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Abstract

The open availability of global scientific databases is key to advancing research of the Earth system and facilitating cross-

disciplinary studies. There are numerous datasets available for investigating tectonics, but none that provide an internally

consistent representation of the structural framework, crustal architecture, and geodynamics. We present Reclus, a suite of

global, integrated databases that fill this gap, thereby providing the community with the key components for investigating the

Earth system. Reclus includes databases of the following: (1) structural elements, which define the three-dimensional geometry

of the rock volume, including folds and faults; (2) ‘crustal’ facies describing the geometry and composition/rheology of the

lithosphere; (3) igneous features; and (4) geodynamics, representing the dominant thermo-mechanical processes acting on the

lithosphere. These databases and workflows are applied to East Africa to investigate the geometry and heterogeneity of the

margin and its hinterland. This margin is often summarised in the literature as a ‘transform margin,’ represented by a single

structural feature, the ‘Davie Fracture Zone’, but it is much more complicated. We show how the pre-existing structure, the

superimposition of successive tectonic cycles, and crustal heterogeneity dictate the complexity observed.
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Key Points: 11 

• The open availability of global databases is key to advancing research of the Earth 12 

System 13 

• We present a new high-resolution suite of baseline databases for investigating tectonics 14 

• The databases provide a systematic way to identify uncertainty and data gaps and pose 15 

new hypotheses for further, more detailed research. 16 
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Abstract 18 

The open availability of global scientific databases is key to advancing research of the Earth 19 

system and facilitating cross-disciplinary studies. There are numerous datasets available for 20 

investigating tectonics, but none that provide an internally consistent representation of the 21 

structural framework, crustal architecture, and geodynamics. We present Reclus, a suite of 22 

global, integrated databases that fill this gap, thereby providing the community with the key 23 

components for investigating the Earth system. Reclus includes databases of the following: (1) 24 

structural elements, which define the three-dimensional geometry of the rock volume, including 25 

folds and faults; (2) 'crustal' facies describing the geometry and composition/rheology of the 26 

lithosphere; (3) igneous features; and (4) geodynamics, representing the dominant thermo-27 

mechanical processes acting on the lithosphere. These databases and workflows are applied to 28 

East Africa to investigate the geometry and heterogeneity of the margin and its hinterland. This 29 

margin is often summarised in the literature as a 'transform margin,' represented by a single 30 

structural feature, the ‘Davie Fracture Zone’, but it is much more complicated. We show how the 31 

pre-existing structure, the superimposition of successive tectonic cycles, and crustal 32 

heterogeneity dictate the complexity observed. 33 

 34 

 35 

Plain Language Summary 36 

Scientific databases are important for developing and testing ideas. For studying plate tectonics, 37 

there are a large number of databases available. But, absent from this list are detailed, global 38 

databases that link interpretations of faults and folds with the distribution of different crustal 39 

compositions and thicknesses. These databases are important because these features dictate how 40 

the crust responds to tectonic forces, which may result in changes in where sediments are 41 

deposited, new folding and faulting, and uplift or subsidence. We have built a suite of databases, 42 

collectively called Reclus,  that fills this gap. These are spatial databases interpreted primarily 43 

from remote sensing and seismic data. They are supported by a comprehensive audit trail that 44 

explains what the interpretations are based on and how confident a researcher can be in using 45 

them. These databases are designed to provide a baseline resource for the scientific community 46 
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with which we can test hypotheses, look at large-scale patterns, and identify where new data and 47 

research is needed. 48 

 49 

 50 

1 Introduction 51 

Observational data are fundamental to scientific advancement. Recently many 52 

governments and research bodies have made their data, and the data obtained through their 53 

funding, open to the public. This has proved invaluable for furthering our understanding of the 54 

Earth system. Primary data, including Landsat imagery (NASA Landsat Program, 2000), radar 55 

(SRTM: Shuttle Radar Topography Mission), and the results of the DSDP and ODP drilling 56 

programs, provided by the U.S. Government are amongst the most important contributions to 57 

Earth sciences available. Other countries, notably Australia, Canada, New Zealand, and Norway, 58 

make industry acquired potential fields, seismic and well data available after a specified duration 59 

of time. For tectonics, there are a range of digital datasets now available, including the following: 60 

plate models (Seton et al., 2012); plate polygons (Bird, 2003); sedimentary basins (CGG 61 

Robertson, 2020; USGS World Energy Assessment Team, 2000); hotspots (Whittaker et al., 62 

2013); isochrons (Müller et al., 1997; Royer et al., 1992); ocean age (Müller et al., 2008); ocean 63 

fabric (Gahagan et al., 1988; Royer et al., 1989); large igneous provinces (Coffin and Eldholm, 64 

1994); crustal thickness (Mooney et al., 1998); stress (Heidbach et al., 2018);  thermo-tectonic 65 

age (USGS, https://earthquake.usgs.gov/data/crust/maps.php); seamounts (Kim and Wessel, 66 

2011; Wessel, 1997); earthquakes (USGS, 2019); and volcanoes (Global Volcanism Program, 67 

