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Abstract

Insight into the causes of the West Antarctic Ice Sheet (WAIS) stability over middle Pleistocene glacial/interglacial (G/IG)
cycles is fundamental to our understanding of the response of the climate system to the cryosphere. Here, to clarify the
mechanism of WAIS stability during the late Quaternary period, we provide iceberg-rafted debris (IRD) contents, clay mineral,
and Sr-Nd isotopic analyses of the piston core ANT34/A2-10. The core was recovered from the seasonal sea ice region in the
Antarctic Zone of the Amundsen Sea with a ˜773 ka BP chronology. The endmember analysis of clay minerals shows marked
differences in sediment provenance at site ANT34/A2-10 between IRD peak interval and low IRD content interval in G/IG
cycles. And the Sr-Nd isotopic endmember analysis in IRD peak intervals restricts the sediment provenance in the Victoria
Land. We suggest that shifts in the sediment provenance resulted from the variations in iceberg trajectories, which connected
to the significant shifts in the atmospheric system at the IRD peak intervals.

Moreover, a contemporaneous strengthened ocean-driven positive feedback occurred between the increased wind-driven up-

welling of warm, well-ventilated Circumpolar Deep Water and the intense ice mass loss process (including iceberg calving and

basal melting process) with the instability of the WAIS. Furthermore, our results reveal that the variation of WAIS stability is

sensitive to the local summer insolation forcing. These pieces of evidence recorded in the pelagic South Pacific Southern Ocean

may strongly reflect the significant variations in ocean-driven and orbital forcing on WAIS stability on the orbital scale.
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Key Points:

• Ocean-driven positive feedback significantly influences the vulnerability of the

West Antarctic Ice Sheet since 773 ka.

• The variations in sediment provenance indicate the changes in iceberg trajectory,

which relate to the shift in atmospheric circulation.

• We suggest that the West Antarctic Ice Sheet variation is sensitive to the local

summer insolation forcing since 773 ka.

Abstract: Insight into the causes of the West Antarctic Ice Sheet (WAIS) stability

over  middle  Pleistocene  glacial/interglacial  (G/IG)  cycles  is  fundamental  to  our

understanding of the response of the climate system to the cryosphere. Here, to clarify

the  mechanism  of  WAIS  stability  during  the  late  Quaternary  period,  we  provide

iceberg-rafted debris (IRD) contents, clay mineral, and Sr-Nd isotopic analyses of the

piston core ANT34/A2-10. The core was recovered from the seasonal sea ice region in

the  Antarctic  Zone  of  the  Amundsen  Sea  with  a  ~773  ka  BP chronology.  The

endmember  analysis  of  clay  minerals  shows  marked  differences  in  sediment

provenance at site ANT34/A2-10 between IRD peak interval and low IRD content
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interval in G/IG cycles.  And the Sr-Nd isotopic endmember analysis  in IRD peak

intervals restricts the sediment provenance in the Victoria Land. We suggest that shifts

in the sediment provenance resulted from the variations in iceberg trajectories, which

connected to the significant shifts in the atmospheric system at the IRD peak intervals.

Moreover, a contemporaneous strengthened ocean-driven positive feedback occurred

between the increased wind-driven upwelling of warm, well-ventilated Circumpolar

Deep Water and the intense ice mass loss process (including iceberg calving and basal

melting process) with the instability of the WAIS. Furthermore, our results reveal that

the variation of WAIS stability is sensitive to the local summer insolation forcing.

These pieces of evidence recorded in the pelagic South Pacific Southern Ocean may

strongly reflect the significant variations in ocean-driven and orbital forcing on WAIS

stability on the orbital scale.

Keywords:  WAIS  stability,  ocean-driven  positive  feedback,  iceberg-rafted  debris,

clay mineral, Sr-Nd isotopes

Plain Language Summary

The vulnerability of the West Antarctic Ice Sheet (WAIS) has a significant influence 

on accelerating the global sea-level rise in recent decades. Previous studies have 

pronounced that the oceanic-driven feedback process could exert significant control 

on accelerating the iceberg calving and ice shelf basal melting process in the 

Amundsen sector of WAIS. Meanwhile, this process could also lead to the grounding 

line retreat, causing the buttress loss of the glacier and fast ice stream in this sector. 

Previous studies focus on clarifying this feedback process in the recent 

glacial/interglacial cycle. However, the evidence of this feedback is rare to find in the 

long-term orbital scale study in the south pacific Southern Ocean. For this purpose, 

we provide long-term Iceberg-Rafted Detritus (IRD), clay mineral, and Sr-Nd isotopic

records, combined with the gradient of benthic δ13C between intermediate South 

Atlantic Ocean to deep South Pacific Ocean and EDC ice core records to prove the 

existence of ocean-driven positive feedback process since 773 ka. The endmember 
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analysis of clay minerals and Sr-Nd isotopic composition in high IRD content periods 

could indicate the iceberg trajectory variation due to the shift of the atmospheric 

circulation that consists with the ocean-driven feedback.

1 Introduction

Ice sheet stability plays an essential role in the global climate system by influencing

the sea level,  oceanic circulation,  and global  carbon cycle at  different  time  scales

(Wadham et al., 2019, Golledge et al., 2019, Lear et al., 2004, Lindgren et al., 2018,

Bell,  2008).  In  particular,  the  Antarctic  Ice  Sheet  will  be  the  largest  contributor

reservoir for potential global sea level rise (Tinto et al.,  2019, Nerem et al., 2018,

team,  2018).  Recent  studies  indicate  that  the  Antarctic  Ice  Sheet  mass  loss

contribution to sea level  rise has considerably increased in recent years,  primarily

related to iceberg calving and basal melting processes (Rignot et al., 2019, Shepherd

et al., 2018). The current ice mass loss of the Antarctic ice sheet is concentrated in the

West Antarctic Ice Sheet (WAIS), where the basal melting of floating ice shelves are

accelerating  the  retreat  of  the  ‘grounding  line’ (the  junction  of  ice,  ocean,  and

bedrock)  (Pattyn and Morlighem, 2020).  This contemporary process  also exists  in

different  time  scales  and was  proved  by  model  simulation  (Larour  et  al.,  2019,

Pritchard  et  al.,  2012,  Joughin  and  Alley,  2011,  Pollard  and DeConto,  2009)  and

geological investigation (Levy et al., 2019, Conway et al., 1999).

