure, F., Choukroune, P., Berastegui, X., Munoz, J. A., Villien, A., Matheron, P., ... 951 & Deramond, J. (1989). ECORS deep seismic data and balanced cross sections: Geometric 952 constraints on the evolution of the Pyrenees. Tectonics, 8(1), 41-50. 953 Sahu, P., Mishra, D. P., Panigrahi, D. C., Jha, V., & Patnaik, R. L. (2013). Radon 954 emanation from low-grade uranium ore. Journal of Environmental Radioactivity, 126, 104-955 114. https://doi.org/10.1016/j.jenvrad.2013.07.014 956 Sainz-Garcia, A., Abarca, E., Rubi, V., & Grandia, F. (2017). Assessment of feasible 957 strategies for seasonal underground hydrogen storage in a saline aquifer. International 958 Journal of Hydrogen Energy, 42(26), 16657–16666. 959 https://doi.org/10.1016/j.ijhydene.2017.05.076 960 Saspiturry, N., Lahfid, A., Baudin, T., Guillou-Frottier, L., Razin, P., Issautier, B., et 961 al. (2020). Paleogeothermal Gradients Across an Inverted Hyperextended Rift System: 962 Example of the Mauléon Fossil Rift (Western Pyrenees). Tectonics, 39(10). 963 https://doi.org/10.1029/2020TC006206 964 Sato, M., Sutton, A. J., & McGee, K. A. (1985). Anomalous hydrogen emissions from 965 the San Andreas fault observed at the Cienega Winery, central California. Pure and Applied 966 Geophysics PAGEOPH, 122(2-4), 376-391. https://doi.org/10.1007/BF00874606 967 Sauvage, J. F., Flinders, A., Spivack, A. J., Pockalny, R., Dunlea, A. G., Anderson, C. 968 H., et al. (2021). The contribution of water radiolysis to marine sedimentary life. Nature 969 Communications, 12(1), 1297. https://doi.org/10.1038/s41467-021-21218-z

970 Schrenk, M. O., Brazelton, W. J., & Lang, S. Q. (2013). Serpentinization, Carbon, and 971 Deep Life. Reviews in Mineralogy and Geochemistry, 75(1), 575–606. 972 https://doi.org/10.2138/rmg.2013.75.18 973 Schwartz, E., & Friedrich, B. (2006). The H2-metabolizing prokaryotes. The 974 Prokaryotes, 7, 496–563. https://doi.org/10.1007/0-387-30742-7_17 975 Sherwood Lollar, B. S., Heuer, V. B., McDermott, J., Tille, S., Warr, O., Moran, J. J., 976 ... & Hinrichs, K. U. (2021). A window into the abiotic carbon cycle–Acetate and formate in 977 fracture waters in 2.7 billion year-old host rocks of the Canadian Shield. Geochimica et 978 Cosmochimica Acta, 294, 295-314. 979 Sherwood Lollar, B. S., Lacrampe-Couloume, G., Slater, G. F., Ward, J., Moser, D. P., 980 & Gihring, T. M. (2006). Unravelling abiogenic and biogenic sources of methane in the 981 Earth's deep subsurface. Chemical Geology, 12. 982 https://doi.org/10.1016/j.chemgeo.2005.09.027 983 Sherwood Lollar, B. S., Onstott, T. C., Lacrampe-Couloume, G., & Ballentine, C. J. 984 (2014). The contribution of the Precambrian continental lithosphere to global H2 production. 985 Nature, 516(7531), 379-382. https://doi.org/10.1038/nature14017 986 Sibson, R. (1981). A brief description of natural neighbour interpolation. Interpreting 987 Multivariate Data. 988 Sinclair, A. J. (1991). A fundamental approach to threshold estimation in exploration 989 geochemistry: probability plots revisited. Journal of Geochemical Exploration, 41(1-2), 1-990 22. https://doi.org/10.1016/0375-6742(91)90071-2 991 Sipma, J., Henstra, A. M., Parshina, S. N., Lens, P. N. L., Lettinga, G., & Stams, A. J. 992 M. (2006). Microbial CO Conversions with Applications in Synthesis Gas Purification and 993 Bio-Desulfurization. Critical Reviews in Biotechnology, 26(1), 41–65. 994 https://doi.org/10.1080/07388550500513974 995 Smith, N. J. P., Shepherd, T. J., Styles, M. T., & Williams, G. M. (2005). Hydrogen 996 exploration: a review of global hydrogen accumulations and implications for prospective 997 areas in NW Europe. Geological Society, London, Petroleum Geology Conference Series, 6(1), 349-358. https://doi.org/10.1144/0060349 998 999 Souriau, A., Rigo, A., Sylvander, M., Benahmed, S., & Grimaud, F. (2014). Seismicity 1000 in central-western Pyrenees (France): A consequence of the subsidence of dense exhumed 1001 bodies. Tectonophysics, 621, 123-131. https://doi.org/10.1016/j.tecto.2014.02.008 1002 Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y., Nakamura, N., et al. (1983). 1003 Origin of Hydrogen and Carbon Dioxide in Fault Gases and Its Relation to Fault Activity. The 1004 Journal of Geology, 91(3), 239–258. https://doi.org/10.1086/628769 1005 Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. 1006 Renewable and Sustainable Energy Reviews, 105, 86–94. 1007 https://doi.org/10.1016/j.rser.2019.01.051 1008 Teixell, A., 1998, Crustal structure and orogenic material budget in the west central 1009 Pyrenees. Tectonics, 17(3), 395-406. 1010 Teixell, A., Labaume, P., & Lagabrielle, Y. (2016). The crustal evolution of the west-1011 central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus 1012 Geoscience, 348(3-4), 257-267. https://doi.org/10.1016/j.crte.2015.10.010 1013 Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., & Lagabrielle, 1014 Y., 2018, Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new 1015 interpretations from recent concepts and data. Tectonophysics, 724-725, 146-170. 1016 https://doi.org/10.1016/j.tecto.2018.01.009 1017 Thauer, R. K., Klein, A. R., & Hartmann, G. C. (1996). Reactions with Molecular 1018 Hydrogen in Microorganisms: Evidence for a Purely Organic Hydrogenation Catalyst. 1019 Chemical Reviews, 96(7), 3031-3042. https://doi.org/10.1021/cr9500601

1020 Toft, P. B., Arkani-Hamed, J., & Haggerty, S. E. (1990). The effects of 1021 serpentinization on density and magnetic susceptibility: a petrophysical model. *Physics of the* 1022 Earth and Planetary Interiors, 65(1-2), 137-157. https://doi.org/10.1016/0031-1023 9201(90)90082-9 1024 Toutain, J.-P., & Baubron, J.-C. (1999). Gas geochemistry and seismotectonics: a 1025 review. Tectonophysics, 304(1-2), 1-27. https://doi.org/10.1016/S0040-1951(98)00295-9 1026 Truche, L., & Bazarkina, E. F. (2019). Natural hydrogen the fuel of the 21st century. 1027 E3S Web of Conferences, 98, 03006. https://doi.org/10.1051/e3sconf/20199803006 1028 Truche, L., Joubert, G., Dargent, M., Martz, P., Cathelineau, M., Rigaudier, T., & 1029 Quirt, D. (2018). Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar 1030 Lake uranium deposit, Athabasca. Earth and Planetary Science Letters, 493, 186–197. 1031 https://doi.org/10.1016/j.epsl.2018.04.038 1032 Truche, L., McCollom, T. M., & Martinez, I. (2020). Hydrogen and abiotic 1033 hydrocarbons: molecules that change the world. Elements: An International Magazine of 1034 Mineralogy, Geochemistry, and Petrology, 16(1), 13-18. 1035 Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). 1036 Formation and deformation of hyperextended rift systems: Insights from rift domain mapping 1037 in the Bay of Biscay-Pyrenees. Tectonics, 33(7), 1239–1276. https://doi.org/10.1002/2014TC003529 1038 1039 Tugend, J., Manatschal, G., & Kusznir, N. J., 2015b, Spatial and temporal evolution of 1040 hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-1041 European plate boundary. Geology, 43(1), 15-18. https://doi.org/10.1130/G36072.1 Vacher, P., & Souriau, A. (2001). A three-dimensional model of the Pyrenean deep 1042 1043 structure based on gravity modelling, seismic images and petrological constraints. 1044 Geophysical Journal International, 145(2), 460-470. https://doi.org/10.1046/j.0956-1045 540x.2001.01393.x 1046 Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D., et al. 1047 (2018). Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the 1048 H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta, 223, 437-461. 1049 https://doi.org/10.1016/j.gca.2017.12.018 1050 Vandenborre, J., Truche, L., Costagliola, A., Craff, E., Blain, G., Baty, V., Haddad, F. 1051 and Fattahi, M., 2021. Carboxylate anion generation in aqueous solution from carbonate 1052 radiolysis, a potential route for abiotic organic acid synthesis on Earth and beyond. Earth and 1053 Planetary Science Letters, 564, p.116892. Vergés, J., Millán, H., Roca, E., Muñoz, J. A., Marzo, M., Cirés, J., et al., 1995, 1054 1055 Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale 1056 cross-sections. Marine and Petroleum Geology, 12, 903-915. https://doi.org/10.1016/0264-1057 8172(95)98854-X 1058 Vergés, J., & García-Senz, J., 2001, Mesozoic evolution and Cainozoic inversion of 1059 the Pyrenean rift. In P. A. Ziegler, et al. (Eds.), Peri-Tethyan Rift/Wrench Basins and Passive 1060 Margins, mémoire, (pp. 187–212). 1061 Vergés, J., Fernàndez, M., & Martìnez, A. (2002). The Pyrenean orogen: pre-, syn-, 1062 and post-collisional evolution. Journal of the Virtual Explorer, 08. 1063 https://doi.org/10.3809/jvirtex.2002.00058 Wang, Y., Chevrot, S., Monteiller, V., Komatitsch, D., Mouthereau, F., Manatschal, 1064 1065 G., et al. (2016). The deep roots of the western Pyrenees revealed by full waveform inversion 1066 of teleseismic P waves. Geology, 44(6), 475-478. https://doi.org/10.1130/G37812.1 1067 Warren, J., 2016. Gases in evaporites: part 2 of 3: nature, distribution and sources. 1068 Salty Matters reports.

- 1069 Worman, S. L., Pratson, L. F., Karson, J. A., & Klein, E. M. (2016). Global rate and 1070 distribution of H 2 gas produced by serpentinization within oceanic lithosphere: H₂ formation 1071 in ocean lithosphere. Geophysical Research Letters, 43(12), 6435–6443. 1072 https://doi.org/10.1002/2016GL069066 1073 Worman, S. L., Pratson, L. F., Karson, J. A., & Schlesinger, W. H. (2020). Abiotic 1074 hydrogen (H₂) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the 1075 subseafloor biosphere. Proceedings of the National Academy of Sciences, 117(24), 13283-1076 13293. https://doi.org/10.1073/pnas.2002619117 1077 Xiang, Y., Sun, X., Liu, D., Yan, L., Wang, B., & Gao, X. (2020). Spatial Distribution 1078 of Rn, CO2, Hg, and H2 Concentrations in Soil Gas Across a Thrust Fault in Xinjiang, China. 1079 Frontiers in Earth Science, 8, 554924. https://doi.org/10.3389/feart.2020.554924 1080 Zgonnik, V., Beaumont, V., Deville, E., Larin, N., Pillot, D., & Farrell, K. M. (2015). 1081 Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, 1082 ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and 1083 Planetary Science, 2(1), 31. https://doi.org/10.1186/s40645-015-0062-5 1084 Zivar, D., Kumar, S., & Foroozesh, J. (2020). Underground hydrogen storage: A 1085 comprehensive review. International Journal of Hydrogen Energy, S0360319920331426.
- 1086 https://doi.org/10.1016/j.ijhydene.2020.08.138

Location	×	Υ	CH4 (vol%)	CO2 (vol%)	$\begin{array}{c} \text{O2} \\ \text{(vol\%)} \end{array}$	H2 ppmv	CO	H2S ppmv	$\begin{array}{c} \text{Balance} \\ \text{(vol\%)} \end{array}$	Radon $(bq \ m^{-3})$	Atmospheric pressure (mbar)	Humidity (%)	Temperature (°C)	soil type
Peyrorade	-1.110608	43.53165	0	3.1	18.8	31	4	0	78.8	13260	1015	83.8	23	Grassland
La Bourgade	-1.186809	43.519494	0	0.1	3.8	0	0	0	15.8	7444	1016	77.7	24	Forest
Sud Bardos	-1.1929778	43.445451	0	0.9	20.3	34	2	0	79.2	72	1012	91.9	25	Grassland
Isturitz	-1.2023857	43.358344	0	1.0	19.9	16	2	0	79.3	199	1004	68.8	27	Grassland
Iholdy	-1.197617	43.267475	0	1.1	19.7	1	1	0	79.4	177	987	85.7	27	Grassland
Bois d'Ostabat	-1.0636998	43.282326	0 0	1.0	20.2	നം		0 0	79.5	283 72	993 1000	79.1	29	Meadow
Gabat Anoneon	-1.0722578 1.0562002	43.37340 42 445596		1.1	20.4	7 7	1 <		70.6 70.6	0 <i>)</i>	1000 1006	80.0 70.9	33 26	Grassland
Arancou Duite	5002060.1- 8908770 U-	43.443320 13 546108		0.9 0.2	19.U 10.0	1 10	+ +		70 5	00 06	1000	71 G	00 25	Grassland Crassland
r uyo Salies de Bearn	-0.918758	43.460145		1.7	19.7	14 52			79.6	132	1007	54.7	35	Grassland
Saint Laurent Bretagne	-0.1969404	43.382274	0	0.4	16.3			0	79.2	799	984	72.9	21	Grassland
Lannecaube	-0.2109628	43.482495	0	1.5	19.8	26	°	0	79.2	309	1002	74.7	23	Grassland
Castetpugon	-0.2208758	43.563465	0	0.2	20.8	9	2	0	79.0	173	1004	78.4	24	Grassland
Sensacq	-0.3496236	43.581854	0.18	1.3	20.6	26	ç	0	78.9	20	1007	87.2	23	Grassland
Méracq	-0.3937847	43.512739	0	0.7	20.7	6	2	0	79.0	147	376	213.9	172	Grassland
Navailles-Angos	-0.3458781	43.405046	0	0.1	20.6	9	, ,	0	79.3	229	995	76.4	$\frac{27}{2}$	$\operatorname{Grassland}_{\widetilde{\Omega}}$
Uzein	-0.4410873	43.39658	0	0.7	20.6	4		0	79.1	189	1003	76.2	27	Grassland
Esterencuby	-1.1867999	43.105215	0	1.2	21.0	300	μ,	0	78.5	29 _	991	72.3	$\frac{21}{5}$	Meadow
Errozate	-1.1510656	43.042125	0.08	1.3	21.4	18	-	0.2	78.3	2	887	66.3	18	Meadow
Zazpigain	-1.0379461	43.010372	0	2.2	20.9	27	-	0	78.1	181	861	73.4	17	Meadow
Pic d'Apanice	-1.0379461	43.100868	0	0.1	20.9	0		0.8	78.7	148	901	87.5	20	Meadow
Alcay	-0.9149188	43.095668	0	1.6	20.7	ю,	0	-	79.1	63	986	96.3	25	Meadow
Logibaria	-0.9260405	43.020038	0	0.5	20.8	×	-	-	78.9	35	972	75.1	27	Meadow
Pic d'issarbe	-0.7953253	43.018106	0	2.0	21.0	66	က		78.5	705	864	58.1	23	Meadow
Montorry	-0.82029	43.096886	0	0.5	21.1	0	0	1	78.7	59	985	97.9	22	Grassland
Arette	-0.7073994	43.108241	0	1.5	19.9	0	0	1.4	78.9	10978	974	96.7	25	Grassland
Lourdios Ichère	-0.6689824	43.047011	0	0.2	20.9	0	0	1.2	78.9	1003	964	75.7	27	Meadow
Bustince Iribéry	-1.1850354	43.19192	0.02	0.2	21.2	17		1	78.6	827	993	72.8	22	Grassland
Saint Juste Ibarre	-1.0561151	43.189128	0	0.5	20.8	0	0	<u> </u>	78.7	8152	996	90.7	$\frac{25}{2}$	$\operatorname{Grassland}_{\widetilde{\Omega}}$
Ordiarp	-0.9424667	43.184364	0	0.6	20.7	0 D	0	-	79.0	43	993	76.6	.27	Grassland
Barcus	-0.7867208	43.188848	0	0.6	20.6	23	ი -	, 1	79.0	20	981	72.9	$\frac{28}{2}$	$\operatorname{Grassland}_{\widetilde{\Omega}}$
Esquiule	-0.7048902	43.194938	0	0.4	20.9	0	0	-	78.7	1811	986	64.4	$\frac{28}{1}$	$\widetilde{\operatorname{Grassland}}$
Lamidou	-0.7168551	43.285576	0.02 0	0.9	20.5	15		- ,	79.0	32 9	999 000	67.6	27	Grassland
Moncayolle	-0.8434068	43.264186	0 0	0.0	20.8	0 0	0 0	1.4	79.1	43	988 001	61.6 21.0	29	Grassland
\widehat{A} inharp	-0.9272931	43.208024	0 0	0.7	20.1	⊃ ,	0 0	1.0	79.3	5290	981 1001	04.8	32	Grassland
Usserain	-0.96050008	43.377704	0 0	0.4	20.2	- 1	0 0	1.0	79.3	292	1001	40.8	30 20	Grassland
Laas Taamiaa	-0.8470193 0.8996676	43.379819		0.3	20.5) 1	0 -	1.4 1	19.1 70 E	051 051	1009 1009	0.00 60.4	31 97	Grassland
Laurepiaa Uommenohio	0100020.0-	40.400104		0.0	0.02	104			10.0	100	7000	19.4 077	17	Cuecelond
Dit-1:	-0.0411444	40.004211 19 550970		0.0	2U.0				10.0	420U 700	7001 1007	7.1.1	07 07	Grassianu Cll
F IDOIE Binon	-0.1324920 _0 7487031	40.00000 13 16195		1.0	0 UG	7 ⊂	- 0		70.1	000 1361	1010	808 808	07	Grassland Crassland
Sauvelade	-0.7051026	43 396065		1.9	20.2	0 4	с с [.]	F	78.8	2456	1005	60.2 60.2	10 10	Grassland
Abidos	-0.6055312	43.394956	0	2.1	20.8	0	0		79.0	88	1006	68.3	30	Grassland
Arthez de Bearn	-0.5979083	43.463609	0	1.0	20.8	25	1	1.52	79.0	95	908	66.3	32	Grassland
Castlener	-0.5769138	43.546863	0	0.2	20.9	2	1	1.6	78.9	42	266	53.5	34	Grassland
Philondenx	-0.440628	43.564529	0	1.0	20.5	4	2	1	79.1	74	966	59.5	33	Grassland
Momas	-0.4497019	43.450535	0.22	2.5	19.8	24	°°	1.8	79.0	45	666	59.6	34	Grassland
Col de Jaut	-0.3395519	43.036691	0	0.3	19.7	2	1	0	80.2	1927	896	58.2	33	Meadow
Mifaget	-0.3079806	43.110394	0	0.2	19.7	0	0	0	79.3	225	985	75.5	22	Grassland
Montaut	-0.1910826	43.119642	0	1.6	19.7	IJ	1	0	79.1	8313	983	76.6	22	Forest