2019; Simkin and Siebert, 1994). 68 

Absent from this list are detailed global databases of structural elements, crustal 69 

composition and geometry, and geodynamics. But these are fundamental in constraining plate 70 

models, defining basin form (basin dynamics), and understanding the development and 71 

distribution of accommodation space and heat flow (a key input in both maturity modeling in 72 

petroleum exploration and geothermal exploration). The interplay between geodynamics and 73 

crustal architecture dictates landscape evolution, and therefore paleogeography and source-to-74 

sink. It is upon the resulting landscape that the geological record is built. Many major transport 75 
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pathways (rivers and submarine cantons) are structurally defined, for example, the Benue River 76 

through the Benue Trough, the Zambezi Rover via the Middle and Lower Zambezi basins, the 77 

Amazon River along the Amazonas shear zone, and Lurio Rivers in East Africa. 78 

The notion of a database and maps depicting crustal architecture predates plate tectonic 79 

theory, for example, Boué's global map of "geological structure" (published in Johnston, 1856) 80 

or Reclus' (1876) global maps of volcanoes and mountain belts. Reference to the "architecture of 81 

the crust" was first made by Hunt (1873), who saw it as key to interpreting the geological record 82 

by underpinning what he called "paleogeographic maps" -  reconstructions of the surface of the 83 

Earth through time. This was a view supported by subsequent paleogeographers (Schuchert, 84 

1910; 1928; Ziegler et al., 1985).  85 

With the advent of plate tectonics in the late 1960s, the need for up-to-date global maps 86 

resulted in Exxon's "Tectonic map of the world" (Exxon Production Research Company, 1985), 87 

showing the distribution of major structural elements, basins, isopachs, and basement. 88 

Subsequently, published datasets included the compilations of the CGMW (2010) and Bally et 89 

al., (2012). Yet, the representation of the crustal architecture and structural elements on these 90 

maps is still quite generalized. More detailed maps are available, for example, the DOTSEA and 91 

DOTMED databases (Chamot-Rooke et al., 2005; Pubellier et al., 2005), but these are 92 

geographically limited and lack a comprehensive attribution and audit trail. 93 

This study aims to construct and make openly available a baseline suite of databases that 94 

can be used by the community to further our understanding of the Earth system. We have called 95 

this suite Reclus, after the French geographer Jacques Élisée Reclus”, whose 19 volume work, 96 

La Nouvelle Géographie Universelle, la Terre et Les Hommes, examined the physical and 97 

human geography of every continent, including some of the first maps illustrating the global 98 

distribution of volcanoes and mountains. Reclus has been designed to enable cross-disciplinary 99 

integration and use in analyses including the following: geodynamic modeling; plate 100 

reconstructions; structural analysis; paleogeography; paleobiogeography; paleoecology: source-101 

to-sink analysis; paleoclimatology and Earth system modeling. To achieve this is fully integrated 102 

across its components, reflecting the close interplay of each element in the Earth system.  103 

Reclus differs from existing databases in the following ways: (1) it includes a consistent 104 

representation of global crustal types, especially along passive margins where this is required for 105 
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a broad application in restoration modeling, heat flow modeling, and plate tectonic restoration; 106 

(2) a more detailed and consistent structural elements database; (3) a geodynamics component 107 

that explicitly records the time since the last thermo-mechanical event to affect any part of the 108 

crust; (4) it forms part of a more comprehensive, integrated workflow developed to build 109 

paleogeographic maps and paleolandscapes as the backdrop for understanding the Earth system 110 

(Markwick, 2019). 111 

The problem of representing and classifying the structural framework and crustal 112 

architecture is exacerbated in geographic areas such as East Africa, where multiple tectonic 113 

cycles have resulted in a complex, superimposed history that dictates how the margin and 114 

hinterland develop (Macgregor, 2015; Reeves, 2017; Reeves et al., 2016). This complexity 115 

makes it an ideal test of the utility of the Reclus baseline databases and workflows. This includes 116 

their application in resource exploration, geohazard, and environmental studies. East Africa is an 117 

area of on-going exploration for oil and gas (Brownfield, 2016), minerals, metals, and 118 

geothermal energy (Delvaux et al., 2010; Kraml et al., 2014; Martinelli et al., 1995; Mnjokava, 119 

2012). The Durban Basin offshore SE Africa is the site of investigations for carbon storage 120 

(Hicks and Green, 2017).  121 

Figure 1 shows the study area used in this paper. From this area we develop three 122 

examples to illustrate how these databases provide a systematic baseline with which to 123 

understand the regional context of detailed studies and how our interpretations compare and 124 

contrast with existing interpretations: 125 

1. The Davie Deformational Zone (DDZ) 126 

2. The interplay of pre-existing fabrics. 127 

3. The Biera High and Mozambique Lowlands 128 

 129 

 130 

 131 
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 133 

Figure 1. a, Location map showing extent (black box) used as the example in this study. b, The 134 

distribution of published seismic lines (orange lines), wells (black filled circles), and reference 135 

footprints (blue outlines) used to constrain the databases. This is in addition to the other primary 136 

datasets described in the text, including potential fields data, radar, Landsat and seismicity. 137 

 138 

 139 

2 Materials and Methods 140 

The Reclus databases have been designed, compiled, and managed using ESRI's ArcGIS 141 

software (ESRI, 2017). They are underpinned by a comprehensive data management system and 142 

systematic attribution; details are included in Supporting Information (S.I.). The availability of 143 

such a comprehensive audit and attribution are key if the data are to be used and improved upon, 144 

especially when used as input to AI (Artificial Intelligence) systems. 145 
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 147 

2.1 Workflow 148 

The workflow used to generate the databases is based upon that described in Markwick 149 

(2019) and is summarised in Figure 2. We present a summary of each database, including the 150 

input data, below and provide full methodology and details within S.I. 151 

 152 

 153 

 154 

Figure 2. The high-level workflow used for building the databases described in this study. 155 

 156 

2.2 Definitions 157 

The terminology associated with published tectonics studies is commonly, but often 158 

inconsistently, used. We, therefore, provide explicit definitions of our usage (Table 1). 159 
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 160 

 161 

Table 1. Definitions of the key terms used throughout this paper. 162 

 163 

Term Definition Notes 
   

Crustal architecture 

The geometry (spatial extent and 

thickness), character (composition and 

rheology), and structural framework of 

the Earth's lithosphere.  