The South Pacific Sector (SPS) of WAIS is mainly located adjacent to the Ross Sea

(RSE) and Amundsen Sea (ASE) embayments, including the Ross Ice Shelf, Thwaites

Glacier (TG), Getz Ice Shelf (GIS), and Pine Island Ice Shelf (PIIS), and these ice

shelf buttresses the rapidly flowing inland ice streams from the SPS of the WAIS,

preventing their drainage into the Southern Ocean (Joughin and Alley, 2011, Pritchard

et  al.,  2012,  Davis  et  al.,  2018)  (fig.  1).  Studies  suggest  that  the  grounding  line

beneath this sector of  the  WAIS is retreating irreversibly southward due to ocean-

driven  ice  mass  loss  and  may  cause  the  buttresses  loss  of  floating  ice  shelf  and

accelerate the further ice mass loss of this sector of WAIS (Lowe and Anderson, 2002,

Turney et al., 2020, Rignot et al., 2013, Schmidtko et al., 2014, Rignot et al., 2019,
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Rignot et al., 2014, Thoma et al., 2008, Jacobs et al., 2011, Joughin et al., 2014, Jones

et al., 2021). The ice mass loss mainly involves iceberg calving and basal melting in

SPS of the WAIS, accounting for the dominant total ice mass loss in the glacier and

ice  shelves  of  this  sector  (team,  2018). In  the  traditional  view,  ablation  from the

Antarctic Ice Sheet primarily originates from the iceberg calving process, with basal

melting  contributing approximately  20% of the total Antarctic Ice Sheet mass loss

(Jacobs et al., 2017). In recent decades, estimations suggest that the iceberg calving

from the entire Antarctic Ice Sheet accounts for up to 1389 Gt yr-1, representing half of

the total Antarctic Ice Sheet mass loss (Gladstone et al., 2001, Silva et al., 2006).

However,  investigations  show  that  the  increasing  upwelling  of  relatively  warm

Circumpolar Deep Water (CDW) and/or Modified Circumpolar Deep Water (MCDW)

in the South Pacific Southern Ocean has accelerated the basal melt rate in the SPS of

the WAIS (Jacobs et al., 1996, Rignot et al., 2013, Jacobs et al., 2011, Thoma et al.,

2008,  Gladstone  et  al.,  2001).  This  phenomenon  suggests  that  the  basal  melting

process  is  the  primary  cause  of  the  present  ice mass  loss  in  the  Amundsen  and

Bellingshausen seas (Pritchard et al., 2012, Thoma et al., 2008, Jacobs et al., 2011,

Nakayama et al., 2018, Rignot and Jacobs, 2002). These ice discharge processes are

useful to reveal the feedback between poleward wind-driven transport of warm CDW

and subsurface warming of the Southern Ocean, and the destabilization of the WAIS

is not only occurring in the present (Rignot et al., 2019, Shepherd et al., 2018) but has

also occurred in recent glacial/interglacial (G/IG) cycles (Lowe and Anderson, 2002,

Turney et al., 2020, Weber et al., 2014, Jones et al., 2021). However, very little  is

known  about  this  ocean-driven  feedback  mechanism  over  long-term  orbital  time

scales (Pollard and DeConto, 2009, Teitler et al., 2010, Levy et al., 2019).

Thus, to clarify the connection between WAIS stability and this ocean-driven process

with the high-latitude atmospheric process variation on the orbital scale, we used the

iceberg-rafted debris (IRD) content in core ANT34/A2-10, with benthic δ13C gradient

of the intermediate  south Atlantic (ODP site  1088) to deep east  equatorial  Pacific

(ODP site 849) and EPICA-Dome C (EDC) ice core data (accumulation rate in ice
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equivalent per year) to trace the iceberg calving process of the WAIS (Weber et al.,

2012, Kanfoush et al., 2000, Nielsen et al., 2007), with CDW ventilation (Hodell et

al., 2003, Ullermann et al., 2016, Hodell and Venz-Curtis, 2006, Hall et al., 2001) and

wind-driven upwelling of deep water (Members, 2013, Anderson et al., 2009) in the

South  Pacific  Southern  Ocean  on  the  orbital  scale,  respectively.  Furthermore,  we

combined the records of clay minerals and EDC accumulation rate to illustrate the

overall differences of sediment provenances at site ANT34/A2-10 during G/IG cycles.

Moreover, combine these records with Sr-Nd isotopic composition in the IRD peak

interval  to  illustrate  the  relationship  between  high-latitude  atmospheric  circulation

changes and the provenance at IRD peak interval on the orbital scale in the South

Pacific Southern Ocean.

2 Regional setting

Core ANT34/A2-10, which is 4.54 m long and located at 125°35’31”W, 67°02’10”S,

with a water depth of 4216.6 m, was drilled by  R/V Xuelong in the 34th Chinese

National Antarctic Research Expedition in water. The core site is located in the sea ice

region in the Antarctic Zone at the northern edge of the Amundsen Sea and south of

the SACCF (fig.  1).  The Ross Sea and the Amundsen Sea lie  between the South

Antarctic Circumpolar Current Front (SACCF) and Marie Byrd Land with the Ross

Ice Shelf (fig. 1a). The major water masses in the area of our study are the Antarctic

Surface Water (AASW), MCDW, CDW, and Antarctic Bottom Water (AABW) (fig.

1). The AASW is the low-temperature (near freezing point) and low-salinity (between

34.1 and 34.5 psu) surface water (Jacobs, 1985).  The AASW flows westward along

the edge of the ice shelf, adjacent to the Amundsen Sea and the Ross Sea, then moves

northward  along  the  coast  of  Victoria  Land,  and  finally  joins  the  Antarctic

Circumpolar Current (ACC) (fig. 1). The ACC is an important dynamic feature in this

area and moves eastward around Antarctica and interacts with water masses along its

path, carrying the warm, high-salinity CDW (Jacobs and Comiso, 1997, Jacobs et al.,

2012, Budillon and Spezie, 2004). The modification of  the  incoming CDW product

MCDW at the outer edge of  the  Ross Sea, which is a warmer (temperatures  up to
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0.3 ) and fresher water mass than℃  the surrounding waters, is the primary source of

heat, salt, and nutrients to the Ross Sea continental shelf region (fig. 1b) (Budillon

and Spezie, 2004, Smith et al., 2006, Hiscock, 2004). The upwelling of CDW and

MCDW takes place at  the continental  slope,  locally  protruding far  onto the inner

continental shelf under the WAIS in ASE and RSE, respectively (Jacobs et al., 2012,

Das et al., 2020). Furthermore, cause intense basal melting of the Ross Ice Shelf, with

PIIS and GIS and intense iceberg calving from these ice shelf fronts and Pine Island

Glacier (PIG) and TG in the RSE and ASE, respectively (fig. 1) (Jacobs et al., 1996,

Walker et al., 2007, Thoma et al., 2008, Rignot and Jacobs, 2002, Jacobs et al., 2012),

causing the recent ice mass loss of WAIS (Das et al., 2020, Adusumilli et al., 2020).

Hence, the South Pacific sector of marine-based WAIS is considered one of the most

instable regions in response to modern ocean heat flux changes.

3 Materials and methods

Core ANT34/A2-10 was split lengthwise and logged in detail by visual examination.

Its  lithology is  characterized by continuous terrigenous deposition,  mainly pelagic

nannofossil clay, except for a foraminifer-rich layer at 11-29 cm and a radiolarian-rich

layer  at  0-90  cm.  No  evidence  of  turbidite  sedimentation,  bioturbation,  or  mass

redeposition  was  found  during  the  sampling  process.  The  entire  piston  core  was

segmented at intervals of 2 cm to further analyze IRD and clay minerals.

