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Abstract

Southeast Asian monsoon region is regularly stricken by drought, but less attention is paid due to its slow-onset and less

visual impact. This study investigated the observed drought changes over Southeast Asian monsoon region and impacts of

anthropogenic forcing using the Coupled Model Intercomparison Project phase 6 (CMIP6) models. We revealed an increasing

drought risk for 1951-2018 due to more frequent and wide-spread droughts. The influence of anthropogenic forcing is successfully

detected, which has increased the likelihood of the extreme droughts in historical simulation by reducing precipitation and

enhancing evapotranspiration. The time of emergence of anthropogenic forcing in extreme drought occurrence and affected area

occurs around the 1960s. The future projected severe and extreme drought risks are still beyond natural only forced changes

under all scenarios. Our findings demonstrate a robust impact of anthropogenic forcing on drought risk over Southeast Asia,

and highlight the importance of future pathway choice.

Table S1 CMIP6 models and the years of their piControl simulation used in this study

Model Institute/Country Lat x Lon piControl Reference

BCC-CSM2-MR BCC-CMA/China 160 x 320 600 Wu et al. (2019)
CNRM-CM6-1 CNRM-CERFACS/France 128 x 256 500 Voldoire et al. (2019).
CNRM-ESM2-1 CNRM-CERFACS/France 128 x 256 500 Séférian et al. (2019)
CanESM5 CCCMA/Canada 64 x 128 1000 Swart et al. (2019)
EC-Earth3 EC-Earth-Consortium/Europe 256 x 512 501 Haarsma et al. (2020)
FGOALS-g3 LASG-IAP/China 90x180 700 Li et al. (2020)
GFDL-ESM4 NOAA-GFDL/USA 180 x 360 500 Dunne et al. (2020)
INM-CM4-8 INM/Russia 120X180 531 Volodin, et al. (2018)
IPSL-CM6A-LR IPSL/France 143 x 144 1200 Boucher et al. (2019)
MIROC6 MIROC/Japan 128 x 256 800 Tatebe et al. (2019)
MPI-ESM1-2-HR MPI-M/Germany 192 x 384 500 Müller et al. (2018)
MPI-ESM1-2-LR MPI-M/Germany 96 x 192 1000 Mauritsen et al. (2019)
MRI-ESM2-0 MRI/Japan 96 x 192 701 Yakimoto et al. (2019)
UKESM1-0-LL MOHC/UK 144 x 192 1100 Sellar et al. (2019)

Table S2 Number of realizations for the historical and future projection
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Model Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

BCC-CSM2-MR 3 1 1 1 1
CNRM-CM6-1 10 6 6 6 6
CNRM-ESM2-1 5 5 5 5 5
CanESM5 25 14 10 10 10
EC-Earth3 1 1 1 1 1
FGOALS-g3 1 1 1 1 1
GFDL-ESM4 1 1 1 1 1
INM-CM4-8 1 1 1 1 1
IPSL-CM6A-LR 9 5 5 5 5
MIROC6 10 10 3 3 10
MPI-ESM1-2-HR 1 1 1 1 1
MPI-ESM1-2-LR 1 1 1 1 1
MRI-ESM2-0 1 1 1 1 1
UKESM1-0-LL 1 1 1 1 1

Table S3 TOE (unit: year) of precipitation (P), evapotranspiration (ET) and P minus ET (PmE) area-
averaged over the Southeast Asian monsoon region firstly occurs in Hist (first row). The numbers for
SSP1-2.6, SSP2-4.5, SSP3.0 and SSP5-8.5 are the years when the external forced changes fall in the range of
internal variability in the future projection. The ranges in the parenthesis denote the ±1 standard deviation.
“—” means the external forced changes never return to natural variability in the future.