 

Crustal architecture is the product of past 

geodynamic processes, but in turn, dictates how the 

crust responds to subsequent geodynamics resulting 
from changes in the tectonic regime. The term was 

originally coined by Thomas Sterry Hunt in 1873 

(“The structure and arrangement of the materials of 
the earth’s crust, its architecture, as it were” p.416). 

   

Structural framework 

The three-dimensional geometry of the 

rock record as the product of deformation 

and therefore the record of the strain 

applied to the rock volume.  

This deformation is the response of the existing 

crustal architecture to geodynamic forcing. The 
structural framework is an integral part of the crustal 

architecture, but in most usage referred to separately. 

   

Geodynamics 

The dynamic processes that shape the 

Earth. These comprise the dominantly 

horizontal stresses resulting from and 

leading to the motion of tectonic plates, 

and the dominantly vertical stresses 

resulting from mantle processes and, 

locally, igneous activity.  

The direct consequence of geodynamics is 

deformation, the product of which is the revised 
crustal architecture with the specific deformational 

activity recorded by the structural framework. How 

the Earth responds to geodynamic forcing’s will vary 
depending on the stresses involved and the pre-

existing crustal architecture. 

   

Tectonics 
The description of the processes that 

'build' the Earth's crust and define its 

evolution through time.  

The term 'tectonics' encompasses both crustal 

architecture and geodynamics and is explicitly linked 
with the concept of plate tectonics, especially the 

largely horizontal plate motions that drive and result 

from horizontal stresses. As such tectonics, like 
crustal architecture, considers more than just the 

crust, and needs to include an understanding of the 

Earth's lithosphere and mantle processes. 
   

 164 

2.3 Input Data 165 

The primary datasets used in this study include published satellite gravity (Sandwell and 166 

Smith, 2009; Sandwell et al., 2014), magnetics (Lesur et al., 2016; Maus et al., 2007; Maus et al., 167 

2009), radar (Farr et al., 2007), Landsat (NASA Landsat Program, 2000) and published well and 168 

seismic data (Figure 1). More detailed field-based gravity data, including FTG surveys, and 169 

aeromagnetic data, have been used where these are published. The bathymetric dataset employed 170 

is that of Gebco (IOC et al., 2003) as this was the last version to be based on soundings without 171 

including bathymetric interpretations from gravity inversion. Secondary data (published 172 
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interpretations from other researchers) are used to provide information on the geological 173 

significance of features, including age, kinematics, petrology, depositional environments. 174 

 175 

2.4 Scale and resolution, confidence and precision 176 

For digital spatial databases, the term "scale" is problematic because the same 177 

information can be represented at any 'scale' whatever its original compilation scale and intended 178 

purpose.  179 

Markwick and Lupia (2002) described the importance of scale and resolution in 180 

geological problem solving and recommended the use of the term "resolution" rather than "scale" 181 

in describing spatial data. They adopted the concept of the "minimal resolvable feature" 182 

resolution (Tobler, 1988) as a useful way of indicating spatial limitations. Each input dataset 183 

used in our interpretations has its intrinsic grain (the grain is the minimum resolution of an 184 

observation or data; the smallest spatial or temporal interval of observation) and coverage 185 

density, which can vary with depth and geographical location depending on the capture methods 186 

(viz., the grain of magnetic data coarsens with the depth to the magnetic layer). This dictates the 187 

minimum resolvable size of interpreted features. 188 

An important role of database attribution is to give users information on the provenance 189 

(explanation, input data, and references) and confidence in each interpretation.  Confidence 190 

fields in the databases are qualitative and indicate the repeatability of an interpretation, whether 191 

placement (mapping uncertainty) or age (how likely the age assignment is to be changed). We 192 

follow the schemes of Markwick (2019; Markwick and Lupia, 2002), which are based on those 193 

of Ziegler et al. (1985) and reflect the source(s) of information, data density, and data grain (e.g. 194 

cell size). Confidence is not a synonym for uncertainty, which is the quantitative estimation of 195 

error present in the data (viz., age uncertainty being the error assigned to an absolute age derived 196 

from an analytic technique; a detailed description of confidence attribution is provided in S.I.). 197 

 198 

3 Structural Elements Database 199 

The Structural Elements database comprises the following key structural components: 200 

faults (features with 'evidence' of displacement), lineaments (features that may be structural but 201 
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with no unequivocal offset or other evidence of motion), bedding (S0), folds, and foliation. All 202 

have been captured as lines (polylines in ArcGIS) rather than polygons and therefore represent 203 

the position of the fault without implying displacement or rock volume loss/repetition.  204 