Approximately 5 g of dried samples from core ANT34/A2-10 was accurately weighed

and then separated by wet sieving (150 μm) after removal of carbonate and organic

matter with 10% acetic acid and 3.5% hydrogen peroxide, respectively, to obtain the

IRD component  (Caniupán  et  al.,  2011).  The individual  large  particles  were  then

removed from a few samples (mainly greater than 1 mm in our samples) to reduce the

uncertainties caused by such large/massive particles  in the counts and weight of the

detrital  particles.  The number of particles (>150 μm) was counted under a binocular

microscope (LEICA S8AP0),  including the  numbers  of  subangular  to  subrounded

quartz, feldspar grains, and rock fragments, which could represent the IRD component

(Teitler et al., 2010, Watkins et al., 1974, Starr et al., 2021).  The weight percentage

6

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173



manuscript submitted to Geochemistry Geophysics Geosystems

(wt%)  of  the  coarse  fraction  (>150  μm)  to  the  weight  of  the  dried  bulk  sample

(Caniupán et al., 2011) was calculated as IRD wt%. Although radiolarian shells with

sizes larger  than  150  μm  frequently  appeared  in  the  top  layer  (0-20  cm)  of

ANT34/A2-10, their weights were also much too low to contribute to the wt% of the

>150 μm coarse-grained  fraction  record.  Volcanic  particles  were  not  a  significant

component  (rarely  seen)  in  core  ANT34/A2-10,  most  likely  because  ash  plumes

originated from the nearest volcanoes of the Peter I Island, which  is located east of

site ANT34/A2-10, and were typically transported and deposited eastward due to the

prevailing  strong  Southern  Westerly  Winds  (SWW)  (Hillenbrand  and  Ehrmann,

2005).

Clay minerals from 227 samples were processed to obtain the <2 μm fraction, which

was  separated  based  on  the  conventional  Stokes  settling  velocity  principle  after

removing carbonate and organic matter by acetic acid and excess H2O2, respectively

(Wan et al., 2010). X-ray  diffraction (XRD) analysis of the sample was performed

using oriented mounts with a D8 ADVANCE diffractometer manufactured by Brucker

using CuKα radiation (40 kV, 40 mA) in the Key Laboratory of Marine Geology and

Environment  of  the  Institute  of  Oceanology,  Chinese  Academy  of  Sciences.  The

relative percentages of the leading clay mineral groups (smectite, kaolinite, illite, and

chlorite) were estimated by weighting the integrated peak areas of the characteristic

basal reflections in the glycolate state using Topas 2P software with the experimental

factors  published  by  (Biscaye,  1965).  The  relative  proportions  of  kaolinite  and

chlorite  were determined based on the ratio  of the 3.58/3.54 Å peak areas  in  the

glycolate  state.  The  analytical  precision  (relative  standard  deviation)  for  the

abundance of each clay mineral was estimated to be approximately ±5% (Wan et al.,

2010). The illite chemical index was calculated from the ratio of the  5 Å and 10 Å

illite peak areas in the glycolate state. Ratios higher than 0.4 represent Al-rich illite

formed under  strong hydrolysis,  while  ratios  lower than 0.4 correspond to Fe-Mg

illite, a product of the physical weathering of eroded rock (Ehrmann, 1998, Gingele et

al., 2001).
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The 6 bulk sediment samples (collect from IRD peak interval) were grounded under

200 mesh then transfer into the polytetrafluoroethylene (PTFE) solution flask after

removing the carbonate and organic matter  by 10 ml 0.25 mol/L HCl and excess

H2O2, respectively. Then add 2 mL HF, 1.5 mL HNO3 and 0.2 mL HClO4 into the

solution flask, tighten the cap, and heat it on an electric heating plate at 120  for℃

about a week until the sample in the bottle is completely dissolved. After the sample

was  dissolved  completely,  the  lid  was  opened  and  steamed  dry,  and  then  the

temperature was raised to 180  to remove the residual HClO℃ 4. After evaporation,

the sample was dissolved in 2.5 mol/L HCl and then transferred to a centrifuge tube.

After centrifugation, we absorb the supernatant for further separation of Sr and Nd by

using AG50W-X12 and P507 extraction resin ion-exchange columns,  respectively.

The Sr and Nd isotopes were tested and analyzed by a high-precision multi-reception

plasma mass spectrometer (HRMC-ICP MS) produced by NU Company in the UK.

And Sr and Nd isotopes were determined by NBS 981 (87Sr/86Sr=0.71033 ± 0.000008,

2σ)  and  NBS  987  (87Sr/86Sr=0.71031  ±  0.00003,  2σ),  and  Shin  Etsu  JNdi-1

(143Nd/144Nd=0.512115  ±  0.00005)  standard  sample  to  monitor  the  measurement

quality (Tanaka et al., 2000, Steiger and Jäger, 1977). The analytical accuracy was

within the range of ± 1%. The pretreatment and measurement were proceeding in the

Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography,

Ministry of Natural and Resources.

Previous studies covering the late Quaternary in Antarctica have constrained ages by

using  correlations  between  surface  water  productivity  proxies,  such  as  biogenic

opal/silica  and  Ti-normalized  Ba  concentration  (measured directly  or  scanned by

using XRF) and the LR04 δ18O stack (Wu et al.,  2017, Hillenbrand et  al.,  2009b,

Ceccaroni et al., 1998, Tang et al., 2016, Presti et al., 2011). The age model of core

ANT34/A2-10 has been established following this method through correlation of the

XRF scanned Ba/Ti with the LR04 δ18O stack, with two AMS 14C age control points

(fig. S1).

4 Results
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4.1 Variations in IRD

Our IRD count result (grains per gram) largely parallels the weight result of >150 μm

carbonate free fraction (wt%) (fig. 2a). Most IRD consists of sand sized quartz and‐ ‐

feldspar grains with generally minor amounts of gravel in our sample. Both records

show higher in interglacial and lower in glacial periods. To distinguish the peak of

IRD, we first choose the IRD peak layer, which is characterized by the highest values

of  both  the  >150 μm wt% and the  IRD grains  per  gram,  and  then  use I1-I12 to

represent the high IRD value periods in the interglacial time, which contains the IRD

peak layer. These millennial scale peaks reach values of counts up to ~640 grains per‐

gram and ∼3.6% (>150 μm wt%). The most pronounced peaks (the highest amplitude

variation) occur at ∼474-530 ka and 550-580 ka, represented by I7 and I8 in MIS 13

and  15,  respectively  (fig.  2a).  Our  IRD  record  shows  millennial-scale  variation

patterns of IRD content over the last 773 ka in which nearly every IRD peak occurs in

interglacial periods, while no IRD peaks occur in glacial periods.