Scenarios P ET PmE

Hist 1980 (1973˜1987) 1999(1968-2030) 1981 (1973˜1989)
SSP1-2.6 2030 (2025˜2035) — 2049 (2041˜2057)
SSP2-4.5 2037 (2031˜2043) — —
SSP3-7.0 2059 (2054˜2064) — —
SSP5-8.5 2039 (2032˜2046) — 2078 (2061˜2095)
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Fig.S1 The temporal changes of drought intensity for different drought categories averaged over Southeast
Asian land monsoon region (10-30°N, 90-120°E) based on (a) SPEI, and (b) sc-PDSI. The yellow, orange,
brown and red lines represent abnormally dry (SPEI[?]-0.5, sc-PDSI[?]-1.0), moderate drought (SPEI[?]-1.0,
sc-PDSI[?]-2.0), severe drought (SPEI[?]-1.5, sc-PDSI[?]-3.0), and extreme drought (SPEI[?]-2.0, sc-PDSI[?]-
4.0), respectively.
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Fig.S2 Same as Fig.1, but for the results based on sc-PDSI.
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Fig. S3 The linear trend of (a) surface soil moisture (0-10cm soil moisture content, unit: kg m-268yr-1), (b)
severe drought occurrence (unit: mon 68yr-1), (c) extreme drought occurrence (unit: mon 68yr-1) for 1951-
2014 derived from GLDAS dataset. To minimize the geophysical discrepancy of soil moisture, we standardized
the surface soil moisture anomalies and then use the standardized results to characterize drought. A severe
and extreme drought event is a month with the surface soil moisture less than -1.5 and -2.0 standard deviation,
respectively. This approach adopted here is similar to Sohrabi et al. (2015), but only employs surface soil
moisture.
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Fig.A4 (a)-(b), same as Fig.1a-b, bur for the results derived from SPEI PRE. (c) The ratio of the linear
trend of SPEI PRE to that of SPEI All. (d) the ratio of the linear trend of extreme drought occurrence
derived from SPEI PRE to that derived from SPEI All. The original SPEI with both changes in precipitation
and ET is referred as SPEI All. SPEI PRE is similar to SPEI All, but calculated from the detrended ET
for 1901-2018 and the original precipitation (Cook et al. 2014). When the ratio in (c)-(d) is higher than 0.5,
it indicates the contribution of precipitation changes is higher than that of ET.
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Fig. S5 The standard deviation of (a) extreme drought occurrence (unit: mon per year) and (b) area
fraction (unit: %) from 1950 to 2014 from the observation (dash lines) and the historical run of the 14
CMIP6 models (bar) for 1951-2014. The blue bars denote the multi-model ensemble mean (MME). The
20-yr running mean has been carried out before calculating the standard deviation. (c) and (d) are same as
(a) and (b) but for the severe drought.
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Fig. S6 (a) The spatial distribution of TOE for extreme drought occurrence firstly appeared in Hist and
(b) the anomalies of extreme drought frequency (unit: mon year-1) averaged over the 20-yr around TOE
relative to piControl. The white areas denote that the TOE does not exist.
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Fig.S7 (a)-(b) are the same as Fig.S6, but for precipitation. (c)-(f) are the years when changes in precipi-
tation return to the ranges of internal variability. The stippling denotes that precipitation decreases exceed
the range of internal variability in the TOE.
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Key points:

 Drought occurrence and affected area over Southeast Asian monsoon region has been

increasing since 1951 in the observation. 

 The human influence on the historical changes of drought risk over Southeast Asian

monsoon region is detectable.  