Location	Х	Y	CH4 (vol%)	CO2 (vol%)	$\substack{\text{O2}\\(\text{vol}\%)}$	H2 ppmv	CO ppmv	H2S ppmv	$\begin{array}{c} \text{Balance} \\ \text{(vol\%)} \end{array}$	$\frac{\rm Radon}{\rm (bq} \ m^{-3})$	Atmospheric pressure (mbar)	Humidity (%)	Temperature (°C)	soil type
Soum de las escures	-0.1717739	43.02286	0	0.4	20.3	c,	0	0	79.4	9037	206	65.4	22	Meadow
Agos Vidalos	-0.0679288	43.038751	0	1.4	19.9	2	1	0	79.0	2168	926	89.5	21	Grassland
Germs-sur-l'oussouet	0.0547857	43.054632	0	3.8	18.4	18	0	0	79.5	568	933	73.1	22	Meadow
Orincles	0.0411323	43.122241	0	1.3	19.8	×	1	0	79.5	3429	626	89.9	23	Grassland
Juillian	0.0178934	43.20517	0	0.6	20.1	3	0	0	79.4	510	984	79.3	24	Grassland
Pontacq	-0.0917404	43.193646	0	1.0	20.1	11	1	0	79.5	1033	026	73.9	26	Grassland
Loubajac	-0.0703127	43.135432	0	1.6	20.1	22	2	0	79.2	39	965	69.3	25	Grassland
Bénéjac	-0.1968502	43.199635	0	0.6	20.4	9	1	0	79.2	62	066	74.7	24	Grassland
Limendous	-0.184808	43.273269	0	1.1	20.3	13	1	0	79.1	94	626	71.6	21	Grassland
AAST	-0.0906578	43.281296	0	0.5	20.6	4	1	0	78.9	57	926	82.2	20	Grassland
Lagarde	0.0288394	43.297155	0.02	0.4	20.5	4	1	0	79.2	61	989	96.3	20	Grassland
Saint Lézer	0.0255637	43.37813	0	0.5	20.3	7	1	0	79.3	140	994	89.8	22	Grassland
Maubourget	0.0251827	43.480074	0	0.3	20.1	2	0	0	79.5	37	1003	93.1	24	Grassland
Hères	0.0047965	43.543761	0	1.3	19.5	2	0	0	79.6	103	1004	84.5	26	Grassland
Arrosès	-0.1043122	43.536611	0	0.3	20.1	1	0	0	79.6	9109	994	88.1	28	Grassland
Sémécq Blachon	-0.1235543	43.494603	0	0.3	20.1	4	1	0	79.7	482	987	60.8	29	Grassland
Lucaré	-0.078001	43.414286	0	0.8	19.8	0	1	0	79.7	5863	066	63.9	29	Grassland
Bedous	-0.558885	42.996271	0	0.5	20.4	5	0	0	79.2	14754	954	63.8	25	Meadow
Gère Belestin	-0.421927	43.024804	0	0.9	20.0	e S	1	0	79.5	125	966	94.5	25	Meadow
Arudy	-0.4376092	43.11053	0	1.4	19.4	1	1	0	79.6	73	974	72.9	28	Grassland
Misériou	-0.5533892	43.115528	0	2.9	19.0	က	0	0	79.0	226	626	69.9	28	Meadow
Précilhon	-0.573282	43.197708	0	0.2	20.1	5	1	0	79.7	60	989	82.2	29	Grassland
Labarcat	-0.4235382	43.205561	0	0.4	19.9	4	1	0	79.7	164	926	62.6	32	Grassland
Lesquerré	-0.3421668	43.193199	0	0.5	20.5	12	°	0	79.1	101	066	79.6	23	Grassland
Bizanos	-0.352381	43.28088	0	0.7	19.5	4	1	0	80.0	181	995	76.7	33	Grassland
Laroin	-0.4377835	43.304135	0	0.1	19.6	4	1	0	80.2	40	266	60.4	37	Grassland
Haurrot	-0.5678612	43.308278	0	0.3	20.0	e S	1	0	79.7	79	1000	49.6	37	Grassland
Gaujacq	-0.71198	43.66121	0	0.9	20.1	7	1	0	79.3	95	1005	66.4	27	Grassland
$\operatorname{Peyred\check{e}re}$	-0.7198242	43.732812	0	0.3	20.6	1	0	0	79.2	103	1006	85.2	25	Grassland
Gamarde-les-Bains	-0.861776	43.739642	0	0.6	20.7	19	0	0	79.1	286	1009	89.8	25	Grassland
Candresse	-0.9759565	43.723164	0.02	0.6	20.4	1	0	0	79.1	335	1012	93.7	25	Grassland
Eyrasse	-1.1008223	43.725272	0.02	0.9	19.9	7	2	0	79.3	108	1008	93.9	26	Grassland
$\operatorname{Balenton}$	-1.228461	43.722216	0	0.4	20.2	9	0	0	79.4	123	1006	94.9	26	Grassland
Josse	-1.2201363	43.638525	0	0.2	20.3	7	0	0	79.4	93	1011	90.6	27	Grassland
Heugas	-1.090996	43.631865	0	0.3	20.0	5	1	0	79.8	66	1007	77.8	31	Grassland
Mimbaste	-0.9652538	43.64693	0	0.3	19.9	4	1	0	79.9	149	1009	75.3	32	Grassland
$\operatorname{Romarez}$	-0.838045	43.632978	0	0.2	19.9	5 C	0	0	80.0	125	1007	63.0	35	Grassland
Bahus soubiran	-0.362971	43.666469	0	0.4	20.5	က	1	0	79.3	88	666	67.2	24	Grassland
Bern ède	-0.228397	43.669555	0	0.3	20.6	4	0	0	79.1	85	1007	81.7	22	Grassland
Tarsac	-0.1046477	43.66704	0	0.2	20.5	4	0	0	79.2	157	1005	90.2	22	Grassland
Arblade le haut	-0.0639412	43.743675	0	0.2	20.6	3	0	0	79.3	120	1001	93.8	23	Grassland
Lussagnet	-0.231062	43.774972	0	0.2	20.6	2	0	0	79.3	115	1006	93.0	24	Grassland
Renung	-0.3554283	43.74046	0	0.7	20.2	5	0	0	79.7	36	1002	89.7	27	Grassland
Montgaillard	-0.4818938	43.737794	0	1.0	19.9	20	2	0	79.4	102	1005	79.2	28	Grassland
Audignon	-0.5882988	43.729789	0	1.4	20.2	7	0	0	79.2	51	1010	85.4	27	Grassland
Magetmau	-0.6097428	43.6519	0	1.1	19.7	17	1	0	79.4	45	1004	83.2	28	Grassland
Bats	-0.4601553	43.651404	0	0.6	20.2	5	1	0	79.3	105	1000	70.5	28	Grassland
Lecumberry	-1.1393502	43.143978	0	0.5	20.1	0	0	0	79.3	249	026	81.1	23	Meadow
Pierraene. col de Napole ~	-0.9862093	43.154179	0	0.1	20.3	0 (0,	0	79.6	108 $\hat{\mathbb{O}}$	$\frac{983}{2.0}$	83.9 2 - 5	$\frac{25}{25}$	Meadow ~
Sauguis saint Etienne	-0.8939265	43.153775	0	0.4	19.9	က	-	0	79.8	66	992	87.5	28	Grassland

Location	Х	Y	CH4 (vol%)	CO2 (vol%)	O2 (vol%)	H2 ppmv	CO ppmv	H2S ppmv	$\operatorname{Balance}(\operatorname{vol}\%)$	$\frac{\rm Radon}{\rm (bq}\ m^{-3})$	Atmospheric pressure (mbar)	Humidity (%)	Temperature (°C)	soil type
Mauléon Licharre	-0.89056	43.2317	0	0.1	19.9	1	0	0	79.9	63	066	70.0	30	Soil
Charre	-0.87881	43.3195	0	0.6	19.7	13	2	0	79.7	36	1001	62.4	31	Soil
Béhasque Lapiste	-1.00086	43.3238	0	0.1	20.2	2	1	0	79.7	65	1004	61.6	32	Soil
Pagolle	-0.98865	43.2314	0	0.0	20.1	2	0	0	79.7	73	966	56.5	35	Soil
Saint Etienne Lantabat	-1.14774	43.2461	0	0.3	20.5	2	0	0	79.3	12835	994	63.3	33	Soil
Méharin	-1.13918	43.3302	0	0.1	20.5	1	0	0	79.4	61	266	64.6	32	Soil
Orègue	-1.13547	43.3961	0	0.3	20.1	1	0	0	79.6	115	666	62.2	33	Soil
A bitain	-0.99522	43.4123	0	0.3	20.5	1	0	0	79.2	5365	666	70.4	25	Soil
Orion	-0.86208	43.4185	0	0.4	20.1	1	0	0	79.4	86	981	91.8	24	Soil

Location	Date	Х	Υ	CH_4	CO_2	O_2	H_2	CO	$\mathrm{H}_{2}\mathrm{S}$	Balance	soil type
				(vol%)	(vol%)	(vol%)	ppmv	ppmv	ppmv	(vol%)	
Montaut	15/02/2018	-0.1645	43.1376944	0	0.2	20.3	8	1	0	79.3	Forest
Montaut	15/02/2018	-0.1647222	43.1376944	0	0.6	19.5	16	6	0	79.7	Forest
Montaut	15/02/2018	-0.1647222	43.1376944	0	0.6	19.5	20	2	0	79.7	Forest
Montaut	15/02/2018	-0.1647778	43.1376944	0	1	19.5	9	1	0	79.3	Forest
Montaut	15/02/2018	-0.1647778	43.1376944	0	1.8	19.1	7	1	0	78.9	Forest
Montaut	15/02/2018	-0.1648611	43.1377222	0	1.2	19.3	13	0	0	79.3	Forest
Montaut	15/02/2018	-0.165	43.1379444	0.5	0.3	20.1	17	2	4	78.9	Forest
Montaut	15/02/2018	-0.1651111	43.1380278	0.8	1.1	18.8	28	15	4	79.1	Forest
Montaut	15/02/2018	-0.1651111	43.1380278	1	0.6	19.8	36	5	8	78.4	Forest
Montaut	15/02/2018	-0.1654722	43.1380833	0	0.7	20	28	1	3	79.1	Forest
Montaut	15/02/2018	-0.1050389	43.1382222	0	0.8	19.9	20	0	2	79.1	Forest
Montaut	15/02/2018 15/02/2018	-0.10373	43.1301944	0	0.2	20.4 20.6	00 28	0	1	79.2	Forest
Montaut	15/02/2018 15/02/2018	-0.1058555	43.138383000	0	0.1	20.0	20 56	2 7	1	79.1	Forest
Montaut	15/02/2018 15/02/2018	-0.1058011	43.1383880	0	0.5	20.5	47	16	1	19.2 78.8	Forest
Montaut	15/02/2018 15/02/2018	-0.1658889	43 138/167	0	0.2	20 5	30	2	1	70.0	Forest
Montaut	15/02/2018 15/02/2018	-0.1659444	43 1385278	0.2	0.6	20.0 19.6	87	33	1	79.4	Forest
Montaut	15/02/2018	-0 1659444	43 1385278	0.2	0.3	20.4	94	12	1	78.9	Forest
Montaut	15/02/2018	-0.1658889	43.1386944	0	0.4	20.1 20.3	43	7	1	79.1	Forest
Montaut	15/02/2018	-0.1662778	43.1386111	Ő	0.1	20.8	40	1	0	78.9	Forest
Montaut	15/02/2018	-0.1662222	43.1391111	ů 0	0.5	20.4	25	7	0	78.9	Forest
Lasseube	22/02/2018	-0.475571	43.225542	0	0.4	19.8	19	1	0	79	Forest
Lasseube	22/02/2018	-0.4745933	43.2234727	0	1.2	19.6	11	3	0	78.7	Forest
Lasseube	22/02/2018	-0.4745232	43.2234382	0	0.8	19.4	20	3	0	79	Forest
Lasseube	22/02/2018	-0.4743337	43.2235308	0	0.4	20.1	14	1	0	78.9	Forest
Lasseube	22/02/2018	-0.4748103	43.2235812	0	0.2	20.3	49	0	0	78.9	Forest
Lasseube	22/02/2018	-0.474962	43.223558	0	1.5	19.1	29	1	0	78.7	Forest
Lasseube	22/02/2018	-0.4749757	43.223641	0	0.4	19.8	49	2	0	78.9	Forest
Lasseube	22/02/2018	-0.475238	43.2236543	0	0.4	20.3	42	2	0	78.7	Forest
Lasseube	22/02/2018	-0.4750615	43.2233492	0	1.7	15.6	64	4	0	79.3	Forest
Rébénacq	22/02/2018	-0.3957728	43.1533967	0	0.7	19.8	37	0	0	78.9	Forest
Rébénacq	22/02/2018	-0.3959203	43.1531877	0	0.2	20.3	23	0	0	78.8	Forest
Rébénacq	22/02/2018	-0.3962142	43.1531203	0	0.2	20.7	12	0	0	78.9	Grassland
Rebenacq	22/02/2018	-0.3963295	43.1530043	0	0.2	20.6	5	0	0	78.9 78.0	Grassland
Rebenacq	22/02/2018	-0.3903302	43.1520015	0	0.2	20.0	1	0	0	78.9 78.0	Grassland
Rébénacq	22/02/2018	-0.3937203	45.1522712	0	0.1	20.7	0	0	0	78.0	Grassland
Col d'urdach	$\frac{22}{02}\frac{2018}{2018}$	-0.3937027	43.132033	0.1	0.1	20.8 18 1	1000	70	2	10.9 80 5	Mondow
Col d'urdach	22/02/2018	-0.664306	43.1180502	0.1	0.4	10.1	1000	79 61	2	80.5	Meadow
Col d'urdach	22/02/2018	-0.664412	43 118094	0	0.5	10.2	323	17	0	79.6	Meadow
Col d'urdach	$\frac{22}{02}$	-0.6644703	43 1180537	0	0.2 0.2	19.4	475	3	0	79.5	Meadow
Col d'urdach	$\frac{22}{02}$	-0.6644968	43.1181472	0	0.3	20.1	105	4	0	79.5	Meadow
Col d'urdach	$\frac{22}{02}$	-0.6646515	43.1181627	0.1	0.3	20.4	66	4	Ő	79.2	Meadow
Col d'urdach	22/02/2018	-0.664736	43.1177692	0.1	0.1	19.8	413	7	0	79.2	Meadow
Montaut	01/03/2018	-0.1643212	43.1380202	0	0.1	20.4	20	0	0	79.5	Forest
Montaut	01/03/2018	-0.1644252	43.1379812	0	0.1	19.6	7	2	0	79.5	Forest
Montaut	01/03/2018	-0.1640965	43.1379307	0	0.1	19.7	4	4	0	79.6	Forest
Montaut	01/03/2018	-0.1643232	43.138064	0	0.1	19.9	6	6	0	79.5	Forest
Montaut	01/03/2018	-0.1642893	43.1381833	0	0.2	19.9	12	2	0	79.4	Forest
Montaut	01/03/2018	-0.1641413	43.1382297	0	0.4	19.6	6	2	0	79.4	Forest
Montaut	01/03/2018	-0.1640383	43.1382155	0	0.1	19.6	14	2	0	79.5	Forest
Montaut	01/03/2018	-0.1637747	43.1383822	0	1.2	19.9	1	0	0	78.8	Forest
Montaut	01/03/2018	-0.1636903	43.1383243	0	0.3	19.4	2	1	0	79.4	Forest
Montaut	01/03/2018	-0.1637943	43.138295	0	0.1	19.7	4	4	0	79.4	Forest
Montaut	01/03/2018	-0.1636315	43.1383545	0	0.1	19.6	7	2	0	79.4	Forest
Montaut	01/03/2018	-0.163641	43.1381857	0	0.1	19.7	3	0	0	79.3	Forest
La Saline	14/03/2018	-0.9750965	43.442167	0.1	0.1	20.5	1	0	0	79.1	Forest
La Saline	14/03/2018	-0.975058	43.4420828	0.1	1.6	20.2	10	1	0	78.8	Forest
La Saline	14/03/2018	-0.9751045 0.0751045	45.4419952 42.4491947	U	2.0 1.7	19.5	31 50	∠ ∧	0	70 9	Forest
La Salino	14/03/2018	-0.9751945	43.4421347 43.4490179	0	1.1	20 20.2	00 59	4 9	0	70.2 70.2	Forest
La Salino	14/00/2018 11/02/2010	-0.9701092	40.4420173 73 7791005	0	0.4	20.2 20.1	55 71	∠ 1	0	19.2 70.9	Forest
La Saline	14/03/2010	-0.9748665	43 4499035	0	0.5	20.1	-±1 1/	-± 1	0	70.1	Forest
La Saline	14/03/2018	-0.9747237	43.4421727	0	0.4	20.0 20.4	9	2	0	79.2	Forest
				~	~· -		~	-	~		

La Saline	14/03/2018	-0 9744672	43 4421662	0	1	20.1	19	1	0	79.1	Forest
La Salino	14/03/2018	0.0740355	13.1121002	0	2 1	17.7	0	1	0	70.5	Forest
	14/00/2010 14/02/2010	-0.9740333	49.4416100	0	0.1	10.6	3	1	0	79.9	Forest
	14/05/2010 14/02/2019	-0.9729313	43.4410493	0	2.1	19.0 20.0	4	1	0	79.5	Forest
La Saline	14/03/2018	-0.9702373	43.4418903	0	1.4	20.0	0	0	0	79	Forest
La Saline	14/03/2018	-0.9762167	43.4410758	0	0.3	20.6	3 15	0	0	78.9	Forest
La Saline	14/03/2018	-0.9762115	43.441722	0	0.5	20.3	15	1	0	79	Forest
La Saline	14/03/2018	-0.9760372	43.4419772	0	0.7	19.9	3	0	0	79.1	Forest
La Saline	14/03/2018	-0.9754932	43.4420153	0	0.5	20.4	5	1	0	79.1	Forest
La Saline	14/03/2018	-0.9751193	43.4416655	0	4.1	16.6	5	1	0	79.8	Forest
La Saline	14/03/2018	-0.9750193	43.4416693	0	2.6	17.5	1	0	0	79.7	Forest
La Saline	14/03/2018	-0.9752113	43.4416175	0	2.1	18.1	8	0	0	79.3	Forest
La Saline	14/03/2018	-0.9751687	43.441696	0	0.1	20.5	12	2	0	79.2	Forest
La Saline	14/03/2018	-0.9749573	43.4417077	0	0.3	20.3	11	1	0	79.3	Forest
La Saline	14/03/2018	-0.9749468	43.4416613	0	1	20.2	12	0	0	79.1	Forest
La Saline	14/03/2018	-0.974798	43.4412693	0	1.4	17.3	12	1	0	79.7	Forest
La Saline	14/03/2018	-0.9748048	43.4413007	0	0.8	20	4	1	0	79.4	Forest
La Saline	14/03/2018	-0 974995	43 4418665	Ő	0.3	20 1	13	1	Õ	79.6	Forest
La Saline	14/03/2018	-0.9751057	43 4420958	0	0.0	20.1	9	0	0	79.6	Forest
La Saline	14/03/2018	-0.9751592	43 4421248	0	0.1	10.8	3/	1	0	79.5	Forest
La Salino	14/03/2010 14/03/2018	-0.9751932 0.0751947	43 442053	0	0.0	20	7	1	0	79.6	Forest
	14/03/2018 14/02/2018	-0.9751247	43.442033	0	0.4	20 10.7	16	1	0	79.0	Forest
	14/05/2010 14/02/2019	-0.9750266	43.4421793	0	0.0	19.7	10	0	0	79.0 70.0	Forest
La Saline	14/03/2018	-0.9752068	43.4420912	0	0.3	20.1	2	0	0	79.6	Forest
La Saline	14/03/2018	-0.9752217	43.4419373	0	1.1	19.2	5	1	0	79.6	Forest
La Saline	14/03/2018	-0.9747533	43.442334	0	1.1	19.1	18	2	0	79.3	Forest
La Saline	14/03/2018	-0.9748752	43.442813	0	2.8	17.4	31	3	0	80.2	Forest
La Saline	14/03/2018	-0.975023	43.4428177	0	1.4	18.1	157	5	0	79.3	Forest
La Saline	14/03/2018	-0.9752322	43.4429002	0	0.3	20.3	28	1	0	79.4	Forest
La Saline	14/03/2018	-0.9755785	43.4429695	0	2	16.7	63	2	0	79.5	Forest
La Saline	14/03/2018	-0.9757913	43.443018	0	0.3	20.3	7	0	0	79.3	Forest
La Saline	14/03/2018	-0.9758867	43.4430132	0	0.3	20.3	11	1	0	79.3	Forest
La Saline	14/03/2018	-0.9734632	43.4442082	0	2.4	19.7	12	1	0	79.1	Forest
La Saline	14/03/2018	-0.9736822	43.4442152	0	2.1	19.6	77	5	0	79.2	Forest
La Saline	14/03/2018	-0.9735583	43.4441808	0	2.4	19	53	1	0	79.2	Forest
La Saline	14/03/2018	-0.9734462	43.4447463	0	0.3	20.5	6	2	0	79.6	Forest
La Saline	14/03/2018	-0.9734595	43.4446983	Ő	2.3	18.2	4	2	Õ	80.3	Forest
La Saline	14/03/2018	-0 9734997	43 444886	0	$\frac{2.0}{2.8}$	17.1	7	0	0	79	Forest
La Saline	14/03/2018	-0.9734445	43 4451275	0	2.0	10.7	8	4	0	79.1	Forest
La Salino	14/03/2018 14/03/2018	-0.9734440 0.0732677	43 4454033	0	0.8	20	3	1	0	70	Forest
	14/03/2010 14/02/2019	-0.9732011	49.4454055	0	0.0	20	6	1	0	79	Forest
	14/03/2010 14/02/2018	-0.9732693	43.4437000	0	0.0	20.4	0	2	0	79	Forest
	14/05/2010 14/02/2019	-0.9734303	43.4400382	0	0.7	20.7	21 10	2	0	79.1	Forest
La Saline	14/03/2018	-0.9733277	43.4403703	0	0.7	20.3	19	3	0	79 70 C	Forest
La Saline	14/03/2018	-0.9735527	43.4448362	0	3.2	17.2	11	4	0	79.6	Forest
La Saline	14/03/2018	-0.9735215	43.444711	0	2.3	18.2	9	2	0	79.4	Forest
Sud Le Bourguet	14/03/2018	-0.9777712	43.4509313	0	0.2	20	67	2	0	79.1	Forest
Sud Le Bourguet	14/03/2018	-0.9773423	43.4512025	0	2.9	18	17	4	0	79	Forest
Sud Le Bourguet	14/03/2018	-0.9776297	43.4513497	0	2.7	18.2	21	0	0	79.2	Forest
Sud Le Bourguet	14/03/2018	-0.9776645	43.451482	0	1.7	19.9	59	5	0	79.2	Forest
Sud Le Bourguet	14/03/2018	-0.9775612	43.451605	0	0.6	20	45	2	0	79.2	Forest
Sud Le Bourguet	14/03/2018	-0.9776637	43.4516368	0	0.7	19.9	41	3	0	79.2	Forest
Sud Le Bourguet	14/03/2018	-0.9781478	43.4539367	0	0.2	20.5	408	3	0	79.4	Forest
Sud Le Bourguet	14/03/2018	-0.9778852	43.4538962	0	2.4	18.6	547	12	0	79.2	Forest
Sud Le Bourguet	14/03/2018	-0.977805	43.4539298	0	0.3	20.4	145	3	0	79.3	Forest
Sud Le Bourguet	14/03/2018	-0.977751	43.4538078	0	0.5	19.2	45	1	0	79.1	Forest
Sud Le Bourguet	14/03/2018	-0.977703	43.4537505	0	0.5	19.9	54	3	0	79.1	Forest
Sud Le Bourguet	14/03/2018	-0.9778852	43.4536867	0	1.5	19.9	38	3	0	79.2	Forest
Sud Le Bourguet	14/03/2018	-0.9780985	43.4536047	Ő	2.5	18.1	21	1	Ő	79.1	Forest
Sud Le Bourguet	14/03/2018	-0.9775505	43 4534532	Ő	0.9	19.3	1	0	Õ	78.9	Forest
Sud Le Bourguet	14/03/2018	-0.9775568	43 4531925	0	17	19.6	10	2	0	78.9	Forest
Sud Le Bourguet	14/03/2018 14/03/2018	0.0773038	43 4520652	0	1.1	16.5	7	2	0	70.5	Forest
Sud Le Dourguet	14/03/2018 14/02/2018	-0.9773038	43.4529052	0	4.1 2.0	16.6	19	2 1	0	79.4	Forest
Sud Le Dourguet	14/03/2018	-0.9770400	40.4029420	0	ა.ყ ე.ე	10.0	14	1	0	19.4	Forest
Sua Le Bourguet	14/03/2018	-0.9772428	45.4528433	U	3.8 9.4	10.8	19	1	U	18.8	Forest
Sua Le Bourguet	14/03/2018	-0.9772082	45.4529033	U	2.4	19.3	13	う 1	0	18.2	rorest
Armendarits	15/03/2018	-1.169328	43.287837	U	0.1	20.1	1	1	0	79.7	Grassland
Armendarits	15/03/2018	-1.169328	43.287837	0	0.7	19.7	22	0	0	79.7	Grassland
Armendarits	15/03/2018	-1.1694012	43.2877785	0	0.2	19.8	36	1	0	79.8	Grassland
Armendarits	15/03/2018	-1.169179	43.2880077	0	0.2	19.5	5	1	0	79.7	Grassland
Armendarits	15/03/2018	-1.1689343	43.2881155	0	0.2	19.5	3	1	0	79.9	Grassland