4.2 Composition and parameters of clay minerals

For the last 773 ka, the clay-sized fraction of core ANT34/A2-10 consists mostly of

smectite (30-59%) and illite (23-44%), while chlorite (5-22%) and kaolinite (1-16%)

are present in lesser amounts. The variation  patterns of kaolinite, illite, and chlorite

are similar, showing higher values in the glacial periods (except for MIS 2) and lower

values in the interglacial periods. However, kaolinite, illite, and chlorite show lower

values during MIS 2 (figs. 2b-e). The opposite result occurs for smectite, which shows

higher contents in the interglacial periods and  lower contents in the glacial periods

(smectite content is higher during MIS 2). Variations in chlorite and kaolinite contents

are relatively small (~15%) but beyond the analytical limits (±5%) of the method used

(Wan et al., 2017). Except for some high-frequency fluctuations after the MIS 6, the

clay  mineral  parameters  (smectite,  kaolinite,  illite,  and  chlorite  content)  display

apparent glacial/interglacial  oscillations; interglacial  periods show higher values of

smectite and  lower values of kaolinite, illite, and chlorite, and  glacial periods have

lower  values  of  smectite.  Moreover,  the  higher  values  of
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(smectite+kaolinite)/(illite+chlorite) ratios are consistent with the peaks in IRD during

interglacial  periods  (fig.  2f).  In  contrast,  the  lower

(smectite+kaolinite)/(illite+chlorite)  ratios are  common  in  glacial  periods.  All  the

samples  display relatively narrow ranges  of  illite  and smectite  crystallinity  values

before MIS 6 while exhibiting relatively wide ranges of parameter values after MIS 6.

The  smectite  and  illite  crystallinity  range from  1-1.8  Δ2θ and  0.2-0.6  Δ2θ,

respectively,  with fluctuations mainly around 1.3°  Δ2θ and  0.3°  Δ2θ,  respectively,

indicating high to moderate crystallinity and very high to high crystallinity of smectite

and illite, respectively (fig. 2g) (Ehrmann et al., 2005). The illite chemical index is

less  than  0.3,  indicating strong  physical  weathering  of  the  source  area  (fig.  2i)

(Ehrmann, 1998, Wan et al., 2006, Gingele et al., 1998), and their lower values are

common consistent with the IRD peak intervals. These results illustrate that our study

area has a relatively stable detrital fraction source area, in which the source rocks are

influenced by  physical  weathering.  Meanwhile,  this stepwise  increasing  and

decreasing trend in all clay mineral parameters, consistent with IRD peak intervals,

shows that  they  are  systematically  related  and may suggest  consistent  changes  in

provenance variations during the G/IG cycles.

4.3 Strontium and neodymium isotopes

The Sr and Nd isotopic composition of the bulk sediment in the IRD peak interval is

reported in table 1. The Sr isotope results (n=6, table 1) range from 87Sr/86Sr=0.7106

to 0.7132 and  143Nd/144Nd (n=6, table 1) reveals values from 0.1524 to 0.1525. The

significant shift of 87Sr/86Sr value appears in the IRD peak interval (I12) at about 760

ka.

5 Discussion

5.1 The iceberg flux variation related to the intensity of ocean-driven positive 
feedback

The  widespread  IRD  deposited  around  the  Southern  Ocean  and  the  southern

subtropics could  reflect  Antarctica's  long-term  glacial  evolution  since  the  late

Pliocene (Ehrmann et al., 1991). The contents of the IRD are usually considered to
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reflect the iceberg flux from Antarctica (Kanfoush et al., 2000, Nielsen et al., 2007,

Weber  et  al.,  2014).  Previous  works  suggest  that  increased  iceberg survivability

during  periods  of  widespread  sea  ice  and  increased  iceberg  flux from Antarctica

determined the transport  of  IRD within the Southern  Ocean (Nielsen  and Hodell,

2007),  and  the  IRD  deposition  close  to  Antarctica  is  generally  highest  during

interglacial periods and periods of ice-sheet retreat (Weber et al., 2014). In contrast,

IRD maxima typically occur during glacial periods at Subantarctic Zone (Starr et al.,

2021).  Site  ANT34/A2-10  is  located near  the  modern  SACCF  and  is  strongly

influenced  by  the  relatively  warmer  ACC;  the  current  passes  through  the  Drake

Passage  and  then  steers  icebergs  toward  the  east  and  causes  the  water  at  site

ANT34/A2-10  to  be  generally  warmer  than  the  Southern  Ocean,  melting  local

icebergs  (Orsi  et  al.,  1995).  This  contrast  generally  leads  to  low survivability  for

icebergs under the present warm period at site ANT34/A2-10 (Weber et al., 2014).

However, the unstable and disintegrated WAIS could generate sufficient iceberg flux

to reach this  distal  site  ANT34/A2-10 in warm periods,  leading to  higher  iceberg

survival  and  contributing  to  the  IRD  peak  intervals  in  interglacial  periods.  This

vulnerability of WAIS may be caused by increasing ocean-driven positive feedback

processes,  which  involve  the  upwelling  of  warm,  well-ventilated  CDW  and  the

intense ice mass loss process with the WAIS instability. In contrast, high survivability

for icebergs may prevail during glacial periods, in which the tropicward shift of the

SWW drives the SACCF to the north, and the water at site ANT34/A2-10 is generally

as cold as the coastal Southern Ocean (Hillenbrand et al., 2009b). This condition may

contribute to the survival of past glacial sediment-laden iceberg in the Amundsen Sea,

thus release less IRD in the study region than in the warm period.

The intense glacial deep water stratification could increase regenerated nutrients in

the deep and reduce preformed nutrients in intermediate water masses (Toggweiler et

al., 2006), and produces a stronger chemical stratification between southern sourced

deep and intermediate waters (Ziegler et al., 2013). This mechanism lets the benthic

foraminiferal calcite δ13C gradients reconstruct the chemical stratification/deep water
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ventilation between the deep and intermediate ocean (Charles et al., 2010, Ullermann

et al., 2016, Hall et al., 2001). Our results show that the peaks of iceberg flux in core

ANT34/A2-10 are well correlated with the minimum benthic δ13C gradient (Δδ13C(1088-

849)) and the peaks of accumulation rate in EDC ice core,  which may relate to the

intense ventilation of warm CDW (Hodell et al., 2003, Ullermann et al., 2016) and the

intense  westerly  wind-driven  upwelling  of  warm  CDW  (Members,  2013),

respectively,  since  773  ka  (figs.  3a-c).  We  suggest  that  this  correlation  could  be

explained by positive feedback processes as follow. The well-ventilated warm CDW

could  upwelling  and  intrude  into  the  Antarctic  shelf  region  in  the  South  Pacific

Southern  Ocean (Jacobs et  al.,  1996,  Thoma et  al.,  2008,  Dinniman et  al.,  2012,

