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Abstract

Changes in aerosol optical depth, both positive and negative, are observed across the globe during the 21rst Century. However,

attribution of these changes to specific sources is largely uncertain as there are multiple contributing natural and anthropogenic

sources that produce aerosols either directly or through secondary chemical reactions. Here we show that satellite-based changes

in small-mode AOD between 2002 and 2019 observed in data from MISR can primarily be explained by changes, either directly

or indirectly, in combustion emissions. We quantify combustion emissions using MOPITT total column CO observations and

the adjoint of the GEOS-Chem global chemistry and transport model. The a priori fire emissions are taken from the Global

Fire Emission Data base with small fires (GFED4s) but with fixed a priori for non-fire emissions. Aerosol precursor and direct

emissions are updated by re-scaling them with the monthly ratio of the CO posterior to prior emissions. The correlation between

modeled and observed AOD improves from a mean of 0.15 to 0.81 for the four industrial regions considered and from 0.52 to 0.75

for the four wildfire-dominant regions considered. Using these updated emissions in the GEOS-Chem global chemistry transport

model, our results indicate that surface PM2.5 have declined across many regions of the globe during the 21rst century. For

example, PM2.5 over China has declined by ˜30% with smaller fractional declines in E. USA and Europe (from fossil emissions)

and in S. America (from fires). These results highlight the importance of forest management and cleaner combustion sources

in improving air-quality.
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Key Points:  14 

Observed changes in small particle AOD in fire prone regions are related to CO emissions and 15 

not CO concentrations. 16 

 17 

Changes in combustion emissions in industrialized countries are correlated with AOD variations.  18 

 19 

Surface PM2.5 as inferred from these changes have declined in many parts of the globe. 20 

 21 

Plain Language Summary 22 

Aerosols have many different types of sources, e.g. farming, fires, power plants, transportation, 23 
dust, and have large impacts on human health and on climate.  We quantify combustion 24 
emissions using satellite observations of carbon monoxide and show that satellite observations of  25 
changes in small particle AOD across  the globe are linked to changes in these combustion 26 
sources.  These data and model updates indicate substantial declines of PM2.5 (aerosols that 27 
have strong, deleterious effects on human health) across many parts of the globe from changes in 28 
combustion emissions. 29 
  30 
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 32 

Abstract Changes in aerosol optical depth, both positive and negative, are observed across the 33 

globe during the 21rst Century. However, attribution of these changes to specific sources is 34 

largely uncertain as there are multiple contributing natural and anthropogenic sources that 35 

produce aerosols either directly or through secondary chemical reactions. Here we show that 36 

satellite-based changes in small-mode AOD between 2002 and 2019 observed in data from 37 

MISR can primarily be explained by changes, either directly or indirectly, in combustion 38 

emissions. We quantify combustion emissions using MOPITT total column CO observations and 39 

the adjoint of the GEOS-Chem global chemistry and transport model. The a priori fire emissions 40 

are taken from the Global Fire Emission Data base with small fires (GFED4s) but with fixed a 41 

priori for non-fire emissions. Aerosol precursor and direct emissions are updated by re-scaling 42 

them with the monthly ratio of the CO posterior to prior emissions. The correlation between 43 

modeled and observed AOD improves from a mean of 0.15 to 0.81 for the four industrial regions 44 

considered and from 0.52 to 0.75 for the four wildfire-dominant regions considered.  Using these 45 

updated emissions in the GEOS-Chem global chemistry transport model, our results indicate that 46 

surface PM2.5 have declined across many regions of the globe during the 21rst century. For 47 

example, PM2.5 over China has declined by ~30% with smaller fractional declines in E. USA 48 

and Europe (from fossil emissions) and in S. America (from fires). These results highlight the 49 

importance of forest management and cleaner combustion sources in improving air-quality. 50 

 51 

1. Introduction 52 

Aerosols have substantive but contrasting impacts on air-quality and climate. Aerosols can impose 53 

either positive or negative changes in radiative forcing directly by scattering or absorbing sunlight type 54 

(e.g., Satheesh and Ramanathan 2000) or indirectly by changing cloud and rainfall characteristics (e.g. 55 