 The time of emergence of anthropogenic forcing in extreme drought occurrence and

affected area occurs in the 20th century.
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Abstract:  Southeast  Asian  monsoon  region  is  regularly  stricken  by  drought,  but  less

attention is paid due to its slow-onset and less visual impact. This study investigated the

observed  drought  changes  over  Southeast  Asian  monsoon  region  and  impacts  of

anthropogenic forcing using the Coupled Model Intercomparison Project phase 6 (CMIP6)

models. We revealed an increasing drought risk for 1951-2018 due to more frequent and

wide-spread  droughts.  The  influence  of  anthropogenic  forcing  is  successfully  detected,

which  has  increased  the  likelihood  of  the  extreme droughts  in  historical  simulation  by

reducing  precipitation  and  enhancing  evapotranspiration.  The  time  of  emergence  of

anthropogenic forcing in extreme drought occurrence and affected area occurs around the

1960s. The future projected severe and extreme drought risks are still beyond natural only

forced  changes  under  all  scenarios.  Our  findings  demonstrate  a  robust  impact  of

anthropogenic forcing on drought risk over Southeast Asia, and highlight the importance of

future pathway choice.

Key Words: Drought risk, Southeast Asia monsoon, CMIP6, Time of Emergence

Plain Language Summary: 

As a humid region, drought in Southeast Asian monsoon region is often underestimated due

to its slow rate of onset and less visual impact. Here we revealed a significant increasing

trend of drought occurrence and affected area over Southeast Asian monsoon region since

the 1950s. The impact of human influence is successfully detected using the Coupled Model

Intercomparison Project phase 6 (CMIP6) models. Anthropogenic forcing has increased the

likelihood  of  the  extreme  droughts  for  1951-2014  by  suppressing  water  supply  and

enhancing evaporation demand. The time of emergence of anthropogenic forcing in extreme

drought frequency and affected area firstly appeared around the 1960s. Even though drought

risk will start to decrease since the 2030s in the future under the lowest emission scenario of

CMIP6, the projected drought risks are still beyond natural only forced changes.  
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1. Introduction

Southeast Asian monsoon region falls in the warm and humid tropics modulated by Asian

monsoon. It is home to nearly 15% of the world’s tropical forests and 8.5% population in

3% earth's total land area, and also one of the biodiversity hotspots in the world (Stibig et

al., 2014; Sodhi et al., 2010). With the unprecedented urbanization and population growing

rate,  water  scarcity  issues  have  already  posed  a  serious  challenge  for  sustainable

development in Southeast Asian monsoon region (Kumar et al., 2015). As a humid region,

drought in this region is often underestimated due to its slow rate of onset and less visual

impact.  However,  drought  can  have  devastating  cumulative  impacts,  especially  on  the

countries which are poor and less developed but heavily depend on agriculture (Polpanich,

2010). Thus, understanding the drought changes and the behind mechanism are of great

importance. 

This  study  focuses  on  the  Southeast  Asian  monsoon  region,  including  the  mainland

Southeast Asian countries and South China (10~30°N, 90~120°E) (Fig.1a-b), because this

region has the longest wet season and the strongest interannual variability in the monsoon

length in the Asian monsoon region (Misra and DiNapoli 2013). Decreasing trends in annual

precipitation from the 1950s to 2000s were observed in Myanmar, Thailand and northern

Vietnam (Endo et al., 2009), and the number of rainy days was significantly decreased over

Southeast  Asia from 1961 to 1998 (Manton et  al.,  2001).  Drought has affected over  66

million people in Southeast Asian countries for the past 30 decades (ASEAN, 2019). The

2020 drought started from 2019 has caused water levels in Southeast Asia’s Mekong River
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to  drop  to  its  lowest  in  more  than  100  years

(https://www.nationalgeographic.com/environment/2019/07/mekong-river-lowest-levels-

100-years-food-shortages/),  affecting  13  provinces  in  the  Mekong  Delta  region

(https://reliefweb.int/report/viet-nam/viet-nam-drought-and-saltwater-intrusion-office-

resident-coordinator-flash-update-1). The 2020 drought also spread to Southwest China, the

upstream of Mekong River, and over one million people were lack of accessing drinking

water (https://news.cgtn.com/news/2020-04-05/Drought-affects-over-one-million-people-in-

SW-China-province-PrpBkhlJok/index.html). South China, adjacent to the Southeast Asian

countries,  has  been frequently stricken by droughts in recent  decades  (Xin et  al.,  2008;

Zhang et al., 2013; Chen and Sun, 2015; Zhang et al., 2020). The two adjacent regions share

the same climate and are facing similar drought risk. Thus, we study the drought changes

over the traditional Southeast Asian countries and South China together in this study. 