Schmidtko et al., 2014), resulting in enhanced iceberg calving and exacerbating the

basal melting process by warming the subsurface ocean adjacent to the SPS of WAIS,

increasing the instability of WAIS (Adusumilli et al., 2020, Davis et al., 2018, Hansen

et al., 2016, Liu et al., 2015). Meanwhile, the intense ice mass loss in SPS of WAIS

could supply vast amounts of meltwater to the surface layer of the Southern Ocean,

contributing  to  the  upper  ocean  stratification  and  maintaining the  heat  in  the

subsurface ocean, then warming the vulnerable WAIS continuously and  causing its

further  disintegration (Davis  et  al.,  2018, Jacobs et  al.,  2011, Walker  et  al.,  2007,

Fogwill et al., 2015). Moreover, this process might have cooled the surface waters

near  the  Antarctic  continent  by  isolating  the  surface  and  warm subsurface  ocean

(Bronselaer  et  al.,  2018),  which  may allow the  icebergs  to  transport  equatorward

without significant  melting until they reached the south boundary of warmer ACC

(Hillenbrand et al., 2009b). Our core site ANT34/A2-10 may locate at the north of

SACCF  during  these  periods.  The  variations  in  increasing  upwelling  of  well-

ventilated CDW are consistent with the higher frequency and significance of the IRD

content variations in our core affirmed the vigorous intensity of ocean-driven positive

feedback related to the vulnerability of the WAIS.  In contrast, the absence of IRD

peaks  in  glacial  periods  at  site  ANT34/A2-10 may indicate  the  weak intensity  of

ocean-driven positive feedback in the South Pacific Ocean. Furthermore, the dense
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water  generated in the Ross Sea shelf region may have  suppressed the intrusion of

MCDW into the base of the Ross Ice Shelf (Schmidtko et al., 2014), also weakening

the intensity of ocean-driven positive feedback during glacial periods.

We also notice that the extreme high IRD peak, representing high iceberg flux, occurs

from MIS 13 and 15 before the Mid-Brunhes Event, which represents a vital climate

transition occurring at  approximately 430 ka.  Furthermore,  this  specific  pattern of

changes in IRD has also been found elsewhere around Antarctica (Hillenbrand et al.,

2009b, Caburlotto et al.,  2009), which may be associated with cooler interglacials,

including MIS 13 and 15, than the more recent interglacials, with the unusual warmth

of the glacial MIS 14 as recorded by the EDC ice core (fig. 3c) (Jouzel et al., 2007).

We suggest that the cooler condition of the surface cryosphere in MIS 13 and 15 may

be suitable for the survival of the Antarctic-origin iceberg, while the warmer condition

in MIS 14 may contribute to the extra ice mass loss process (including iceberg calving

and basal melting) without the ocean-driven forcing. Moreover, these processes may

contribute to the refreshing event of the surface water in the south Pacific and south

Atlantic Southern Ocean during MIS 13-15, which was documented by the relatively

low planktonic  δ18O ratios  observed  in  both  the  Amundsen  and  the  Weddell  Sea

during MIS 14 (Hillenbrand et al., 2009b). In addition, the terrestrial margins of the

Antarctic Ice Sheet are sensitive to local summer insolation (Pollard and DeConto,

2009,  Patterson et  al.,  2014),  and MIS 13 had been subjected  to  strong isolation

forcing,  which  may  drive  additional  ice  mass  loss  and  enhance  the  Antarctic

interglacial periods (Tigchelaar et al., 2018, Wu et al., 2021) (further discussion in

section 5.3). Therefore, we suggest that the large iceberg flux in site ANT34/A2-10 at

MIS 13 and 15 may be caused by 1) increasing ocean-driven ice mass loss; 2) the high

iceberg  survivability  caused  by  the  lower  amplitude  of  the  Antarctic  temperature

anomaly (fig. 3c); 3) local summer insolation maximum, which may drive additional

ice mass loss of the ice sheet and generate more icebergs in MIS 13 and 15 (figs. 3a

and f).

5.2 Iceberg provenance variation during G/IG cycles
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Site ANT34/A2-10 is far from the Amundsen Sea hinterland, which means  that  the

clay  minerals  cannot be  supplied  by  the  glaciers  adjacent  to  the  ASE,  and  little

dust/current  is  imported  from  the  same  source  areas  in  the  western  Antarctic

(Petschick et al., 1996, Hillenbrand et al., 2003). Therefore, drifting sediment-laden

icebergs may be the primary carriers of clay-sized fractions in the Amundsen Sea

(Hillenbrand  et  al.,  2003).  Since  the  mineralogical  trends  and  the  relative

compositional  differences  in  clay-sized  mineral  assemblages can  constrain  the

provenances  of  sediment,  we  can  diagnose  the  source  of  specific  sediment-laden

icebergs in the Southern Ocean (Hillenbrand et al., 2009a, Krylov et al., 2008).

A primary assumption is that the sources of clay minerals in the Amundsen Sea may

not have changed significantly during the study time, which is reasonable because

there has been no notable tectonic activity around the SPS of West Antarctica at least

since the early Pleistocene (Hillenbrand and Ehrmann, 2005, Perez et al., 2021). Thus,

the  provenance  of  drifting  sediment-laden  icebergs  may  also  not  have  changed

significantly since this  time.  However,  during Quaternary G/IG cycles,  there have

been periods of extensive land ice across the sub-Antarctic both on islands scattered

north of the SACCF and near  Patagonia,  providing alternative sources  for  debris-

carrying  icebergs  in the South  Pacific  Southern  Ocean (Bigg,  2020).  Our

interpretation  could  be  supported by  the  smectite  crystallinity  (1-1.8°  Δ2θ),  illite

crystallinity (0.2-0.6° Δ2θ), and illite 5/10 Å (0.1-0.3) in core ANT34/A2-10, which

are comparable to the average smectite and illite crystallinity, and illite 5/10 Å ranges

from  1-1.6°  Δ2θ,  while  the  illite  crystallinity  ranges  from  0.2-0.7°  Δ2θ of  clay

minerals from the Transantarctic  Mountains  (Ehrmann  et  al.,  2005).  In  addition,

studies  show  that  the clay-sized  fraction  deposited  in  the  Amundsen Sea includes

multi-sourced particles that originated from different regions, including Marie Byrd

Land, Ellsworth Land, and the Antarctic Peninsula (Hillenbrand et al., 2003, Ehrmann

et al., 2005, Ehrmann et al., 2011). Therefore, we need to find a useful diagnostic clay

mineral-related  proxy  for  better  discrimination  of  the  potential  endmembers  to

identify the different sources of iceberg mixtures in the study area.
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We note that core ANT34/A2-10 is characterized by a relatively high kaolinite content

(fig. 2b). However, current climatic conditions, which dominated Antarctica since the

establishment of the Cenozoic cryosphere in the early Oligocene with intense physical

weathering, do not provide pedogenic kaolinite (Ehrmann et al., 1992). Therefore, the

relatively high  kaolinite  concentrations  in  core  ANT34/A2-10  may  suggest  pre-

Oligocene sedimentary rocks or paleosols in the source area, and the kaolinite has not

been destroyed by metamorphism or deep burial processes (Hillenbrand et al., 2003).