Andrae et al. 2004; Andrae and Rosenfeld 2008; Rosenfeld et al. 2014; Jiang et al. 2018). These different 56 

effects depend on the aerosol type as well as its source. For example, fires can emit both scattering and 57 

absorbing aerosols with a range of sizes leading to potentially positive or negative impacts on radiative 58 

forcing and rainfall (e.g. Kaufmann et al. 2005; Koren et al. 2012; Sato et al. 2018).  Despite these wide-59 

ranging effects of aerosols on climate it is thought that the direct and indirect effects of aerosols have a net 60 

cooling impact on climate, albeit with uncertainties that are as large as the corresponding radiative forcing 61 
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estimates, suggesting their net impact is still not well understood (e.g. Seinfeld et al. 2016; Fan et al. 2016 62 

and refs therein).  While this net cooling effect potentially mitigates some of the climate impact from rising 63 

greenhouse gases, an increase in surface aerosols generally leads to poor health outcomes (e.g. Cohen et 64 

al. 2015 and refs therein).  Understanding the location of aerosol emissions and their types is therefore 65 

critical towards understanding global climate and health outcomes as a consequence of anthropogenic  66 

activities and changes. 67 

Previous studies using satellite and ground-based data have shown significant  changes in the 68 

aerosol burden during the 21rst century in many industrialized regions (e.g., Donkelaar et al. 2015; Mheta et 69 

al. 2016; Zhao et al. 2017). For example, the eastern USA and western Europe show declines in aerosol 70 

loading whereas China shows a strong increase in the early 21rst century followed by a decrease in the 71 

second decade (Wang et al. 2015). In contrast, India shows a steady increase in aerosol loading (Dey and 72 

Girolamo 2011; Zhao et al. 2017).   While the causes of these changes are likely related to human activities 73 

the exact attribution is uncertain as agriculture, construction, biomass burning, the automobile and energy 74 

sector all contribute significantly to dust and aerosols either directly or indirectly through emission of aerosol 75 

pre-cursors and subsequent chemical transformation.  Natural sources of aerosols such as biogenic 76 

secondary organic aerosols, sea salt, and mineral dust also contribute substantively to the overall aerosol 77 

burden (e.g. Jaegle et al. 2011; Mahowald 2011; Rosenfeld et al. 2014; Bauer et al. 2019).  In this 78 

manuscript we focus on attribution of small-mode aerosols as measured by the Multi-angle Imaging 79 

Spectroradiometer (MISR) (e.g., Ragray et al. 2010 and refs therein) as these are primarily associated with 80 

aerosols from combustion sources and contribute significantly to surface PM2.5  (e.g. Eck et al. 2010). 81 

Figure 1 (top left) shows the total AOD for small-mode particles from the MISR instrument. As seen in 82 

Figure 1, Central Africa is one of the largest sources of small-mode aerosols and is likely related to biomass 83 

burning and dust (e.g., Roberts et al. 2001).  Direct emission from combustion sources, as well as secondary 84 

aerosol formation from ammonia and sulfates are the largest sources of aerosols in East Asia (e.g., Huang et 85 

al. 2014). Over India (e.g. Ramanathan et al. 2001; 2005) large sources of aerosols are related to agriculture, 86 

transport, coal plants, biomass and biofuel burning, and construction.  Similarly, direct and secondary 87 

aerosol sources in the USA are likely related to energy, transportation,  and agricultural sectors (e.g., Liao et 88 

al. 2007; Burney 2020).   89 

Observed changes in the small-mode AOD (from MISR) are shown in the bottom left panel of Figure 90 

1. These changes are consistent with observations of aerosols using multiple satellite and ground 91 

measurements in the industrial regions of North America, Europe, India, and Asia with the largest changes 92 
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in India and Asia but also in South America and smaller but observable changes in the Eastern USA 93 

Western Europe, Africa and Australia (e.g. Bucholz et al. 2020). These regions have also seen substantive 94 

changes in combustion emissions and aerosol pre-cursors as found by satellite observations of trace gasses 95 

such as CO, NH3, SO2, and NO2 (e.g., Jiang et al. 2015; Yin et al. 2015; Warner et al. 2015; Hilboll et al. 96 

2013; Krotkov et al. 2016; Jiang et al. 2017).  Recently, Buchholz et al. (2021) examined multi-decadal 97 

trends in both AOD and CO abundance from the NASA Terra Moderate resolution Imaging Spectrometer 98 

(MODIS) and Measurements of Pollution in the Troposphere (MOPITT) satellite instruments respectively 99 

and found significant spatial and temporal correlations in regions with high biomass burning activity, 100 

suggesting a causal link between CO (a tracer for combustion) and AOD. However, CO and aerosols have 101 

different photochemical lifetimes leading to seasonal cycles in abundance that are often out of phase in 102 

industrial regions, which complicate the attribution of the relationship between these atmospheric species. 103 

Therefore, in this research we quantify global CO emissions using almost two decades of satellite 104 

observations integrated into a global chemistry transport model to determine to what extent decadal changes 105 

in combustion emissions can explain changes in small-mode aerosols and corresponding optical depth. 106 

