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Abstract

We use a sampling-based Markov chain Monte Carlo method to invert seismic data directly to porosity and quantify its

uncertainty distribution in a hard-rock carbonate reservoir in Southwest Iran. Due to the processing of the seismic data, the

remainder noise is correlated with the bandwidth in the range of the seismic wavelet. Hence, we assume the estimated seismic

wavelet as a suitable proxy for capturing the coupling of noise samples and we propose a simple and pragmatic approach to

account for the correlated (colored) noise in the probabilistic inversion of real seismic data. We also calibrate an empirical

and a semi-empirical inclusion-based rock-physics model to characterize the rock-frame elastic moduli via lithology constrained

fitting parameters of these models, i.e. the critical porosity and the pore aspect ratio. These calibrated rock-physics models are

embedded in the inversion procedure to link petrophysical and elastic properties. In addition, we obtain the pointwise critical

porosity and pore aspect ratio, which can potentially facilitate the interpretation of the reservoir for further studies. The

inversion results are evaluated by comparing with porosity logs and an existing geological model (porosity model) constructed

through a geostatistical simulation approach. We assess the consistency of the geological model through a geomodel-to-seismic

modeling approach. The results confirm the performance of the probabilistic inversion in resolving some thin layers and

reconstructing the observed seismic data. We also present the applicability of the proposed sampling-based approach to invert

3D seismic data for estimating the porosity distribution and its associated uncertainty for four subzones of the reservoir. The

porosity time maps and the facies probabilities obtained via porosity cut-offs indicate the relative quality of the reservoir’s

subzones over each other.
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ABSTRACT 
 

We use a sampling-based Markov chain Monte Carlo method to invert seismic data directly to 

porosity and quantify its uncertainty distribution in a hard-rock carbonate reservoir in 

Southwest Iran. Due to the processing of the seismic data, the remainder noise is correlated 

with the bandwidth in the range of the seismic wavelet. Hence, we assume the estimated 

seismic wavelet as a suitable proxy for capturing the coupling of noise samples and we propose 

a simple and pragmatic approach to account for the correlated (colored) noise in the 

probabilistic inversion of real seismic data. We also calibrate an empirical and a semi-empirical 

inclusion-based rock-physics model to characterize the rock-frame elastic moduli via lithology 

constrained fitting parameters of these models, i.e. the critical porosity and the pore aspect 

ratio. These calibrated rock-physics models are embedded in the inversion procedure to link 

petrophysical and elastic properties. In addition, we obtain the pointwise critical porosity and 

pore aspect ratio, which can potentially facilitate the interpretation of the reservoir for further 

studies. The inversion results are evaluated by comparing with porosity logs and an existing 

geological model (porosity model) constructed through a geostatistical simulation approach. 

We assess the consistency of the geological model through a geomodel-to-seismic modeling 

approach. The results confirm the performance of the probabilistic inversion in resolving some 

thin layers and reconstructing the observed seismic data. We also present the applicability of 

the proposed sampling-based approach to invert 3D seismic data for estimating the porosity 

distribution and its associated uncertainty for four subzones of the reservoir. The porosity time 

maps and the facies probabilities obtained via porosity cut-offs indicate the relative quality of 

the reservoir’s subzones over each other. 
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INTRODUCTION 

Describing the vertical and spatial variability of reservoir properties such as porosity 

around target zones is the holy grail of seismic hydrocarbon reservoir characterization. This 

challenge is addressed by quantitative integration of the seismic and well log data to map the 

distribution of the reservoir properties. From a mathematical point of view, this procedure is 

an ill-posed inverse problem. There are two distinct approaches to solve this inverse problem. 

The deterministic approach, in which by minimizing a cost function over the observed and 

modeled data residuals, a single “optimal” solution is produced (Aster et al., 2018). In 

probabilistic approaches, many realizations of the reservoir properties, e.g., porosity are 

produced, which can fit the observed data within the noise (Tarantola and Valette, 1982). The 

procedure of seismic data inversion to the reservoir properties is commonly a two-step 

approach (Goodway et al., 1997). First, the seismic data is inverted to the elastic parameters, 

then the inverted elastic properties are converted to petrophysical properties using a calibrated 

rock-physics model (RPM) (Aleardi, 2018; Aleardi et al., 2018; Ghon et al., 2020).  Doyen 

(2007) argue that the two-step methods cannot guarantee the consistency between the seismic 

response from the estimated reservoir properties and the observed seismic data. To get around 

these issues, the RPM can be included in the seismic inversion methods (Gunning and Glinsky, 

2004; Kolbjørnsen et al., 2020). This approach is known as the single-step inversion. Gradient-

based inversion approaches such as Gauss-Newton, steepest descent as well as stochastic 

optimization methods (i.e., simulated annealing, particle swarm, and genetic algorithm) are 

commonly used to solve the nonlinear inverse problems (Sajeva et al., 2017; Aster, 2018).  One 

of the drawbacks of the gradient-based methods is linearizing the problem around an initial 

model that the solution may converge to a local minimum. This can lead to an underestimation 

of the uncertainty related to the final obtained model. However, these approaches are often 

used due to their limited computational costs. In contrast, the stochastic optimization 
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approaches are less prone to get trapped in local minima, but their computational costs increase 

with the number of model parameters. The uncertainty in seismic inversion is generally 

associated with the limited bandwidth of the seismic data and the noise in the seismic data, 

which is attributed to the measurement errors as well as the errors associated with the imperfect 

forward model and/or simplified parametrizations (Tarantola, 2005). The other source of 

uncertainty is the intrinsic variability of the petrophysical properties and insufficient data 

sampling through wells that are typically spaced kilometers apart or centimeter-scale core 

measurements. One of the practical motivations for uncertainty quantification is for risk 

analysis and optimal decision-making for reservoir characterization and well planning studies. 

Bayesian approaches could reasonably quantify the uncertainty of the target model parameters 

(Malinverno and Briggs, 2004; Tarantola, 2005; Talarico et al., 2020). In the context of seismic 

reservoir characterization studies, the solution of the probabilistic formulation of an inverse 

problem is a posterior distribution of the petrophysical properties conditioned by the observed 

data, at each time/depth location of the reservoir model. The posterior distribution describes, 

in principle, all the models that lead to a data fit within the noise, and hence allows a full 

description of the uncertainty of the model parameters. 