Previous studies have indicated that relatively higher kaolinite and smectite contents

in the ASE are potential indicators of contributions from Marie Byrd Land and Peter I

Island, respectively (Ehrmann et al., 2011, Hillenbrand et al., 2003). In contrast, the

contributions  of  clay  minerals  from north  Victoria  Land  and  the  RSE  appear  to

contain relatively low to no kaolinite but abundant smectite (Pant et al., 2013, Setti et

al., 2004, Graly et al., 2020), and all of these regions have relatively high illite and

chlorite contents. Meanwhile, north Victoria Land and the RSE typically have higher

kaolinite+smectite (mainly because of the high values of smectite in Transantarctic

Mountains  detritus)  and  lower  illite+chlorite  values than  the  ASE.  Moreover,

kaolinite is absent in the RSE (Ehrmann et al., 2005), and the kaolinite+smectite and

illite+chlorite  contents are  profoundly  different  between  these  embayments.

Therefore,  we  suggest  that  clay  mineral  endmembers  of  kaolinite+smectite,  illite,

chlorite, and the (kaolinite+smectite)/(illite+chlorite) ratio may be useful diagnostic

proxies to identify the mixture of  icebergs  from the RSE and the ASE in the study

area. Based on this  interpretation,  we draw ternary diagrams of smectite-kaolinite-

illite+chlorite (fig. 4a) and determine that the provenances of sediment-laden icebergs

at  site  ANT34/A2-10  involved  both  the  ASE  and  RSE  (fig.  1b).  Clay  minerals

assembled in core ANT34/A2-10 are very similar to the sample site in ASE and RSE

sediments;  this  result  can  be  interpreted  as  a  mixture  of  multiple  sediment-laden

icebergs with sources from the ASE and RSE in site ANT34/A2-10. However, the

icebergs at site ANT34/A2-10 have quite different provenances from those of the ASE

and RSE and/or north Victoria Land (fig. 4a) between IRD peak intervals and low
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IRD content intervals.

The ternary diagram shows that clay mineral assemblages in the IRD peak intervals at

site ANT34/A2-10 during the interglacial periods were mixed with clay minerals from

the ASE and RSE; however, the ASE was the main source of clay minerals during the

low IRD content interval in glacial periods (fig. 4a). Our interpretation also supports

by the Sr-Nd isotopic composition in bulk sediment of ANT34/A2-10 at IRD peak

interval, which has a similar Sr-Nd isotopic composition with the glacial drift (include

dolerite,  sandstone,  and granite)  in  the hills  and valleys in the north and/or  south

Victoria Land,  respectively (fig  4b).  These results indicate that  site  ANT34/A2-10

could receive sediment-laden icebergs both from the ASE and the RSE in IRD peak

intervals during interglacial periods since 773 ka. However, site ANT34/A2-10 may

receive  fewer  icebergs  from  ASE  during  glacial  times.  Alternatively, the  ASE

originate sediment-laden icebergs may survive at site ANT34/A2-10 and led to less

IRD input during glacial periods. Moreover, the clay mineral assemblage indicates a

mixture of  icebergs from the ASE and north Victoria Land, East  Antarctica, around

the end of the MIS 18 (fig. 4a). Our result shows that these variations in clay mineral

assemblages may be controlled by different transport patterns for iceberg trajectories,

which is also well reflected by the variations  in (kaolinite+smectite)/(illite+chlorite)

(figs.  3a  and  d).  The  high  values  of  (kaolinite+smectite)/(illite+chlorite)

accompanying the IRD peaks (I1-9) indicate the mixture of clay minerals from RSE

and ASE and imply a mixture of icebergs from the ASE and the RSE at the IRD peak

intervals  during  interglacial  periods.  Furthermore,  the  high  values  of  this  ratio

accompanying the IRD peaks (I10-12) imply the mixture of icebergs from the north

Victoria Land, RSE, and ASE around MIS 18 (figs. 4a and b). We suggest that these

variations in iceberg provenance may be explained by abrupt shifts in the Amundsen

Sea low-pressure system (ASL). As a highly dynamic and mobile climatological low-

pressure system located in the South Pacific Southern Ocean, the ASL is a crucial

driver of West Antarctic climate variability that may accelerate glacial ice (Hosking et

al., 2016). Additionally, the longitudinal shift in the ASL could strongly influence the
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surface climate by controlling the meridional winds directed toward West Antarctica

(Phillips et al., 2013, Wang et al., 2020, Turner et al., 2013). Thus, the shift in ASL

can  influence  the  local  atmospheric  circulation  and  then  the  iceberg  trajectory  in

South Pacific Southern Ocean. 

In the interglacial period scenario, the southwestward shift of the ASL would lead to a

poleward shift in the SWW, which could have caused the poleward movement of the

SACCF compared to its modern position (Turner et al., 2013, Hosking et al., 2016,

McCulloch et al., 2020). In this case, site ANT34/A2-10 could strongly be influenced

by the ACC. Moreover, those icebergs calved from the Ross Ice Shelf front may be

transported by a clockwise coastal AASW to the north and then pushed by the SWW

toward the east to pass site ANT34/A2-10 (figs. 5a) (Baines and Fraedrich, 1988). The

close  correlation  between  IRD  peaks  well  evidences  this  interpretation  in  core

ANT34/A2-10 and high ice accumulation rates in EDC, which indicates the poleward

shift of SWW (figs. 3a and e) (Members, 2013).  In the glacial period scenario, the

northeast  shift  in  the  ASL  could  lead  to  a  tropicward  shift  of  the  easterlies

accompanying the tropicward movement of the SWW and SACCF (Hosking et al.,

2016, McCulloch et al., 2020). In this case, site ANT34/A2-10 may not be influenced

by  the  ACC  and  suitable  for  icebergs  survival.  Furthermore,  weak  ocean-driven

positive feedback may lead fewer icebergs to calve from the front of the glacier, and

the ice shelf adjacent to the ASE, then these icebergs carried by a clockwise coastal

current near the ASE hinterland and transported to the north, and finally passing over

site  ANT34/A2-10  (fig.  5b).  This  interpretation  is  supported  by  the  correlation

between  the  low  IRD  content  linked  with  low  values  of

(kaolinite+smectite)/(illite+chlorite) (less than 0.9) and low accumulation rates in the

glacial  periods  (figs.  3a,  c,  and  d).  However,  all  the  IRD  peaks  (I10-12)  in  the

interglacial  or  glacial  periods  (around  MIS  18)  coincide  with  higher  values  of

(kaolinite+smectite)/(illite+chlorite)  and increasing trends in  the  accumulation rate.

These results may be related to the abrupt southwestward shift in the ASL during this

period  (Konfirst  et  al.,  2012). This  shift  in  the  ASL is  responsible  for  an  abrupt
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poleward shift in the easterlies and westerlies, which may allow icebergs to travel

from the north Victoria Land to site ANT34/A2-10 with  the  prevailing SWW and

westerly flow (Baines and Fraedrich, 1988) (fig. 5a). 