Armendarits	15/03/2018	-1.1689288	43.2882802	0	0.2	19.1	5	0	0	79.9	Grassland
Armendarits	15/03/2018	-1 168786	13 288348	0 0	0.2	10.1	6	1	Õ	79.9	Grassland
Armondarita	15/02/2018	1 1695197	42 200540	0	0.0	10.0	24	1 0	0	70.8	Cressland
Armendants	15/03/2018 15/02/2018	-1.1000127 1.1570049	43.2003322	0	0.2	19.9	24	2	0	79.8	Grassland
Armendarits	15/03/2018	-1.1579942	43.3010813	0	0.2	19.0	0	0	0	79.7	Grassland
Armendarits	15/03/2018	-1.1579148	43.3012453	0	0.8	19.7	6	8	0	79.5	Grassland
Armendarits	15/03/2018	-1.1579098	43.3013702	0	0.9	19.5	20	5	0	79.7	Grassland
Armendarits	15/03/2018	-1.1579847	43.3012603	0.1	1.1	19	16	7	0	79.6	Grassland
Armendarits	15/03/2018	-1.1579348	43.3012288	0	0.5	19.9	15	5	0	79.7	Grassland
Armendarits	15/03/2018	-1.1579563	43.3010107	0	0.3	19.6	25	6	0	79.6	Grassland
Armendarits	15/03/2018	-1.1579305	43.3009972	0	0.7	19.5	9	7	0	79.6	Grassland
Armendarits	15/03/2018	-1.1579958	43.300808	0	1.3	19.6	4	2	0	79.7	Grassland
Armendarits	15/03/2018	-1.1580453	43.3006523	0	1.5	19.8	17	5	0	79.1	Grassland
Armendarits	15/03/2018	-1.157992	43.3007188	0	0.6	20.1	9	3	0	80.1	Grassland
Armendarits	15/03/2018	-1.1575958	43.3008153	0	0.5	16.5	6	4	0	79.6	Grassland
Armendarits	15/03/2018	-1.1576383	43.300734	0	0.3	19.9	5	2	0	79.6	Grassland
Armendarits	15/03/2018	-1 1581723	43 301136	Õ	0.1	20	5	5	Õ	79.5	Grassland
Armendarits	15/03/2018	-1 1581228	43 3011803	0	3.2	16.5	2	1	0	80.3	Grassland
Armondarits	15/03/2018 15/03/2018	1 1582088	43 2011208	0	2.0	17.1	2	2	0	70.5	Crassland
Armendants	15/03/2018 15/02/2018	-1.1302900 1.1579799	43.3011328	0	2.9	20.2	1 1	1	0	79.5	Grassland
Armendarits	15/05/2018	-1.10/0/20	43.3021433	0	0.5	20.5	10	1	0	79.4	Grassland
Armendarits	15/03/2018	-1.15/8003	43.3021457	0	0.5	19.9	18	2	0	79.4	Grassland
Armendarits	15/03/2018	-1.1536783	43.3276302	0	0.1	20.3	24	4	0	79.6	Grassland
Armendarits	15/03/2018	-1.1364785	43.3215688	0	0.2	19.9	7	2	0	79.8	Grassland
Armendarits	15/03/2018	-1.1363037	43.3215793	0	0.9	19.4	37	7	0	79.6	Grassland
Armendarits	15/03/2018	-1.1361185	43.3216047	0	0.1	20.2	8	3	0	80	Grassland
Armendarits	15/03/2018	-1.1355955	43.3217743	0	2.4	17.5	17	6	0	79.7	Grassland
Armendarits	15/03/2018	-1.135432	43.3217505	0	0.5	19.9	4	2	0	79.6	Grassland
Armendarits	15/03/2018	-1.1351168	43.3217147	0	0.4	20	13	3	0	79.6	Grassland
Armendarits	15/03/2018	-1.1352648	43.3202693	0	2.6	18.5	11	3	0	79.9	Grassland
Armendarits	15/03/2018	-1.1353303	43.3202363	0	0.8	19.6	47	6	0	79.7	Grassland
Armendarits	15/03/2018	-1 1354513	43 3202388	Õ	0.1	19.9	15	2	Ő	79.6	Grassland
Mauláon Nord	$\frac{10}{00}$ $\frac{2010}{2018}$	0.8712205	43 2516035	0	0.1	20.4	7	0	0	70.2	Grassland
Souvetorre	22/03/2018	-0.0112200	43.1756103	0	0.2	20.4	22 1	2	0	79.2	Crassland
Sauveterre	29/03/2018	-0.9407303	43.1730103	0	0.1	20.2	- -	0	0	79.1	Grassland
Sauveterre	29/03/2018	-0.9408712	43.4070148	0	0.4	19.9	0	0	0	79.8	Grassland
Sauveterre	29/03/2018	-0.9470058	43.4073415	0	0.2	19.9	3	0	0	79.9	Grassland
Sauveterre	29/03/2018	-0.9472095	43.4070228	0	1.5	18.7	6	0	0	79.8	Grassland
Sauveterre	29/03/2018	-0.9471935	43.4067808	0.4	2.2	16.7	8	1	0	80.7	Grassland
Sauveterre	29/03/2018	-0.9473323	43.4065395	0	1.7	17.5	7	1	0	80	Grassland
Sauveterre	29/03/2018	-0.9475332	43.4062885	0	0.6	19	2	1	0	80.3	Grassland
Sauveterre	29/03/2018	-0.947621	43.406076	0	0.3	19.5	0	0	0	80	Grassland
Sauveterre	29/03/2018	-0.947674	43.4054703	0	0.1	19.9	1	0	0	80	Grassland
Sauveterre	29/03/2018	-0.9478187	43.4054413	0	0.1	19.9	3	0	0	80	Grassland
Sauveterre	29/03/2018	-0.9479578	43.405017	0	0.3	19.8	7	3	0	79.9	Grassland
Sauveterre	29/03/2018	-0.9480075	43.4047863	0	0.3	19.7	2	1	0	80	Grassland
Sauveterre	29/03/2018	-0.9479553	43 4047912	Õ	0.1	19.8	1	0	Ő	80.1	Grassland
Sauveterre	29/03/2018	-0.9479248	43 404535	Õ	0.1	19.8	1	Õ	õ	80	Grassland
Sauveterre	20/03/2018	0.0470507	43 4043507	0	0.1	10.8	2	1	1	80.1	Grassland
Sauveterre	20/03/2018	0.0470688	43 4041508	0	0.1	10.8	0	0	0	80	Crassland
Sauveterre	29/03/2018	-0.9479088	43.4041508	0	0.1	19.0	1	1	1	80	Grassland
Sauveterre	29/03/2018	-0.947961	43.404027	0	0.1	19.8	1	1	1	80	Grassland
Sauveterre	29/03/2018	-0.9482058	43.4038793	0.4	0.7	18.6	4	2	1	80.4	Grassland
Sauveterre	29/03/2018	-0.9481645	43.4038767	0.2	0.4	18.9	7	2	1	80.2	Grassland
Sauveterre	29/03/2018	-0.9489128	43.4036628	0	0.2	19.5	5	1	0	79.9	Grassland
Sauveterre	29/03/2018	-0.9493665	43.4033277	0	0.1	20	2	2	0	79.9	Grassland
Sauveterre	29/03/2018	-0.9497722	43.4040078	0	0.1	20	25	2	0	79.8	Grassland
Sauveterre	29/03/2018	-0.949797	43.4040568	0	0.1	20.1	4	0	0	79.7	Grassland
Sauveterre	29/03/2018	-0.9505142	43.4040775	0	0.8	19.8	9	3	0	79.5	Grassland
Sauveterre	29/03/2018	-0.9506103	43.4040895	0	0.3	19.9	16	1	0	79.8	Grassland
Sauveterre	29/03/2018	-0.950835	43.4040013	0	0.2	20.1	1	0	0	79.5	Grassland
Sauveterre	29/03/2018	-0.950817	43 4042597	Õ	0.1	20.4	4	1	õ	79.5	Grassland
Sauveterre	20/03/2018	0.0513202	43 4045563	0	0.1	20.1	6	1	0	79.5	Grassland
Sauveterre	20/03/2010	0.0514619	43 4048979	0	0.1	20.4	11	1 0	0	70 K	Grassland
Sauveterre	29/03/2018	-0.9014018	40.4040278	0	0.1	20.1	11	4	0	19.0	Grassland
Sauveterre	29/03/2018	-0.9518605	43.4055925	U	0.1	20.4	49	2 11	U	19.3	Grassland
Sauveterre	29/03/2018	-0.9517122	43.4057213	U	1.3	18.9	31	11	0	79.7	Grassland
Sauveterre	29/03/2018	-0.95209	43.4059285	0	2.8	18.1	34	3	0	79.3	Grassland
Sauveterre	29/03/2018	-0.9523202	43.4058108	0	2.6	18	52	4	0	79.3	Grassland
Sauveterre	29/03/2018	-0.9525893	43.4061757	0	2.4	18.3	11	1	0	79.1	Grassland
Sauveterre	29/03/2018	-0.9526067	43.4064645	0	7.2	13.3	148	34	0	80.9	Grassland
Sauveterre	29/03/2018	-0.9527935	43.4065913	0	7.2	13.2	173	24	0	79.7	Grassland

Souvetorre	20/03/2018	0.0531107	43 4066168	0	57	0.2	639	11	1	Q1 Q	Creecland
Sauveterre	29/03/2018	-0.9551197	43.4000108	0	0.1	9.2	104	11	1	01.5	Grassianu
Sauveterre	29/03/2018	-0.9532543	43.4068952	0	3	15.4	104	6	0	79	Grassland
Sauveterre	29/03/2018	-0.9525438	43.4071193	0	0.6	20.4	187	11	0	78.9	Grassland
Sauveterre	29/03/2018	-0.9525917	43.4073667	0	0.7	20.6	28	3	0	78.9	Grassland
Sauvetorro	20/03/2018	0.0508853	43 4066657	Ő	0.4	20.7	191	5	Ő	78.0	Grassland
Sauveterre Campa and	20/00/2010	-0.5500005	49.4000007	0	1	20.1 10.0	100	7	0	70.4	Grassland
Sauveterre	29/03/2018	-0.9502885	43.4066168	0	1	19.6	198	1	0	79.4	Grassland
Sauveterre	29/03/2018	-0.9501203	43.4055437	0	1.1	19.4	6	1	0	78.7	Grassland
Sauveterre	29/03/2018	-0.9495548	43.4054707	0	0.1	21.2	6	2	0	78.7	Grassland
Sauvetorre	20/03/2018	0.0/00133	43 4054767	0	0.1	91.9	4	1	0	78 7	Grassland
Sauveterre	29/09/2010	-0.9490100	40.4054050	0	0.1	21.2	4	1	0	70.1	Grassland
Sauveterre	29/03/2018	-0.949013	43.4054853	0	0.5	20.3	29	3	0	18.8	Grassland
Sauveterre	29/03/2018	-0.9491333	43.4054662	0	2.5	17.4	81	18	0	80.4	Grassland
Sauveterre	29/03/2018	-0.9486832	43.4054683	0	1.8	18.3	177	7	0	79.3	Grassland
Sauvetorro	20/03/2018	0.0480718	43 4052173	Ő	11	10.5	7	0	Ő	78 5	Grassland
Sauveterre	29/03/2018	-0.9400710	43.4052175	0	1.1	19.0	1	1	0	78.5	Grassianu
Sauveterre	29/03/2018	-0.9480718	43.4054475	0	0.1	21.1	3	1	0	78.8	Grassland
Sauveterre	29/03/2018	-0.9480718	43.4054633	0	0.6	19.9	3	1	0	78.6	Grassland
Col d'Urdach	18/04/2018	-0.6646265	43.1177437	0.1	0.1	20.1	15	2	0	79.9	Meadow
Col d'Urdach	18/04/2018	0.66426	43 1180043	0.1	0.4	10.7	20	0	0	70.0	Mondow
	18/04/2018	-0.00420	43.1100943	0.1	0.4	19.7	2	0	0	19.9	Meadow
Montaut	25/04/2018	-0.168492	43.138661	0	0.7	20.5	27	3	0	79.1	Forest
Montaut	25/04/2018	-0.168492	43.138661	0	0.5	19.9	35	3	0	78.5	Forest
Montaut	25/04/2018	-0.1686963	43.1387925	0	0.2	20.8	34	12	0	78.8	Forest
Montaut	25/04/2018	0 1686403	43 1386005	0	0.3	20.3	65	8	0	78.0	Forest
Montaut	25/04/2010	-0.1000495	43.1300995	0	0.5	20.3	0.5	0	0	10.9	Forest
Montaut	25/04/2018	-0.1685993	43.1388455	0	0.8	20.1	24	9	0	78.8	Forest
Montaut	25/04/2018	-0.1683395	43.1384888	0	0.2	20.4	2	2	0	78.8	Forest
Montaut	25/04/2018	-0.165906	43.138088	0	0	19.9	73	9	0	79.4	Forest
Montout	04/05/2018	0.1686002	42 1280622	0 0	57	20.2	2	Ô	Ő	70.4	Forest
Montaut	04/05/2018	-0.1080902	45.1569022	0	5.7	20.5	2	0	0	79.4	Forest
Montaut	04/05/2018	-0.1683057	43.1382958	0	0.1	20.3	1	0	0	79.4	Forest
Montaut	04/05/2018	-0.1659067	43.1382203	0	0	20.5	1	0	0	79.1	Forest
Montaut	16/05/2018	-0 164457	$43\ 137754$	0.1	0	20.3	1	0	0	79.4	Forest
Montout	16/05/2010	0.169409	42 122661	0.1	0.1	20.0	1	Ô	0	70.2	Forest
Montaut	10/05/2018	-0.108492	45.158001	0	0.1	20.4	1	0	0	19.2	Forest
Montaut	16/05/2018	-0.168428	43.138497	0.1	0	20.4	1	0	0	79.2	Forest
Montaut	16/05/2018	-0.167975	43.138244	0	0	20.5	0	0	0	79.2	Forest
Castetnau-Camblong	16/05/2018	-0 7897172	43 3239003	0	0.6	20.1	7	0	0	791	Grassland
Turon de la Técquère	$\frac{10}{06}$	0.4045167	42 0621087	0.2	0.0	10.0		Ô	0	70.7	Moodow
	20/00/2018	-0.4945107	43.0031987	0.5	0.1	19.9	0	0	0	19.1	Meadow
Turon de la Técouère	20/06/2018	-0.4945737	43.0633133	0.2	0.1	19.5	1	0	0	80.2	Meadow
Turon de la Técouère	20/06/2018	-0.4945313	43.0631845	0.2	0.1	19.1	0	0	0	80.6	Meadow
Turon de la Técouère	20/06/2018	-0.4945693	43.063233	0.2	0.1	18.8	17	7	0	80.9	Meadow
Turon de la Técquère	20/06/2018	0 4044077	43 0632138	0.1	1	17	300	11	1	81.5	Mondow
	20/00/2018	-0.4944077	43.0032138	0.1	1	170	100	11	1	01.0	Meadow
Turon de la Tecouere	20/06/2018	-0.4946103	43.0634592	0	0.2	17.9	130	3	1	81.1	Meadow
Turon de la Técouère	20/06/2018	-0.4946233	43.0634558	0	0.3	18.3	93	3	1	81	Meadow
Turon de la Técouère	20/06/2018	-0.4944435	43.0636402	0	1.1	18.3	22	0	0	80.7	Meadow
Turon de la Técquère	20/06/2018	0.4044555	43 063508	0 1	1 1	10	111	°,	ů.	80	Mondow
	20/00/2018	-0.4944000	43.003398	0.1	1.1	19	111	2	0	30	Meadow
Turon de la Técouère	20/06/2018	-0.4942145	43.0641563	0.2	4.1	16.6	612	23	0	79.6	Meadow
Turon de la Técouère	20/06/2018	-0.4942358	43.0641743	0.1	2.9	16.8	333	12	0	79.8	Meadow
Turon de la Técouère	20/06/2018	-0 4936763	43.0642122	0	11	18	174	6	0	80.5	Meadow
Turon de la Técquère	20/00/2010	0.1000100	42.0641079	0	1.1	18.0	405	19	1	80.0	Maadam
Turon de la Tecouere	20/00/2018	-0.4955845	45.0041078	0	2.5	18.9	405	15	1	80.2	Meadow
Turon de la Técouère	20/06/2018	-0.4923743	43.0646652	0	1.2	19.3	142	5	0	79.7	Meadow
Turon de la Técouère	20/06/2018	-0.4925355	43.0646657	0	3.4	19.7	750	19	1	80.1	Meadow
Turon de la Técouère	20/06/2018	-0 4923217	43 0651015	0.1	5.3	15.6	120	2	0	78.7	Meadow
Turon de la Técquère	20/00/2010	0.4021712	42.065020	0.1	5.5 E E	16.0	120	10	Ő	70.0	Maadam
Turon de la Tecouere	20/00/2018	-0.4921712	45.005022	0.1	5.5	10.5	228	12	0	10.0	Meadow
Turon de la Técouère	20/06/2018	-0.4921788	43.0652115	0.1	3.5	18.9	205	15	0	78.8	Meadow
Turon de la Técouère	20/06/2018	-0.4918437	43.0654473	0	1.2	19.3	105	4	0	79.3	Meadow
Turon de la Técouère	20/06/2018	-0 4918172	43 0656038	0	0.2	19.2	365	1	0	79.6	Meadow
Turon de la Técouère	20/00/2010	0.4015200	42.0057005	0	0.2	10.2	720	10	1	70.0	Maadow
Turon de la Tecouere	20/06/2018	-0.4915528	43.0057285	0	0.1	18.8	730	1Z	1	79.9	Meadow
Turon de la Técouère	20/06/2018	-0.4914363	43.0658517	0	0	17.1	1000	20	2	79.9	Meadow
Turon de la Técouère	20/06/2018	-0.4914632	43.0658952	0	0	20.1	1000	1	0	79.8	Meadow
Turon de la Técouère	20/06/2018	-0 4914962	43 0657058	0	0	18.6	800	7	1	80	Meadow
	20/00/2010	0.1011002	49.0001090	0	1.0	10.0	600	-	0	70 5	Madow
ruron de la Tecouere	20/06/2018	-0.4908852	43.0000507	U	1.3	19.9	07	5	U	79.5	meadow
Turon de la Técouère	20/06/2018	-0.4909217	43.0666983	0	1	19.9	17	2	0	79.3	Meadow
Turon de la Técouère	20/06/2018	-0.489865	43.0646607	0	2.4	11.6	37	1	0	79.3	Meadow
Turon de la Técouèro	20/06/2018	-0 4808322	43 0646528	0	03	20 2	217	Λ	0	70 /	Meadow
	20/00/2010	0.4010020	49.0010520	0	0.5	20.2	150	-1	0	70.9	M. 1
Turon de la Técouère	20/06/2018	-0.491625	43.0619573	0	2.5	20.3	159	6	U	79.3	Meadow
Turon de la Técouère	20/06/2018	-0.495814	43.0620837	0	1.8	20.2	2	1	0	78.9	Meadow
Turon de la Técouère	20/06/2018	-0.4961447	43.0622418	0	1.8	20	23	6	0	78.6	Meadow
Nord Bajøts-de-Réarn	02/05/2010	-0.829677	43 5231383	0	0.3	20.3	152	2	0	79.1	Forest
Nord Doi-t- d- D'	$\frac{02}{00} \frac{00}{2019}$	0.023011	40.0201000	0	0.0	20.0	102	∠⊔ 1	0	70	Forest
nord Baigts-de-Bearn	02/05/2019	-0.8296143	43.5231413	0.2	0.8	20.1	107	1	U	79	Forest
Nord Baigts-de-Béarn	02/05/2019	-0.8291317	43.5234377	0	0.2	20.7	92	6	1	79.1	Forest
Nord Baigts-de-Béarn	02/05/2019	-0.8291422	43.5233227	0.1	0.3	19.9	734	10	1	79	Forest