 107 

2. Change in Combustion Emissions and Corresponding Small-mode AOD 108 

Atmospheric carbon monoxide (CO) is a product of the oxidation of atmospheric hydrocarbons and 109 

non-methane volatile organic carbons and is also emitted during burning of fossil fuels as a result of 110 

incomplete combustion. CO emissions have been quantified from a variety of aircraft and satellite data 111 

using global and regional chemistry transport models and different inversion approaches for relating 112 

observed concentrations to emissions (e.g. Jiang et al. 2015; Yin et al. 2015 and refs therein).   113 

Here we quantify CO emissions using version 8 multispectral total column CO observations from the 114 

NASA Terra MOPITT instrument (e.g. , Deeter et al. 2019) and a 4D variational adjoint  approach based on 115 

the GEOS-Chem global chemical transport model (Henze et al. 2007, Appendices 1 and 2). The approach 116 

we use is similar to and builds from previous work described in Jiang et al. (2017) and Worden et al. (2017) 117 

which also quantified CO emissions and used them for evaluating decadal changes in fire emissions of CH4  118 

and CO. Yearly, a priori  for the fire emissions are from the GFED4s (van der Werf et al., 2017) data 119 

base and span the time series shown in the figure. All other combustion emissions for the a priori  are fixed 120 

as they are from a combination of sources that do not span the time period shown (Table A2). 121 
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The upper right panel of Figure 1 shows the change in CO emissions for the time period corresponding 122 

to the observed changes in AOD in the bottom left panel. These results are consistent with previous studies 123 

using the MOPITT CO record (Jiang et al. 2015; Yin et al. 2015). As seen by visually comparing the top 124 

right and bottom left panel of Figure 1, many of the changes in CO emissions are found to be of the same 125 

sign and in the same regions as changes in MISR small-mode AOD.  126 

In order to determine to what extent changes in small-mode AOD are related to changes in CO 127 

emissions we first update the primary aerosol emission precursors (Tables A2 and A3) by multiplying their 128 

emissions at each grid box by the ratio of the posterior to prior CO emissions. Aerosols  (and AOD) are then 129 

computed either directly from the emissions or through secondary aerosol formation within the GEOS-130 

Chem model. While we can attribute CO emissions to fires with this approach because most biomass 131 

burning has distinct seasonality and is straightforward to identify using other metrics such as burned area, 132 

we cannot unequivocally partition CO emissions into other combustion sources such as the energy and 133 

transport sector or to biogenic sources using this approach. However, previous studies indicate that the CO 134 

emissions in most industrialized countries are related to burning of fossil fuels and that biogenic emissions 135 

and oxidation of atmospheric hydrocarbons do not vary as much as the other sources (e.g. Jiang et al. 2015; 136 

H. Worden et al. 2019). This approach assumes that aerosols are tied either directly to combustion 137 

emissions such as through a change to cleaner burning, more efficient fuels, or that their changes are 138 

indirectly related by, for example, co-temporaneous policy directives that reduces aerosols while increasing 139 

combustion efficiency, or alternatively through changes in activity.  The model AOD accounts for the 140 

column-wise integration of the MISR instrument and the sample time of the sun-synchronous orbit 141 

(Appendix-3). The modeled change in small-mode AOD is shown in the bottom right panel of Figure 1. 142 

Visual inspection confirms similar changes in both observed and modeled small-mode AOD in many of the 143 

high-emitting areas (labeled in bottom right panel).  144 

 We next compare in more detail the mean estimates of small-mode AOD and corresponding 145 

observations in Figures 2 and 3 for the regions labeled in Figure 1 (bottom right panel). Figure 2 shows a 146 

comparison for the industrial regions of the USA, Europe, India, and China between the modeled and 147 

observed small-mode AOD changes depicted in Figure 1. These comparisons show that observed and 148 

modeled trends are consistent within the uncertainties for the USA, Europe, and China and that the direct 149 

emission of small-mode aerosols from combustion explains the interannual to decadal changes in these 150 

aerosols.  However, CO emissions and corresponding small-mode AOD over India do not show much of a 151 

trend, likely because of challenges in quantifying emissions in this region due to complexities in 152 
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atmospheric transport (e.g., Worden et al. 2010; Liu et al. 2010; Jiang et al. 2013; Jiang et al. 2015).  In 153 

addition, the posterior emissions better capture the decadal variability relative to the prior as shown in Table 154 

1. For example, the MISR observed small-mode AOD difference between the two decades for E. China is -155 

0.031 ± 0.022, in agreement with the updated modeled emissions difference of -0.038 ± 0.0018.   156 

Figure 3 shows a comparison of modeled small-mode AOD from fires against MISR observed small-157 

mode AOD in regions that have high biomass burning as indicated by burned area. These comparisons are 158 

again consistent between the model and observation within the uncertainty levels.  We find that small-mode 159 

AOD based on CO emissions shows substantial improvement in the inter-annual variability (IAV) as 160 

demonstrated by the improved correlations. Notably, the decadal changes in small-mode AOD are 161 

consistent with previous observations of a decline in fires in S. America and Indonesia (e.g., Andela et al. 162 