Climate change could further aggravate drought by either enhancing evapotranspiration or

suppressing precipitation (Dai, 2011; Trenberth et al., 2014), and Southeast Asian monsoon

region is one of the hotspots with strong drying under global warming (Cook et al., 2020).

The effect of black carbon aerosol radiative forcing can partly explain the observed drying

trend  of  Southeast  Asian  spring  precipitation  (Lee  and  Kim,  2010).  The  optimal

fingerprinting attribution shows a dominant role of anthropogenic aerosols forcing in the

declining trend since the 1950s of northern hemispheric monsoon precipitation, including

Southeast  Asia  (Polson  et  al.,  2014).  Compared  with  present-day,  drought  events  are

projected  to  increase  in  the  future  over  mainland Southeast  Asia  based  on the  regional
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climate model (Amnuaylojaroen and Chanvichit, 2019) and CMIP5 multimodel simulations

(Lu et al., 2019). As for the droughts associated with El Niño events, drought would cover

more area over Southeast Asia in thenear future even with less severe El Niño events, and

droughts associated with severe El Niño would be more extreme and more widely spread in

the near and far future (Hariadi, 2017). 

The  Coupled  Model  Intercomparison  Project  phase  6  (CMIP6)  with  improved  climate

models and more modelling groups is expected to provide more reliable information on the

regional  climate  response  to  anthropogenic  forcing  (Eyring  et  al.,  2016;  Ukkola  et  al.,

2020). This study aims to answer the following questions by examining observation and

CMIP6  multimodel  output:  1)  How  does  the  observed  drought  over  Southeast  Asian

monsoon region change since the 1950s? 2)Whether anthropogenic forcing plays any role in

the drought changes? 3) How would drought change under different scenarios in the future? 

2. Data and Method

2.1 Observation and CMIP6 model simulations 

We use monthly observational precipitation and potential evapotranspiration dataset from

the Climatic Research Unit of the University of East Anglia (CRU TS v.4.03) for 1951-2018

at  a  horizontal  resolution  of 0.5º  (Harris  et  al.,  2020).  To  verify  the  observed  drought

changes  revealed  by  SPEI,  the  surface  (0-10cm)  soil  moisture  from  Global  Land  Data

Assimilation System Version 2 (GLDAS-2.0, Rodell et al. 2004; Beaudoing et al. 2019) for

1951-2014  is  also  used.  We  employ  the  pre-industrial  control  simulation  (piControl),
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historical simulation (Hist) and four future scenarios projections from 14 coupled models

underpin CMIP6 to explore the role of anthropogenic forcing and the scenario dependence

of drought changes in future projection (Table S1-2). The four scenarios chosen in this study

are the Shared Socioeconomic Pathways (SSP) 1-2.6, 2-4.5, 3-7.0 and 5-8.5 (O’Neill et al.,

2016). The piControl is employed to estimate internal variability of the unforced drought.

All model outputs are interpolated onto the same resolution of 1.5°×1.5° using the first-

order  conservative  interpolation.  We  use  Hargreaves  equation  to  calculate  reference

evapotranspiration (ET) (Hargreaves,  1994),  which has a  good agreement with Penman-

Monteith method (Droogers and Allen, 2002). 