Although automated methods have been used to identify lineaments using remote sensing 205 

datasets (Cascone et al., 2016; Royer et al., 1989), in this study, the majority of features have 206 

been captured manually. This reflects problems we have found with automated methods when 207 

interpretations are based on multiple, diverse datasets; for example, using breaks in magnetic 208 

anomaly data to pick out fracture zones, which may coincide with continuous bathymetric scarps 209 

or troughs, and continuous gravity lows (see SI).  210 

The resolution, precision, and accuracy of mapped structural features vary according to 211 

the input datasets used in each interpretation resulting in systematic differences between features 212 

mapped offshore and onshore (e.g. Angoche or Majunga Basins in comparison to the East 213 

African rift system, Figure 3). This combination of resolutions is less problematic than may be 214 

expected because it also reflects application as well as data provenance. Structural features in 215 

deep-water settings, such as fracture zones, are most frequently used to constrain plate kinematic 216 

models, where the detailed mapping within a fracture zone is unnecessary. On continental 217 

margins and onshore the availability of often commercially acquired data, including seismic or 218 

high-resolution aeromagnetic data and FTG (Full Tensor Gravity Gradiometry) surveys, results 219 

in significant variations in mapping resolution. End-users must be aware of the resolution of the 220 

database they are using. 221 

 222 

 223 
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 224 

Figure 3. The structural elements database for the southern area of the East Africa margin from 225 

Tanzania to the South African border with Mozambique. This exhibits a complex history and 226 

variety of tectonic settings to test out the mapping methodologies and workflows. The 227 

symbology follows standard conventions for showing kinematics based on that published by the 228 

USGS. A full explanation is given in Markwick (2019). 229 

 230 

 231 

In the deep oceans (e.g. Somali Ocean Basin, Figure 3) where the crust is considered to 232 

be relatively homogenous and thin (c.7 km), deviations in the gravity field largely reflect 233 

bathymetric changes due to juxtaposed differences in crustal thickness due to faulting, especially 234 

spreading ridges, subduction zone transform faults and fracture zones, and igneous extrusions 235 

(seamounts and plateaus). These are further exacerbated by compensation effects when using the 236 

free-air solution (viz., subduction zones represented by deep gravity lows with the subduction 237 
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zone feature drawn along the axis of the lows, corresponding, usually to the deepest part of the 238 

corresponding bathymetric trench; spreading ridges represented by narrow gravity lows bounded 239 

by highs orientated perpendicular to fracture zones). 240 

Continental margins are typically structurally more complex with a higher density of 241 

structuralization than in the deep ocean (e.g. Majunga and Angoche Basins, Figure 3). The 242 

workflow used here to capture features is similar, with the main inputs being gravity data and 243 

bathymetry. Also, on many margins, the availability of controlled source reflection seismic data, 244 

often acquired by industry, provides significantly higher resolution. 245 

The onshore structural mapping is based on more detailed remote sensing data, including 246 

radar (SRTM3: 90m resolution), Landsat (30m resolution), and published aeromagnetic data. 247 

Also, there is a much higher density of publications, sections, field-based studies, and geological 248 

mapping (e.g., Lake Malawi portion of the East African Rift system). Folds are the clearest 249 

expression of deformation that can be identified onshore usually using the geometry of 250 

topographic ridges. Faults, as lineation's picked out by continuous scarps or narrow valleys that 251 

cut the surface fabric, with the highest confidence where these features truncate and offset folds. 252 

These are captured using both Landsat and SRTM3 grids. 253 

Landsat is clearest in semi-arid to arid areas where bedrock is exposed, and there is 254 

limited vegetation to obscure patterns. In vegetated areas, we have used different bandwidths to 255 

pick out subtle changes that may indicate structure. The radar data (SRTM3) can penetrate 256 

vegetation but does require topographic relief to be able to identify structures. Derivatives are 257 

used to expose geological features, including calculations of slope comparable to the total 258 

horizontal derivate used in potential field analysis and high pass filters (see S.I. for details). We 259 

have also used different azimuths and sun angles to generate hill-shades to highlight possible 260 

topographic features that may indicate structure.  Detailed, published aeromagnetic data re used 261 

where available. Georeferenced geology maps provide further confirmation of interpretations 262 

and are throughout this study to add information on kinematics and timing, where this is not 263 

clear from primary data. 264 

The Structural Elements database is used to define sedimentary basins, the nature and 265 

geometry of crustal blocks, provide an indication of the dominant stress-field at the time the 266 

features were active (geodynamics), and as a guide to landscape response (viz., the position of 267 
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scarps through time and river pathways in paleogeography and source-to-sink analysis). Major 268 

faults on now separate continental plates can be used to tie pre-rift plate geometries. 269 

 270 

4 Igneous Features Database 271 

The Igneous Features database includes information on the geometry, age, petrology, and 272 

tectonic environment of intrusive and extrusive (Figure 4). It comprises two feature classes in 273 

ArcGISTM, one each for polygons and lines. Most igneous features are mapped as polygons, but 274 

igneous dikes are stored mainly as lines - exceptions include large-scale vertical intrusions such 275 

Great Dyke of Zimbabwe, which can be up to 11 km wide (Schoenberg et al., 2003). The 276 

igneous features database does not maintain topological rules in that features can overlap in 277 

certain circumstances. 278 

In the oceans, gravity, bathymetric and magnetic data are used to identify probable 279 

igneous features constrained by published papers, dredge samples, and wells. Examples of this 280 

include the magma addition to the Somali basin oceanic floor and localized volcanism within the 281 