Regarding the crucial role of the rock-physics relations in single-step petrophysical seismic 

inversion approaches, the combination of Bayesian formulation and rock-physics modeling to 

estimate the probability distribution of the reservoir properties given seismic data are proposed 

as a practical approach in reservoir characterization studies. The proposed methodologies vary 

in different aspects such as statistical assumptions (i.e., Gaussian,  Gaussian mixture, 

Generalized Gaussian or non-parametric PDFs (Grana et al., 2017; Fjeldstad and Grana, 2018; 

Grana, 2020; Kolbjørnsen et al., 2020)), the computational algorithms (analytical solutions 

versus numerical (Monte Carlo) methods (Gunning and Sams, 2018)), physical models 

(linearized or nonlinear rock physics and seismic forward modeling operators (Grana, 2016)), 
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and model variables (facies, petroelastic or petrophysical properties (Grana and Della Rossa, 

2010; Rimstad et al., 2012)). Buland and Omre (2003) explicitly warn about using too-informed 

priors. On the other hand, it is argued that oversimplification of the prior models and forward 

operators could provide a biased estimation of model parameters with deceptive uncertainties 

(Madsen and Hansen, 2018). In these cases, it is highly acknowledged to use sampling 

methods. These methods can handle, in principle, nonlinear forward models, arbitrarily 

complex prior and noise models. Importance sampling algorithms, such as Markov chain 

Monte Carlo (McMC) algorithms, are designed to sample the posterior distribution through 

sampling the high probable regions of the posterior probability distribution (Sen and Stoffa, 

1996; Mosegaard and Sambridge, 2002). This leads to a thorough characterization of the 

possible solutions, and robust estimation of their uncertainties. Some case study applications 

of sampling-based McMC methods for petrophysical seismic inversion are presented (see, e.g., 

Grana 2018; de Figueiredo et al., (2019a, 2019b); Aleardi and Salusti, 2020).  

The goal of this study is the characterization of a hard-rock carbonate reservoir through 

quantitative estimation of the porosity distribution as well as its uncertainty. We formulate the 

problem in a Bayesian framework and invert directly the seismic data to porosity using an 

McMC sampling-based approach via the Extended Metropolis-Hastings method (Mosegaard 

and Tarantola, 1995). In addition, we evaluate the feasibility of using a sampling-based 

approach to invert 3D seismic data probabilistically. The procedure followed in this work is 

twofold. Following the calibration of the Nur critical porosity model (Nur et al., 1998) and a 

semi-empirical inclusion-based model proposed by Keys and Xu (2002), we parametrize the 

inversion algorithm, i.e., the prior information, the data uncertainty (noise model), and the 

forward modeling operator.  

In contrast to the routine practice of assuming uncorrelated white noise in probabilistic 

seismic inversion studies (Aleardi et al., 2018; Gunning and Sams, 2018; de Figueiredo et al., 
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2019a), we propose a proxy approach to take the inherent correlated nature of the band-limited 

seismic noise via a covariance matrix, in a probabilistic inversion of real seismic data. 

In the following, we first present a geological overview of the case study. In the next 

section, the procedure of calibrating the rock-physics models is explained. Then, we outline 

the inversion methodology and associated parametrizations. Finally, we discuss the results of 

probabilistic inversion of the 2D and 3D real seismic data. This work provides a unique 

application of the probabilistic seismic inversion approach for this carbonate reservoir. 

THE GEOLOGICAL SETTING 

The study area is an oil field located in Southwest Iran. The target Sarvak formation is one 

of the most prolific reservoir zones in the Zagros area (Jooybari and Rezaie, 2016). This 

formation of middle Cretaceous age is about 600-m thick. It conformably overlies the 

Kazhdumi formation and disconformably underlies the Laffan formation (Figure 1). The 

Sarvak formation is generally described as a thick-bedded limestone interval with few 

dolomitic limestones and interbedded shale layers (Rahimpour-bonab et al., 2012.). Based on 

the reported biostratigraphy analyses, dolomite and shale are mainly concentrated in the upper 

part of the Sarvak formation, which is attributed to shallow marine Cenomanian-Turonian 

carbonates characterized by better reservoir quality and significant hydrocarbon contents. The 

Sarvak carbonates are subdivided into two major stratigraphical units namely the upper and 

lower Sarvak in terms of facies characteristics, sedimentary environments, and lithology types. 

The upper Sarvak unit with 400 m average thickness is characterized by bioclastic carbonates 

and significant reservoir quality, which comprises the major hydrocarbon-bearing zone. The 

diagenetic processes, facies analysis, sequence stratigraphy, and geological interpretation of 

the Sarvak formation have been extensively studied based on the petrophysical data, surface 

sections, and seismic interpretations (Assadi et al., 2016; Mehrabi et al., 2020). Based on the 

sequence stratigraphy studies, the upper  Sarvak reservoir is divided into thirteen subzones 
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(Sar-1, 2, ..., 12, Sar-Intra). The average porosity, permeability, and net-to-gross ratio in the 

reservoir vary between high (Sar-3, 8, 12), moderate (Sar-4, 5), and poor quality (Sar-1, 6, 7, 

9, 10, 11, Intra) and nonreservoir (Sar-2) subzones. In Figure 2, we present the 2D seismic 

profile used in this study superimposed by the well locations, their distance, their associated 

well-to-seismic ties, the tops of the reservoir subzones, as well as the horizons’ TWT of four 

reservoir subzones (Sar-1, 3, 8, and Intra). 

ROCK-PHYSICS MODELING 

A data-driven rock-physics template is still a challenging issue for carbonate reservoirs 

due to the presence of a variety of pore types and microstructures, which could have a 

pronounced effect on the elastic properties of this rock type (Xu and Payne, 2009; Zhao et al., 

2013). In this study, following the method proposed by Amini (2018) we calibrate the empirical 

model by Nur et al. (1998), and the semi-empirical inclusion-based model by Keys and Xu 

(2002) (Appendix A for more details). The carbonate formation in our case study dominantly 

comprises calcite minerals with low interbedded clay content. In this approach, we optimize 

the minerals’ elastic moduli and density as well as the fitting parameters of the dry rock frame 

models – critical porosity and aspect ratio, simultaneously over four well data. This 

optimization approach is based on minimizing the misfit between the observed and modeled 

elastic moduli and density logs. Figure 3 shows the misfit surfaces for a range of plausible 

combinations of the calcite and clay minerals’ elastic moduli. In this figure, the optimized 

values for minerals’ elastic moduli and density are demonstrated by filled white circles. The 

variable critical porosity and pore aspect ratio estimated by this algorithm could potentially be 

used to assess the diagenetic evolution, pore-network structure, and elastic properties of the 

reservoir in conjunction with core and thin sections analysis (Fournier and Borgomano, 2009; 

Ruiz and Dvorkin, 2010). Figures 3c and 3f describe the cross plots of the optimized critical 

porosity and pore aspect ratio against the porosity. Table 1 represents the optimized minerals’ 
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elastic moduli and density as well as the regression coefficients (a1-a5) for critical porosity and 

pore aspect ratio as functions of porosity for the Nur and Keys-Xu models. 