This study chooses the Standardized Precipitation-Evapotranspiration Index (SPEI, Vicente-

Serrano  et  al.,  2010a,  b)  to  investigate  the  changes  in  drought  intensity,  occurrence  or

frequency defined as  drought  months  per  year  and affected  area  fraction.  To verify  the

observed drought changes revealed by SPEI, self-calibrating Palmer Drought Severity Index

(sc-PDSI, Wells et al., 2004) is also employed. In observation, SPEI and sc-PDSI are both

calculated  based  on  the  CRU  TSv.4.03  precipitation  and  evapotranspiration  dataset

(Vicente-Serrano et  al.,  2010b; Schrier et  al.,  2013).  As monthly sc-PDSI is not able to

depict drought on time scales shorter than 12 months, we use SPEI at a 12-month time scale

to estimate drought changes in the observation. In each model simulation, SPEI is calculated

using a Log-Logistic distribution (Vicente-Serrano et al., 2010a), the parameters of which

are derived by fitting it to the piControl simulations of that model. 

2.2 Estimate of internal variability and Time of Emergence
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Following  Zhang  and  Delworth  (2018),  internal  variability  is  estimated  from  multi-

millennia  preindustrial  control  simulations.  For  drought  occurrence  and  affected  area

changes, we first calculate the drought occurrence at each grid and the drought affected area

of  the  study  area.  The  running-mean  drought  affected  area  and  area-averaged  drought

frequency for a 20-yr period over the target region are then calculated. Internal variability is

defined as the range between the maximum and minimum values across the entire piControl

runs, respectively. The results are only caused by internal climate variability. For internal

variability of the changes in precipitation, we first randomly select two non-overlapping 20-

yr periods from the piControl simulation. Then, we calculate the difference between these

two 20-yr periods. Next, we repeat these 14 times (to mimic the 14 models ensemble) to

form the ensemble and compute ensemble average. Finally, we repeat the above process

5000 times to gain a probability density function (PDF) of internal variability.

The time of emergence (TOE) is defined as the time when external forcing signal, which is

represented by multimodel ensemble mean (MME), exceeds internal variability firstly and

lasts at least 2 decades (Zhang and Delworth 2018). To estimate the spread of TOE, we

calculate the time when the MME exceeds ranges of internal variability of each model, and

define this time as the TOE for each model. The spread of TOE is the range of ±1 standard

deviation of TOE across the 14 models. 

3. Results

3.1 Observed drought changes for 1951-2018
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In observation, an overall drying trend over the Southeast Asian monsoon region is observed

since the 1950s, with the strongest drying trend over Yunnan Province in China, northern

Thailand and Myanmar (Fig.1a). SPEI has decreased by -0.75 at the maximum from 1951 to

2018. The occurrence of extreme drought, defined as month with SPEI≤-2.0 per year, has

been significantly increasing over  the regions  with significant  decreasing trend of  SPEI

(Fig.1b). It is centered over the Southwest China and Burma. In contrast, Viet Nam, along

the  east  coast  of  Pacific  Ocean,  show significant  wetting  trends.  Significant  increasing

trends  in  the drought  occurrence and affected area  are  seen from the temporal  changes

averaged over  Southeast  Asia  (Fig.1c-d).  For the past  68 years,  the severe and extreme

drought occurrence (affected area) has increased by 0.8 and 0.2 month per year (7.1% and

3.1%),  respectively,  approximately  23% and  8% (85% and  142%) of  climate  mean.  In

contrast, the linear trend in drought intensity is insignificant (Fig.S1a). So, we will mainly

focus on the changes in drought occurrence and affected area in the following sections.

The results based on sc-PDSI (Fig.S1b and Fig.S2) and surface soil moisture (Fig.S3) both

confirm the increasing drought risk over Southeast Asian monsoon region. Following Cook

et al.  (2014), we recalculate SPEI by removing the linear trend of ET for 1901-2018 to

estimate contribution of precipitation changes to the drought risk trend (Fig.S4).  Over the

centers with strongest decreasing trend of SPEI and increasing trend of drought occurrence,

the contribution of precipitation changes is  higher than 50%, reaching 0.9 at  maximum,

demonstrating the importance of precipitation changes. Given the high consistency between

sc-PDSI and SPEI, we will use SPEI to investigate the impact of anthropogenic forcing in
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the following discussion. 