Davie Deformational Zone (Figure 4). 282 

Onshore features are largely constrained using Landsat imagery. Features can be 283 

differentiated from surrounding bedrock by color and textural differences (see S.I.), especially in 284 

areas of no or limited vegetation and where the volcanics are relatively young (e.g. Rukwa 285 

Volcanics, East African Rift, Figure 4). In dense vegetation areas, the morphology of volcanics 286 

may be more apparent using radar data and drainage networks; the lower confidence is reflected 287 

in the confidence codes. Geological maps and publications are used to assign crystallization 288 

ages, petrological, and tectonic setting information. 289 

The Igneous Features database is designed to provide input for constraining plate 290 

kinematic reconstructions, geodynamic modeling, and basin modeling (heat-flow). Igneous 291 

features are also important in provenance studies, source-to-sink analysis, and paleogeography. 292 

This is by influencing the landscape through differential weathering and erosion, vegetation 293 

cover, and drainage evolution (drainage can be modified instantaneously by extrusions). 294 

 295 
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 296 

Figure 4. The extent of igneous features mapped for the example study area used in this paper. 297 

Red, extrusives; pink, intrusives. 298 

 299 

 300 

5 Crustal Facies Database 301 

The Crustal Facies database records the geometry, thickness, and composition of the 302 

Earth's crust. The crust represents the chemically distinct upper layers of the Earth. 303 

Rheologically, the crust forms part of the lithosphere, which must be considered in geodynamic 304 

modeling. Where the crust is absent, e.g. in areas of hyper-extension, we incorporate the 305 

presence of exhumed mantle. 306 

Existing methods for categorizing crustal types are commonly associated with the 307 

processes involved, such as compressional margin, hyper-extended (Péron-Pinvidic and 308 

Manatschal, 2010), or volcanic passive margins. This is problematic from a global database 309 
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perspective as it combines observations with process while also mixing crustal type with 310 

geodynamics. 311 

Here we take a different approach and differentiate by composition (‘continental’, 312 

‘oceanic’, or ‘mantle’) and thickness with reference to 'standard' continental crust of 30-35 km 313 

and oceanic crust of 5-7 km (thick, normal, thin, very thin) (Figure 5). The composition reflects 314 

the history of that crust (previous tectonic cycles) but is independent of the geodynamic 315 

processes acting on the crust once formed. Consequently, interpretations of crustal facies will 316 

change through geological time. The default in our databases is the present-day status. Separate 317 

databases are built for each timeslice reconstructed as part of the paleogeography workflow 318 

(Markwick, 2019). 319 

 320 
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Figure 5. Crustal Facies, including the map legend and abbreviations used. 322 

 323 

The different compositions, and corresponding crustal thicknesses, are mapped from an 324 

analysis of gravity and magnetic data, geological maps, seismic and 2D profiles. In the oceans 325 

thick crust, ocean arcs, and isolated continental blocks, usually have a bathymetric and gravity 326 

expression. This expression is readily identified and can be checked against seismic, well, and 327 

dredge samples where available. The thick crust on the continents will usually be topographically 328 

high if it is in isostatic equilibrium, with a corresponding gravity (Bouguer) signature. 329 

Geological data (outcrop samples, well cores, geological maps, and published papers) provide 330 

information on the composition, including the igneous features database. 331 

In the offshore, we have followed the work of Williams et al. (2010). They found that 332 

amplitude changes in the Bouguer total horizontal derivative (Ba THD) provide information on 333 

the transition from 'true' ocean crust to continental crust along many margins - limit of 'standard' 334 

('normal') ocean crust. 335 

The domain between the limit of 'standard' oceanic crust and unstretched continental 336 

crust is more problematic. Commonly this is defined as 'transitional crust,' but given the potential 337 

variability in margin composition, this forms a significantly ambiguous term that is problematic 338 

when applied in the database. Instead of using `transitional crust,` the database uses the 339 

following classification, which can be derived directly from available global databases: 1) thin 340 

(or very thin) continental crust with no magmatic addition, 2) continental crust with magmatic 341 

addition, which incorporates inner seaward dipping reflectors, 3) mantle, 4) mantle with 342 

magmatic addition, and 5) thick oceanic crust, which incorporates outer seaward dipping 343 

reflections.   344 

The resulting map provides input for defining plate polygons in plate kinematic 345 

modeling, reconstructing potential heat flow as a critical input to maturity modeling and 346 

geothermal exploration, understanding basin formation and evolution, and paleogeographic 347 

reconstruction and paleolandscape dynamics. 348 

 349 
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6 Geodynamics Database 350 

The Geodynamics database records the age and nature of the last thermo-mechanical 351 

event with respect to the palaeogeographic timeslice being reconstructed. The default database 352 

records this information for the present-day. This method was first discussed in Markwick and 353 

Valdes (2004) as tectonophysiography, which described areas above the contemporary base-level 354 

and, therefore, areas of net erosion (sediment source areas in source-to-sink analysis). The age of 355 

the last thermo-mechanical event was added to better represent the decay of landscapes 356 

(Campanile et al., 2007; Pazzaglia, 2003; Tucker and Slingerland, 1994; Van der Beek and 357 

Braun, 1998; Whipple and Meade, 2004) following the ideas presented in the 1997 USGS 358 

thermo-tectonic age map of the world that was used to model heat-flow following Pollack et al., 359 

(1993) and crustal thickness and structure (Mooney et al., 1998).  360 

In this new database, the geodynamic state is assigned to the whole Earth, not just those 361 

areas above the contemporary base-level. This is classified into those processes characterized by 362 

a dominantly vertical stress field (the response to medium and long-wavelength mantle processes 363 