Figures 4 and 5 represent the results of calibration of the Nur model and Keys-Xu model 

over four wells, respectively. The results show that once calibrated, both rock-physics models 

could model the observed elastic moduli logs reasonably well. Heidari et al. (2020) propose 

both stochastic optimization and probabilistic approaches to present a rock-physics template 

for this carbonate reservoir. They argue that considering a constant critical porosity and pore 

aspect ratio for the whole reservoir zone, may lead to erroneous results in some reservoir 

intervals such as Sar-9, while here the results show that variable fitting parameters are more 

geologically realistic and improve the match between the observed and modeled elastic logs. 

However, as Figure 5 shows, the algorithm fails to capture the shear elastic moduli in well 

W06n. This reveals that describing the rock frame elastic moduli using the Keys-Xu model and 

a single fitting parameter (pore aspect ratio) may not be an appropriate choice for log data at 

this borehole. In addition, comparing Figures 3c and 3f, it is noted that the aspect ratio from 

the Keys-Xu model shows a larger scatter than the critical porosity from the Nur model. 

Therefore, the Nur model seems to be better than the Keys-Xu model for the dry rock-frame 

description of the reservoir. Although the literature suggests that calibration of rock-physics 

models for hard-rock carbonates is more challenging than clastic reservoirs due to the presence 

of complex pore types, microstructures, and heterogeneities (Eberli et al., 2003;  Verwer et al., 

2008; Fournier et al., 2018), our results show that a simple critical porosity model could model 

the observed saturated elastic moduli in this carbonate reservoir reasonably well. The dominant 

pore types in the Sarvak reservoir are intergranular macropores, intragranular dissolution pores, 

matrix dissolution pores, and microcracks, and aspect ratios could potentially be linked to the 

pore types (Xu and Payne, 2009). Additionally, the Sarvak reservoir is almost a pure carbonate 

reservoir with interbedded thin shale layers, but we do not consider the shale volume variations 
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in the rock-physics model embedded in the inversion. This could inevitably lead to erroneous 

porosity estimation as the inversion overestimates the porosity value to compensate for the 

effect of shale in the shale bearing intervals. 

WELL-TO-SEISMIC TIES 

The carbonate platform is covered with 3D seismic data, which has been processed and 

stacked to near, middle, and far angle cubes. We use the middle angle stack for this study as 

the signal-to-noise ratio is usually higher for middle angle stacks. Figure 6 shows the region 

that is chosen for the 3D inversion, as well as the 2D line that passes through the four wells. At 

each well location, the compressional and shear sonic logs, the density log as well as the 

petrophysical logs (porosity, the volume of shale, water saturation, and gamma-ray) are 

available. We extract a statistical wavelet from the middle angle stack seismic data with a 

dominant frequency of 24 Hz (Figure 7). 

One of the important steps before the seismic data inversion is the well-to-seismic tie. This 

procedure requires comparing the synthetic seismic trace and the observed seismic trace at the 

borehole. Using the available information of vertical seismic profile with check shots, we tie 

four wells to the observed seismic traces to obtain the wavelet scaler to be used in the seismic 

inversion. We superimpose the results of the well ties on the seismic section in Figure 2 next 

to each well. Although the well-to-seismic tie results are imperfect in some zones, the overall 

consistency between the synthetic and observed seismic traces as well as the available 

horizons’ TWT (black dashed lines in Figure 2) for the subzones (Sar-1, 3, 8, and Intra) 

confirms the accuracy of the well tie procedure.  

In addition to wavelet scaling, well-ties are also informative about the phase, signal-to-

noise ratio, and how the geological details are upscaled to seismic bandwidth. The extracted 

wavelet from real data is zero-phase, which is used for synthetic seismic modeling and matches 

the observed seismic reasonably well. This indicates that the phase of the observed seismic 
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data is close to zero. Figure 8 shows the petrophysical and sonic log data as well as the results 

of the well-to-seismic tie for well W08. 

THEORY 

Supposem represents some model parameters describing physical properties (i.e., porosity 

in our study), and d refers to the noise-free physical response of the model m through the 

forward operator ( )gd m . The observed data obsd can be described by the following equation: 

obs ( ) ,gd m e d e                                                                                                                              (1) 

where e describes the noise, due to both the measurement and theoretical (modeling) errors 

(Tarantola, 2005). The inverse problem then consists of inferring information about the model 

parameters, given information about the observed data, forward operator, and noise model.  In 

this study, we consider the probabilistic approach to solve the inverse problem. 

The probabilistic inverse problem 

Tarantola and Valette (1982) propose a probabilistic approach to solve the inverse 

problem, in which all information is quantified through a probability distribution or a likelihood 

function. In other words, the available information comprises the prior knowledge of the model 

parameters, as well as observed data. In the formulation of the inverse problem, we refer to the 

probability distribution of the model prior information as ( )m , which can come from any 

sources independent of the observed data, such as previous surveys, geoscientists knowledge, 

outcrops, and so forth. In this study, we use the porosity logs at four boreholes as the prior 

information. The geophysical data information is quantified through the likelihood function L , 

a probability distribution that quantifies the expected data residual for the model m as

    obsL f d gm m  . Once the available information is quantified, the combined state of 

information, prior distribution, and the likelihood is obtained using the concept of conjunction 
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of states of information (Tarantola and Valette, 1982). This leads to the solution of the inverse 

problem as the posterior probability distribution: 

     L ,m m m                                                                                                                                 (2) 

 

where  

  

   1 L dm m m                                                                                                                              (3) 

is a normalization constant, which ensures that   1dm m  .  