3.2 Responses of droughts to historical anthropogenic forcing

By comparing PDF distributions of drought indices averaged over the study region in Hist

and piControl,  a detectable role of anthropogenic forcing can be seen from the leftward

(rightward) shift in SPEI, precipitation and surface soil moisture (ET, drought occurrence

and affected area) under anthropogenic forcing (Fig.2a-b). The likelihood of a 1-in-20-yr

drought  event  defined by extreme drought  occurrence  and affected  area  in  piControl  is

estimated to increase to 24% (6%~49% for 10th-90th confidence level) and 32% (25% to

45%) in Hist, respectively. It indicates anthropogenic forcing has increased the risk of such

event by 5-time (3~25-time) and 6-time (4~9-time) estimated from risk ratio (PHist/PpiControl),

respectively. Human influence can intensify the drought risk by increasing both standard

deviation  and  climate  mean  of  precipitation,  ET  and  SPEI  (horizontal  lines  Fig.2a-c).

Specifically, standard deviation for SPEI, precipitation anomaly and ET anomaly in Hist

increases to 0.44, 0.81 mm day-1, and 0.15 mm day-1 from 0.40, 0.77 mm day-1, and 0.13 mm

day-1 in piControl. 

3.3 ToE of anthropogenic forcing

To  investigate  when  the  human  influence  forced  signal  exceeds  natural  variability,  we

estimate the TOE of anthropogenic forcing here. Because estimation of TOE is sensitive to

the simulated ranges  of climate variability,  we firstly  evaluate  the models’ capability  in

simulating  the variability  of  drought  occurrence and affected  area over  Southeast  Asian

9

17

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

18



Confidential manuscript submitted to Geophysical Research Letters

monsoon  region.  Most  CMIP6  models  and  MME  underestimate  the  variability  of

occurrence of extreme drought, but overestimate the extreme and severe drought affected

area fraction (Fig.S5).  To avoid the  model  biases,  we scale  the simulated  variability  of

internal variability using the ratio between the standard deviation of observation and of Hist

of each model for the period 1950-2018. 

Consistent with the observation, a significant increasing trend for the drought occurrence

and affected area fraction since the early 20th century is clearly simulated in Hist. The TOE

of climate change induced extreme drought occurrence and affected area emerges around

1967 (1928~2006)  and 1967 (1941~1993),  close  to  that  of  severe  drought  events  1969

(1935~2003) and 1967 (1939~1995). We also investigate whether future changes in drought

risk under different scenarios will return to natural only forced variability (colored lines in

Fig.3).  The  extreme  and  severe  drought  occurrence  and  area  fraction  start  to  decrease

around the 2030s under SSP1-2.6 and keep stable since the 2030s under SSP2-4.5, while

continue to  increase  through the  whole  21st century under  SSP3-7.0 and SSP5-8.5.  The

anthropogenic forced higher drought risks are still beyond the ranges of natural variability

of piControl under the four scenarios, although a decrease is shown in SSP1-2.6. The largest

increase is seen from SSP3-7.0, which has the greatest anthropogenic aerosol loadings in the

future (Wilcox et al. 2020). The drought will become more frequent and more widespread in

the future compared with piControl under all scenarios, but a slight decrease relative to

present day is projected under the lowest emission scenarios. The earliest TOE has appeared

over the Southwest China before the 1990s, followed by the Mekong river basin countries
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(Fig.S6a).  For the drought  occurrence changes  averaged over  the 20 years around TOE

relative  to  piControl,  extreme  drought  increases  by  0.4～ 0.8month  per  year  over  the

Southwest China and 0.4~1 month over Thailand (Fig.S6b).

We also present  the changes of  precipitation,  ET and their  difference (PmE) relative to

piControl  to  see  their  impact  on  drought  risk  changes(Fig.4).  In  the  20 th century,  the

ensemble mean precipitation of the 14 CMIP6 models shows very similar evolution to those

in  drought,  decreasing  with  time  from  the  early  21st century  to  present,  reaching  its

minimum recently.  The TOE of precipitation occurs  around 1980 (1973~1987) (Fig.4a).