– dynamic topography -, more localized volcanics – hotspots -, flexure and isostatic rebound), 364 

and those representing a dominantly horizontal stress field, which is then divided into 365 

compressional and extensional settings. The symbology of each thermo-mechanical state is 366 

shown as solid color when active at the time of the mapped interval and then by increasing 367 

widths of diagonal lines colored with the symbol for anorogenic land as the time since activity 368 

increases (Figure 6). 369 

Anorogenic land is the landscape expression of the long-term 'equilibrium' state. This is 370 

the 'Monadnock phase' in the geomorphological evolutionary scheme of Strahler (1964), 371 

represented by a concave-up hypsometric curve. Geologically, this represents crust in isostatic 372 

equilibrium with no tectonic forces acting on it. In reality, the point at which any landscape 373 

reaches 'equilibrium' will vary according to the type of thermo-mechanical event, bedrock, 374 

vegetation cover, and climate evolution. There is also the added complication of dynamic 375 

topography (Burgess and Gurnis, 1995; Lithgow-Bertelloni and Silver, 1998) due to mantle 376 

processes that may not have been recognized. In this database, we consider 300 million years as 377 

an appropriate global cut-off for the onset of 'anorogenic' conditions. In most settings either 378 
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'equilibrium' would have been established long before this, or a subsequent geodynamic 'event' 379 

would have occurred and overprinted the original geodynamic effects. 380 

The geodynamics database is used in combination with the crustal facies to assess the 381 

response of the landscape and from this to estimate relative paleo-elevation and the geometry of 382 

uplifts (viz., mantle driven vertical uplift is typified by broad, long-wavelength uplifts, whilst 383 

thin-skinned compressional systems can be more localized). The geodynamic mapping also 384 

provides a check on plate modeling since the two will need to show the same implied stress field. 385 

 386 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

 387 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Figure 6. The geodynamic state as a representation of the last thermo-mechanical forcing to 388 

affect each part of the crust. The legend shows how the time elapsed since activity ceased is 389 

incorporated. 390 

 391 

 392 

7 The East African Crustal Architecture 393 

7.1 The Davie Deformational Zone (DDZ) 394 

Tectonic reconstructions of the East Africa margin are traditionally summarized as a 395 

single feature, the "Davie Fracture Zone." This transform boundary was recognized by Scrutton 396 

(1978) as a kinematic requirement to accommodate the opening of the West Somali Ocean 397 

between Madagascar and Somalia during the Jurassic and Early Cretaceous. Subsequent authors 398 

have described a much more complex margin reflecting several tectonic cycles (Jacques et al., 399 

2006; MacGregor et al., 2017; Mahanjane, 2014). Given this complexity, Jacques et al. (2006) 400 

recommended the term "Davie Transcurrent Deformation Zone" rather than "Davie Fracture 401 

Zone" (DFZ). Our mapping indicates a c.200 km wide deformational zone. But we consider this 402 

is a simplification, especially along the Tanzanian and Kenya margins. Deformation is not just 403 

strike-slip, so we prefer the term "Davie Deformational Zone" (DDZ). 404 

In this paper, we concentrate on the southern extent of the DDZ (Figures 3 and 5), but 405 

have completed mapping of the whole of Sub-Saharan Africa.  406 

The DDZ is partitioned today by major Precambrian and Pan-African structural features. 407 

In Mozambique these are the Mwembeshi Shear Zone (MSZ) and Lurio Belt (LB), which act as 408 

'passive' transfer zones. ‘Passive’ because there is no evidence of motion on either fault system 409 

during the Mesozoic - Cenozoic formation of the margin, as indicated by Jurassic dyke swarms 410 

that cut across the MSZ in Botswana without offset (Igneous Features databases). North of the 411 

MSZ, the DDZ includes an outer zone which we postulate to comprise "mixed magmatic thin 412 

continental" crust,  based on gravity analysis and some limited seismic. This zone of interpreted 413 

igneous activity is in line with the last ocean ridge segment and may relate to the spreading 414 

ridge's motion along the active transform margin in the Jurassic to Early Cretaceous, and/or the 415 
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attempted propagation of spreading into the margin. Igneous activity on the margin is otherwise 416 

rare north of the MSZ. 417 

South of the MSZ, the DDZ comprises north-south rifts and ridges, including the 418 

Kerimbas and Lacerda grabens. South of the LB the DDZ is dominated by the Davie Ridge, 419 

although this is itself complex as indicated by seismic (Bassias, 2016; Mahanjane, 2014) and our 420 

mapping. This includes alkaline volcanics which are compositionally similar to the Late 421 

Cretaceous volcanics on Madagascar (Bassias and Bertagne, 2015). 422 

Variations in the DDZ coincide with the intersection of Karoo rifts with the margin, for 423 

example in the area of the Selous, Rovuma and Rufuji ‘Karoo’ basins. This part of Gondwana 424 

was dissected by Permo-Triassic ('Karoo’) rifts (Catuneanu et al., 2005; Delvaux, 2001). Karoo 425 

rifting appears to be constrained by the distribution of Precambrian mobile (orogenic) belts 426 

(Figure 5).  427 

It is within this complex crustal architecture that Mesozoic breakup occurs with an initial 428 

phase of orthogonal rifting along the margin (c.183 – c.170 or 165 Ma, Tuck‐Martin et al., 2018), 429 

partly dictated by the location of Karoo rifts. This coincided with major volcanism in southern 430 