Assuming a Gaussian distribution for the data uncertainty, the likelihood function is also 

Gaussian and is represented as (Mosegaard and Tarantola, 2002): 

          
1

N 2 11
2

2

T

D obs D obsL exp ,m C d g m d g mC


 
    

 
                                                           (4) 

where N is length of data and DC is the data covariance, which can be split into contributions 

from the measurement errors dC and modeling error tC as dD tC CC  , assuming 

independence of the two (Tarantola, 2005). 

Sampling the posterior probability distribution 
 

To solve the probabilistic inverse problem, it is necessary to describe the posterior 

distribution  m either analytically, or numerically. An analytical description of the posterior 

distribution is typically only possible for linear Gaussian inverse problems (Tarantola and 

Valette, 1982). For nonlinear inverse problems, sampling methods can be utilized instead to 

generate a sample (a collection of model realizations) distributed according to  m . The 

statistical analyses of the posterior distribution give an extensive insight into the model 

parameter and its uncertainty. McMC methods based on variants of the Metropolis and 

Metropolis-Hastings algorithms (Metropolis et al., 1953; Hastings, 1970), are among the most 
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widely used algorithms to sample from  m . In this study, we use the extended Metropolis-

Hastings algorithm (Mosegaard and Tarantola, 1995), through the SIPPI toolbox developed by 

Hansen et al. (2013) to sample the posterior distribution. In contrast to the classic Metropolis-

Hastings algorithm, using the extended Metropolis-Hastings algorithm, neither needs to 

evaluate the posterior probability distribution  m , nor the prior probability distribution of a 

given model m . There are only two conditions, which should be satisfied to apply the extended 

Metropolis algorithm. The first requirement is the evaluation of the likelihood function in 

equation (4), which is most often straightforward, as it requires solving the forward problem 

and assessing the corresponding data fit given the noise model. Secondly, one must be able to 

perform a random walk in the space of the prior acceptable models to sample  m  (Mosegaard 

and Tarantola, 1995). We make use of the sequential Gibbs sampling algorithm, to perform a 

random walk in the prior probability space, as it provides the ability to sample complex prior 

distributions (Hansen et al., 2012). 

To run the extended Metropolis-Hastings algorithm, we should define at least three main 

components, i.e., the prior model, the solution of the forward problem, as well as the data 

uncertainty (noise model). 

Prior model 

We assume a multivariate Gaussian distribution for the prior model, which is specified by 

a mean vector/scalar 0m and an isotropic covariance model mC . To obtain the covariance matrix, 

it is necessary to estimate the spatial dependency of the porosity in each well location. In 

geostatistical approaches, the spatial dependency of the variables as a function of lag is 

estimated by an experimental semi-variogram (Isaaks and Srivastava, 1989). In the 

geostatistical modeling procedure, we aim to find out which variogram model and which 

parameters (i.e., sill, nugget, and range) best represent the spatial trends in the experimental 
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variogram. Therefore, for prior model parameterization, i.e., accounting for its covariance and 

the mean, we first calculate the experimental semi-variogram of the four porosity logs and their 

mean. Then, we obtain the theoretical semi-variogram model, which best represents the mean 

of the four experimental semi-variograms. We assume the average of the variances of the four 

logs as the sill of the fitted theoretical semi-variogram (Figure 9). Finally, based on the relation 

between the semi-variogram configuration and the covariance matrix, we estimate the Gaussian 

covariance matrix mC of the prior model (see, e.g., Goovaerts, 1997). We calculate the mean 

of the porosity of the four wells and assign it to the constant mean of the prior model 0m . To 

represent the prior model numerically, we use the fast Fourier transform moving average (FFT-

MA) method proposed by Le Ravalec et al. (2002), an efficient approach for generating the 

independent realizations from a stationary multivariate Gaussian realization. Also, we apply 

the inverse normal score transform (see, e.g., Goovaerts, 1997) to ensure that the distribution 

of the model realizations follows the target distribution (Hansen et al., 2013). It should be noted 

that since the Gaussian distributions are defined in the entire set of real numbers, we define a 

realistic range to avoid the porosity values fall outside the physical range. 

Forward model 

To solve the forward modeling problem and generate the synthetic trace associated with 

each model parameter, we use the widely popular one-dimensional convolution approach 

(Yilmaz, 2001). Figure 10 outlines the main components of this procedure. The peterophysical 

logs, i.e., the volume of shale and water saturation, as well as the porosity realization are 

converted to elastic parameters using RPM. To generate the middle angle-stack seismic 

response, considering the corresponding range of angle of incidence (15-23 degrees), we use 

the Zoeppritz equations (Aki and Richards, 1980) to compute the PP reflectivity coefficients 

from the model parameters. Finally, we convolve the extracted statistical wavelet with the 

average reflectivity series to generate the corresponding synthetic trace. 
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Noise model 

The noise model should ideally include information about the measurement errors as well 

as modeling errors (Tarantola, 2005). However, in real data applications, the description of the 

noise and distinction between the above-mentioned noise sources is not trivial (Madsen et al., 

2017). Among few publications on this subject, Jakobsen and Hansen (2019) explore the effect 

of correlated and uncorrelated noise in a direct Bayesian inversion of 1D synthetic seismic data 

to lithofacies. They show that considering correlated noise improved the resolution of the 

model parameters compared to the case of the white uncorrelated noise model. Madsen et al. 

(2017) also adopt a hierarchical Bayesian approach to infer the properties of the noise model 

as a part of inversion. In this study, we assume that the forward modeling, as well as the model 

parametrizations are exact, and the data uncertainty is just attributed to the measurement errors. 

Due to the band-limited nature of the seismic data, it contains vertically correlated noise, where 

the noise samples are vertically coupled along the TWT axis. However, in probabilistic seismic 

data inversion, it is a common practice to assume an uncorrelated white noise, where the noise 

covariance matrix in equation (4) is described by the noise variance 2 and the identity matrix 

I in the form of 2
dC I  . Finding a representative geometry for the covariance matrix is a key 

aspect of a correlated noise setup. Due to the effective processing of the seismic data, 

uncorrelated (white) noises are filtered out. Therefore, the remainder of the noise in the seismic 

data is correlated (colored) with the bandwidth in the range of the bandwidth of the seismic 

data (wavelet).  