Nord Baigts-de-Béarn	02/05/2019	-0.8289763	43.5233127	0.1	0.1	20	350	9	1	79	Forest
Nord Baigts-de-Béarn	02/05/2019	-0.8284305	43.5224712	0	0.1	20.4	44	2	0	78.7	Forest
Nord Baigts-de-Béarn	02/05/2019	-0.8286693	43.5227893	0	0.7	20.4	221	6	0	78.7	Forest
Est Baigts-de-béarn	$\frac{02}{05}$	-0.8152538	43.5133895	Õ	0.1	21.1	27	3	Ő	78.7	Grassland
Est Baigts-de-béarn	02/05/2019	-0.8152843	43.5134165	0	0.4	21	74	2	Õ	78.6	Grassland
Labordes	02/05/2019	-0.9088855	43.4354812	0	0.3	20.5	221	2	0	79.4	Grassland
Labordes	02/05/2019	-0.9094275	43.441804	0	0.1	20.8	722	4	1	79.2	Grassland
Labordes	$\frac{02}{05}$	-0.9093278	43.4418713	õ	1.6	19.5	70	2	0	79.1	Grassland
Labordes	$\frac{02}{05}$	-0.90945	43.4417805	õ	0.9	19.4	49	2	Õ	79.4	Grassland
Labordes	02/05/2019	-0.9201248	43 4612637	Õ	0.0	18.9	80	0	0	79.4	Grassland
Labordes	02/05/2019	-0.9185263	43 46016	Õ	3	18.6	284	3	0	79.1	Grassland
Labordes	02/05/2019 02/05/2019	-0.9184595	43 4600703	0.6	3.8	16.8	1000	0	3	80.9	Grassland
Labordes	02/05/2019 02/05/2019	-0.9076387	43 4416495	0.0	0.0	20.2	20	3	0	79.2	Grassland
Sussaute	02/05/2019 02/05/2019	-0.9874452	43 3688172	0.0	0.1	20.2	12	1	0	79.2	Grassland
Sussaute	02/05/2019 02/05/2019	-0.9873432	43 3687193	0	0.1	21.2	36	1/	0	79.1	Grassland
Arbouet-Sussaute	02/05/2019 02/05/2019	-0.9821332	43 3850248	0	0.0	20.1 91.1	0	0	0	78.8	Grassland
Arbouet-Sussaute	02/05/2019 02/05/2010	-0.9821352 0.9821667	43 3851167	0	0.1	21.1	17	3	0	78.0	Grassland
Arbouet-Sussaute	02/05/2019 02/05/2010	-0.9821007	43.3831107	0	0.1	21	17	10	0	70	Grassland
Arbouet-Sussaute	$\frac{02}{05}\frac{2019}{2010}$	-0.962210	43.3640702	0	0.1	20.9	45 95	10	0	79	Forest
Montaut	10/05/2019 16/05/2010	-0.1069606	40.109109	0	0.2	20.2	20 15	0	0	79.3	Forest
Montaut	10/05/2019	-0.1002492	43.1303372	0	0.9	20.5	10	0 C	0	79.1	Forest
Montaut	16/05/2019	-0.169671	43.140192	0	0.6	20.6	140	6	0	79.2	Forest
Montaut	16/05/2019	-0.169671	43.140192	0	0.2	19.5	(2	0	79.2	Forest
Sommet de Moncaut	16/05/2019	-0.31586	43.0759962	0	0.1	21.3	0	0	0	78.6	Meadow
Sommet de Moncaut	16/05/2019	-0.3161847	43.0766237	0	0.1	21.2	2	1	0	78.6	Meadow
Sommet de Moncaut	16/05/2019	-0.316552	43.0768237	0	0	21.2	1	2	0	78.7	Meadow
Sommet de Moncaut	16/05/2019	-0.3164798	43.0770513	0	0.1	21.1	1	1	0	78.8	Meadow
Sommet de Moncaut	16/05/2019	-0.3164035	43.0770528	0	0	21.1	1	0	0	78.8	Meadow
Sud Col d'Apanice	19/06/2019	-1.071121	43.0990375	0	0.2	19.9	3	0	0	79.5	Meadow
Sud Col d'Apanice	19/06/2019	-1.0446587	43.0928573	0	0.2	20.7	3	2	0	78.9	Meadow
Sud Col d'Apanice	19/06/2019	-1.044579	43.0927805	0	0.1	20.9	7	2	0	78.8	Meadow
Baigts de Bearn Est	19/09/2019	-0.8139493	43.5140765	0	0.4	20.7	5	1	0	79	grassland
Baigts de Bearn Est	19/09/2019	-0.8141292	43.5139402	0	0.8	20.1	8	2	0	79.1	grassland
Baigts de Bearn Est	19/09/2019	-0.8140948	43.514101	0	0.6	20.4	4	0	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8140807	43.514104	0	0.8	20.4	1	0	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8139442	43.5140843	0	0.8	20.5	11	0	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8141342	43.5140173	0	1.6	20.3	8	1	0	78.6	grassland
Baigts de Bearn Est	19/09/2019	-0.8140668	43.5140525	0	0.8	20.5	23	0	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.813908	43.5141053	0	0.6	20.7	7	0	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8152402	43 514263	Õ	3	18.8	10	1	Õ	78.3	grassland
Baigts de Bearn Est	19/09/2019	-0.8156937	$43\ 5142735$	Õ	32	18.9	44	3	0	78.6	grassland
Baigts de Bearn Est	19/09/2019 19/09/2019	-0.8154822	43 5143583	0	2.4	19.1	36	1	0	78.5	grassland
Baigts de Bearn Est	10/00/2010	0.8156817	43.5145005 43.5141447	0	2.4	10.1	25	6	0	70.0	grassland
Daigts de Dearn Est	19/09/2019 10/00/2010	0.8152905	42 5140908	0	2.5	20.2	491	0	0	79.1	grassland
Daigts de Dearn Est	19/09/2019 10/00/2010	-0.8155205	43.5140208	0	0.4	20.2	401 070	9 1	0	79.2	grassland
Daigts de Dearn Est	19/09/2019	-0.8155012	43.3142307	0	0.0	20.0	190	1 7	0	79.1	grassland
Daigts de Dearn Est	19/09/2019	-0.8150028	43.314072	0	0.2 1.1	18.9	160	(0	79	grassiand
Baigts de Bearn Est	19/09/2019	-0.8150273	43.314094	0	1.1	20	37	8	0	79.1	grassland
Baigts de Bearn Est	19/09/2019	-0.8154692	43.5139885	0	0.6	20.2	30	ა ი	0	79	grassland
Baigts de Bearn Est	19/09/2019	-0.8158915	43.5141927	0	2	20.4	90	3	0	79	grassland
Baigts de Bearn Est	19/09/2019	-0.8158785	43.5139147	0	0.3	20.7	21	3	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.815701	43.5140095	0	0	21.1	3	0	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8157095	43.5139962	0	0.6	20.7	7	1	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.815442	43.5140443	0	2.1	19.8	29	7	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8152568	43.514007	0	3.1	19.4	21	7	0	78.5	grassland
Baigts de Bearn Est	19/09/2019	-0.81516	43.514204	0	1.4	20	11	3	0	78.7	grassland
Baigts de Bearn Est	19/09/2019	-0.8147607	43.5143007	0	1.1	20.7	39	2	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8147937	43.514253	0	0.8	20.6	17	2	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8147307	43.5143948	0	2.9	19.7	34	4	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8147143	43.5141988	0	0.5	20.3	43	3	0	79	grassland
Baigts de Bearn Est	19/09/2019	-0.8137635	43.514367	0	2.8	18.8	12	2	0	78.4	grassland
Baigts de Bearn Est	19/09/2019	-0.8131142	43.5144187	0	2.7	18.8	3	1	0	78.7	grassland
Baigts de Bearn Est	19/09/2019	-0.8130212	43.5144518	0	2.3	19.1	37	2	0	79.2	grassland
Baigts de Bearn Est	19/09/2019	-0.8134487	43.5143572	0	0.9	20.1	27	4	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8154588	43.514164	õ	0.9	20.2	17	3	õ	78.8	grassland
Baigts de Bearn Est	19/09/2010	-0.815536	43.5142368	ñ	0.9	20.4	43	2	õ	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0 815549	43 5143868	ñ	2.5	10.4 10.1	46	6	0	78.6	grassland
Bajots de Rearn Fot	10/00/2010	-0.815/08	43 51//052	0 0	2.5	10.1	1/	1	0	78.7	grassland
Baigts de Boarn Fot	19/08/2019	-0.010490	43.5144052	0	2.1 9.9	1 <i>3.4</i> 10.1	14 1	1 9	0	78 7	grassiand
Dangus de Dearm Est	10/00/2010	-0.0100011	10.0140400	U	4.4	13.1	-1	4	U	10.1	Brassiand

Baigts de Bearn Est	19/09/2019	-0.8153997	43.514522	0	5	17.4	198	14	0	78.6	grassland
Baigts de Bearn Est	19/09/2019	-0.8152367	43.514587	0	1.4	19.9	10	1	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8155757	43.5149555	0	4.2	18.4	12	2	0	78.3	grassland
Baigts de Bearn Est	19/09/2019	-0.8156217	43.5150095	0	2.8	18.8	84	7	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8157892	43.5152818	0	0.5	20.4	55	6	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8155323	43.5151345	0	0.6	20.3	51	5	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8150347	43.5136577	0	0.1	21	9	1	0	78.8	grassland
Baigts de Bearn Est	19/09/2019	-0.8149928	43.5134932	0	1.2	20.4	5	2	0	78.6	grassland
Baigts de Bearn Est	19/09/2019	-0.8146185	43.5134188	0	0	20.6	0	0	0	78.9	grassland
Baigts de Bearn Est	19/09/2019	-0.8147987	43.51366	0	1	21.1	0	0	0	78.7	grassland
Baigts de Bearn Est	19/09/2019	-0.8147367	43.5138038	0	3.1	20.7	0	1	0	78.3	grassland
	17/06/2020			0.1	0.1	20.6	0	0	0	79.2	Forest
	17/06/2020	-0.1686737	43.1388272	0	0.1	19.6	90	1	0	79.4	Forest
	17/06/2020	-0.168824	43.1387493	0	0.2	20.5	25	0	0	79.4	Forest
	17/06/2020	-0.1686475	43.1384858	0	0.7	19.7	0	0	0	79.1	Forest
	17/06/2020	-0.168565	43.1382072	0	0.4	20.2	0	0	0	79	Forest
	17/06/2020	-0.1686077	43.1379268	0	1.3	20.7	3	0	0	78.9	Forest
	17/06/2020	-0.1684727	43.1376778	0.1	0.5	20.7	2	0	1	78.9	Forest
	17/06/2020	-0.1684282	43.1375073	0.1	0.2	20.8	0	0	1	78.9	Grassland
	17/06/2020	-0.1684327	43.1374603	0.1	0.2	20.8	2	0	0	79.1	Grassland
	17/06/2020	-0.168434	43.1375377	0	1.2	20.8	1	1	0	79	Grassland
	17/06/2020	-0.1684568	43.137183	0	0.6	19.9	2	1	0	79	Grassland
	17/06/2020	-0.1683153	43.1371375	0	0.7	20.6	3	0	0	79.1	Grassland
	17/06/2020	-0.274979	43.131488	0	0.4	20.6	19	1	0	79.4	Grassland
	17/06/2020	-0.275243	43.131462	0	1.2	19.6	24	2	0	79.4	Grassland
	17/06/2020	-0.2751	43.131639	0	0.8	19.6	20	0	0	79.4	Grassland
	17/06/2020	-0.275041	43.13134	0		20.2	164	6	0	79.4	Grassland
	17/06/2020	-0.275039	43.131297	0	0.6	19.8	62	2	0	79.4 70.4	Grassland
	17/06/2020 17/06/2020	-0.274052	43.131318	0	2 1 1	18.3	57	2	0	79.4	Grassland
	17/06/2020 17/06/2020	-0.3242408	43.1110397	0	1.1	20.3 10 5	о О	0	0	79.9	Grassland
	17/00/2020 17/06/2020	-0.3236902	43.1110088	0	0.1	19.0	2	0	0	79.8 70.7	Grassland
	17/00/2020 17/06/2020	-0.350998	43.100002	0	0.1 1 9	20.2 18 7	2 6	1	0	79.7	Grassland
	17/00/2020 17/06/2020	-0.351282	43.1081138	0	1.2	17.4	7	1	0	79.7	Grassland
	17/00/2020 17/06/2020	-0.3510793	43.1082883	0	1.5	10.0	1	0	0	79.9	Grassland
	17/06/2020 17/06/2020	-0.3510108	43.1081893	0	0.2 2.1	13.3 18 /	5	1	0	80	Grassland
	17/06/2020 17/06/2020	-0.3967335	43 088725	0.4	0.6	10.4	11	1	0	80	Grassland
	17/06/2020	-0.3968948	43 0887727	0	0.8	19.6	7	0	0	79.6	Grassland
	17/06/2020	-0.3971612	43 0885787	Ő	14	18.9	6	1	Ő	79.8	Grassland
	17/06/2020	-0.3974758	43.0886067	Ő	0.6	19.1	3	0	0	79.3	Grassland
	17/06/2020	-0.422498	43.211217	Õ	0.6	20.8	25	1	Ő	79.1	Grassland
	17/06/2020	-0.4223792	43.2110345	0	0.3	20.7	7	1	Õ	79	Grassland
	17/06/2020	-0.4221492	43.21113	0	0.1	20.8	63	2	0	79.4	Grassland
	17/06/2020	-0.4220678	43.2110465	0	0.8	18.9	43	4	0	79	Grassland
Caubiou (Gan)	17/06/2020	-0.422629	43.2111117	0	0.4	20.7	129	8	0	79.1	Grassland
Mounicq	22/06/2020	-0.813991	43.514026	0	0.1	20.3	1	0	0	79.6	Grassland
Mounicq	22/06/2020	-0.814011	43.513997	0	0.3	20.1	8	0	0	79.6	Grassland
Mounicq	22/06/2020	-0.813992	43.514023	0	0.1	20.2	5	0	0	79.6	Grassland
Mounicq	22/06/2020	-0.814035	43.51399	0	0.5	20	4	0	0	79.6	Grassland
Mounicq	22/06/2020	-0.813942	43.514036	0	0.2	20.2	1	0	0	79.5	Grassland
Mounicq	22/06/2020	-0.8139	43.514049	0	0.1	20.2	8	0	0	79.5	Grassland
Mounicq	22/06/2020	-0.814312	43.513882	0	5.1	18.5	7	1	0	79.5	Grassland
Mounicq	22/06/2020	-0.814352	43.513889	0	2.2	20.2	0	0	0	79	Grassland
Mounicq	22/06/2020	-0.814668	43.513798	0	0.7	19	3	0	0	79.5	Grassland
Mounicq	22/06/2020	-0.814722	43.513795	0	1.5	19.3	0	0	0	79.2	Grassland
Mounicq	22/06/2020	-0.815489	43.51414	0	0.3	19.3	0	0	0	79.4	Grassland
Mounicq	22/06/2020	-0.815467	43.514114	0	0.1	20.6	4	0	0	79.4	Grassland
Mounicq	22/06/2020	-0.81541	43.514573	0	1.6	19.6	1	0	0	79.1	Grassland
Mounicq	22/06/2020	-0.815893	43.513909	0	1	19.7	1	0	0	79.2	Grassland
Mounicq	22/06/2020	-0.815893	43.513909	0	0.1	20.6	2	0	0	79.2	Grassland
Mounicq	22/06/2020	-0.815845	43.513948	0	0.1	20.6	1	0	0	79.2	Grassland
Mounicq	22/06/2020	-0.8147932	43.5138833	0	9.6	9.8	20	3	0	80.3	Grassland
Mounicq	22/06/2020	-0.8146985	43.5139297	0	1.6	18.7	44	23	0	79.8	Grassland
Mounicq	22/06/2020	-0.8140223	43.5140058	0	0.5	20.5	27	2	0	79.2	Grassland
Mounicq	22/06/2020	-0.8139583	43.513992	0	0.4	20.6	25	3	0	79.1	Grassland
Mounicq	22/06/2020	-0.81397	43.5139398	0	0.7	20.5	43	6	0	79.1	Grassland
Col d'Aubisque	23/06/2020	-0.3314065	42.9855167	U	0.5	19.3	6	0	0	80.3	Meadow

Col d'Aubisque	23/06/2020	-0.3312992	42.9855188	0	0.7	19	15	1	0	80.3	Meadow
Col d'Aubisque	$\frac{23}{06}$	-0.3311102	42.9855005	Õ	0.8	19.1	14	1	Ő	80.2	Meadow
Col d'Aubisque	23/06/2020	-0.3308743	42 9854392	Õ	0.4	19.1	17	1	Õ	80.5	Meadow
Col d'Aubisque	23/06/2020	-0.3301202	42.9862565	0	0.1	19	0	0	0	80.8	Meadow
Col d'Aubisque	$\frac{23}{06}$	-0.330007	42.9862497	Õ	0.2	19	Ő	õ	Ő	80.8	Meadow
Col d'Aubisque	$\frac{23}{06}$	-0.3300337	42.9870337	Ő	4.2	16.1	18	ĩ	Ő	80.3	Meadow
Col d'Aubisque	$\frac{23}{06}$	-0.3300568	42.9870158	Õ	5.5	14.5	24	1	Ő	80.5	Meadow
Col d'Aubisque	23/06/2020	-0.3303867	42.9873523	0	1.7	17.9	6	1	0	80.2	Meadow
Col d'Aubisque	$\frac{23}{06}$	-0.330407	42.9874262	Õ	1.8	18.1	43	3	Ő	80.5	Meadow
Col d'Aubisque	23/06/2020	-0.3303015	42 9875025	0	2.9	17	23	2	0	80.5	Meadow
Col d'Aubisque	$\frac{23}{06}$	-0.3302602	42.9867458	Õ	0.9	18.6	17	2	Ő	81.8	Meadow
Col d'Aubisque	23/06/2020	-0.3303795	42 9864895	Õ	12	15.1	12	2	Õ	79.9	Meadow
Col d'Aubisque	23/06/2020	-0.3324132	42.9858352	0	0.3	19	11	1	0	80.1	Meadow
Barrage eaux bonnes	23/06/2020	-0.382173	42.90000002 42.9708527	61 9	0.0	2.9	3	2	0	35.1	Meadow
Barrage eaux bonnes	23/06/2020	-0.3821882	42.9708515	62.2	0.1	2.3	4	1	Ő	35.5	Meadow
Barrage eaux bonnes	23/06/2020	-0.4057928	42.9740153	0	0	20.3	0	0	0	79.6	Meadow
Barrage eaux bonnes	23/06/2020	-0 4052458	42.9739172	0	04	19.9	5	34	0	73.6	Meadow
Barrage eaux bonnes	23/06/2020	-0.4052932	42.9739112	0	0.4	10.5	11	1	0	79.6	Meadow
Col do jaut	23/00/2020	0.3801853	42.9130931	0	0.4	20.4	0	4	0	79.0	Moadow
Col de jaut	24/00/2020	-0.3891855 0.3801073	43.2247428	0	0.1	20.4	0	0	0	79.5	Meadow
Col de jaut	24/00/2020	-0.3891973	43.2247343	0	0.1	20.4	0 9	1	0	79.0	Meadow
Col de jaut	24/00/2020 24/06/2020	-0.339300	43.0370277	0	0.0	20.1	ა ი	1	0	19.0	Meadow
Col de jaut	24/00/2020	-0.3393897	43.030713	0	0.3	19.9	2	1	0	80.3	Meadow
Col de jaut	24/06/2020	-0.3393977	43.0367558	0	0.5	19.5	3	1	0	80.4	Meadow
Col de jaut	24/06/2020	-0.3397915	43.0365232	0	0.1	19.5	0	0	0	80.2	Meadow
Col de jaut	24/06/2020	-0.3397945	43.0364357	0	0	19.6	1	1	0	80.4	Meadow
Col de jaut	24/06/2020	-0.3392862	43.036025	0	0.1	19.6	1	0	0	80.3	Meadow
Col de jaut	24/06/2020	-0.3394853	43.0355605	0	0.3	19.8	12	3	0	79.9	Meadow
Col de jaut	24/06/2020	-0.3366683	43.035912	0	0.1	20	5	1	0	79.6	Meadow
Col de jaut	24/06/2020	-0.3358932	43.0372987	0	0.2	20.5	42	5	0	79.4	Meadow
Col de jaut	24/06/2020	-0.3360022	43.0371123	0	0.1	20.5	4	1	0	79.6	Meadow
Col de jaut	24/06/2020	-0.3358238	43.0369422	0	0.2	20.1	1	0	0	79.7	Meadow
Col de jaut	24/06/2020	-0.3357442	43.0367185	0	0.1	20.2	0	1	0	79.8	Meadow
Col de jaut	24/06/2020	-0.3352825	43.0364007	0	0.2	20.2	14	1	0	79.8	Meadow
Col de jaut	24/06/2020	-0.3351892	43.0361442	0	0.1	20	0	0	0	79.7	Meadow
Col de jaut	24/06/2020	-0.3350595	43.0361437	0	0.1	20.1	0	0	0	79.8	Meadow
Col de jaut	24/06/2020	-0.3350325	43.0356312	0	0.1	20.1	1	1	0	79.8	Meadow
Col de jaut	24/06/2020	-0.3347173	43.0350217	0	0.2	20	2	1	0	79.8	Meadow
Col de jaut	24/06/2020	-0.3432125	43.0357407	0	0	20.3	11	4	0	79.8	Meadow
Col de jaut	24/06/2020	-0.3513557	43.0360637	0	0.4	19.9	2	2	0	79.7	Meadow
Col de jaut	24/06/2020	-0.3654518	43.04735	0	0.1	20.6	2	0	0	79.2	Meadow
Col de jaut	24/06/2020	-0.3644613	43.0464123	0	0.3	20.5	3	1	0	79.4	Meadow
Col de jaut	24/06/2020	-0.3642105	43.0461813	0	0.1	20.6	1	1	0	79.3	Meadow
Col de jaut	24/06/2020	-0.3640315	43.045905	0	0.2	20.6	1	1	0	79.2	Meadow
Col de jaut	24/06/2020	-0.364038	43.045446	Õ	0.1	20.8	0	0	Ő	79.1	Meadow
Col de jaut	24/06/2020	-0.3648683	43.0462642	Õ	0.3	20.7	Ő	$\overset{\circ}{2}$	Ő	79	Meadow
Col de jaut	24/06/2020	-0.3653627	43 0465802	0	0.0	20.9	Ő	2	0	78.9	Meadow
Col de jaut	24/06/2020 24/06/2020	-0.3654045	43 0466162	0	0.2	20.5 20.7	4	2	0	79	Meadow
Col do jaut	24/06/2020	0.3652707	43 0466302	0	0.0	20.1	2	1	0	78.8	Mondow
Col do jaut	24/06/2020	-0.3657247	43.0400352 43.0476127	0	0.0	20.5	0	1	0	78.3	Moadow
Col do jaut	24/06/2020	-0.3657883	43 0476217	0	0.1	10.6	1	0	0	78.4	Mondow
Col do jaut	24/06/2020	-0.3657617	43 0475088	0	10	10.0 10.7	1	2	0	78.0	Moadow
Col de jaut	24/00/2020 24/06/2020	0.2658627	42.0476512	0	1.5	20.6	5	2	0	77.0	Meadow
Col de jaut	24/00/2020 24/06/2020	-0.3038027	43.0470313	0	2.0	20.0	0	2	0	78.0	Meadow
Cor de jaut	24/00/2020	-0.3008703	43.0520067	0	0.5	21	17	0	0	70.9	Creationd
	25/00/2020	-0.9520922	43.400293	0	0.1	20.4	101	11	0	79.7	Grassland
	25/00/2020	-0.9521656	45.4005055	0	0.8	19.0	101	11	1	79.7	Grassland
Sauveterre	25/06/2020	-0.9521783	43.4065052	0	1.4	19.1	162	3	1	79.8	Grassland
Sauveterre	25/06/2020	-0.9521377	43.406458	0	0.3	19.7	6	1	1	80.1	Grassland
Sauveterre	25/06/2020	-0.9521225	43.4064745	0	1.6	18.8	3	1	1	79.8	Grassland
Sauveterre	25/06/2020	-0.9523353	43.4062347	0	1.3	18.9	102	3	1	79.8	Grassland
Sauveterre	25/06/2020	-0.9524217	43.4061208	0	0.7	19.5	71	2	1	80.1	Grassland
Sauveterre	25/06/2020	-0.9529282	43.4060822	0	0.2	19.7	24	1	0	80	Grassland
Sauveterre	25/06/2020	-0.9528947	43.4058283	0	0.2	19.8	4	0	0	79.9	Grassland
Sauveterre	25/06/2020	-0.9535103	43.4054635	0	0.5	19.8	24	1	0	79.8	Grassland
Sauveterre	25/06/2020	-0.9535352	43.4054753	0	0.2	19.8	31	0	0	79.9	Grassland
Sauveterre	25/06/2020	-0.9539707	43.4052873	0	0.2	19.9	15	1	0	79.8	Grassland
Sauveterre	25/06/2020	-0.953287	43.406069	0	0.1	20.1	60	2	0	79.7	Grassland
Sauveterre	25/06/2020	-0.9529755	43.4061397	0	0.7	19.7	16	1	0	79.7	Grassland
	-										