Africa (Igneous Features Database). This was followed by a change in the stress-field c.170 or 431 

165 to c.133 Ma with ocean spreading separating West and East Gondwana (Tuck‐Martin et al., 432 

2018). It is during this time that the margin became a transform margin sensu stricto, with a 433 

Davie transform fault connecting the coeval spreading ridges of the Somali and Mozambique 434 

basins. Whether this was represented by a single fault is questionable, based on the complexities 435 

we see on the San Andreas system, Equatorial South America, Agulhas or the northern 436 

Caribbean. 437 

When spreading ceased at c.133 Ma (Valanginian), the trace of the transform became 438 

obfuscated by subsequent tectonic cycles. This may explain why Klimke and Franke (2016) 439 

found no evidence of the transform fault in their seismic study offshore northern Mozambique 440 

and Tanzania. However, we suggest that this is also a reflection of the greater reactivation of the 441 

DDZ to the south of the MSZ. In the Valanginian, the southern South Atlantic began to open 442 

with rifting between the Maurice Ewing Bank and the Tugela crustal promontory, preceded by or 443 

coincident with the formation of the volcanic Mozambique Plateau at c.140 Ma. 444 
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A further phase of volcanism occurred during the middle Cretaceous and is concentrated 445 

mainly on and around Madgascar (c.95-80Ma; Cucciniello et al., 2013; Storey et al., 1997). This 446 

has been interpreted as marking the trace of the Marion hotspot (Storey et al., 1997), but is also 447 

approximately coincident in time with local plate reorganization, resulting in compression along 448 

the DDZ (Figure 6). Intawong et al. (2019) have interpreted this as possible incipient subduction 449 

of Middle Jurassic Angoche Basin ocean crust beneath the Davie Ridge. Our mapping based on 450 

published seismic and potential fields data shows that the MSZ bounds the northern extent of this 451 

compression (Figure 6). Whether this is subduction sensu stricto is questionable – there is no 452 

evidence of arc development. But the orientation of fracture zones in the oceanic Angoche Basin 453 

and their truncation along this feature (Figure 5) would suggest some loss of surface area due to 454 

overthrusting of Madagascar along this boundary.  455 

Superimposed on this history are Cenozoic rifting (East African Rift System, EARS) and 456 

mantle dynamics (Dynamic topography) (Figure 6). Today, seismicity along the DDZ is mostly 457 

limited to the Cenozoic rifts offshore Kenya, and the line of the DDZ from the MSZ south to the 458 

southern Morondava Basin (USGS, 2019). Earthquakes in this region have extensional, not 459 

strike-slip focal solutions (Grimison and Chen, 1988) and are related to active rifting across the 460 

region. This is clearly shown in the databases by differentiating structures based on whether 461 

there is evidence of recent activity (red symbology) or not (black symbology) (Figure 3). 462 

 463 

7.2 The Interplay of Pre-existing Fabrics. 464 

The role of inheritance on tectonics has been documented since the 19th century (Şengör 465 

et al., 2018). Phillips et al., (2016) found that large-scale shear zones on the Norwegian margin 466 

act as a “template” for fault initiation. This may explain our observations in East Africa. We 467 

have seen (Figures 3, 5) how crustal-scale Precambrian boundaries (Mwembeshi SZ and Lurio 468 

Belt) dictate the partitioning of the DDZ.  469 

The distribution of Karoo basins is similarly dictated by the distribution of Precambrian 470 

and Pan-African mobile (orogenic belts) (Figure 5). Karoo basins on the Kaapvaal craton are 471 

dominantly foreland basins or sags. The longevity of these Karoo basins and their 472 

accommodation space varies depending on orientation and location. For example, the N-S 473 
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Rukwa and E-W Middle Zambezi basins have relatively long depositional histories (Catuneanu 474 

et al., 2005; Roberts et al., 2004). But the NW-SE orientated Luangwa Basin stratigraphy has a 475 

major hiatus after the Triassic (Catuneanu et al., 2005) but a geomorphic and depositional 476 

activity today. These basins influence the distribution of present-day rivers, but also the locus of 477 

Cenozoic rifting and volcanism, for example, the Rungwe volcanics Figure 7). 478 

 479 

 480 

Figure 7. An example of the full database resolution for the Eastern Branch of the East African 481 

Rift system illustrating the Structural Elements and Igneous Features databases. 482 

 483 

But the Cenozoic picture is far from simple. The Cenozoic northern Malawi Basin 484 

reactivates the older Karoo Rukwa Basin, influenced by the pre-existing Pan-African fabric 485 

(Mortimer et al., 2016; Mortimer et al., 2007). But to the south, the N-S Cenozoic Malawi rift 486 

cuts across the NW-SE orientated Karoo Metangula and Ruhuhu basins, although these do alter 487 

the rift Malawi geometry (Figure 5). The Malawi Rift is orthogonal to the strike of the 488 
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Mwembeshi Shear zone with only minor effect. This complicated relationship between pre-489 

existing fabrics and rifting is seen even more clearly in Tanzania in which rifting propagates into 490 

cratonic crust - the Northern Tanzania Divergence (Ebinger et al., 1997; Foster et al., 1997; 491 