Here, to simulate the realistic correlated noise and address the correlation of the noise 

samples, we generate 531 realizations of a Gaussian random reflectivity 0 0 0324( , . ) with the 

length of 281 samples and convolve them with the estimated seismic wavelet. Figures 11a and 

b show the 2D band-limited Gaussian noise realizations and their corresponding covariance 

matrix. The mean of the nonzero diagonals of the covariance matrix, the seismic wavelet as 
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well as their corresponding frequency spectrum is shown in Figures 11c and d, respectively. 

Regarding these figures, the mean of the nonzero diagonals of the covariance matrix could be 

a reasonable approximation of the seismic wavelet, as their main lobes are almost similar and 

their frequency spectrums are approximately in the same range. Therefore, we presume that the 

seismic wavelet is a suitable proxy for capturing the coupling of data samples for both signal 

and noise within the seismic bandwidth. Consequently, in contrast to the routine practice where 

the main diagonal of the noise covariance matrix is a delta function, we insert the seismic 

wavelet along the main diagonal of the covariance matrix to account for the correlation of the 

noise samples more realistically. To evaluate this assumption, we construct a synthetic seismic 

trace (Figure 12a) using a porosity realization from a multivariate Gaussian distribution prior 

model, in conjunction with the Nur rock-physics model and the forward modeling procedure. 

Then, we add a correlated (band-limited) Gaussian noise (Figure 12b) to the noise-free seismic 

trace to generate a noisy seismic trace (Figure 12c). We account for correlated noise in one 

case (A) and uncorrelated noise in another case (B) in probabilistic inversion. Also, we set the 

iteration of the sampling algorithm such that the algorithm can sample the full posterior 

distribution within a reasonable time. The porosity realizations for both these assumptions are 

shown in Figure 12d and Figure 12e, respectively. Comparing the results of these both cases 

indicates that, accounting for the uncorrelated noise in inversion, where the noise in the data is 

correlated, leads to apparently well-resolved features with lower uncertainty. In addition, 

assuming uncorrelated noise leads to a harder sampling due to the inability of the algorithm to 

reach the burn-in phase and the data is overfitted through an optimization procedure rather than 

a sampling procedure. 

As the estimation of the noise magnitude and noise shape for real data applications is not 

trivial, care should be taken in accounting for the noise model. In this study, for inversion of 
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the real seismic data, we account for the correlated noise as mentioned above, where the noise 

magnitude (SNR = 3.3) is estimated roughly from the well-to-seismic tie residuals. 

RESULTS AND DISCUSSION 

We evaluate the inversion performance by analyzing the porosity posterior realizations for 

both the seismic section along with the wells and the traces at well locations. The results of the 

inversion using both the Nur and Keys-Xu rock-physics models are shown in Figures 13 and 

14, respectively. The seismic section superimposed by the well-to-seismic tie results as well as 

the horizons’ TWT of Sar-1, 3, 8, and Intra subzones are shown in Figures 13a and 14a. Figures 

13b and 14b show the pointwise porosity posterior mean along the profile superimposed by the 

porosity values at well locations. We resample the porosity logs to the seismic scale to ensure 

the consistency of the sampling interval, i.e., 1 ms. These figures suggest that the inversion 

could resolve some thin layers reasonably well, flagged by white arrows. In addition, some 

features on the seismic section (Figures 13a and 14a) related to the geological disconformities 

are successfully resolved by the porosity posterior mean shown by black ellipses. In addition, 

the distortion on the seismic section, flagged by black arrows close to the well W04n is 

detectable on the porosity posterior mean section. Comparison of the mean posterior model 

and the observed porosity logs at well locations indicates that the inversion can resolve the true 

porosity reasonably well. The pointwise standard deviation of the porosity posterior 

realizations is shown in Figures 13c and 14c, which quantify the uncertainty of the porosity 

values. The variability of this quantity represents the capability of the algorithm to generate 

enough independent realizations of the porosity, leading to better uncertainty assessment. 

Using the optimized regression coefficients obtained through the rock-physics calibration 

procedure (Table 1), we convert the mean porosity model by the Nur and Keys-Xu rock-physics 

models to critical porosity and pore aspect ratio, respectively. These properties are shown in 

Figures 13d and 14d, respectively. In contrast to the porosity posterior mean, the variations of 
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the critical porosity, as well as the pore aspect ratio are more pronounced. For example, the 

low porosity region in Figures 13b and 14b is characterized on its associated critical porosity 

and pore aspect ratio sections by resolved thin layers with variable critical porosity and pore 

aspect ratio (see white ellipses on Figures 13b, d and Figures 14b, d). Comparison of the 

pointwise critical porosity and the pore aspect ratio in Figures 13d and 14d indicates the 

positive correlation of these two properties, which follows the Keys-Xu (2002) argument on 

the critical porosity and pore aspect ratio correlation, as the increase of the critical porosity 

leads to increase of the pore aspect ratio. 

To better evaluate the porosity posterior realizations, we obtain the probability values of 

the posterior mean for two facies defined via porosity cut-offs. Figures 13e, f, and 14e, f depict 

the probability values associated with facies-1 with the porosity between zero and 0.15 and 

facies-2 with the porosity between 0.15 and 0.3, respectively. These probability sections 

facilitate the interpretation of the posterior mean model as they indicate the uncertainty 

associated with the inverted porosities. In addition, the interpreter can easily flag the regions 

where the porosity values are in the desired range. Comparison of the results obtained by 

utilizing both rock-physics models shows no tangible difference and they both characterize the 

reservoir property and its uncertainty equally well.  