Sauveterre	25/06/2020	-0.952546	43.4064295	0	0.3	20	113	7	0	79	Grassland
Sauveterre	25/06/2020	-0.9523878	43.4063012	Ő	2.4	18.6	77	7	Ő	79.4	Grassland
Sauveterre	25/06/2020	-0.9520887	43 4062378	Õ	07	19.9	69	7	0 0	79.3	Grassland
Sauveterre	25/06/2020	-0.952216	43 4064185	Õ	2.3	18.8	244	16	0	79.1	Grassland
Sauveterre	25/06/2020	-0.9519558	43 4061882	0	0.8	20.1	126	5	0	79.6	Grassland
Sauveterre	25/06/2020	-0.9519990	43 4060688	0	0.0	10.7	78	3	0	70.8	Grassland
Sauveterre	25/00/2020	-0.9519652	42 4056862	0	0.0	10.0	10	15	1	79.8	Grassland
Sauveterre	25/00/2020	-0.9515005	43.4050602	0	2.2	10.0	209	10	1	79.0	Grassland
Sauveterre	25/00/2020	-0.950819	45.4057402	0	0.4	19.0	10	4	0	79.8	Grassland
Sauveterre	25/06/2020	-0.9473397	43.4002242	0	0.1	20.3	ঠ <i>।</i> 109	5	0	79.4	Grassland
Sauveterre	25/06/2020	-0.9476132	43.405744	0	0.1	20.5	123	2	0	79.3	Grassland
Sauveterre	25/06/2020	-0.9474778	43.4057787	0	0	20.7	140	2	0	79.3	Grassland
Sauveterre	25/06/2020	-0.9477565	43.4050293	0	0	20.7	96	2	0	79.2	Grassland
Sauveterre	25/06/2020	-0.9478438	43.4049567	0	0	20.7	136	2	0	79.1	Grassland
Sauveterre	25/06/2020	-0.9475672	43.4050935	0	0.1	20.8	22	1	0	79.1	Grassland
Sauveterre	25/06/2020	-0.9477357	43.4048065	0	0.1	20.6	28	2	0	79.2	Grassland
Sauveterre	25/06/2020	-0.9484418	43.404909	0	0	20.7	24	7	0	79.3	Grassland
Sauveterre	25/06/2020	-0.9484315	43.4049743	0	2.9	19	53	5	0	79.1	Grassland
Sauveterre	25/06/2020	-0.9485057	43.4050042	0	0.2	20.2	179	11	0	79.1	Grassland
Sauveterre	25/06/2020	-0.948584	43.4050827	0	0.5	20.4	140	13	0	79.1	Grassland
Sauveterre	25/06/2020	-0.9484705	43.4050778	0	10.3	13.7	63	4	0	79.1	Grassland
Sauveterre	25/06/2020	-0.9484563	43.4052608	0	1.1	19.8	63	7	0	79.2	Grassland
Sauveterre	25/06/2020	-0.9497502	43.4049063	0	1.3	20.1	50	2	0	79	Grassland
Sauveterre	25/06/2020	-0.9500558	43.4048073	0	1.2	20.8	98	6	0	79	Grassland
Sauveterre	25/06/2020	-0.949978	43.404701	0	1.8	19.8	40	4	0	79	Grassland
Sauveterre	25/06/2020	-0.9500803	43 4050028	Ő	3.2	20.8	80	5	Ő	78.1	Grassland
Sauveterre	25/06/2020	-0.950135	43 4051152	Õ	3.8	18.6	46	5	0	78.2	Grassland
Sauveterre	25/06/2020	-0.9186425	43.4601102	0	1.0 1.4	20.4	40	1	0	79.5	Grassland
Salios	25/06/2020	0.0185005	43.4600637	0	1.4 9.1	20.4	58	1	0	79.6	Grassland
Salios	25/06/2020	0.0184705	43.4500037	0	$\frac{2.1}{2.7}$	20	197	6	0	79.6	Grassland
Salles	25/00/2020	-0.9104705	43.4599923	0	0.1	20 18 0	127	1	0	79.0	Grassland
Salles	25/00/2020	-0.9105570	45.4596017	0	0.1	10.9	10	1	0	79.7	Grassland
Salles	25/06/2020	-0.918518	43.43982	0	0.3	19.9	30	3	0	79.7	Grassland
Salles	25/06/2020	-0.9199343	43.461049	0	2.1	20.1	28	3	0	79.5	Grassland
Salles	25/06/2020	-0.9198873	43.4609913	0	0.4	18.4	52	2	0	79.6	Grassland
Salies	25/06/2020	-0.9200742	43.4614787	0	1	20.3	47	4	0	79.5	Grassland
Salies	25/06/2020	-0.9199088	43.4615705	0	0.2	19.6	112	5	0	79.5	Grassland
Salies	25/06/2020	-0.9096175	43.4418002	0	0.6	20.5	0	0	0	79.1	Grassland
Salies	25/06/2020	-0.9093172	43.441686	0	0.3	20.2	0	0	0	79.1	Grassland
Salies	25/06/2020	-0.9093002	43.4416507	0	0.3	20.8	1	3	0	79.2	Grassland
Salies	25/06/2020	-0.9088832	43.441461	0	0.9	20.6	5	5	0	79.3	Grassland
Peyrorade	30/06/2020	-1.1110078	43.5322783	0	2.5	20.8	16	0	0	78.9	Grassland
Peyrorade	30/06/2020	-1.1113287	43.532243	0	6	16.9	33	1	0	79.1	Grassland
Peyrorade	30/06/2020	-1.1111785	43.5320515	0	0.6	19.4	3	1	0	79.3	Grassland
Peyrorade	30/06/2020	-1.110923	43.5321095	0	0.5	20.2	21	1	0	79.3	Grassland
Peyrorade	30/06/2020	-1.1105643	43.5317287	0	0.3	20.4	49	13	0	78.2	Grassland
Peyrorade	30/06/2020	-1.110602	43.5317122	0	8.4	14.9	62	5	0	78.2	Grassland
La Bourgade	30/06/2020	-1.1872112	43.519447	2.2	2.3	17.1	5	1	0	79	Forest
La Bourgade	30/06/2020	-1.1868265	43.51985	0	0.5	18.9	0	0	0	79.2	Forest
La Bourgade	30/06/2020	-1.18639	43.5197185	0	3.1	20.5	10	1	0	78.8	Forest
La Bourgade	30/06/2020	-1.1861458	43.5196368	Ő	2.7	18.7	11	2	Ő	79	Forest
La Bourgade	30/06/2020	-1 1857685	43 5190767	õ	1.5	20	13	6	Õ	79	Forest
Sud Bardos	30/06/2020	-1 1929778	43 4454512	Õ	0.4	20.8	13	1	0	79	Grassland
Sud Bardos	30/06/2020	1.1020110 1.1027538	43 445407	0	0.1	20.0	3	0	0	70.2	Grassland
Sud Dardos	20/06/2020	-1.1927556 1 102511	43.443497	0	0.5	20 20 G	5	6	0	79.2	Grassland
Sud Dardos	30/00/2020	-1.192011	43.4433437	0	0.4	20.0	00 05	1	0	79.4	Grassland
Sud Dardos	30/00/2020	-1.1920082	45.4455955	0	2.4	20.3	00 11	1	0	79.1	Grassland
Sud Bardos	30/06/2020	-1.1918822	43.4437232	0	1.1	19.7		1	0	79.2	Grassland
Isturitz	30/06/2020	-1.2023857	43.3583435	0	0.4	20.4	6	1	0	79.2	Grassland
Isturitz	30/06/2020	-1.2024238	43.3583735	0	1.2	20.4	23	3	0	79.4	Grassland
Isturitz	30/06/2020	-1.2023182	43.358348	0	0.9	19.6	43	3	0	79.3	Grassland
Isturitz	30/06/2020	-1.2020327	43.3584147	0	0.2	20	8	0	0	79.4	Grassland
Isturitz	30/06/2020	-1.2018648	43.3583502	0	2.2	19	2	1	0	79.1	Grassland
Iholdy	30/06/2020	-1.197437	43.267639	0	0.2	20.4	2	1	0	79.4	Grassland
Iholdy	30/06/2020	-1.197617	43.2674747	0	0.5	20	0	0	0	79.4	Grassland
Iholdy	30/06/2020	-1.1971837	43.2676587	0	0.9	19.8	0	1	0	79.5	Grassland
Iholdy	30/06/2020	-1.1969072	43.267653	0	2.5	19	2	1	0	79.1	Grassland
Iholdy	30/06/2020	-1.1968197	43.267733	0	1.3	19.4	3	2	0	79.4	Grassland
Bois d'Ostabat	30/06/2020	-1.0636998	43.2823257	0	3.1	20.6	9	1	0	79.1	Meadow
Bois d'Ostabat	30/06/2020	-1.0637965	43.2822602	0	0.9	19.5	4	2	0	79.5	Meadow

Bois d'Ostabat	30/06/2020	-1.0640533	43.2816455	0	0.4	20.3	2	1	0	79.6	Meadow
Bois d'Ostabat	30/06/2020	-1.0640897	43.2816602	0	0.3	20.3	1	2	0	79.6	Meadow
Bois d'Ostabat	30/06/2020	-1.063956	43.2814052	0	0.2	20.2	0	1	0	79.6	Meadow
Gabat	30/06/2020	-1.0727082	43.3735083	0	0.2	20.6	0	0	0	79.4	Grassland
Gabat	30/06/2020	-1.0725687	43.3732838	0	0.4	20.4	1	1	0	79.4	Grassland
Gabat	30/06/2020	-1.0725618	43.373425	0	0.9	20.4	4	1	0	79.5	Grassland
Gabat	30/06/2020	-1.0725313	43.3733603	0	3.4	20.3	3	2	0	79.4	Grassland
Gabat	30/06/2020	-1.0723843	43.3732188	0	0.4	20.1	1	1	0	79.8	Grassland
Arancour	30/06/2020	-1.0723475	43.3730985	0	0.2	17.4	4	3	0	79.7	Grassland
Arancour	30/06/2020	-1.0562008	43.4457292	0	0.6	20.5	7	1	0	79.5	Grassland
Arancour	30/06/2020	-1.0562312	43.4456137	0	0.1	20.3	25	4	0	79.6	Grassland
Arancour	30/06/2020	-1.056222	43.4456773	0	3.4	17.3	33	5	0	79.2	Grassland
Arancour	30/06/2020	-1.0561183	43.4456302	0	0.6	18.3	22	5	0	79.7	Grassland
Arancour	30/06/2020	-1.0562003	43.4455257	0	0.3	20	19	3	0	79.9	Grassland
Poulliot	30/06/2020	-0.9448968	43.5401978	0	1.8	19.2	10	2 1	0	79.3 70.5	Grassland
Poulliot	30/06/2020	-0.944911	43.3402223	0	0.3	19.8	18	1	0	79.5 70 F	Grassland
Popullot	30/00/2020	-0.9440398 0.044765	43.340007	0	0.5	20.2	20 13	2 1	0	79.5	Grassland
Pouillot	30/06/2020	-0.944705	43.5401423	0	0.2	20.3 20.4	13 Q	0	0	79.5	Grassland
Salies de Bearn	25/06/2020	-0.9185095	43 4600637	0	2.1	19.4	58	4	0	79.6	Grassland
Salies de Bearn	25/06/2020	-0.9184705	43 4599923	0	$\frac{2.1}{3.7}$	20	127	6	0	79.6	Grassland
Salies de Bearn	25/06/2020	-0.9183578	43.4598017	0	0.1	18.9	10	1	0	79.7	Grassland
Salies de Bearn	25/06/2020	-0.918518	43.45982	Õ	0.3	19.9	35	3	Ő	79.7	Grassland
Salies de Bearn	25/06/2020	-0.9199343	43.461049	0	2.1	18.4	28	3	0	79.5	Grassland
Saint Laurent Bretagne	03/07/2020	-0.196688	43.382039	0	0.4		2	0	0	79.2	Grassland
Saint Laurent Bretagne	03/07/2020	-0.1968628	43.3822223	0	0.3	20.5	0	0	0	79.2	Grassland
Saint Laurent Bretagne	03/07/2020	-0.196851	43.3823007	0	0.2	20.6	0	0	0	79.2	Grassland
Saint Laurent Bretagne	03/07/2020	-0.1970817	43.382455	0	0.9	20.6	2	2	0	79.1	Grassland
Saint Laurent Bretagne	03/07/2020	-0.1972187	43.3823552	0	0.4	19.7	10	1	0	79.2	Grassland
Lannecaube	03/07/2020	-0.2106413	43.482156	0	4.2	20.9	47	8	0	78.2	Grassland
Lannecaube	03/07/2020	-0.2107055	43.4823757	0	0.9	17.7	17	1	0	79.3	Grassland
Lannecaube	03/07/2020	-0.2110172	43.4826915	0	0.7	20.1	20	3	0	79.4	Grassland
Lannecaube	03/07/2020	-0.2112873	43.4825608	0	1.2	20.1	8	1	0	79.6	Grassland
Lannecaube	03/07/2020	-0.2111628	43.4826923	0	0.5	20	37	2	0	79.6	Grassland
Castetpugon	03/07/2020	-0.221285	43.56341	0	0.1	20.8	0	1	0	79.1	Grassland
Castetpugon	03/07/2020	-0.221293	43.563205	0	0.1	20.8	1	2	0	79.1	Grassland
Castetpugon	03/07/2020	-0.221096	43.5035	0	0.1	20.8	9 19	2	0	79.1	Grassland
Castetpugon	03/07/2020 02/07/2020	-0.220018	43.303712	0	0.1	20.8	10	い 1	0	10.9 70 0	Grassland
Sonsaca	03/07/2020 03/07/2020	-0.220087	43.303490	0	0.7	20.0 21.1	25	1	0	78.7	Grassland
Sensacq	03/07/2020	-0.3496455	43 5818815	02	1.5	21.1 20.8	20 29	2	0	79	Grassland
Sensacq	03/07/2020	-0.349664	43.5819003	0.2	1.7	20.8	52	5	0	78.8	Grassland
Sensacq	03/07/2020	-0.3496043	43.5817715	0	0.9	19.7	16	3	Ő	79	Grassland
Sensacq	03/07/2020	-0.3493813	43.5818272	0.5	1.9	20.7	7	$\overset{\circ}{2}$	Ő	79	Grassland
Méracq	03/07/2020	-0.3937743	43.5127292	0	1.9	21	9	2	0	78.7	Grassland
Méracq	03/07/2020	-0.3936115	43.5126915	0	0.4	20.1	7	2	0	79	Grassland
Méracq	03/07/2020	-0.3937737	43.5127433	0	0.6	20.7	13	2	0	79	Grassland
Méracq	03/07/2020	-0.3938117	43.5127513	0	0.3	20.8	13	3	0	79.1	Grassland
Méracq	03/07/2020	-0.3939523	43.512779	0	0.1	20.8	1	0	0	79	Grassland
Navailles-Angos	03/07/2020	-0.3460903	43.4048048	0	0.1	20.8	20	2	0	79.2	Grassland
Navailles-Angos	03/07/2020	-0.3459295	43.4049242	0	0.1	20.6	4	1	0	79.3	Grassland
Navailles-Angos	03/07/2020	-0.3458833	43.4051278	0	0.1	20.6	3	1	0	79.4	Grassland
Navailles-Angos	03/07/2020	-0.3458775	43.4051463	0	0.1	20.5	2	0	0	79.3	Grassland
Navailles-Angos	03/07/2020	-0.34561	43.4052283	0	0.1	20.5	0	1	0	79.4	Grassland
Uzein	03/07/2020	-0.4413152	43.3963883	0	0.3	20.8	1	1	0	79.1	Grassland
Uzein	03/07/2020	-0.4411/3/	43.3964923	0	0.3	20.6	1	0	0	79.1	Grassland
Uzein	03/07/2020	-0.4411445	43.3903123	0	0.8	20.7	2	0	0	79.2	Grassland
Uzein	03/07/2020 03/07/2020	-0.44101 0.4407033	43.3907033	0	0.9	20.5	ม 19	1	0	79.1	Grassland
Esterencuby	07/07/2020	-0.4407355	43.10543	0	1.2 1.7	20.4	102	2	0	78.6	Meadow
Esterencuby	07/07/2020	-1 1865022	43 1050473	0	1.1	21. 1 21.9	102 99	2	0	78.5	Meadow
Esterencuby	07/07/2020	-1.186745	43.1050828	Ő	1.9	21.2	44	1	0	78.4	Meadow
Esterencuby	07/07/2020	-1.1869062	43.1051638	Ő	0.8	20.6	0	0	Ő	78.3	Meadow
Esterencuby	07/07/2020	-1.1873122	43.1053518	Ő	1.1	20.8	20	1	õ	78.5	Meadow
Errozate	07/07/2020	-1.1512307	43.0421115	0.1	1.3	20.7	23	0	0	78.2	Meadow
Errozate	07/07/2020	-1.151153	43.0420832	0	0.5	21.5	22	1	0	78.1	Meadow
Errozate	07/07/2020	-1.1509862	43.042063	0	0	21.5	7	0	0	78	Meadow