Meanwhile,  the  anthropogenic  activity  forced  ET increases  with  time and goes  beyond

natural  variability  around  1999  (1968~2030),  with  much  weaker  magnitude  than

precipitation  (Fig.4b).  The  combination  of  decrease  in  water  supply  (precipitation)  and

increase in evaporation demand (ET) contributes to the decreasing trend in PmE (Fig.4c). 

As for the future projection, precipitation shows a recovery since the 2020s in all scenarios

except SSP3-7.0 under which it recovers from the 2030s. Changes in precipitation return to

the  ranges  of  natural  variability  around  2030  (2025~2035),  2037  (2031~2043),  2059

(2054~2064),  2039  (2032~2046)  in  SSP1-2.6,  SSP2-4.5,  SSP3-7.0,  and  SSP5-8.5,

respectively (colored lines in Fig.4a), and even exceeds internal variability around 2080 in

SSP5-8.5. In comparison, ET in all scenarios keeps on increasing with a faster rate under

stronger anthropogenic forcing (Fig.4b). The changes in PmE under SSP2-4.5 and SSP3-7.0

do  not  return  to  the  ranges  of  internal  variability  because  of  faster  ET  increase  and

moderated  recovery  of  precipitation  with  global  warming  (Table  S3).  The  changes  in
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precipitation, ET and PmE demonstrate that future global warming benefits a recovery of

Southeast Asian monsoon precipitation, but faster ET increase could overwhelm its recovery

and contribute to a further decrease in PmE and higher drought risk. 

Similar to drought changes, the earliest TOE of decreased precipitation is also seen over

Southwest  China  (Fig.S7a-b).  Under  SSP1-2.6,  SSP2-4.5  and  SSP5-8.5,  eastern  part  of

South China and Mekong River would return to the ranges of natural variability around

2040  (Fig.S7c-f).  Under  SSP3-7.0,  the  area  with  precipitation  returning  to  internal

variability is the smallest (Fig.S7e).

Enhancement of precipitation in the future projection is closely related to radiative forcing.

In  Hist,  reduction  in  precipitation  is  dominated  by  anthropogenic  aerosol  forcing  by

reducing  atmospheric  humidity  and  weakening  the  monsoon  circulation,  although  the

thermodynamic  effect  from  greenhouse  gases  forcing  can  partly  offset  the  impact  of

anthropogenic aerosol forcing (Zhou et al., 2020). In the future projection, greenhouse gases

(GHGs) keep on increase but anthropogenic aerosol forcing declines (O'Neill et al., 2016),

which intensifies the impact of GHGs on precipitation through the thermodynamic response

(Chen et al., 2020; Wilcox et al., 2020), and enhances ET as well. Higher scenarios result in

faster warming, and faster recovery in precipitation and enhancement in ET. Only under

SSP1-2.6 and SSP5-8.5, the recovery of precipitation exceeds enhanced ET, favorable of

less drought risk and a return to the variability in a natural world.     

4. Summary and conclusion remarks
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As a slow-onset extreme event, drought over Southeast Asian monsoon region is paid less

attention so far. We examined drought changes over this region in the observation from 1950

to  2018,  and  showed  that  Southeast  Asian  monsoon  region  has  been  undergoing  more

frequent  and  more  wide-spread  drought  for  1951-2018  in  the  observation,  centered

Southwest  China,  northern  Thailand  and  Myanmar.  The  extreme  drought  affected  area

fraction are almost doubled during 1951-2018 over the study region. 

The  impact  of  anthropogenic  forcing  and  projected  changes  in  drought  under  different

scenarios were investigated by comparing Hist and future projections with piControl from

the CMIP6 multimodel output. We found a detectable role of anthropogenic forcing on the

increasing drought risk over the Southeast Asian monsoon region. Human influence has

increased the occurrence and affected area fraction of extreme drought during 1951-2014.