2017, Worden et al. 2017).  Table 1 also shows the decadal differences for the regions dominated by fire 163 

emissions. In contrast to the improved agreement in IAV found for the anthropogenic regions where the 164 

prior emission is fixed, there is not much improvement in these comparisons where the prior emission is 165 

annually set, likely because the trends in burned area are similar to prior CO emissions in these regions 166 

(Worden et al. 2017).  167 

We next test if changes in meteorology can also explain the small-mode AOD variability by performing 168 

a model run with fixed emissions (Appendix 4) and find that changes in dynamics cannot explain the 169 

observed variability in small-mode AOD. Variations in biogenic emissions may play a role in tropical 170 

regions, however these variations are small relative to variations in biomass burning in these same regions 171 

(Jiang et al. 2015; H. Worden et al. 2019). Other confounding factors are the large uncertainties in aerosol 172 

formation, the partitioning of these sources and how both combustion and non-combustion sources affect 173 

AOD. Uncertainties from these other factors cannot be easily calculated due to computational challenges 174 

and poor knowledge about their uncertainty characteristics. Hence our result that for the non-fire sector that 175 

small-mode AOD is correlated with CO emissions should be taken as purely empirical with additional 176 

analysis needed to relate observed variability to specific emissions. 177 

 178 

3. Discussion and Implications  179 

Decreasing both aerosol and CO emissions can be accomplished in multiple ways, both directly and 180 

indirectly, and need not be causally related.  We expect a concurrent change in CO emissions and small-181 

mode AOD for fire emissions as both are released during combustion (e.g., van der Werf  2010, 2017; 182 
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Worden et al. 2017; Andela et al. 2017). A switch from coal to natural gas also results in both reduced 183 

aerosols and improved combustion efficiency resulting in lower CO emissions (e.g., Burney 2020, 184 

Buchholz et al., 2021); however, we do not attempt to estimate how much of the observed change in small-185 

mode AOD across the globe is due to this coal-to-gas fuel transition and leave this to a subsequent study. On 186 

the other hand, policies implemented contemporaneously that result in improved filtering of aerosols and 187 

increased combustion efficiency such as for from coal-powered plants (Karplus et al. 2017; Lu et al. 2020) 188 

and other combustion sources such as from traffic can result in the same outcome of reduced AOD and CO 189 

emissions. Changes in agricultural CO and aerosol emissions may also be correlated entirely through 190 

activity (Warner et al. 2017) as aerosol pre-cursors from fertilizer use, as well as the corresponding dust and 191 

combustion associated with farming can occur in tandem.  Nonetheless, the empirical observation shown 192 

here that changes in small-mode AOD are well correlated with changes in CO emissions in N. America, 193 

Europe, and Asia suggest a link between the two that should be tested in subsequent studies; this would 194 

require more in-depth analysis between the different emission sectors and aerosol emissions. We note that 195 

these changes in emission do not necessarily reflect a decrease or increase in carbon dioxide except in fire-196 

prone regions but instead reflects a change in combustion efficiency as overall CO2 levels continue to 197 

increase during this time period (Friedlingstein et al. 2019).  198 

The decline in observed small-mode AOD in N.  America, Europe, China, and S. America has 199 

implications for air quality in these regions as they are correlated with near-surface aerosols and 200 

subsequently with PM 2.5 concentrations (e.g., Donkelaar et al. 2015). To quantify these effects, we show 201 

(Figure 4) the modeled surface PM2.5 concentrations and its changes that correspond to aerosl and CO 202 

emission changes shown in Figures 1 through 3.  The top left panel of Figure 4 shows the mean PM2.5 203 

concentration from all sources based on the GEOS-Chem model. Largest values of PM2.5 concentrations 204 

from are in desert regions and are due to fine-mode mineral dust (e.g., Bauer et al. 2019). The top right panel 205 

shows the net change in PM2.5 globally whereas the bottom panels show the changes for the industrial 206 

(bottom left) and fire prone (bottom right) regions. The sign of these changes is consistent with a number of 207 

local and regional studies using ground-based data. The biggest improvement in the magnitude of PM2.5 is 208 

in China, consistent with Lu et al. (2020 and refs therein) with smaller changes in the magnitude of PM2.5 209 

in N. America (e.g. Bennett et al. 2019). The decline of PM2.5  in  Europe and slight increase in E. Australia 210 

are consistent with observed changes in PM2.5 in corresponding urban locations (e.g. de Jesus et al. 2020). 211 