The statistics of the porosity posterior realizations, i.e., their mean (white), a 95% 

confidence interval (CI, pink dashed lines), and the observed porosity (black) are shown for 

four well logs in Figure 15b (for Nur model) and 15c (for Keys-Xu model). The porosity 

realizations are depicted as the density plots, where the background colors represent the 

probability of the realizations at each time sample. The posterior mean model shows a 

reasonable match to the measured porosity for all four well logs, except in zones flagged by 

white arrows. The statistical analysis indicates that around 95%, 90%, and 81% of the true 

porosity are found in a 95% CI for wells W04n, W08, and W10 using the Nur model. These 
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values are about 91%, 89%, and 88% for the Keys-Xu model. The mismatch between the 

predicted and observed porosity model is more notable for well W06n as only 73% of the true 

porosities are found in a 95% CI using both rock-physics models. The inconsistency between 

the modeled and observed porosity can be attributed to the issues of the seismic resolution, the 

uncertainty related to rock-physics modeling due to the presence of the thin interbedded shaly 

layers, or the imperfect well-to-seismic ties. For well W06n, the effect of rock-physics and 

well-tie imperfections are more pronounced, especially for the Keys-Xu model as it fails to 

calibrate the observed elastic moduli properly (see Figure 5).  The petrophysical analyses of 

our case study characterize a low porosity cap rock in Sar2 as a nonreservoir zone. The shaly 

zones of four wells are marked with brown in Figure 15. The inversion fails to resolve the true 

porosity values of these zones for all the wells and overestimates the porosity. This 

imperfection is attributed to the presence of shale, where the clay content poses uncertainty to 

the inversion results, as the RPM embedded in the inversion does not include the shale volume 

variations. In addition, the inversion fails to capture the trend of the true porosity even in the 

relatively thicker Sar-12 subzone in wells W06n, W08, and W10. This subzone was reported 

as a pure calcite zone and the accuracy of well-to-seismic-ties is acceptable, therefore, the 

observed inconsistency in this subzone can be attributed to the presence of the layers thinner 

than the seismic resolution. Figure 16 shows the 1D marginal distributions of the porosity 

realizations at well locations compared with the histogram of the porosity well logs for both 

rock-physics models. It is obvious that except for well W06n, the marginal distributions of the 

porosity realizations for the other three wells are consistent with the histogram of the porosity 

logs, which confirms the performance of the inversion as well as the accuracy of the prior and 

the noise model for this real data. 

Comparison with the 2D geological model 
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We also evaluate the consistency of the existing geological model through a geomodel-to-

seismic modeling workflow as well as a direct comparison of the inverted porosity with the 

porosity in the geological model. The geological model has been constructed using the 

available well logs through a sequential Gaussian simulation approach, where deterministic 

seismic inversion products were used as lateral constrains. The client has provided us both the 

geological model and the deterministic inversion results. Our geomodel-to-seismic modeling 

workflow includes the estimation of the elastic properties in the geological model by 

application of the calibrated rock-physics models, followed by convolution of the reflectivity 

series with the extracted wavelet. We align the TWT associated with the geological model 

(Figure 17 a) and its associated synthetic seismic (Figure 17 c) to the observed seismic data 

(Figure 17 d) using a horizon pair in TWT and depth. The estimated velocity from the rock-

physics model governs the interval TWT between the top and base of the reservoir. This allows 

us to use the relative TWT location of the synthetic and observed seismic events – in addition 

to amplitude information – as a metric for assessing the consistency of the geological model 

with the seismic data. Comparison of the horizons’ TWT of Sar-1, Sar-3, Sar-8, and Sar-Intra 

subzones, shown by dashed lines and white arrows, with the top and base of the reservoir in 

the geological model represents that TWT thickness of the reservoir in the geological model is 

higher than the observed TWT thickness. This means that the porosity values provided by the 

geostatistical modeling have been overestimated. 

Figure 17b shows the mean porosity model obtained by the probabilistic inversion algorithm. 

The reconstructed seismic section of the mean porosity model is shown in Figure 17e. At first 

glance, the higher frequency content of the geological model is notable. This is because this 

model is built at the resolution of the well log data. However, this is not enough to make it 

superior to the porosity model obtained through probabilistic seismic inversion. According to 

the available reports provided by the client, some geological features such as two faults F-1 
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and F-2 have been added to the structure of the geological model. These two faults are resolved 

with the same structure on the synthetic seismic response. The inversion could resolve some 

thin layers reasonably well, as they are notable in both the geological model and the mean 

porosity model such as the layers A-1, A-2 (flagged by black arrows), and A-3 (flagged by a 

black ellipse). However, the high porosity thin layers such as B-1 and B-2 are not resolved in 

the mean porosity model, as the resolution of the mean of the realizations is lower than the 

resolution of individual realizations. The geological model shows a high porosity continuous 

region between the wells W04n and W10 (the black ellipse C), whereas this region is localized 

around the well W10 in the mean porosity model. There is also a wide low porosity region (the 

black ellipse D) on the geological model, which is terminated by a high porosity zone, while 

this region is characterized as a continuous low porosity region in the mean porosity model. 

The seismic response of this feature is a doublet on the reconstructed seismic data by the mean 

porosity model, whereas this doublet is not detectable on the synthetic seismic data 

corresponding to the geological model. The seismic responses of the feature A-3 from both the 

geological model and mean porosity model are flagged in Figures 17c and d. It is obvious that 

the seismic response of this feature from the mean porosity model is tangible and consistent 

with the observed seismic response, as the seismic amplitudes variations are consistent with 

the porosity variations. However, this feature is not detectable on the seismic response of the 

geological model. 

Figure 18 demonstrates the porosity models estimated through the geostatistical approach 

(Figure 18a), the two-step deterministic seismic inversion (Figure 18b), and the single-step 

probabilistic seismic inversion (Figure 18c). The model provided by the deterministic seismic 

inversion is smooth, as it could not resolve the thin layers and other geological features 

precisely. However, as this model was used as the lateral constraint in the geological model 
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generation through the geostatistical approach, there are some features in this model such as 

H-1 and H-2, which are consistent with the geological model. 

These evaluations represent that the porosity model obtained through the single-step 

probabilistic seismic inversion shows a reasonable consistency with geological model, and it 

is much trustworthy as it could reconstruct the observed seismic data reasonably well. 