Smith and Mosley, 1993; Yang and Chen, 2010) (Figure 8).  A similar evolution has been 492 

described by Paton et al. (2017) in the South Atlantic, with initial rifting following the pre-493 

existing crustal fabric (Cape Fold Belt) but then, with a change in the dominant stress-field, a 494 

second phase of rifting cut across all fabrics. By interrogating the baseline databases we can see 495 

the interplay of structure, crustal facies, geodynamics, and igneous activity—for example, the 496 

location of the Rungwe volcanics at the intersection of Karoo and Cenozoic rifts. But the 497 

databases also provide the opportunity to quantify this. 498 

 499 

 500 
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Figure 8. A detail showing the propagation of Late Cenozoic rifting into cratonic crust of the 501 

Tanzania craton and Bangwueulu Block. 502 

 503 

7.3 The Beira High and Mozambique Lowlands. 504 

The nature of the crust underlying the Beira High and Mozambique lowlands has been a 505 

source of uncertainty for decades because of the sparsity of published data. This is an active 506 

petroleum exploration area given the gas discoveries at Pande and Termane on the Mozambique 507 

coast and oil and gas in the Rovuma Basin. In the last decade, seismic (Mahanjane, 2012) and 2D 508 

potential fields modeling (Mueller, 2017) have been published that clarify the continental origin 509 

of the Beira High and its relationship to the hinterland. This is seen in our databases Figure 9, 510 

which expand interpretations into the Mozambique lowlands, which is still poorly resolved 511 

(Figure 9b shows a map of our mapping confidence for the crustal facies interpretations – this 512 

assigned mapping confidence provides the opportunity to assess the viability of alternative 513 

hypotheses). The Beira High is interpreted as a rifted continental block, bounded landward by a 514 

failed rift with SDRs (Senkans et al., 2019), represented in our crustal facies scheme by mixed 515 

magmatic – continental crust. The margin narrows to the east in the Angoche Basin. We 516 

postulate that this variation may reflect the interplay with Karoo basins. Gravity lows in the 517 

northern Mozambique lowlands are consistent with this failed rift continuing westward. 518 

However, in our current interpretation there is a spur of thin, non-magmatic continental crust that 519 

seems incongruous and requires further modelling and/or seismic coverage (this is a key aim of 520 

the baseline databases to identify equivocal interpretations and data gaps that require further 521 

investigation).  522 

The crustal interpretation over much of the rest of the Mozambique lowlands is more 523 

problematic. Well data show that volcanics floor much of the region, likely related to the 524 

Lebombo Karoo volcanics (c.182-180 Ma; Duncan et al., 1997; Riley et al., 2004). But whether 525 

these volcanics erupted onto early formed ocean crust or thin continental crust is less clear. Our 526 

interpretation of the existing potential fields, seismic and well data shows a band of continental 527 

crust along the margin, with thin mixed magmatic -continental crust behind, similar to what is 528 

mapped for the Biera High area. The use of the mixed magmatic classification requires that 529 

volcanics and thinning were coeval and related. A complication here are circular features in the 530 
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high-resolution aeromagnetic data that have been interpreted as calderas (Ruotoistenmäki, 2008) 531 

but which have a similar concentric form to intrusions. 532 

Rifting parallel to the Lebombo margin is reported in various commercial studies and is 533 

shown in Davison and Steel (2017). The satellite gravity data and magnetics support this. 534 

Our mapping suggests a two-phase opening of the Mozambique basin based on the 535 

change in orientation of interpreted fracture zones, which is constrained by recently published 536 

magnetic data (Mueller, 2017). This two-phase opening is consistent with the change in the 537 

coeval opening of the West Somali basin (Phethean et al., 2016; Tuck‐Martin et al., 2018). 538 
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 540 

Figure 9. A detail showing (a) the relationship of the nature and geometry of our proposed 541 

crustal facies for the Biera High and Mozambique lowlands, see figure 5 for explanation of 542 

symbology, (b) the mapping confidence assigned to the crustal interpretations. A full explanation 543 

of the mapping confidence scheme is provided in the S.I.   544 

 545 

 546 

8 Final Remarks 547 

Reclus is an open resource designed to provide researchers with a comprehensive, 548 

audited, baseline suite of databases upon which to further their own research and our 549 

understanding of the tectonics of the Earth system. In this paper, four components have been 550 

described: structural elements; igneous features; crustal facies; geodynamics.  These features are 551 

interpreted from primary data (Landsat, radar, seismic, well data, gravity, and magnetics) 552 

supported by secondary data sources (geological maps, literature, pubished academic studies, 553 

reports). Elements within each database have been interpreted using a systematic, integrated 554 

workflow. Applications of the databases range from tectonics and basin dynamics to mineral and 555 

hydrocarbon exploration, hydrogeology, and paleogeography.  We envisage that the Reclus 556 

databases will continue developing and improving as more research is added to them.  557 

The examples shown in this paper illustrate how a systematic approach to capturing 558 

tectonic information can provide insights on the juxtaposition and geometry of crustal and 559 

structural features in a complex geological area such as East Africa and pose new hypotheses to 560 

explain them. The superimposition of and interplay between successive tectonic cycles is much 561 

clearer when viewed regionally and systematically. 562 

Only by considering detailed phenomena within the context of the big picture can we 563 

fully understand how the system works. 564 

 565 

 566 
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DS S1 contains shapefiles extracted for the AOI from the Reclus databases of Structural 

Elements, Crustal Facies, Igneous Features (lines and polygons), Geodynamics. For each 

shapefile, we have provided a .lyr (layer) file which includes the default symbology.  

 