The increase in Indonesia is driven almost entirely by the 2015 ENSO related fires but if these are removed 212 

there is a small decrease.  Exact comparisons between these model based (but data constrained) estimates of 213 
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surface PM2.5 decadal changes and local surface measurements are challenging because of the difference in 214 

scales between the measurements. Nonetheless, these results indicate that a reduction in combustion related 215 

air-quality emissions in these areas have improved the air quality. However, the climate impacts of these 216 

changes are uncertain as this study is not able to determine if there has been a shift from sulfate aerosols, 217 

which mainly scatter radiation, to black carbon aerosols, which also absorbs radiation. A shift to black 218 

carbon, even as aerosols are reduced, could have negative climate impact due to the increased atmospheric 219 

heating even if there is a reduced radiation transferred to the surface (e.g. Haywood and Ramaswamy 1998; 220 

Ramanathan et al. 2001, 2005, Streets et al. 2006 and refs therein).  221 
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 244 

Appendix 245 

 246 

A.1 GEOS-Chem emission inventories.  247 

We organize emission inventories for CO and aerosols integrating anthropogenic, biofuel, 248 

biogenic, and fire emission sources. For the non-fire emission sources, a combination of global 249 

and regional emission inventories are used in this study (Table A2). The global models include 250 

EDGAR (Olivier and Berdowski, 2001), Global Emission InitAtive (GEIA) (A.F. Bouwman, 251 

1997), and Bond (T.C. Bond et al 2007). The regional models include the US Environmental 252 

Protection Agency (EPA) National Emission Inventory (NEI) for 2008 in North America, the 253 

Criteria Air Contaminants (CAC) inventory for Canada, the Big Bend Regional Aerosol and 254 

Visibility Observational (BRAVO) Study Emissions Inventory for Mexico (Kuhns et al.,2003), 255 

the Cooperative Program for Monitoring and Evaluation of the Long-range Transmission of Air 256 

Pollutants in Europe (EMEP) inventory for Europe in 2000 (Vestreng and Klein, 2002) and the 257 

Streets Asia emissions inventory for 2000. For the biogenic emission type, we employ the Model 258 

of Emissions of Gases and Aerosols from Nature, version2.1 (MEGAN; Guenther et al., 2012) 259 

and MERRA 2 meteorology to derive CO and OC emissions and integrate the off-line emission 260 

inventory from GEIA for NH3. For fire emission, we derive emissions for the above five 261 

constituents based on the dry mass GFED4s (van der Werf et al., 2017).  262 

We prepare the non-fire emission inventories only for a single year due to limited temporal 263 

coverage of the emission datasets described above. For the fire emission, we prepare a single 264 

year inventory for the first decade (2002-2009) but annual inventories for the second decade. All 265 

emission datasets are at 2°x2.5° spatial resolution with 3 hourly temporal resolution. The total 266 

emission budget integrating the non-fire and the fire emissions are shown for different regions in 267 

Table A2. 268 

 269 

A.2 Adjoint model based 4DVAR Assimilation Process.  270 

We use the Greenhouse Gas Framework – Flux (GHGF-Flux) 4D-Var assimilation system 271 

for CO flux inversions. This system has been developed under the NASA Carbon Monitoring 272 

System (CMS) project and inherits the chemistry transport model and adjoint model from the 273 
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GEOS-Chem adjoint (Liu et al., 2020; Byrne et al., 2020). We drive the chemical transport by 274 

the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) 275 

meteorology products.  For OH field, we combine the tropospheric-OH data products obtained 276 

from the TCR-2 framework (Miyazaki et al., 2020) and the stratospheric OH data products from 277 

the Global Modeling Initiative (GMI, https://gmi.gsfx.nasa.gov) of the NASA Modeling 278 

Analysis and Prediction Program.  279 

The 4D-Var data assimilation system minimizes a cost function which is defined as  280 

 281 

J(x) = ∑i=1,N (Fi(x) - yi)T R-1 (Fi(x) - yi)) + (x - xa)T B-1 (x – xa) 282 
 283 

where x is the state vector of CO emission, N is the number of observations within the 284 

assimilation period, y is the observed state, F(x) is the forward model, and R and B are variance 285 

of the observed state and the prior CO emission. We optimize a scaling factor array applied to 286 

the prior CO emission with the assimilation window of one month. We sequentially perform the 287 

monthly assimilation process generating the initial condition of the succeeding month based on 288 

the optimized CO emission. For the assimilation process, we organize prior CO emissions 289 

integrating emissions from anthropogenic, biogenic, and fire emission sources. 290 

To evaluate the fidelity of the CO emission estimates, we compare the prior and the posterior 291 

CO concentrations against in-situ CO measurements. Figure 5 and 6 show the comparison 292 

against the surface flask measurements and the NASA’s Atmospheric Tomography Mission 293 

(ATOM).  The surface flask measurements are typically over continental regions whereas the 294 