Application to the 3D seismic data 
 

We show the results of inverting the 3D seismic cube from the specified region in Figure 

6 as time maps in Figures 19 and 20. The Nur rock-physics model is used in this 3D seismic 

inversion application. Figure 19 shows the map of the seismic amplitudes, the porosity 

posterior mean model, as well as the standard deviation of the porosity realizations across the 

Sar-1, 3, 8, and Intra subzones. Figure 20 describes the map of the critical porosity as well as 

the probability maps of facies-1 and facies-2. The variability of the porosity distribution in Sar-

3 and Intra subzones is more tangible compared to Sar-1 and 8 subzones, where most of the 

porosity values are less than 0.1. However, there is an area close to well W08 in Sar-3 subzone, 

which shows the high-quality reservoir potential. These maps also show a low porosity and 

low critical porosity zone in the west and southwest part of the studied region for the Sar-1 

subzone. The center, east, and southeast of the region are characterized as a potentially high-

quality reservoir in the Sar-3 subzone. While these high-quality regions are distributed in the 

whole Sar-Intra subzone, especially from the center to the north, these regions are also 

characterized by the probability of the porosity cut-offs (facies) in Figure 20c, as the probability 

of high porosity distribution in these regions is high. The values of the standard deviation maps, 

especially close to the wells indicate the high precision of the estimated porosity in these 

reservoir subzones. Comparing the critical porosity maps in Figure 20a in conjunction with 

thin sections or other laboratory measurements or interpretation maps could give a better 

insight to acknowledge the variation of the diagenetic procedures in these subzones. For 
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example, the variations of the critical porosity distribution of Sar-1and Sar-8 subzones are more 

notable than Sar-3 and Sar-Intra subzones, which could be attributed to the complexity of the 

pore structures in Sar-1 and Sar-8 subzones.  The probability of the facies distributions shown 

in Figures 20b and c confirms that Sar-3 and Sar-Intra subzones are of higher quality reservoirs 

than Sar-1 and Sar-8 subzones. Regarding these probability maps, the regions with the porosity 

higher than 0.15 are dominant in Sar-3 and Sar-Intra subzones, particularly in the areas closer 

to the well W04n, and W10. Sar-8 subzone shows high probability facies with porosity higher 

than 0.15 near well W08. Analyzing the percentiles is another approach to analyze the 

uncertainty of the model parameters distribution. To provide another visual depiction of the 

porosity realizations, we show the 5th, 25th, 75th, and 95th percentiles of the porosity 

realizations for the reservoir subzones in Figures 21 and 22, respectively. These figures provide 

a good insight into the uncertainty assessment of the porosity distributions for the reservoir 

subzones. In addition, this quantitative uncertainty evaluation could facilitate the interpretation 

of the reservoir porosity distribution for further decision making and well planning for this 

reservoir. 

CONCLUSIONS 

The results in this study indicate that the proposed sampling-based probabilistic inversion 

approach can be successfully used to invert the large-scale 3D seismic data directly to porosity. 

The results of 3D seismic data inversion give a good insight into the quality of different 

reservoir subzones. The results also indicate that the seismic wavelet is a good proxy for taking 

the inherent correlated nature of the band-limited seismic noise into account via a covariance 

matrix. The utilized single-step probabilistic inversion approach could properly characterize 

the porosity distribution and the associated uncertainty for the Sarvak reservoir. It could also 

resolve some thin layers as well as some geological features compared to the geological model 

obtained by the geostatistical simulation. The geomodel-to-seismic modeling of the geological 
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model indicate that the constructed seismic data from this model is not consistent with the 

observed data. On the other hand, the porosity model obtained by the probabilistic inversion 

could reasonably reconstruct the observed seismic data. In addition, comparing the TWT 

thickness of the base of the reservoir in the synthetic seismic data from the geological model 

and the observed seismic data indicate that the porosity in the geological model is 

overestimated and needs further updates. Using both the Nur and Keys-Xu rock-physics models 

as a part of the forward modeling operator provides porosity models that describe the reservoir 

properties equally well. Therefore, providing that calibrated properly, both of these simple 

rock-physics models with a single fitting parameter can be representative of the dry rock elastic 

moduli in this carbonate reservoir. The statistical analyses of the porosity posterior realization 

at well locations show a high consistency between the inversion results and the observed 

porosity logs, except for the shaly zones as well as the regions with a poor well-to-seismic tie. 

The distribution of the porosity and the associated uncertainty, the critical porosity, as well as 

pore aspect ratio can potentially be used in conjunction with the laboratory data obtained by 

analyzing the thin sections and core samples to improve the interpretation of this reservoir and 

better decision making for further field developments. 
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APPENDIX A 
 

 ROCK-PHYSICS MODEL PARAMETERS 
 

The Gassmann fluid substitution model (equations (A-1) and (A-2)) is the key building 

block of the rock-physics calibration workflow. The empirical Nur critical porosity model 

(equation (A-3)), as well as the semi-empirical inclusion-based Keys-Xu model (equation (A-

4)), are used for estimation of the rock frame bulk and shear elastic moduli ( frameK , frameG ). The 

mean of the Hashin-Shtrikman upper and lower bounds (Hashin and Shtrikman, 1963) are used 

to calculate the minerals’ effective bulk and shear moduli ( 0K , 0G ). 
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where satK and satG are the saturated bulk and shear moduli, fluidK is the effective bulk modulus 

of the fluid mixture using harmonic averaging of the in-situ oil and brine bulk moduli (Wood, 

1955), which are calculated using pressure-volume-temperature (PVT) data (not shown here) 

and the empirical equations by Batzle and Wang (1992).   and c are the effective porosity 

and critical porosity, respectively. In equation A-4, P and Q are the pore shape factors related 

to the pore aspect ratio (Mavko et al., 2009). 
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TABLES 

Table 1. Calibrated rock properties using the Nur and Keys-Xu models. 

 
 

Model 

Bulk Modulus 
(GPa) 

 Shear Modulus 
(GPa) 

 Density 
(gr/cm3)  

1 2c a a   ,
5a  , 3 4c a a   , 5a   

1 2a a   , 5a  , 3 4a a   , 5a   

1 5a   
Calcite       Clay Calcite        Clay Calcite     Clay 

Nur 66            20               30              5             2.74        2.23      0.05, 1.73, 0.21, 0.46, 0.12 
Keys-
Xu 

68            18               20               9             2.74         2.23      0.01, 1.23, 0.17, 0.65, 0.12 
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FIGURES 

 