5.3 Vulnerability of WAIS in SPS

Today, the vulnerability of WAIS is mainly caused by warm CDW and/or MCDW

intrusion into the shelf region adjacent to the SPS of the WAIS (Jacobs et al., 1996,

Lowe and Anderson, 2002, Dinniman et al., 2012, Das et al., 2020, Adusumilli et al.,

2020, Nakayama et al., 2018), which is tightly related to the enhanced iceberg melting

in this sector (Bronselaer et al., 2018). Our results show a clear correlation between

Δδ13C(1088-849) and IRD peaks in  core ANT34/A2-10 (figs.  3a and b).  These results

indicate  that  an  increasing  iceberg  flux  (intensified  ice  loss)  was  caused  by

strengthening  upwelling  of  warm,  well-ventilated  CDW  since  773  ka  BP.  The

relatively good  correlations  between  IRD  content,

(kaolinite+smectite)/(illite+chlorite), Δδ13C(1088-849), and EDC accumulation rate (fig. 3)

support an assumption that the poleward shift in the intense SWW accompanied by

the deepening of ASL may have triggered the increased upwelling of well-ventilated

relatively warm CDW, warming the subsurface ocean then causing the calving of

icebergs from the front of the GIS and TG, with Ross Ice Shelf in the ASE and RSE,

respectively  (Hillenbrand et  al.,  2009b,  Turner  et  al.,  2013,  Menviel  et  al.,  2010,

Members, 2013). Moreover, in the interglacial period scenario, this poleward shift of

intense  SWW  accompanying  the  deepening  of  ASL  may  relate  to  the  positive

Southern Annular Mode (Turner et al., 2013), which could lead to the cooling of the

sea  surface  in  the  south  of  SACCF  and  substantially  alter  the  Southern  Ocean

circulation patterns, diminishing the absorption of CO2 (Lovenduski, 2005, Sen Gupta

and McNeil, 2012). It may contribute to iceberg survival during their transportation

before they reach the ACC. Furthermore, the increased upwelling of well-ventilated

relatively warm CDW,  led  to  the  retreat  of  the  grounding  line  and the  influx  of

meltwater delivered into the South Pacific Southern Ocean (through the basal melting,

iceberg calving and breakup process) with the loss ice volume (England et al., 2020).
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This process could have stabilized the upper water column by shoaling the halocline

and/or thermocline in the South Pacific Southern Ocean, maintaining the heat budget

in the subsurface ocean that could cause the warming of the subsurface ocean and

finally  destabilize  the  WAIS (fig.  6a)  (Richardson,  2005,  Schmidtko et  al.,  2014,

Menviel et al., 2010). These systematic processes are also supported by the previous

record in ‘Iceberg Alley’ and are consistent with the climate model simulations of the

period  since  the  recent  G/IG  cycle  (Weber  et  al.,  2014)  and  consist  with  the

documented  fresh  meltwater  input  event  in  the  study  region  during  MIS  13-15

(Hillenbrand et al., 2009b). In contrast, in the glacial period scenario, a northeastward

shift in the ASL was accompanied by a tropicward shift in easterlies and SWW, which

led to the reduced wind-driven warm deep water intrusion to the Amundsen shelf

region, thereby deepening the halocline and/or thermocline in South Pacific Southern

Ocean. These systematic processes may contribute to the stability of WAIS (fig. 6b).

Our spectrum and wavelet analysis of IRD records (count number) show significantly

high power during the period of 41 ka (higher power before around 400 ka BP than

after 400 ka BP on 41 ka band) and 100 ka (see supplementary material figs. S3a, b).

Moreover, we use the ‘Cross wavelet and wavelet coherence toolbox’ for MATLAB

(Grinsted  et  al.,  2004)  to  perform  the  cross-wavelet  coherency  (XWT)  analysis

between IRD record with obliquity and eccentricity (Laskar et al., 2004). The result

shows  an  in-phase  relationship  between  IRD  record  and  eccentricity  (see

supplementary material figs. S3c), with a different leading relationship between IRD

record and obliquity before and after 400 ka BP. Additionally, the IRD peaks and its

eccentricity  bandpass  filter  result  show  a  good  correlation  with  the  eccentricity

maximum (figs. 3a and g). These results may implicate that the Antarctic Ice sheet

variation was mostly driven by CO2 and sea level forcing with a period of 100 ka

cycle  (Tigchelaar  et  al.,  2018,  Huybrechts,  2002)  and may relate  to  the  obliquity

pacing onset of the glacial termination during the late Pleistocene (see supplementary

material  fig  S3d  and  e) (Huybers  and  Wunsch,  2005,  Huybers,  2007).  Also,  the

obvious pacing of IRD peaks by obliquity after around 400 ka BP was documented in
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the south Atlantic ocean (Starr et al., 2021), which consists with our result (figs. S3 d

and e).

However,  the  variation  in  eccentricity/obliquity  does  not  explain  the  causes  of

extremely high IRD peaks of I7-9 in MIS 13 and 15, which represent the periods of

greatest  WAIS instability because the repeated eccentricity maximum after 400 ka

does not accompany the same extreme high IRD peaks such like in MIS 13 and 15.

We suggest that, this phenomenon may be due to 1) the more extended interglacial

periods before the Mid-Brunhes Event (MIS 13, 15, and 17), which was characterized

by larger ice sheets, lower sea level, and cooler temperatures in Antarctica than the

more recent interglacial periods (MIS 5, 7, 9, and 11) (Oliveira et al., 2020), and 2)

intense local summer insolation, which may drive additional ice mass loss over the

Antarctic ice shelves (Tigchelaar et al., 2018, Wu et al., 2021). Based on the XWT

and WTC analysis between the IRD count number and 75°S summer insolation, we

found that nearly every IRD period shows a significant correlation with 75°S summer

insolation (figs. 3h and i). However, only the IRD peak intervals I7-9 in MIS 13 and

15 show both the significant correlation and coherence with the phase relationship

with 75°S summer insolation. These results could support the conclusion intense local

summer insolation combines with the  lower amplitude of the Antarctic temperature

anomaly in MBE (MIS 13 and 15) may drive additional ice mass loss processes and

cause the further destabilization of WAIS.