Errozate	07/07/2020	-1.1508618	43.0420977	0	1	21.8	20	0	0	77.9	Meadow
Errozate	07/07/2020	-1.1510965	43.0422695	0.3	3.8	21.4	757	2	1	79.2	Meadow
Zazpigain	07/07/2020	-1.0381133	43.010437	0	1.5	21.4	21	1	0	78.1	Meadow
Zazpigain	07/07/2020	-1.0380397	43.0103353	0	2.2	21	23	1	0	78.2	Meadow
Zazpigain	07/07/2020	-1.0379608	43.0103772	0	3.2	21	24	2	0	78	Meadow
Zazpigain	07/07/2020	-1.0377065	43.0103283	0	2.2	20.4	29	1	0	78.1	Meadow
Zazpigain	07/07/2020	-1.0379102	43.0103827	0	1.8	20.7	36	1	0	78.1	Meadow
Pic d'Apanice	07/07/2020	-1.0606428	43.1007105	0	0	21.2	0	2	0	78.7	Meadow
Pic d'Apanice	07/07/2020	-1.0605382	43.1008053	0	0.1	21.1	0	0	1	78.7	Meadow
Pic d'Apanice	07/07/2020	-1.0605448	43.1009075	0	0	21.2	0	1	1	78.7	Meadow
Pic d'Apanice	07/07/2020	-1.0603988	43.100888	0	0.1	19.6	0	1	1	78.8	Meadow
Pic d'Apanice	07/07/2020	-1.0605342	43.1010298	0	0.2	21.2	0	2	1	78.7	Meadow
Alcay	07/07/2020	-0.9151655	43.0955535	0	0.6	21.1	0	0	1	78.7	Meadow
Alcay	07/07/2020	-0.9150953	43.095646	0	0.5	20.9	0	0	1	79	Meadow
Alcay	07/07/2020	-0.9149188	43.095548	0	2.9	20.6	18	1	1	79.2	Meadow
Alcay	07/07/2020	-0.9147098	43.0958222	0	0.9	20.3	8	0	1	79.3	Meadow
Alcay	07/07/2020	-0.9145617	43.0957707	0	2.9	20.5	0	0	1	79.4	Meadow
Logibaria	07/07/2020	-0.9260017	43.0201807	0	0.7	21.1	0	1	1	78.9	Meadow
	07/07/2020	-0.9260115	43.0201342	0	0.9	20.4	7	1	1	78.8	Meadow
	07/07/2020	-0.9261505	43.0200582	0	0.1	21	0	0	1	78.9	Meadow
Logibaria	07/07/2020	-0.9259948	43.0199327	0	0.3	20.9	11	1	1	78.9	Meadow
Logidaria Die d'isserbe	07/07/2020	-0.9260442	43.0198843	0	0.4	20.8	21 56	10	1	78.9 79.7	Meadow
Pic d'issarbe	07/07/2020	-0.795440	43.0182893	0	2.8	21.1 20.7	50 50	10	1	18.1 70 E	Meadow
Pic dissarbe	07/07/2020	-0.7954132	43.0182293	0	0.2	20.7	00	0	1	(8.) 70.2	Meadow
Pic d'issarbe	07/07/2020	-0.7954387	43.0181103	0	2.3 1.6	21.4 21.2	90 50	2	1	(8.3 70 E	Meadow
Pic d'issarbe	07/07/2020 07/07/2020	-0.7952146 0.7051127	43.0180032	0	1.0	21.2 20.5	02 80	0	1	78.0 78.6	Meadow
Montonyy	07/07/2020 07/07/2020	-0.7951157	43.0178907	0	2.9	20.5	0	2	1	78.0 78.4	Creaciond
Montorry	07/07/2020 07/07/2020	-0.8203107	43.090771	0	0.5	21.4 91.9	0	0	1	78.7	Grassland
Montorry	07/07/2020 07/07/2020	-0.8203222	43.0908048	0	1 1	21.2 91.1	0	0	1	78.8	Crassland
Montorry	07/07/2020 07/07/2020	-0.8203387	43.090902	0	0.1	21.1 20.0	0	0	1	78.8	Grassland
Montorry	07/07/2020 07/07/2020	-0.8201883	43.0909903	0	1.1	20.3 21.1	0	0	1	78.7	Grassland
Arette	07/07/2020 07/07/2020	-0.70735	43 108289	0	0.1	21.1	0	0	1	78.9	Grassland
Arette	07/07/2020	-0 7073155	43 1083345	0	0.1	20.9	0	0	1	79	Grassland
Arette	07/07/2020	-0 7074055	43.1082457	0	0.5	20.9	0	0	2	78.8	Grassland
Arette	07/07/2020	-0.7074155	43.108146	0	6.7	20.9	0	Ő	2	78.7	Grassland
Arette	07/07/2020	-0.7075103	43.1081888	Ő	0.1	16	Ő	Ő	1	79	Grassland
Lourdios Ichère	07/07/2020	-0.6689227	43.0470052	Ő	0	20.9	Ő	Ő	1	79	Meadow
Lourdios Ichère	07/07/2020	-0.6690297	43.0469728	0	0	20.9	0	0	1	78.9	Meadow
Lourdios Ichère	07/07/2020	-0.669014	43.046963	0	0.1	20.9	0	0	1	78.9	Meadow
Lourdios Ichère	07/07/2020	-0.6689962	43.0470198	0	0.1	20.8	0	0	2	78.9	Meadow
Lourdios Ichère	07/07/2020	-0.6689493	43.0470943	0	0.6	20.8	0	0	1	79	Meadow
Bustince Iribéry	08/07/2020	-1.1851082	43.1919467	0	0.1	21.3	7	0	1	78.6	Grassland
Bustince Iribéry	08/07/2020	-1.1850668	43.1920278	0	0.2	21.2	17	1	1	78.6	Grassland
Bustince Iribéry	08/07/2020	-1.185128	43.1919393	0	0	21.1	16	0	1	78.6	Grassland
Bustince Iribéry	08/07/2020	-1.1849463	43.191885	0	0.1	21.1	14	1	1	78.6	Grassland
Bustince Iribéry	08/07/2020	-1.1849278	43.191803	0.1	0.4	21.2	29	1	1	78.6	Grassland
Saint Juste Ibarre	08/07/2020	-1.0560507	43.1893288	0	1	21.4	0	0	1	78.3	Grassland
Saint Juste Ibarre	08/07/2020	-1.0561777	43.1891588	0	0.1	20.6	0	1	1	78.8	Grassland
Saint Juste Ibarre	08/07/2020	-1.0561238	43.1891283	0	1.3	20.6	0	1	1	78.7	Grassland
Saint Juste Ibarre	08/07/2020	-1.056144	43.1891835	0	0.1	20.7	0	0	1	78.9	Grassland
Saint Juste Ibarre	08/07/2020	-1.0560793	43.1890845	0	0.1	20.9	0	0	1	78.9	Grassland
Ordiarp	08/07/2020	-0.942392	43.1842272	0	0.9	21	0	0	1	78.9	Grassland
Ordiarp	08/07/2020	-0.9425965	43.1843442	0	0.3	20.7	0	0	1	79	Grassland
Ordiarp	08/07/2020	-0.9424638	43.1844137	0	0.5	20.6	0	0	1	79	Grassland
Ordiarp	08/07/2020	-0.9424373	43.1844495	0	0.9	20.6	9	1	1	79	Grassland
Ordiarp	08/07/2020	-0.9424438	43.1843845	0	0.5	20.6	17	0	1	79	Grassland
Barcus	08/07/2020	-0.786773	43.1888432	0	0.5	21	22	2	1	78.9	Grassland
Barcus	08/07/2020	-0.78683	43.1888657	0	0.4	20.8	19	5	1	78.9	Grassland
Barcus	08/07/2020	-0.786783	43.1887922	0	0.3	20.6	27	4	1	79	Grassland
Barcus	08/07/2020	-0.786666	43.188861	0	1.6	20.4	43	5	1	79.3	Grassland
Barcus	08/07/2020	-0.7865522	43.1888778	0	0.2	20.4	3	0	1	78.9	Grassland
Esquiule	08/07/2020	-0.7047513	43.194978	U	0.2	21.1	0	0	1	(8.8	Grassland
Esquiule	08/07/2020	-0.7048108	43.1950685	U	0.2	20.8	0	0	1	18.7	Grassland
Esquiule	08/07/2020	-0.7049313	43.1949078	U	0.7	21.1	U	U	1	(8.5 70 7	Grassland
Esquiule	08/07/2020	-0.7049657	43.194932	0	0.2	20.7	0	0	1	18.1	Grassland
resquiue	08/07/2020	-0.704992	45.1948027	U	0.5	20.9	U	U	T	18.0	Grassland

T 'I	00/07/0000	0 710010	49.0050040	0.1	1 5	00.0	50	1	1	70.0	a i i
Lamidou	08/07/2020	-0.710018	43.2800242	0.1	1.5	20.2	90	1	1	18.0	Grassland
Lamidou	08/07/2020	-0.7167892	43.285512	0	0.4	20.8	0	0	1	78.9	Grassland
Lamidou	08/07/2020	-0.7170097	43.285714	0	0.4	20.4	5	0	1	79.1	Grassland
Lamidou	08/07/2020	0 7160382	13 2854807	Ő	17	20.7	10	จ้	1	70.1	Crossland
	00/07/2020	-0.7109502	49.0055419	0	1.7	20.1	10	2	1	73.1	Grassland
Lamidou	08/07/2020	-0.7169202	43.2855413	0	0.5	20.3	11	0	1	79.1	Grassland
Moncayolle	08/07/2020	-0.8433655	43.2643478	0	1.6	20.9	0	0	1	79.1	Grassland
Moncavolle	08/07/2020	-0.843489	43.2642078	0	1.2	20.4	0	0	1	79.2	Grassland
Moncavolle	08/07/2020	-0.8/3/62	43 2641115	0	0.1	20.8	Ô	1	1	79	Grassland
Moneayone	00/07/2020	-0.040402	49.0041097	0	0.1	20.0	0	1	1	70.1	C 1 1
Moncayolle	08/07/2020	-0.8433647	43.2641637	0	0.1	20.8	0	0	2	79.1	Grassland
Moncayolle	08/07/2020	-0.8433527	43.2640985	0	0.1	20.9	0	1	2	79.1	Grassland
Ainharp	08/07/2020	-0.927217	43.268141	0	0.8	20.6	0	0	1	79	Grassland
Ainharn	08/07/2020	-0.9271743	43 2680478	0	15	19.5	Ο	Ο	2	79.4	Grassland
	00/07/2020	-0.5211145	49.0000700	0	1.0	10.0	0	0	2	70.9	C 1 1
Ainharp	08/07/2020	-0.9273727	43.2680798	0	0.7	20	0	0	2	79.3	Grassland
Ainharp	08/07/2020	-0.927421	43.2679237	0	0.2	20.4	0	0	1	79.4	Grassland
Ainharp	08/07/2020	-0.9272805	43.2679278	0	0.3	20.2	0	0	2	79.5	Grassland
Osserain	08/07/2020	-0.9603708	43 3777653	0	0	20.7	0	0	1	79.3	Grassland
Obserani	00/07/2020	0.0000100	49.9777019	0	0	20.1	0	0	0	70.2	Grassland
Osserain	08/07/2020	-0.9003503	45.5777915	0	0	20.5	0	0	2	79.5	Grassland
Osserain	08/07/2020	-0.9603815	43.3776778	0	0.3	20.4	0	0	2	79.2	Grassland
Osserain	08/07/2020	-0.9605468	43.3776765	0	0.2	20.3	0	0	2	79.3	Grassland
Osserain	08/07/2020	-0.9606743	43.3776078	0	1.4	19.3	3	1	2	79.3	Grassland
Lang	08/07/2020	0.8460525	42 2707702	Ő	0.0	20.1	01	0	-	70.2	Creacland
Laas	08/07/2020	-0.8409555	43.3797703	0	0.9	20.1	21	0	2	19.2	Grassiand
Laas	08/07/2020	-0.8468893	43.3797992	0	0.2	20.5	7	0	1	79.1	Grassland
Laas	08/07/2020	-0.8470072	43.3798455	0	0.2	20.5	7	0	1	79.1	Grassland
Laas	08/07/2020	-0.8470685	43.3798265	0	0	20.8	0	0	1	79	Grassland
Laas	08/07/2020	0.0170000	42.2708552	0	0.1	20.0	0	0	0	70.9	Creasland
Laas	08/07/2020	-0.84/1/82	45.5798552	0	0.1	20.5	Ζ	0	2	19.2	Grassland
Laneplaa	09/07/2020	-0.8237082	43.4606745	0	3.2	21.4	15	1	1	78.1	Grassland
Laneplaa	09/07/2020	-0.8236125	43.4607163	0	0.1	19.6	22	0	1	78.7	Grassland
Laneplaa	$09^{\prime}/07^{\prime}/2020$	-0 8234998	43 4607182	0	0.5	20.6	97	2	1	78.7	Grassland
Lanoplaa	00/07/2020	0.8224677	12 4607969	Ő	0.0	20.0	0	0	1	79.7	Creecland
Lanepiaa	09/07/2020	-0.8234077	45.4007808	0	0.1	21.1	0	0	1	10.1	Grassland
Laneplaa	09/07/2020	-0.8234995	43.4607725	0	0.1	21	95	0	1	78.8	Grassland
Hourquebie	09/07/2020	-0.8419558	43.5343427	0	0.6	20.7	0	4	1	78.5	Grassland
Hourquebie	09/07/2020	-0 8420748	$43\ 5343442$	0	0.2	20.7	3	2	1	78.7	Grassland
Hourquebie	00/07/2020	0.841024	12 524242	õ	0.5	20.8	Õ	0	1	78.6	Cressland
Tiourqueble	09/07/2020	-0.041934	40.004042	0	0.5	20.8	0	0	1	78.0	Grassianu
Hourquebie	09/07/2020	-0.8413635	43.5340672	0	1.3	20.8	0	0	1	78.6	Grassland
Hourquebie	09/07/2020	-0.8413937	43.5342613	0	0.5	20.9	0	0	1	78.7	Grassland
Pibole	09/07/2020	-0.7324702	43.550446	0	0	21.3	0	3	1	78.6	Grassland
Pibolo	00/07/2020	0 7325418	43 5503357	0	0	21.3	8	1	1	78 7	Grassland
	09/07/2020	-0.7525416	40.55000001	0	0	21.5	5	1	1	70.1	Grassland
Pibole	09/07/2020	-0.732416	43.55032	0	0.7	20.7	\mathbf{G}	0	1	78.8	Grassland
Pibole	09/07/2020	-0.7325057	43.5503698	0	0	21.1	7	2	1	78.8	Grassland
Pibole	09/07/2020	-0.7325305	43.5504167	0	0	21.1	1	0	1	78.8	Grassland
Biron	00/07/2020	0 7488428	43 4642157	0	0	21.1	Ο	0	1	78.0	Grassland
Ditoli	00/07/2020	0.7400420	49.4641007	0	0	21.1	0	0	1	70.5	C 1 1
Biron	09/07/2020	-0.7489237	43.4641007	0	0	21	0	0	1	79	Grassland
Biron	09/07/2020	-0.7488008	43.4642248	0	0	20.9	0	1	1	79.1	Grassland
Biron	09/07/2020	-0.7488147	43.4642887	0	0	20.8	0	0	1	79.1	Grassland
Biron	00/07/2020	0 7485837	13 4644183	Ő	Ő	20.7	Ô	Ő	1	70.2	Crossland
	09/07/2020	-0.7405057	40.4044100	0	1.0	20.1	10	0	1	19.2	Grassland
Sauvelade	09/07/2020	-0.705163	43.3962125	0	1.6	20.9	10	2	1	78.7	Grassland
Sauvelade	09/07/2020	-0.7052283	43.396039	0	1.6	20.6	3	3	1	78.6	Grassland
Sauvelade	09/07/2020	-0.705286	43.395915	0	0.4	20.3	6	4	1	78.9	Grassland
Sauvelade	09/07/2020	-0 7049287	43 3961467	0	37	20.7	Ο	0	1	78 5	Grassland
	00/07/2020	-0.1049201	49,90001	0	0.1	20.1	0	0	1	70.0	C 1 1
Sauvelade	09/07/2020	-0.7049072	43.39601	0	2.2	18.3	0	3	1	79.1	Grassland
Abidos	09/07/2020	-0.6056157	43.3950678	0	0.5	20.8	0	1	1	78.9	Grassland
Abidos	09/07/2020	-0.605545	43.3949777	0	9	21	0	0	1	79	Grassland
Abidos	09/07/2020	-0.6056177	13 3948862	0	0.6	21	Ο	0	1	78 7	Grassland
	00/07/2020	-0.0050111	49.9040517	0	0.0	21	0	1	1	70.1	C 1 1
Abidos	09/07/2020	-0.6054488	43.3949517	0	0.1	20.6	0	1	1	79.1	Grassland
Abidos	09/07/2020	-0.6054287	43.3948967	0	0.1	20.8	0	0	1	79.1	Grassland
Arthez de Bearn	09/07/2020	-0.597732	43.4636332	0	1	20.9	14	0	0	78.9	Grassland
Arthez de Rearn	09/07/2020	-0 507807	43 46366	Ω	05	20.0	28	1	1	70	Greeland
Anthon de Deserre	00/07/2020	0.001001	49 4097507	0	0.0	 01	20	1 0	1	70.0	Cm1
Artnez de Bearn	09/07/2020	-0.5978707	43.403/507	U	2	21	32	2	1	(8.8	Grassland
Arthez de Bearn	09/07/2020	-0.5980078	43.46356	0	1.1	20.5	22	0	2	79.1	Grassland
Arthez de Bearn	09/07/2020	-0.598034	43.4634362	0	0.3	20.8	27	1	2	79	Grassland
Castlener	00/07/2020	-0 577040	13 5/68082	0	0	91.1	1	Ο	9	78.0	Grassland
Castlanar	00/07/2020	-0.011049 0 E707000	19 5400904	0	0	01 01	T O	0	2 0	70.9	Crassiand
Castlener	09/07/2020	-0.5767332	43.5408945	U	0	21	U	U	2	18.8	Grassland
Castlener	09/07/2020	-0.576904	43.5468503	0	0	21	0	0	2	79.1	Grassland
Castlener	09/07/2020	-0.5769538	43.5467868	0	0.6	20.7	0	1	1	79	Grassland
Castlener	09/07/2020	-0 5760202	43 5468853	0	0.3	20.6	7	2	1	78.0	Grassland
Dhilanda	00/07/2020	-0.0103232	49 50400000	0	0.0	20.0	1	1	1	10.9	
Philondenx	09/07/2020	-0.44067	43.564424	0	0.8	20.7	0	1	1	79	Grassland
Philondenx	09/07/2020	-0.440689	43.5644567	0	0.6	20.6	0	2	1	79.1	Grassland

Philondenx	09/07/2020	-0.4405407	43.5645893	0	0.7	20.6	6	3	1	79.1	Grassland
Philondenx	09/07/2020	-0.4405942	43.5646397	0	1.7	19.9	7	3	1	79.3	Grassland
Philondenx	09/07/2020	-0.4406463	43.5645373	0	1	20.5	9	3	1	79.2	Grassland
Momas	09/07/2020	-0.4497342	43.4506322	1.1	3.6	18.5	50	4	2	78.8	Grassland
Momas	09/07/2020	-0.4497613	43.4505695	0	5.4	20.5	29	4	2	79.2	Grassland
Momas	09/07/2020	-0.449645	43.4504837	0	2.5	19.6	34	4	2	79	Grassland
Momas	09/07/2020	-0.4497067	43.4505138	0	0.2	19.7	5	0	2	78.9	Grassland
Momas	09/07/2020	-0.4496625	43.4504768	0	0.8	20.9	0	1	1	79	Grassland
Mifaget	16/07/2020	-0.3079433	43.1104982	0	0.3	20.6	0	0	0	79.2	Grassland
Mifaget	16/07/2020	-0.3079528	43.1104522	0	0.1	20.6	0	0	0	79.3	Grassland
Mifaget	16/07/2020	-0.3079753	43.1103947	0	0.1	20.6	0	1	0	79.3	Grassland
Mifaget	16/07/2020	-0.3079797	43.1103518	0	0.1	20.6	0	0	0	79.3	Grassland
Mifaget	16/07/2020	-0.3080518	43.1102753	0	0.3	15.9	2	0	0	79.3	Grassland
Montaut	16/07/2020	-0.191059	43.119682	0	0.5	20.4	0	0	0	79.2	Forest
Montaut	16/07/2020	-0.190968	43.119638	0	3.1	18.8	2	1	0	78.9	Forest
Montaut	16/07/2020	-0.1910827	43.119651	0	1.6	19.4	15	0	0	79.2	Forest
Montaut	16/07/2020	-0.1910897	43.119648	0	0.7	20.4	4	0	0	79.2	Forest
Montaut	16/07/2020	-0.1912137	43.1195893	0	2.3	19.7	2	2	0	79.1	Forest
Soum de las Escures	16/07/2020	-0.1720875 0.1718528	43.0229472	0	0.4	20.5	う 2	0	0	79.4	Forest
Soum de las Escures	10/07/2020 16/07/2020	-0.1710030	43.0226073	0	0.5	20.5	ა 6	1	0	79.4	Meadow
Soum de las Escures	10/07/2020 16/07/2020	-0.1717042 0 1716142	43.0228087	0	0.9	20.1 20.4	4	1	0	79.3 70.4	Meadow
Soum do las Escuros	16/07/2020 16/07/2020	-0.1710142 0 1715208	43.0228122	0	0.3	20.4	4	1	0	79.4	Moadow
Agos Vidalos	16/07/2020 16/07/2020	-0.1719298	43.0223221	0	1.5	20.4 10.0	0	1	0	78.8	Grassland
Agos Vidalos	16/07/2020 16/07/2020	-0.0680287	43.0386207	0	1.5	20	4	0	0	79	Grassland
Agos Vidalos	16/07/2020 16/07/2020	-0.0679295	43.0386697	0	1.0	20	4	1	0	79.3	Grassland
Agos Vidalos	16/07/2020	-0.0678297	43 0388415	0	1.2	19.9	2	1	0	78.9	Grassland
Agos Vidalos	16/07/2020	-0.0678745	43.0389642	0	1.7	19.6	2	0	0	78.9	Grassland
Germs-sur-l'oussouet	16/07/2020	0.0547172	43.0546203	Ő	0.6	20.3	1	Õ	Ő	79.2	Meadow
Germs-sur-l'oussouet	16/07/2020	0.0549063	43.0546337	0	4.7	17.4	1	1	0	80.7	Meadow
Germs-sur-l'oussouet	16/07/2020	0.0548062	43.0546612	Õ	6.8	14.8	4	0	0	79.2	Meadow
Germs-sur-l'oussouet	16/07/2020	0.0547015	43.0546057	0	4.9	20.4	1	0	0	79.1	Meadow
Germs-sur-l'oussouet	16/07/2020	0.0547975	43.054637	0	1.8	18.9	1	0	0	79.4	Meadow
Orincles	16/07/2020	0.0411485	43.1223628	0	0.3	20.5	2	0	0	79.3	Grassland
Orincles	16/07/2020	0.0411733	43.1222295	0	1.4	19.8	15	1	0	79.6	Grassland
Orincles	16/07/2020	0.0410952	43.1220618	0	1.9	19.6	8	1	0	79.6	Grassland
Orincles	16/07/2020	0.0411063	43.1220938	0	1.9	19.5	8	1	0	79.4	Grassland
Orincles	16/07/2020	0.0411383	43.1224583	0	1.1	19.7	5	0	0	79.6	Grassland
Juillian	16/07/2020	0.0179692	43.2050957	0	0.5	20.2	4	1	0	79.4	Grassland
Juillian	16/07/2020	0.0179888	43.2051602	0	0.4	20.2	4	0	0	79.4	Grassland
Juillian	16/07/2020	0.0179372	43.2051828	0	0.5	20.3	2	0	0	79.4	Grassland
Juillian	16/07/2020	0.017816	43.2051542	0	0.9	19.8	2	1	0	79.4	Grassland
Juillian	16/07/2020	0.017756	43.2052563	0	0.5	19.8	2	0	0	79.5	Grassland
Pontacq	16/07/2020	-0.0916387	43.1938932	0	0.1	20.4	1	0	0	79.4	Grassland
Pontacq	16/07/2020	-0.0918295	43.193722	0	1	20	42	3	0	79.4	Grassland
Pontacq	16/07/2020	-0.091808	43.1935247	0	0.2	20.3	1	0	0	79.5	Grassland
Pontacq	16/07/2020	-0.091647	43.193548	0	2.4	19.5	2	1	0	79.6	Grassland
Pontacq	16/07/2020	-0.0917788	43.1935427	0	1.3	20.4	11	2	0	79.6	Grassland
Loubajac	16/07/2020	-0.070349	43.1334703	0	0.2	20.5	3 16	1	0	79.3	Grassland
Loubajac	10/07/2020 16/07/2020	-0.0703337	43.1334140	0	0.5	20.5	10	2	0	79.3 70.2	Grassland
Loubajac	16/07/2020	-0.0703338	43.13540	0	1.0	20.0	20 10	ე ე	0	79.2	Crassland
Loubajac	16/07/2020 16/07/2020	-0.0702738	43.135329	0	1.9	19.0	19	2	0	79.1	Grassland
Bénéjac	16/07/2020 16/07/2020	-0.19699	43 199649	0	- 0.6	20.3	45 7	1	0	79.3	Grassland
Bénéjac	16/07/2020	-0.197034	43,19965	0	0.9	20.3	9	1	0	79.2	Grassland
Bénéjac	16/07/2020	-0.196885	43.199721	Ő	0.8	20.3	8	1	Ő	79.1	Grassland
Bénéjac	16/07/2020	-0.196624	43,199563	Õ	0.5	20.3	1	0	Ő	79.2	Grassland
Bénéjac	16/07/2020	-0.196718	43.199592	0	0.2	20.6	3	0	0	79.2	Grassland
Lesquerre	16/07/2020	-0.3421668	43.193199	0	0.9	20.3	3	0	0	79	Grassland
Lesquerre	16/07/2020	-0.3420142	43.193045	0	0.4	20.6	0	0	0	79.1	Grassland
Lesquerre	16/07/2020	-0.3419785	43.1930263	0	0.7	20.4	19	0	0	79.1	Grassland
Lesquerre	16/07/2020	-0.3420807	43.1930437	0	0.3	20.5	34	13	0	79.2	Grassland
Lesquerre	16/07/2020	-0.3418658	43.1931167	0	0.3	20.7	4	1	0	79.2	Grassland
Limendous	17/07/2020	-0.184942	43.2732077	0	1.8	20.7	8	0	0	79	Grassland
Limendous	17/07/2020	-0.1849852	43.273242	0	0.9	20.1	11	1	0	79.3	Grassland
Limendous	17/07/2020	-0.18485	43.2732618	0	1.4	20.1	24	2	0	78.9	Grassland
Limendous	17/07/2020	-0.1845785	43.2734148	0	0.4	20.3	20	1	0	79.2	Grassland