ATOM data are typically over the ocean. Both sets of comparisons show improvement between 295 

prior and posterior as compared to these data sets. 296 

 297 

A.3 Aerosol Emission Inventories and AOD Change Estimation.   298 

The AOD is a function of the aerosol concentration and the particle properties of the aerosol 299 

type. We simulate AOD and the surface PM2.5 from sulfate aerosols and carbonaceous aerosols 300 

to compare with the small mode MISR-AOD. In GEOS-Chem, the sulfate aerosol tracers include 301 

SO4, ammonia (NH4), and Nitrate (NIT) and the carbonaceous aerosol tracers include hydrophilic 302 

black carbon (BCPI), hydrophobic black carbon (BCPO), hydrophilic organic carbon (OCPI), 303 

and hydrophobic organic carbon (OCPO).  The SO4 emission is derived as a fraction of the SO2 304 
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emission, 3% globally, 5% over USA, and 1.3 % over Europe and the BC and OC emissions are 305 

shared between the hydrophobic and hydrophilic carbonaceous aerosols, 20 % and 80%, 306 

respectively. The gas-to-particle reactions of the sulfate aerosols (Metzger et al, 2002) involve 307 

SO4, NH3, and HNO3. We integrate the tropospheric-NOx emissions from the TCR-2 framework 308 

for HNO3 concentration simulation. 309 

To estimate the AOD changes due to the combustion emissions, we update the prior aerosol 310 

emissions of BC, OC, and SO2 (Appendix 1) with the optimal emission scale factors obtained 311 

from the MOPITT-CO assimilation (Appendix 2). The posterior aerosol emissions (i.e., updated 312 

prior aerosol emissions) provide a full coverage between 2002 and 2019 for the anthropogenic, 313 

biofuel, and biogenic emission types following the posterior CO emission trend. The fire 314 

emissions for BC, OC, SO2, and NH3 are computed based on the updated dry mass and the 315 

corresponding emission factors. Note that the posterior NH3 emission is updated only for the fire 316 

emission type, consequently changes in agriculture and livestock which also affect NH3 317 

emissions (Warner et al. 2017; van Damme et al. 2018) are not included in the estimated AOD 318 

changes shown in Figure 1. Table A4 lists the decadal mean (average of the annual mean over a 319 

decade) of the posterior emission inventories of CO, BC, OC, SO2, and NH3. 320 

 321 

A.4 AOD variations for constant emission scenario 322 

Variations in wind fields, humidity, and temperature all affect aerosol emission and 323 

subsequent AOD; in this study we test if changes in these environmental parameters can also 324 

explain changes to the observed AOD. The atmospheric dynamics model simulation requires the 325 

surface pressure, temperature, winds, planetary boundary layer height, cloud mass flux, and 326 

detrainment. The wet scavenging model simulation requires the relative humidity, precipitation, 327 

and rain water source. The dry deposition model simulation requires the surface temperature, the 328 

surface roughness, and the albedo. To test whether decadal variations in meteorology can explain 329 

observed small-mode AOD trends we run the AOD model simulation for the entire study time 330 

period keeping the emissions constant and changing only the meteorology fields. Figure 7 shows 331 

the results of this study and demonstrates the changes in environmental factors cannot explain 332 

observed decadal changes in AOD as AOD remains approximately constant for all regions for 333 