6 Conclusion

This  study provides the first  long-term sedimentological  evidence of  ocean-driven

positive feedback in the South Pacific  Southern Ocean and its relationship with the

low-pressure system in  the  high-latitude cryosphere. Based on multiple proxies, our

results show that an increase in IRD always accompanies the enhanced upwelling of

well-ventilated deep water in the Southern Ocean at site ANT34/A2-10. The changes

in relatively warm CDW and/or MCDW upwelling on the millennial scale are closely

related to iceberg calving variations, basal melting, and meltwater input, significantly

affecting WAIS stability variations. The ASL has a strong influence on meridional
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atmospheric circulation in the Southern Ocean and thus could exert a strong influence

on the trajectories of icebergs. The clay mineral and Sr-Nd isotopic compositions in

IRD peak intervals show that its provenance significantly switches abruptly due to the

variability of the ASL position during G/IG cycles. When ASL shifts to the northeast

accompany with the SWW, and prevailing easterlies move tropicward during glacial

periods,  fewer  icebergs are  transported to  supply  site  ANT34/A2-10  through  the

clockwise AASW along the shore. In this case, site ANT34/A2-10 (near the modern

SACCF) may not be influenced by the SWW and ACC and only receive the iceberg

from  ASE.  However,  during  interglacial  periods,  ASL  shifts  to  the  southwest

accompany with the SWW and prevailing easterlies move poleward. In this case, the

icebergs generated by the  Ross Ice Shelf and the nearby glaciers on the north and

south Victoria Land are transported eastward and mix with the icebergs that are calved

from the ice sheet  adjacent to  the ASE. The WAIS evolution is  closely related to

obliquity and eccentricity. However, the increasing 75°S summer insolation and weak

Antarctic  temperature  variability  accompany  the  increasing  ocean-driven  process,

leading to the additional iceberg flux, resulting in the high-frequency variation and the

highest IRD peak intervals in MIS 13 and 15.
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Table 1. Sr and Nd isotopic compositions bulk sediment samples from core

ANT34/A2-10.

Depth
(cm)

IRD peak
interval

Age 
(ka BP)

143Nd/144Nd SE 87Sr/86Sr SE

After the end of the Middle Pleistocene climatic transition (around 700 ka)
34-36 I2 47.8 0.512508 0.000004 0.710617 0.000004
54-56 I3 83.7 0.512506 0.000006 0.710498 0.000004
60-62 I3 101.4 0.512466 0.000003 0.710463 0.000005

268-270 I7 507.6 0.512446 0.000003 0.710390 0.000005
310-312 I9 572.8 0.512459 0.000004 0.710612 0.000007
Before the end of the Middle Pleistocene climatic transition (around 700 ka)
420-422 I12 759.3 0.512422 0.000004 0.713249 0.000007
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Figure 1. Location map. a, geographic and oceanographic information of the study area; b, the location of the sites with the clay mineral

and Sr-Nd endmember data from references.

WAIS: West Antarctic Ice Shelf, EAIS: East Antarctic Ice Sheet, ASE: Amundsen Sea embayment, RSE: Ross Sea embayment, BSE:

Bellingshausen Sea embayment, GIS: Getz Ice Shelf, TG: Thwaites Glacier, PIB: Pine Island Bay, PIG: Pine Island Glacier, PIIS: Pine Island

Ice Shelf, ACC: Antarctic Circumpolar Current, AABW: Antarctic Bottom Water, CDW: Circumpolar Deep Water, MCDW: Modified

Circumpolar Deep Water, AASW: Antarctic Surface Water, SACCF: South Antarctic Circumpolar Current Front. The position of the SACCF

is modified from (Benz et al., 2016). Dash line indicate the study area.
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Figure 2. Down core variation patterns of IRD content and clay mineral

parameters.

The numbered series of IRD peaks are I1-12, where the letter I means

interglacial periods. The gray lines indicate the boundaries of the G/IG cycles.
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Figure 3. Proxies in our study of core ANT34/A2-10 with the cross-wavelet

coherency (XWT) and wavelet coherence (WTC) analysis between IRD and

summer insolation since 773 ka BP. 

From bottom: a, IRD proxies in core ANT34/A2-10; b, benthic δ13C gradient of the

south Atlantic-east equatorial Pacific (Δδ13C(1088-849)), data from (Mix et al., 1995,

Hodell et al., 2003); c, EDC temperature anomaly (Jouzel et al., 2007); d, clay

mineral ratio of (kaolinite+smectite)/(illite+chlorite) in ANT34/A2-10; e,

accumulation rate in ice equivalent per year in the EDC (Wolff et al., 2010); f, 75°S

summer insolation; g, the result of IRD eccentricity bandpass filter calculates by

software ‘Acycle’ (Li et al., 2019) (orange line) and orbital eccentricity (black line); h,

i, XWT and WTC analysis between the result of IRD count number and 75°S summer

insolation, respectively. The orbital parameters are from (Laskar et al., 2004). Red

shading represents interglacial periods with IRD peaks. The blue line in h and i

represents the 23 ka orbital bands, and the relative phase relationship is shown as

black arrows. The thin contour in (h and i) indicates the false-alarm level 95% against

red noise, and the cone of influence where edge effects might distort the picture are

shown in a lighter shade. The original data of ODP 1088 and the original time series

of ODP 849 were both resampled in 4 ka spacing with a linear interpolation method

between data points before calculation their difference value. The program Past V3.5

(Hammer and Harper, 2008) use for resampling these data.
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Figure 4. Endmember analysis of clay mineral and Sr-Nd isotopes in core

ANT34/A2-10. 

a, ternary diagram of smectite+kaolinite-illite-chlorite shows variations in clay

mineral compositions during low IRD content interval in glacial and IRD peak

interval in interglacial periods and the period around the MIS 18. b, Sr-Nd isotopic

compositions of core ANT34/A2-10 during IRD peak interval in interglacial periods

and the period around the MIS 18. Published endmember data of clay minerals and

Sr-Nd isotopic composition for possible source sediments of the WAIS are from

previous studies (Hillenbrand, 2001, Pant et al., 2013, Ehrmann et al., 2005,

Diekmann et al., 2004, Setti et al., 2004, Ehrmann et al., 2011, Hillenbrand et al.,

2003) and (Simões Pereira et al., 2018, Blakowski et al., 2016, Adams et al., 2004,

Adams, 1987, Wever et al., 1994, Scarrow et al., 1998, Riley et al., 2001, Wever and

Storey, 1992, Curtis et al., 1999, Futa and Lemasurier, 1983, Hart et al., 1997),

respectively. Red shading represents a mixture of icebergs from the RSE and ASE;

blue shading represents icebergs mainly from the ASE, and orange shading represents

the mixture of icebergs from north Victoria Land and the ASE.
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Figure 5. Systematic diagram of iceberg trajectory at the IRD peak interval in

the interglacial period, low IRD content interval in the glacial period, and the

period around MIS 18.

a, iceberg trajectory at the IRD peak interval in the interglacial period and the period

around MIS 18; b, iceberg trajectory at the low IRD content interval in the glacial

period. ASL: Amundsen Sea Low-pressure system. Red, blue, brown, and orange

shade indicate the ASE, PIB, BSE, and Antarctic Peninsula, respectively. Orange lines

indicate the iceberg's trajectory in the IRD peak interval in the interglacial period,

which is modified from (Gladstone et al., 2001, England et al., 2020, Tournadre et al.,

2016). Red lines indicate the iceberg's trajectory in the low IRD content interval in the

glacial period and the black arrow represents the poleward/tropicward shift of SWW

and tropicward shift of easterlies.
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Figure 6. Systematic diagram of ocean-driven positive feedback processes at the

IRD peak interval in the a, interglacial period scenario and b, glacial period

scenario.
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