Limendous	17/07/2020	-0.1846843	43.2732183	0	0.9	20.1	4	1	0	79.1	Grassland
AAST	17/07/2020	-0.0905755	43.2812423	0	0.8	20.6	0	0	0	78.8	Grassland
AAST	17/07/2020	-0.0906192	43.28133	0	0.5	20.7	1	2	0	79	Grassland
AAST	17/07/2020	-0.0906485	43.2813792	0	0.8	20.8	4	1	0	78.8	Grassland
AAST	17/07/2020	-0.090692	43.2813773	0	0.1	20.4	3	0	0	79.1	Grassland
AAST	17/07/2020	-0.090754	43.2811532	0	0.5	20.5	13	1	0	79	Grassland
Lagarde	17/07/2020	0.028728	43.29708	0.1	0.3	20.7	3	0	0	79.1	Grassland
Lagarde	17/07/2020	0.0286485	43.2972113	0	0.2	20.6	$\tilde{5}$	1	Ő	79.1	Grassland
Lagarde	17/07/2020	0.0288807	43.297156	0	1	20.2	6	1	0	79.1	Grassland
Lagarde	17/07/2020	0.028839	43.2971893	Ő	0.4	20.4	$\tilde{5}$	1	Ő	79.3	Grassland
Lagarde	17/07/2020	0.0291008	43.2971365	Ő	0.2	20.4	3	0	Ő	79.4	Grassland
Saint Lézer	17/07/2020	0.0255307	43.3782162	Ő	0.3	20.6	1	2	Ő	79.3	Grassland
Saint Lézer	17/07/2020	0.0255418	43.3781755	Õ	0.8	$\frac{20.0}{20.2}$	1	2	0	79.2	Grassland
Saint Lézer	17/07/2020	0.0256272	43 3781927	Õ	0.0	20.2	2	0	0	79.4	Grassland
Saint Lézer	17/07/2020	0.02554	43 3781095	õ	0.8	20.5	0	1	Ő	79.2	Grassland
Saint Lézer	17/07/2020	0.0255788	43 3779572	Ő	0.6	20.0	5	1	0	79.4	Grassland
Maubourget	17/07/2020 17/07/2020	0.0251748	43.4800077	0	0.0	20.1	0	0	0	79.4	Grassland
Maubourget	17/07/2020 17/07/2020	0.0251038	43 480026	0	0.4	20.2	1	0	0	70.5	Grassland
Maubourget	17/07/2020 17/07/2020	0.0251950 0.0251063	43.4800633	0	0.2	10.2	3	0	0	79.5	Grassland
Maubourget	17/07/2020 17/07/2020	0.0251903 0.0251822	43.4801102	0	0.0	20.2	ວ ຈ	0	0	79.5	Grassland
Maubourget	17/07/2020 17/07/2020	0.0251622	43.4801192	0	0.2	20.2	2	1	0	79.5	Grassland
Maubourget	17/07/2020 17/07/2020	0.0231003 0.0047643	43.4001343	0	0.1	20.2	ა ე	1	0	79.0 70.6	Grassland
Heres	17/07/2020	0.0047642	43.5438105	0	3.2	17.8	う 1	0	0	79.0 70.6	Grassland
Heres	17/07/2020	0.0047792	43.5436597	0	0.7	19.9	1	0	0	79.6	Grassland
Heres	17/07/2020	0.0047897	43.5437658	0	1.1	19.7	2	0	0	79.4	Grassland
Hères	17/07/2020	0.0048278	43.5437758	0	0.5	20	2	0	0	79.6	Grassland
Hères	17/07/2020	0.0048217	43.543793	0	0.8	20.2	4	0	0	79.6	Grassland
Arrosès	17/07/2020	-0.1044333	43.5366138	0	0.3	20	1	1	0	79.5	Grassland
Arrosès	17/07/2020	-0.104399	43.5365902	0	0.5	20.3	1	0	0	79.5	Grassland
Arrosès	17/07/2020	-0.1043697	43.536653	0	0.1	20.3	0	0	0	79.6	Grassland
Arrosès	17/07/2020	-0.1042582	43.5366695	0	0.2	20.1	0	0	0	79.7	Grassland
Arrosès	17/07/2020	-0.1041008	43.5365278	0	0.4	20	4	1	0	79.8	Grassland
Séméacq Blachon	17/07/2020	-0.1237073	43.4946453	0	0.3	19.9	1	2	0	79.8	Grassland
Séméacq Blachon	17/07/2020	-0.1236198	43.4946773	0	0.2	20	2	1	0	79.7	Grassland
Séméacq Blachon	17/07/2020	-0.1233745	43.4945723	0	0.7	20.2	5	1	0	79.7	Grassland
Séméacq Blachon	17/07/2020	-0.1236595	43.494567	0	0.3	20.2	8	1	0	79.6	Grassland
Séméacq Blachon	17/07/2020	-0.1234102	43.494553	0	0.1	20.2	6	1	0	79.6	Grassland
Lucaré	17/07/2020	-0.078102	43.415144	0	1.6	19.6	2	2	0	79.8	Grassland
Lucaré	17/07/2020	-0.078102	43.415144	0	0.7	19.8	0	1	0	79.7	Grassland
Lucaré	17/07/2020	-0.078102	43.415144	0	0.4	20	0	0	0	79.7	Grassland
Lucaré	17/07/2020	-0.077827	43.412965	0	1.2	19.5	0	0	0	79.6	Grassland
Lucaré	17/07/2020	-0.077872	43.413032	0	0.2	20	0	0	0	79.8	Grassland
Bedous	22/07/2020	-0.558885	42.996271	0	0.8	20.3	2	0	0	79.1	Meadow
Bedous	22/07/2020	-0.580959	42.998354	0	0.4	20.4	3	0	0	79.2	Meadow
Bedous	22/07/2020	-0.55879	42.996059	0	0.6	20.3	3	0	0	79.1	Meadow
Bedous	22/07/2020	-0.5591932	42.996031	0	0.3	20.3	3	0	0	79.3	Meadow
Bedous	22/07/2020	-0.558908	42.996065	0	0.3	20.6	13	1	0	79.2	Meadow
Gère Belestin	22/07/2020	-0.421927	43.024804	0	1.4	20	3	1	0	79.1	Meadow
Gère Belestin	22/07/2020	-0.422018	43.024752	0	0.9	19.9	2	1	0	79.4	Meadow
Gère Belestin	$\frac{22}{07}$	-0.4218915	43.0247782	Ő	0.4	20.2	1	1	Ő	79.5	Meadow
Gère Belestin	$\frac{22}{07}$	-0.4219123	43.0247222	Ő	0.8	20	7	2	Ő	79.7	Meadow
Gère Belestin	$\frac{22}{07}$	-0 4218905	43 0246917	õ	1	19.8	2	0	Ő	79.8	Meadow
Arudy	22/07/2020	-0.4376092	43 1105303	Õ	19	20.1	2	Õ	0 0	79.6	Grassland
Arudy	22/07/2020	-0.4374483	43.1105500	0	1.5 1 7	10.1	1	1	0	79.4	Grassland
Arudy	22/07/2020	-0 4378262	43 1102668	0	1.7	10.1	0	0	0	79.5	Grassland
Arudy	22/07/2020	-0.4378197	43 1101688	0	1.1	10.0	1	1	0	79.7	Grassland
Arudy	22/07/2020	-0.4377137	43 110243	0	1.0	10.1	0	1	0	70.8	Grassland
Misérieu	22/07/2020	0.4577157	49.1165977	0	1.9	10.6	1	1	0	79.8	Mondorr
Misériou	22/07/2020	0.552402	43.1155277	0	1.0	19.0	1	0	0	79.5	Meadow
Misériou	22/07/2020	-0.553402	43.1155118	0	2.0	10.0	5	1	0	77.0	Meadow
Misériou	22/01/2020	-0.000040Z	40.1100107	0	1.9	170	ວ ດ	1	0	11.9 70 5	Mondary
Miseriou	22/07/2020	-0.0000097	40.1104303	U		10.0	2	1	U	79.5	M
Miseriou	22/07/2020	-0.553475	43.1155432	U	1.2	19.8	చ 4	1	U	(9.4	Meadow
Precilinon	22/07/2020	-0.573282	43.1977083	0	0.1	20.4	4	U	0	79.6	Grassland
Precilinon	22/07/2020	-0.5732382	43.197551	0	0.7	19.8	8	1	0	79.6	Grassland
Precilhon	22/07/2020	-0.573247	43.1977563	0	0.1	20.2	6	0	0	79.7	Grassland
Précilhon	22/07/2020	-0.5732867	43.1977603	0	0.1	20.1	3	1	0	79.7	Grassland
Précilhon	22/07/2020	-0.5732755	43.197754	0	0.1	20.1	2	1	0	79.8	Grassland
Labarcat	22/07/2020	-0.4235382	43.205561	0	0.1	20.1	4	1	0	79.8	Grassland

Labarcat	22/07/2020	-0.4233417	43.2054665	0	0.1	20	5	1	0	79.8	Grassland
Labarcat	22/07/2020	-0.4232645	43.2054848	0	1.2	19.6	2	1	0	79.6	Grassland
Labarcat	22/07/2020	0 4232525	43 2054667	Ο	0.6	10.7	2	1	Ο	70.7	Greesland
	22/01/2020	-0.4202020	49.005556	0	0.0	10.1	-	1	0	70.7	C 1 1
Labarcat	22/07/2020	-0.4234	43.205556	0	0.1	20	Э	1	0	79.7	Grassland
Lesquerré	22/07/2020	-0.3421668	43.193199	0	0.9	20.3	3	0	0	79	Grassland
Lesquerré	22/07/2020	-0.3420142	43.193045	0	0.4	20.6	0	0	0	79.1	Grassland
Lesquerré	22/07/2020	-0 3/19785	43 1930263	0	0.7	20.4	10	Ο	Ο	79.1	Grassland
Lesquerre	22/01/2020	-0.0419705	40.1000405	0	0.1	20.4	13	10	0	79.1	Grassland
Lesquerre	22/07/2020	-0.3420807	43.1930437	0	0.3	20.5	34	13	0	79.2	Grassland
Lesquerré	22/07/2020	-0.3418658	43.1931167	0	0.3	20.7	4	1	0	79.2	Grassland
Bizanos	22/07/2020	-0.352381	43.2808795	0	0.6	20.2	1	0	0	79.7	Grassland
Bizanos	22/07/2020	-0.3524877	43 2809692	0	0.8	19.3	5	0	Ο	79.8	Grassland
Dizanos	22/01/2020	0.0024011	49,00000000	0	0.0	10.0	0	1	0	10.0	C 1 1
Bizanos	22/07/2020	-0.3524802	43.2808342	0	0.9	19.2	8	1	0	80	Grassland
Bizanos	22/07/2020	-0.3523057	43.2808578	0	0.8	19.5	3	1	0	80.1	Grassland
Bizanos	22/07/2020	-0.352358	43.2808867	0	0.5	19.4	2	1	0	80.3	Grassland
Laroin	$22^{\prime}/07^{\prime}/2020$	-0 4377835	43 304135	0	0	197	1	0	0	80.3	Grassland
Landin	22/07/2020	0.4277965	42 2041002	0	0	10.7	0	0	0	80.0	Creasland
Laroin	22/07/2020	-0.4577805	45.5041005	0	0	19.7	2	0	0	80.2	Grassland
Laroin	22/07/2020	-0.4378673	43.3041963	0	0	19.7	2	1	0	80.3	Grassland
Laroin	22/07/2020	-0.4377183	43.304082	0	0.1	19.6	6	2	0	80.2	Grassland
Laroin	22/07/2020	-0.4378415	43.3042063	0	0.4	19.6	3	1	0	80.1	Grassland
Lancin	22/07/2020	0.4270217	42 2042225	0	0.1	10.0	7	1	Ô	80.2	Creaseland
	22/07/2020	-0.4379217	45.5042255	0	0.5	19.4	1	1	0	80.5	Grassianu
Haurrot	22/07/2020	-0.5678612	43.3082782	0	0.2	20	3	1	0	79.8	Grassland
Haurrot	22/07/2020	-0.5679992	43.3081078	0	0.3	20.1	2	0	0	79.6	Grassland
Haurrot	$22^{\prime}/07^{\prime}/2020$	-0 5678602	43 3082385	0	0.5	19.9	5	1	0	797	Grassland
Haumot	22/07/2020	0.5678012	42 20002000	0	0.0	20	4	1	0	70.9	Creaseland
Haurrot	22/07/2020	-0.5078013	43.308289	0	0.3	20	4	1	0	79.8	Grassland
Haurrot	22/07/2020	-0.5677583	43.308181	0	0.1	20	3	1	0	79.8	Grassland
Gaujacq	11/08/2020	-0.711854	43.661172	0	0.2	20.6	8	1	0	79.4	Grassland
Gaujaco	11/08/2020	-0 711818	43 661121	0	0.3	20.4	5	1	<u> </u>	79.4	Grassland
Gaujacq	11/00/2020	-0.711010	40.001121	0	0.0	20.4	5	1	0	79.4	Grassland
Gaujacq	11/08/2020	-0.71181	43.661096	0	0.6	20.2	5	1	0	79.3	Grassland
Gaujacq	11/08/2020	-0.711829	43.661142	0	0.6	20	16	1	0	79.4	Grassland
Gaujaco	11/08/2020	-0.71198	43.66121	0	2.8	19.1	3	0	0	79	Grassland
Povrodòro	11/08/2020	0 7108242	43 7328115	0	0.1	20.8	1	0	<u> </u>	70.1	Greesland
D	11/00/2020	-0.7130242	40.7020110	0	0.1	20.8	1	0	0	75.1	Grassland
Peyredere	11/08/2020	-0.7199733	43.7327623	0	0.4	20.6	1	0	0	79.1	Grassland
Peyredère	11/08/2020	-0.7198872	43.7327407	0	0.3	20.6	1	0	0	79	Grassland
Pevredère	11/08/2020	-0.7199125	43.7326877	0	0.4	20.5	0	0	0	79.3	Grassland
Povrodòro	11/08/2020	0 7100673	43 7397985	Ň	0.4	20.6	$\tilde{2}$	° 2	Ő	70.4	Grassland
	11/00/2020	-0.1133013	49.7927205	0	0.4	20.0	10	2	0	79.4	Grassianu O 1 1
Gamarde-les-Bains	11/08/2020	-0.8617692	43.7397787	0	0.5	20.9	13	0	0	79.1	Grassland
Gamarde-les-Bains	11/08/2020	-0.8618607	43.7396248	0	0.6	20.5	15	0	0	79	Grassland
Gamarde-les-Bains	11/08/2020	-0.861661	43.7396663	0	0.9	20.7	45	1	0	79.1	Grassland
Camardo los Bains	11/08/2020	0.8613703	43 7306463	ů.	0.6	20.7	10	0	Ő	70.2	Creceland
Gamarde-les-Dams	11/06/2020	-0.0013703	43.7390403	0	0.0	20.7	19	0	0	79.2	Grassiand
Gamarde-les-Bains	11/08/2020	-0.861776	43.7396423	0	0.2	20.5	2	0	0	79.3	Grassland
Candresse	11/08/2020	-0.9759565	43.723164	0	0.5	20.5	2	0	0	79	Grassland
Candresse	11/08/2020	-0.9760732	43,7231787	0	0.7	20.4	1	1	0	79.1	Grassland
Candragge	11/08/2020	0.0750169	42 702105	0.1	0.6	20.2	0	1	Õ	70.1	Creaseland
Candresse	11/08/2020	-0.9759102	45.725125	0.1	0.0	20.5	0	1	0	79.1	Grassland
Candresse	11/08/2020	-0.9758305	43.7231423	0	0.6	20.3	0	0	0	79.2	Grassland
Candresse	11/08/2020	-0.9756418	43.7231338	0	0.7	20.3	1	0	0	79.1	Grassland
Evrasse	11/08/2020	-1 1011817	$43\ 7253257$	0	11	20.4	2	1	Ο	79.2	Grassland
Eyrabbe	11/00/2020	1 1000049	42 70F00CF	0	1.1	10.7	11	- 1 - 0	0	70.2	Grassland
Lyrasse	11/08/2020	-1.1009842	45.7252905	0	1	19.7	11	3	0	79.5	Grassland
Eyrasse	11/08/2020	-1.1009377	43.7253348	0.1	1	19.7	13	3	0	79.3	Grassland
Eyrasse	11/08/2020	-1.1009972	43.7251972	0	0.9	19.8	5	1	0	79.4	Grassland
Evrasse	11/08/2020	-1 1008223	43 7252723	0	0.7	197	4	1	Ο	79.5	Grassland
Delenten	11/08/2020	1.1000220	42 7000160	0	0.1	20.2	0	0	0	70.2	Creaseland
Balenton	11/08/2020	-1.228401	43.7222102	0	0.4	20.3	0	0	0	79.3	Grassland
Balenton	11/08/2020	-1.2283947	43.7222538	0	0.4	20.2	0	0	0	79.4	Grassland
Balenton	11/08/2020	-1.2282937	43.722274	0	0.4	20.2	0	0	0	79.4	Grassland
Balenton	11/08/2020	-1 228/365	43 7999499	0	0.2	20.2	10	2	<u> </u>	79.5	Grassland
	11/00/2020	1.0000000	40.1222422	0	0.2	20.2	10	2	0	79.0	Grassianu O 1 1
Balenton	11/08/2020	-1.2283322	43.7222807	0	0.4	20.3	10	0	0	79.4	Grassland
Josse	11/08/2020	-1.2201365	43.6384445	0	0.2	20.3	2	0	0	79.3	Grassland
Josse	11/08/2020	-1.2201792	43.6385422	0	0.2	20.4	5	0	0	79.3	Grassland
Josso	11/08/2020	1 2100042	43 6385035	ů.	0.5	20	7	1	Ő	70.4	Creceland
Jeaco	11/00/2020	-1.2199942	49,0909999	0	0.0	20	1	1	0	19.4	Grassland
Josse	11/08/2020	-1.2199308	43.6384893	0	0.1	20.4	9	0	0	79.4	Grassland
Josse	11/08/2020	-1.2201363	43.6385252	0	0.2	20.3	13	1	0	79.4	Grassland
Heugas	11/08/2020	-1.090996	43.631865	0	0.4	20.1	2	1	0	79.6	Grassland
Houges	11/00/2020	1 001000	12 691701	ñ	0.1	20.1	- 6	1	Ň	70.0	Creasiand
neugas	11/08/2020	-1.091223	40.001/91	0	0.2	20.1	U	1	U	19.8	Grassland
Heugas	11/08/2020	-1.09121	43.63183	0	0.1	20.1	8	1	0	79.8	Grassland
Heugas	11/08/2020	-1.09098	43.631847	0	0.6	20	4	1	0	79.9	Grassland
Heugas	11/08/2020	-1.091198	43.631744	0	0.4	19.8	3	1	Ο	79.9	Grassland
Mimbosto	11/00/2020	0.0650445	10.001111	0	0.1	10.0	0	- -	0	70.0	Character 1
Mimbaste	11/08/2020	-0.9652445	43.0409152	U	0.3	20.2	2	U	U	79.8	Grassland
Mimbaste	11/08/2020	-0.965301	43.6468947	0	0.3	20	5	0	0	79.9	Grassland