this scenario. 334 

  335 
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 336 
 337 

Table 1 Decadal trend of the MISR AOD, Prior AOD, and Posterior AOD 338 

 339 
Region AOD Decade 1 

(2002-2010) 
Decade 2 

(2011-2019) 
Change 

(Decade2 – Decade1) 
E China MISR  

Prior 
Posterior  

0.19656 ± 0.00892 
0.17979 ± 0.00429 
0.19315 ± 0.00935 

0.16575 ± 0.02093 
0.17884 ± 0.00461 
0.15547 ± 0.01541 

-0.03081 ± 0.02275 
-0.00094 ± 0.00630 
-0.03768 ± 0.01802 

Europe MISR  
Prior  
Posterior  

0.06031 ± 0.00506 
0.05535 ± 0.00158 
0.05939 ± 0.00640 

0.05002 ± 0.00454 
0.05530 ± 0.00173 
0.05239 ± 0.00285 

-0.01029 ± 0.00680 
-0.00006 ± 0.00234 
-0.00700 ± 0.00700 

India MISR  
Prior  
Posterior  

0.13437 ± 0.00684 
0.09298 ± 0.00279 
0.08698 ± 0.00886 

0.15358 ± 0.00648 
0.09168 ± 0.00183 
0.09201 ± 0.00357 

0.01922 ± 0.00943 
-0.00130 ± 0.00333 
0.00503 ± 0.00955 

USA-East MISR  
Prior  
Posterior  

0.08291 ± 0.00759 
0.07511 ± 0.00182 
0.07523 ± 0.00585 

0.06393 ± 0.00882 
0.07669 ± 0.00202 
0.07061 ± 0.00653 

-0.01898 ± 0.01164 
0.00158 ± 0.00272 
-0.00462 ± 0.00877 

Africa MISR  
Prior  
Posterior  

0.14092 ± 0.00615 
0.11285 ± 0.00435 
0.12460 ± 0.00687 

0.14544 ± 0.00502 
0.11669 ± 0.00355 
0.12664 ± 0.00606 

0.00452 ± 0.00794 
0.00384 ± 0.00561 
0.00204 ± 0.00916 

Australia MISR  
Prior  
Posterior  

0.04148 ± 0.00358 
0.02831 ± 0.00230 
0.04472 ± 0.00433 

0.04336 ± 0.00355 
0.02807 ± 0.00339 
0.04241 ± 0.00592 

0.00188 ± 0.00504 
-0.00024 ± 0.00410 
-0.00231 ± 0.00733 

Indonesia MISR  
Prior  
Posterior  

0.06775 ± 0.01481 
0.04470 ± 0.00400 
0.05695 ± 0.01427 

0.06894 ± 0.01853 
0.05689 ± 0.01662 
0.06101 ± 0.02926 

0.00119 ± 0.02372 
0.01219 ± 0.01710 
0.00406 ± 0.03256 

S. America MISR  
Prior  
Posterior  

0.07900 ± 0.01169 
0.06406 ± 0.00859 
0.07288 ± 0.01077 

0.06838 ± 0.00894 
0.05719 ± 0.00567 
0.05460 ± 0.00764 

-0.01062 ± 0.01472 
-0.00686 ± 0.01029 
-0.01828 ± 0.01321 

 340 

Table 1 lists the mean and variance of small mode MISR AOD, the model AOD computed with 341 

the prior aerosol emissions (prior), and the model AOD computed with the updated aerosol 342 

emissions by the ratio of the CO posterior to prior emission (posterior) for two decades.  The 343 

change column shows the mean value change between the two decades with the uncertainty 344 

computed as the root mean square of the respective variances. 345 

  346 
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 347 

Table A2 Prior Emission Inventory Organization 348 
 349 

Emission type Emission 

model 

CO 

Tg CO /year 

BC 

Tg C /year 

OC 

Tg C /year 

SO2 

Tg SO2 /year 

NH3 

Tg NH3 /year 

Anthropogenic EDGAR + 

regional 

470 

(0.37) 

  29.69 

 (0.95) 

32.51 

(0.64) 

Bond  2.98 

(0.49) 

3.05 

(0.10) 

  

Biofuel GEIA 232 

(0.18) 

  0.27 

(0.01) 

1.61 

(0.03) 

Bond  1.55 

(0.26) 

6.28 

(0.20) 

  

Biogenic  MEGAN 235 

(0.18) 

0.0 8.97 

(0.29) 

0.0  

GEIA     14.26 

(0.28) 

Fire (mean)  GFED4 333 

(0.26) 

1.53 

(0.25) 

12.86 

(0.41) 

0.96 

(0.03) 

2.67 

(0.05) 

Total  1270 

(1.00) 

6.05 

(1.00) 

31.17 

(1.00) 

30.92 

(1.00) 

51.05 

(1.00) 

 350 

Table A2 lists the emissions from the prior emission inventories for CO, BC, OC, SO2, and NH3 351 

with respect to four emission types (anthropogenic, biofuel, biogenic, and fire) and the 352 

contribution (fraction) of each emission type to the total emission budget in parentheses. The 353 

emission models within each emission type represent the provenance of the emission data 354 

products or derivation processes (e.g., MEGAN and GFED4). 355 

 356 

 357 

 358 

 359 

 360 

 361 
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 362 

 363 

Table A3 Global and Regional Anual Budget of Prior Emissions 364 

 CO 

(TgCO /year) 

BC 

(Tg C/year) 

OC 

(Tg C/year) 

SO2 

(Tg SO2 /year) 

NH3 

(Tg NH3/year) 

Global 1270 6.05 31.17 30.92 51.05 

Anthropogenic regions 

USA-east 35.51 0.17 0.49 2.95 1.15 

Europe 27.90 0.32 0.50 1.45 2.92 

India 115.53 0.49 1.57 1.57 6.29 

China 152.53 0.98 2.00 6.20 4.74 

Fire regions 

Africa 164.86 0.80 6.02 0.84 2.68 

Indonesia 78.23 0.23 1.77 1.65 1.35 

S. America 140.63 0.33 3.85 2.21 2.89 

Australia 32.78 0.11 0.99 1.30 0.99 

 365 

Table A3 lists the global emission budget (Total emission in Table A2) and regional distribution 366 

in the four anthropogenic regions and the four fire regions shown in Figure 1.d.  367 
 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 
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 382 