Figure 1. Simplified stratigraphy of the Sarvak formation depicting the major lithological successions 
and the thickness of the upper and lower formations (Adapted from Abdollahie Fard et al., 
2006). 
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Figure 2. The 2D seismic profile is superimposed by the well locations, their distance, their 
associated well-to-seismic ties, the tops of the reservoir subzones (color-coded columns), as 
well as the horizons’ TWT of four reservoir subzones (Sar-1, 3, 8, and Intra) with blue arrows 
and balck dashed lines. 
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Figure 3. The error surfaces of different combinations of minerals’ elastic moduli for the Nur 
(a and b) and the Keys-Xu (c and d) models. The error surface for minerals’ density is shown 
in (g). The red asterisked properties in the color bars represent the modeled properties. The 
piecewise linear regression of the optimized critical porosity and pore aspect ratio (white 
dashed lines) against the porosity are shown in (c) and (f), respectively. 
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Figure 4. The results of calibration algorithm over four wells using the Nur model. (a) the color-
codded tops of the reservoir subzones, (b) the lithology description. The red and black curves 
in (c)-(e) describe the modeled and observed properties, respectively. (c) the modeled and 
observed saturated bulk modulus, (d) the modeled and observed saturated shear modulus, (e) 
the modeled and observed bulk density. The black curves in (f) represent the result of the 
piecewise linear regression of the optimized critical porosity (red circles) with the effective 
porosity. 
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Figure 5. The results of calibration algorithm over four wells using the Keys-Xu model. The 
descriptions of (a)-(e) are the same as Figure 4.  The black curves in (f) represent the result of 
the piecewise linear regression of the optimized pore aspect ratio (red circles) with effective 
porosity. Note (d) for well W06n, where the algorithm fails to model the observed shear 
moduli. 
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Figure 6. The coordinates of the platform, including the range of crosslines, inlines, well 
locations, the crooked line passing through the wells. The rectangle with yellow borders 
specifies the coordinates of extracted seismic data for the 3D inversion. 
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Figure 7. The extracted statistical wavelet (a), and its associated frequency spectrum (b). 
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Figure 8. Description of the available sonic and petrophysical logs for well W08, (a) the tops 
of the subzones, (b) the gamma-ray log, (c) the lithology column, (d) the porosity log describing 
the oil and brine accumulation, (e) the density log, (f) the compressional velocity log, (g) the 
shear velocity log, (h) the acoustic impedance, (i) the synthetic trace constructed through the 
well-to-seismic tie, (j) the observed trace at well location. 
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Figure 9. The semi-variograms of the porosity logs (colored lines), their mean (black line), and 
the fitted theoretical semi-variogram on the mean semi-variogram (red line). 
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Figure 10. The 1D convolution procedure to generate the synthetic seismic trace. 
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Figure 11. The description of the correlated Gaussian noise used in probabilistic seismic 
inversion, (a) 2D bandlimited Gaussian random filed constructed through convolution of the 
statistical seismic wavelet with the 2D Gaussian random reflectivity series with mean zero and 
variance of 0.0324 (Gaussian noise), (b) the covariance matrix of the correlated noise in (a), 
(c) the statistical seismic wavelet (red) with the mean of the non-zero diagonals of the 
covariance matrix (black), (d) the frequency spectrum of the wavelets in (c). 
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Figure 12. (a) the noise-free synthetic seismic trace, (b) the band-limited Gaussian noise, (c) 
the noisy seismic trace, (d) the result of probabilistic inversion of noisy seismic trace assuming 
correlated noise in inversion (Case A), (e) the result of probabilistic inversion of noisy seismic 
trace assuming uncorrelated noise in inversion (Case B). The porosity realizations, their mean, 
and the true porosity are shown with grayish, black, and red lines. 
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Figure 13. The probabilistic inversion results using thr Nur rock-physics model, (a) the seismic 
data superimposed by well-to-seismic tie results and the horizons’ TWT of Sar-1, 3, 8, and 
Intra subzones (black dashed lines flagged by blue arrows), (b) the porosity posterior mean 
model, (c) the standard deviation of the porosity realizations, (d) the critical porosity obtained 
through converting the mean porosity model via the optimized regression coefficients of rock-
physics modeling, (e) the facies probability with a porosity between zero and 0.15. (f) the facies 
probability with a porosity between 0.15 and 0.3. Some events are flagged by arrows and 
ellipses to compare the inversion performance (refer to the text). 
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Figure 14. The probabilistic inversion results using the Keys-Xu rock-physics model, the 
descriptions of (a), (b), (c), (e), and (f) are the same as in Figure 13. (d) represents the pointwise 
pore aspect ratio model.  
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Figure 15 part a. The inversion results in well locations for wells W04n and W06n using both 
Nur and Keys-Xu rock-physics models. From left to right: The color-coded column represents 
the TWT of the top of the subzones. The porosity realizations are shown as the density plots 
superimposed by the true porosity log (black), the mean of the porosity realizations (blue), and 
the 95% confidence interval (pink dashed lines). The colored background shows the probability 
at each time sample. The three last columns show the shale volume, the observed trace, and 
synthetic trace in well location. White arrows represents the regions, where the inversion fails 
to capture the true porosity. 
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Figure 15 part b. The inversion results in well locations for wells W08n and W10 using both 
Nur and Keys-Xu rock-physics models. 
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Figure 16. The 1D marginal distributions of the porosity realizations (blue boxes) and the 
histogram of the porosity logs (brown boxes) for the four well logs using two rock-physics 
models in inversion. 
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Figure 17. Comparison of the geological model constructed through geostatistical approach 
(sequential Gaussian simulation) by the client and the porosity model obtained by the single-
step probabilistic seismic inversion (b). The associated seismic responses with the models in 
(a) and (b) are shown in (c) and (e). The observed seismic data is demonstrated in (d). See the 
text for more details of the description of the flagged features on these figures. 
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Figure 18. The porosity models obtained through (a) geostatistical (sequential Gaussian 
simulation) approach, (b) a two-step deterministic seismic inversion provided by the clinet, and 
(c) the single-step probabilistic seismic inversion. The geological model in (a) has been 
constrained laterally to the porosity model in (b) in the simulation procedure. 
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Figure 19. The time maps of (a) seismic amplitudes, (b) the mean porosity models obtained by 
the probabilistic inversion, and (c) the standard deviation models of the porosity realizations 
for the Sar-1, 3, 8, and Intra subzones. The locations of four wells are superimposed on each 
time map. 
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Figure 20. The time maps of (a) the critical porosity, (b) the probability of the facies-1, where 
porosity is less than 0.15, (c) the probability of the facies-2, where porosity varies between 0.15 
and 0.3, for the Sar-1, 3, 8, and Intra subzones. The locations of four wells are superimposed 
on each time map. 
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Figure 21. The 5th, 25th, 75th, and 95th percentiles for the Sar-1 subzone (top row) and the 
Sar-3 subzone (bottom row). 
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Figure 22. The 5th, 25th, 75th, and 95th percentiles for the Sar-8 subzone (top row) and the 
Sar-Intra subzone (bottom row). 
 