Mimbaste	11/08/2020	-0.965351	43.64686	0	0.4	19.8	3	2	0	79.9	Grassland
Mimbaste	11/08/2020	-0.9654008	43.6469332	0	0.2	19.7	3	1	0	80	Grassland
Mimbaste	11/08/2020	-0.9652538	43 6469303	Ő	0.3	19.8	8	1	Ő	80	Grassland
Bomarez	11/08/2020	-0.838045	43 6329775	Õ	0.3	20	3	0	Ő	79.9	Grassland
Bomarez	11/08/2020 11/08/2020	-0.8381438	43 6329355	0	0.0	19.8	3	0	0	80	Grassland
Bomarez	11/08/2020 11/08/2020	-0.8380463	43 6330792	0	0.2	10.0	11	1	0	80	Grassland
Bomaroz	11/08/2020	0.8370175	43 6330263	0	0.2	10.0	7	1	0	80	Grassland
Bomaroz	11/08/2020 11/08/2020	0.8380027	43 6330245	0	0.2	10.0	י י	0	0	80	Grassland
Bahus soubiran	11/08/2020 14/08/2020	0.363006	43 666300	0	0.1	10.0 20.7	0	0	0	70.3	Grassland
Bahus soubiran	14/08/2020 14/08/2020	0.363166	43.666453	0	0.4	20.1	0	1	0	70.4	Grassland
Bahus soubiran	14/08/2020 14/08/2020	-0.303100	43.000433	0	0.2	20.0	19	1	0	79.4	Cressland
Dahus soubiran	14/08/2020	-0.303088	43.00037	0	0.4	20.2	12	1	0	79.4	Creasland
Banus soubiran	14/08/2020	-0.303002	43.000293	0	0.0	20.5	2 1	1	0	79.5	Grassland
Danus soubiran	14/08/2020	-0.302971	43.000409 42.660555	0	0.5	20.5	1	1	0	79.4	Grassland
Demède	14/08/2020	-0.220397	43.009333	0	0.2	20.7	ວ າ	0	0	79.1	Grassland
Demède	14/08/2020	-0.231007	43.009204	0	0.7	20.0	ა ი	0	0	70.9	Grassland
Bernede	14/08/2020	-0.2317108	43.0092927	0	0.3	20.0	3	0	0	79.1	Grassland
Bernede	14/08/2020	-0.2317098	43.0092878	0	0.2	20.7	4	1	0	79.1	Grassland
Bernede	14/08/2020	-0.231082	43.0093103	0	0.1	20.0	8	1	0	79.2	Grassland
Tarsac	14/08/2020	-0.1047977	43.0070332	0	0.5	20.5	0	0	0	79.1	Grassland
Tarsac	14/08/2020	-0.1040757	43.0009787	0	0.4	20.4	8	0	0	79.1	Grassland
Tarsac	14/08/2020	-0.1046098	43.007035	0	0.1	20.6	3	0	0	79.2	Grassland
Tarsac	14/08/2020	-0.1046848	43.6670573	0	0.1	20.6	2	0	0	79.3	Grassland
Tarsac	14/08/2020	-0.1046477	43.6670395	0	0.1	20.6	7	0	0	79.3	Grassland
Arblade le haut	14/08/2020	-0.0639412	43.7436748	0	0.2	20.8	6	1	0	79.2	Grassland
Arblade le haut	14/08/2020	-0.0640433	43.7437165	0	0.1	20.6	2	0	0	79.3	Grassland
Arblade le haut	14/08/2020	-0.0640572	43.7436472	0	0.3	20.6	7	0	0	79.3	Grassland
Arblade le haut	14/08/2020	-0.06405	43.743551	0	0.1	20.6	0	0	0	79.4	Grassland
Arblade le haut	14/08/2020	-0.0639667	43.7435555	0	0.1	20.5	0	0	0	79.4	Grassland
Lussagnet	14/08/2020	-0.230921	43.7748162	0	0.1	20.7	3	0	0	79.2	Grassland
Lussagnet	14/08/2020	-0.2310398	43.7749073	0	0.1	20.6	0	0	0	79.2	Grassland
Lussagnet	14/08/2020	-0.2310505	43.774818	0	0.1	20.7	8	0	0	79.3	Grassland
Lussagnet	14/08/2020	-0.2311072	43.7749108	0	0.4	20.6	1	0	0	79.3	Grassland
Lussagnet	14/08/2020	-0.23099	43.7748947	0	0.1	20.6	1	0	0	79.3	Grassland
Lussagnet	14/08/2020	-0.231062	43.7749715	0	0.4	20.3	0	0	0	79.4	Grassland
Renung	14/08/2020	-0.3554283	43.7404603	0	0.1	20.7	0	0	0	79.6	Grassland
Renung	14/08/2020	-0.3554055	43.740559	0	0.3	20.1	0	1	0	79.6	Grassland
Renung	14/08/2020	-0.3553953	43.7405038	0	0.7	20	9	0	0	79.6	Grassland
Renung	14/08/2020	-0.3553823	43.7405203	0	1.5	20.2	3	0	0	79.6	Grassland
Renung	14/08/2020	-0.3554242	43.7404992	0	0.9	20.2	12	1	0	79.8	Grassland
Renung	14/08/2020	-0.3560313	43.7407593	0	0.7	20	3	0	0	79.7	Grassland
Montgaillard	14/08/2020	-0.481685	43.7377	0	0.8	19.9	11	1	0	79.4	Grassland
Montgaillard	14/08/2020	-0.4818232	43.7377322	0	1	19.7	15	2	0	79.4	Grassland
Montgaillard	14/08/2020	-0.4816722	43.7376365	0	1.4	19.6	32	2	0	79.3	Grassland
Montgaillard	14/08/2020	-0.4818088	43.7377325	0	0.4	20.3	17	2	0	79.4	Grassland
Montgaillard	14/08/2020	-0.4818938	43.7377943	0	1.2	19.8	27	2	0	79.4	Grassland
Audignon	14/08/2020	-0.5882988	43.7297888	0	0.1	20.7	0	0	0	79.2	Grassland
Audignon	14/08/2020	-0.5884475	43.729895	0	1.8	19.5	2	0	0	79.1	Grassland
Audignon	14/08/2020	-0.58841	43.7299447	0	0.5	19.8	3	0	0	79.3	Grassland
Audignon	14/08/2020	-0.5883987	43.7298453	0	0.7	20.6	10	1	0	79.3	Grassland
Audignon	14/08/2020	-0.5885272	43.729939	0	3.8	20.5	19	0	0	79.2	Grassland
Magetmau	14/08/2020	-0.6096252	43.6519425	0	1.5	20.5	32	2	0	79.5	Grassland
Magetmau	14/08/2020	-0.6095663	43.65185	0	0.8	19.8	14	2	0	79.4	Grassland
Magetmau	14/08/2020	-0.6096323	43.6518175	0	1.4	19.6	3	0	0	79.1	Grassland
Magetmau	14/08/2020	-0.6096772	43.651997	0	0.9	19.4	0	0	0	79.2	Grassland
Magetmau	14/08/2020	-0.6097428	43.6518995	0	0.7	19.2	35	1	0	79.7	Grassland
Bats	14/08/2020	-0.4601553	43.6514042	0	0.7	20.2	2	1	0	79.3	Grassland
Bats	14/08/2020	-0.4601502	43.6514328	0	0.6	20.5	4	0	0	79.2	Grassland
Bats	14/08/2020	-0.4600367	43.6515062	0	0.4	20.4	6	1	0	79.3	Grassland
Bats	14/08/2020	-0.4600917	43.6514823	0	0.8	20	5	1	0	79.3	Grassland
Bats	14/08/2020	-0.4599673	43.6516208	0	0.7	20	6	1	0	79.4	Grassland
Lecumberry	18/08/2020	-1.1393383	43.1440442	0	0.7	20.6	0	0	0	79.2	Meadow
Lecumberry	18/08/2020	-1.1393143	43.144071	0	0.3	20	0	0	0	79.4	Meadow
Lecumberry	18/08/2020	-1.1392185	43.1441372	0	0.3	20.2	0	1	0	79.4	Meadow
Lecumberry	18/08/2020	-1.139389	43.1439758	0	0.1	20.2	0	0	0	79.6	Meadow
Lecumberry	18/08/2020	-1.1393502	43.1439783	0	1.2	19.7	0	1	0	79	Meadow
Pierraene. col de Napole	18/08/2020	-0.9862093	43.1541787	0	0.2	20.5	0	0	0	79.5	Meadow
Pierraene. col de Napole	18/08/2020	-0.9861945	43.1542212	0	0.1	20.2	0	1	0	79.6	Meadow

Pierraene, col de Napole	18/08/2020	-0.9861342	43.1541937	0	0.1	20.3	0	0	0	79.6	Meadow
Pierraene, col de Napole	18/08/2020	-0.9861055	43.1542472	Õ	0.1	20.2	Ő	Ő	Ő	79.7	Meadow
Pierraene, col de Napole	18/08/2020	-0.986105	43.154076	Õ	0.1	20.1	0	Ő	Ő	79.8	Meadow
Sauguis saint Etienne	18/08/2020	-0.8938353	43.1539908	Õ	0.1	20.1	Ő	1	Ő	79.8	Grassland
Sauguis saint Etienne	18/08/2020	-0.8937287	43.1537652	0	0.5	19.9	5	1	Õ	79.8	Grassland
Sauguis saint Etienne	18/08/2020	-0.8937233	43.1537592	0	0.3	20	4	0	0	79.8	Grassland
Sauguis saint Etienne	18/08/2020	-0.8938668	43,1537913	0	0.6	19.7	2	0	0	79.9	Grassland
Sauguis saint Etienne	18/08/2020	-0.8939265	43.1537747	Õ	0.6	19.7	2	1	Ő	79.9	Grassland
Mauléon Licharre	18/08/2020	-0.890561	43.2317192	Õ	0.1	20	0	0	Ő	79.9	Grassland
Mauléon Licharre	18/08/2020	-0.8906138	43.2317945	Õ	0.1	19.9	1	õ	Ő	79.9	Grassland
Mauléon Licharre	18/08/2020	-0.8905575	43.2317268	Õ	0.2	20	1	1	Ő	79.9	Grassland
Mauléon Licharre	18/08/2020	-0.8906512	43.2317132	Õ	0.1	19.9	0	1	Ő	80	Grassland
Mauléon Licharre	18/08/2020	-0.8906273	43.2316172	Õ	0.1	19.9	1	0	Õ	79.9	Grassland
Charre	18/08/2020	-0.8790327	43.319389	Õ	0.1	20.2	3	õ	Ő	79.7	Grassland
Charre	18/08/2020	-0.8787977	43.3194755	Õ	0.1	20.1	3	1	Ő	79.7	Grassland
Charre	18/08/2020	-0.878745	43.3194802	Õ	1	19.4	5	2	Ő	79.6	Grassland
Charre	18/08/2020	-0.8786887	$43 \ 3194895$	0	04	19.4	5	2	0	79.7	Grassland
Charre	18/08/2020	-0.878809	43 3195378	0	1.6	19.2	51	4	0	79.7	Grassland
Béhasque Lapiste	18/08/2020	-1 0008585	43 3238257	0	0.1	$\frac{10.2}{20.2}$	1	1	0	79.7	Grassland
Béhasque Lapiste	18/08/2020	-1 0011103	43 3239293	0	0.1	20.2	2	1	0	79.6	Grassland
Béhasque Lapiste	18/08/2020	-1 0010653	43 324019	0	0.1	20.3	-3	0	0	79.6	Grassland
Béhasque Lapiste	18/08/2020 18/08/2020	-1.0010009	43 3240365	0	0.1	20.0 20.1	1	1	0	79.7	Grassland
Béhasque Lapiste	18/08/2020 18/08/2020	-1.0010500	43.3240509 43.3240528	0	0.5	20.1 20.2	1	0	0	79.7	Grassland
Pagolle	18/08/2020	-0.9886803	43.0240020	0	0	20.2	1	0	0	79.5	Grassland
Pagollo	18/08/2020	0.0885677	43.2312300	0	0	20.0 20.1	1 9	1	0	70.7	Grassland
Pagollo	18/08/2020	0.0885308	43.231237	0	0	20.1	2 1	0	0	70.8	Grassland
Pagollo	18/08/2020	-0.9886507	43.2313123	0	0.1	20.5	0	0	0	70.0	Grassland
Pagollo	18/08/2020	0.0886485	43.2313438	0	0.1	20 20	5	1	0	70.8	Grassland
Saint Etienne Lantabat	18/08/2020	-0.3000403 -1.1477432	43.2313002	0	0.1	20	1	1	0	79.0	Grassland
Saint Etienne Lantabat	18/08/2020	-1.1477402 1 1477339	43.2460732	0	0.0	20.0	3	1	0	70.3	Grassland
Saint Etienne Lantabat	18/08/2020	1.1477552	43.2401233	0	0.4	20.0	ວ ົງ	0	0	79.5	Grassland
Saint Etienne Lantabat	18/08/2020	1 1/78353	43.240028	0	0.1	20.4	2	0	0	70.3	Grassland
Saint Etienne Lantabat	18/08/2020	-1.1478555 1.1478137	43.2401755	0	0.2	20.4 20.5	2	0	0	79.3	Grassland
Méhorin	18/08/2020	-1.1470137 1 1201212	43.240233	0	0.1	20.5 20.6	2	0	0	79.5	Grassland
Méharin	18/08/2020	-1.1391313 1 1302758	43.3301018	0	0.1	20.0	2 1	0	0	79.3	Grassland
Méharin	18/08/2020	-1.1392738 1 1302132	43.3302333	0	0.1	20.0 20.5	1	0	0	79.5	Grassland
Méharin	18/08/2020	-1.1392132	43.33012238	0	0.1	$\frac{20.5}{20.5}$	2	0	0	79.5 79.4	Grassland
Méharin	18/08/2020	-1 1301825	43.3301902	0	0.1	$\frac{20.5}{20.4}$	2 1	0	0	79.4	Grassland
Oròguo	18/08/2020	-1.1351625 1 1354657	43.3360803	0	0.1	20.4	1	0	0	70.5	Grassland
Orègue	18/08/2020	-1.1353067	43.3900803	0	0.4	$\frac{20.3}{20.1}$	1	0	0	79.6	Grassland
Orègue	18/08/2020	-1.1353567	43.3959545	0	0.2	20.1	1	0	0	79.6	Grassland
Orègue	18/08/2020	-1.1354103 -1.1355102	43 3960882	0	0.4	20 20	2	0	0	79.0	Grassland
Orègue	18/08/2020	-1.135330	43.3960992	0	0.5	20	1	0	0	79.7	Grassland
Abitain	19/08/2020	-0.0051383	43.330033	0	0.2	20.1	0	0	0	79.7	Grassland
Abitain	19/08/2020	-0.9951185	43.4123437 43.4123527	0	0.2	20.0 20.4	0	1	0	79.2	Grassland
Abitain	19/08/2020	-0.9951878	43.4123327	0	0.5	20.4	4	0	0	79.2	Grassland
Abitain	19/08/2020	-0.9951078	43.4123408	0	0.5	$\frac{20.3}{20.4}$	4 9	0	0	79.2	Grassland
Abitain	19/08/2020	0.0052165	43.4122013	0	0.2	20.4 20.5	0	0	0	70.3	Grassland
Orion	19/08/2020	-0.8620758	43.4123142	0	0.2	$\frac{20.5}{20.4}$	0	1	0	79.5	Grassland
Orion	19/08/2020	-0.8621823	43.4184993	0	0.5	20.4	1	1	0	79.2	Grassland
Orion	19/08/2020	-0.8621642	43.4184223	0	0.9	20 20	1	0	0	79.1	Grassland
Orion	19/08/2020	-0.862236	43.418376	0	0.2	20 3	3	0	0	79.5	Grassland
Orion	19/08/2020 10/08/2020	0.8621105	43.4184047	0	0.4	20.5	1	0	0	79.5	Grassland
Sauvotorro	26/08/2020	0.040000	43.4104047	0	0.5	20	37	2	0	70.4	Grassland
Sauveterre	26/08/2020	-0.949009	43.4044013	0	0.1	20.0 10.0	11	0	0	79.4	Grassland
Sauveterre	26/08/2020	0.040078	43.4040333	0	0.1	10.8	11	1	0	70.6	Grassland
Sauveterre	26/08/2020	-0.949018	43.4040273	0	0.4	10.6	14 97	1 9	0	70.6	Crassland
Sauveterre	20/08/2020	-0.9490092	43.4050905	0	1	19.0	5	2	0	79.0	Grassland
Sauveterre	26/08/2020	-0.343107	43 4055935	0	U 3 T	19.9 20.1	20	0	0	70.6	Grassland
Sauveterre	20/08/2020	-0.9491238	43.4055255	0	0.3	20.1	29 50	2 4	0	79.0	Grassland
Sauveterre	20/00/2020 26/09/2020	-0.9002008 0.059655	40.4002902 49.4064795	0	0.0	10.9	50 94	4 1	0	79.0 70.0	Creacher
Sauveterre	20/08/2020	-0.932033 0.0517605	40.4004/30	0	0.3	20.3 20.2	24 27	4	0	79.3 70.4	Grassland
Sauveterre	20/00/2020 26/09/2020	-0.9017000	43.4002013	0	0.3	20.3 20.7	31 55	2 6	0	19.4 70.4	Grassland
Sauveterre	20/00/2020 26/09/2020	-0.9012172	40.400007 43 4050495	0	0	20.7 20.4	00 110	0	0	19.4 70.4	Grassland
Sauvelerre	20/08/2020	-0.9312	43.4030483	0	0.2	20.4	119	D A	0	(9.4 70 F	Grassland
Sauveterre	20/08/2020	-0.9512997	43.404/012	U	0.2	20.3	00	4	U	79.5 70 F	Grassland
Sauveterre	20/08/2020	-0.9011887	43.4042962	U	0.3	20.2	0U 6	Ð 1	0	79.5	Grassland
sauvelerre	20/08/2020	-0.991008	45.4039012	U	0.5	∠0	0	1	U	19.3	Grassland

Sauveterre	26/08/2020	-0.951744	43.403663	0	0.4	20.2	18	3	0	79.5	Grassland
Sauveterre	26/08/2020	-0.9508555	43.4039783	0	0.3	20.3	1	0	0	79.5	Grassland
Sauveterre	26/08/2020	-0.948133	43.4044467	0	0	20.6	4	2	0	79.2	Grassland
Sauveterre	26/08/2020	-0.9481632	43.4046447	0	0.6	20.2	12	3	0	79.3	Grassland
Sauveterre	26/08/2020	-0.9479597	43.404895	0	0.5	20.3	12	5	0	79.3	Grassland
Sauveterre	26/08/2020	-0.9490157	43.404403	0	0	20.6	0	0	0	79.4	Grassland
Sauveterre	26/08/2020	-0.9489653	43.4044825	0	0	20.5	0	0	0	79.5	Grassland
Sauveterre	26/08/2020	-0.9490845	43.4043915	0	0	20.5	0	0	0	79.4	Grassland
Sauveterre	27/08/2020	-0.9490627	43.4044773	0	0	20.5	36	3	0	79.5	Grassland
Sauveterre	27/08/2020	-0.9491138	43.4045195	0	0.6	19.9	33	1	0	79.7	Grassland
Sauveterre	27/08/2020	-0.9491623	43.4044675	0	0.5	19.8	21	3	0	79.7	Grassland
Sauveterre	27/08/2020	-0.949107	43.4045245	0	0	20.1	16	1	0	79.6	Grassland
Sauveterre	27/08/2020	-0.9510023	43.405638	0	0	20.4	108	4	0	79.6	Grassland
Sauveterre	27/08/2020	-0.9511262	43.4054517	0	0.2	20.2	50	6	0	79.8	Grassland
Sauveterre	27/08/2020	-0.9511938	43.405433	0	0	20.4	70	12	0	79.8	Grassland
Sauveterre	27/08/2020	-0.952225	43.4062175	0	0.4	19.8	19	5	0	79.6	Grassland
Sauveterre	27/08/2020	-0.9527828	43.407021	0	1.2	19.1	57	9	0	79.6	Grassland
Sauveterre	27/08/2020	-0.9528128	43.40704	0	0.5	19.8	76	5	0	79.8	Grassland
Sauveterre	27/08/2020	-0.9514777	43.4077955	0	0.2	20	17	2	0	79.7	Grassland
Sauveterre	27/08/2020	-0.9497565	43.4081968	0	0.7	19.4	94	12	0	80	Grassland
Sauveterre	27/08/2020	-0.9496363	43.4081757	0	0.3	19.7	39	2	0	80	Grassland
Sauveterre	27/08/2020	-0.950099	43.408015	0	0.1	19.8	55	4	0	80.4	Grassland
Sauveterre	27/08/2020	-0.9506942	43.4075002	0	0.2	19.5	30	5	0	80.3	Grassland
Sauveterre	27/08/2020	-0.9522057	43.4062082	0	0	20.2	51	1	0	79.7	Grassland
Sauveterre	03/09/2020	-0.949258	43.4043885	0	0.1	20.6	18	2	0	79.4	Grassland
Sauveterre	03/09/2020	-0.9487715	43.4043638	0	0.4	20.2	9	3	0	79.6	Grassland
Sauveterre	03/09/2020	-0.9500323	43.4047862	0	0.2	20.1	11	4	0	79.9	Grassland
Sauveterre	03/09/2020	-0.9499057	43.4047035	0	0	19.9	4	2	0	80.2	Grassland
Sauveterre	03/09/2020	-0.9513742	43.4050517	0	0.2	19.8	26	6	0	80.4	Grassland
Sauveterre	03/09/2020	-0.9514117	43.4049842	0	0.2	19.3	18	3	0	80.5	Grassland
Sauveterre	10/09/2020	-0.9491003	43.4045207	0	0.1	20.5	3	2	0	79.3	Grassland
Sauveterre	10/09/2020	-0.9500913	43.4048885	0	0.1	20.2	0	1	0	79.8	Grassland
Sauveterre	10/09/2020	-0.9500235	43.4048148	0	0.2	20.1	0	1	0	79.6	Grassland
Sauveterre	10/09/2020	-0.9512205	43.4051647	0	0	20.2	5	5	0	79.8	Grassland
Sauveterre	10/09/2020	-0.9513072	43.405079	0	0.1	20.1	68	0	0	79.6	Grassland
Sauveterre	10/09/2020	-0.949369	43.405088	0	0.1	20.6	2	1	0	79.3	Grassland