Table A4 Decadal Comparison of Posterior Emissions 383 

 CO 

(Tg CO/year) 

BC 

(Tg C/year) 

OC 

(Tg C/year) 

SO2 

(Tg SO2 /year) 

NH3 

(Tg NH3 /year) 

Decade 1 2 1 2 1 2 1 2 1 2 

globe 1592 1465 8.02 7.30 37.61 36.30 42.88 36.41 51.05 50.72 

Anthropogenic regions 

USA-east 56 47 0.33 0.27 0.91 0.78 5.9 4.50 1.15 1.15 

Europe 52 45 0.61 0.52 0.95 0.84 2.44 2.16 2.92 2.92 

India 92 93 0.42 0.42 1.33 1.32 1.45 1.47 5.46 5.46 

China 149 113 1.11 0.84 2.23 1.68 6.86 5.18 4.86 4.86 

Fire regions 

Africa 179 189 0.87 0.93 6.38 6.77 0.99 1.08 3.77 3.99 

Indonesia 55 52 0.24 0.21 1.51 1.51 1.86 1.57 1.42 1.25 

S. America 153 121 0.43 0.33 4.03 3.13 2.37 2.27 3.46 3.12 

Australia 63 67 0.23 0.22 1.87 2.08 1.99 1.99 1.54 1.56 

 384 

Table A4 compares the average annual budget of the posterior emissions of CO, BC, OC, SO2, 385 

and NH3 between the first decade (2002-2009) and the second decade (2010-2019), globally and 386 

regionally.  Note that the NH3 posterior emission is updated only for the fire emission type. 387 
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 388 
Figure 1. Relationships between combustion emissions and AOD of the small size aerosols (< 389 

0.7 um in diameter) during the two decades (2002-2019): (a) average of the annual mean AOD 390 

over two decades of the small-mode MISR-AOD, (b) decadal change of the total CO emission 391 

annual budget, (c) decadal change of the small-mode MISR-AOD, and (d) decadal change of the 392 

model-AOD with an overlay of the eight study regions, where the decadal change refers to the 393 

average of the annual mean over the second decade minus the average of the annual mean over 394 

the first decade. Figure 1.d overlays the eight study regions selected for the annual trend 395 

investigation, four regions with a high level of anthropogenic pollution (China, India, Europe, 396 

and eastern USA) and four regions with a high level of wild-fire events (South America, Africa, 397 

Indonesia, and Australia). 398 

399 
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 400 
 Figure 2. Comparison of small-mode MISR AOD, model AOD computed with the prior aerosol 401 

emission (prior), and model AOD computed with the posterior aerosol emission (posterior) in 402 

four anthropogenic regions (Figure 1.d). The R value represent the correlation between the 403 

model AOD and the small-mode MISR-AOD and the E value are the root mean square 404 

difference between the model AOD and the small-mode MISR-AOD.  405 

 406 

407 
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 408 
Figure 3. Comparison of small-mode MISR AOD, model AOD computed with the prior aerosol 409 

emission (prior), and model AOD computed with the posterior aerosol emission (posterior) in 410 

four wildfire dominant regions (Figure 1.d). The R value represent the correlation between the 411 

model AOD and the small-mode MISR-AOD and the E value are the root mean square 412 

difference between the model AOD and the small-mode MISR-AOD.  413 

414 
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 415 
Figure 4. Model surface-PM2.5  a) annual mean averaged over two-decades (2002-2019), b) 416 

change (second decade – first decade) between the first decade (2002-2009) and the second 417 

decade (2010-2019), (c) comparison of the annual trend in four anthropogenic regions (Figure 418 

1.d) , (d) comparison of the annual trend in four wild fire dominated regions (Figure 1.d).  419 

  420 
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 421 
Figure 5.  Comparison of the monthly surface CO concentration between surface flask 422 

measurements, model surface concentration simulated with the prior CO emission (prior), and 423 

model surface concentration simulated with MOPITT-CO constrained CO emission (posterior). 424 

These four regions were chosen as they were the only sites that provide a complete record over 425 

the study period. 426 

  427 
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 428 

 429 
Figure 6. Comparison of the profile CO concentration between the aircraft measurements from 430 

NASA’s Atmospheric Tomography Mission (ATom), model concentration profile simulated 431 

with the prior CO emission (prior) and model concentration profile computed with the MOPITT-432 

CO constrained CO emission (posterior). 433 

434 
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  435 

 436 

 437 

 438 
Figure 7. Modeled AOD trends in four anthropogenic and four wildfire dominated regions for a 439 

constant emission scenario. 440 

  441 
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