Consistent with the observation, significant increasing trends for the drought occurrence and

affected area fraction in Hist are simulated since the early 20th century. The TOE of extreme

drought  occurrence  and  affected  area  appeared  around  1967  (1928~2006)  and  1967

(1941~1993), respectively. The anthropogenic forced precipitation decrease dominates the

increasing drought risk in the past century. In the future, the projected changes in extreme

and severe drought risk would start to decrease around the 2030s under SSP1-2.6, while

keep on increasing through the whole 21st century under SSP3-7.0 and SSP5-8.5. However,

the projected changes in  drought  risk under  all  scenarios are  still  beyond the ranges  of

natural variability. 

Our study demonstrated a distinguishable role of anthropogenic forcing in the increasing
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drought risk over Southeast Asian monsoon region, and the TOE of anthropogenic forcing

on drought  has  occurred  in  the  past.  Both  higher  aerosols  loading and higher  radiative

forcing in the future are important for the drought changes, and SSP3-7.0, which bears the

largest  anthropogenic  aerosol  loadings  in  the  future  and  second  high  radiative  forcing

among the four scenarios, projects the most frequent and most widespread drought for the

mid-  and  long-term  projections. Although  precipitation  over  Southeast  Asian  monsoon

region will recover since the 2050s due to more atmospheric humidity with global warming,

the  evapotranspiration  enhancement  could  offset  and  even  overwhelm  the  precipitation

recovery, increasing the drought risk. 

Southeast  Asian  monsoon  region,  particular  over  the  Mekong  river  Basin,  will  be  the

hotspot of frequent and widespread drought risk in the future. It would greatly threaten the

agriculture, heightened fire risks and lead to acute shortages of drinking water. ASEAN and

the United Nations Economic and Social Commission for Asia and the Pacific proposed to

build resilience to drought in Southeast Asia mitigate the impacts of drought (UN, 2020).

Here, we demonstrate the choice of pathways is also crucial for the drought risk changes

over Southeast in the future. It is urgent to take actions to reduce anthropogenic aerosol

loading and greenhouses gases emissions to reduce the Southeast Asian drought risks. 

Acknowledgement:

This work was jointly supported by the Ministry of Science and Technology of China under

Grant 2018YFA0606501 and National Natural Science Foundation of China under grant No.

42075037. We acknowledge the World Climate Research Programme’s Working Group on

14

27

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

28



Confidential manuscript submitted to Geophysical Research Letters

Coupled  Modeling,  which  is  responsible  for  CMIP6,  and  the  climate  modeling  groups

(listed in Table S1) for producing and making available their model output (https://esgf-

node.llnl.gov/search/cmip6/). We also thank  University of East Anglia Climatic Research

Unit  (CRU)  for  providing  the  observational  precipitation  datasets

(https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82). The SPEI and sc-

PDSI  datasets  can  be  freely  accessed  from  the  websites

(https://spei.csic.es/spei_database.html and  https://crudata.uea.ac.uk/cru/data/drought/).

Surface  soil  moisture  from  GLDAS  is  available  from

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary. 

References:

Amnuaylojaroen Teerachai and Pavinee Chanvichit (2019) Projection of near-future climate

change and agricultural drought in Mainland Southeast Asia under RCP8.5. Climatic

Change, 155:175-193. 

Beaudoing,  H.  and  M.  Rodell,  NASA/GSFC/HSL (2019),  GLDAS Noah  Land  Surface

Model  L4 monthly  0.25  x 0.25  degree  V2.0,  Greenbelt,  Maryland,  USA, Goddard

Earth  Sciences  Data  and  Information  Services  Center  (GES  DISC),  Accessed:

[https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary, last accessed

on 25th January 2021], 10.5067/9SQ1B3ZXP2C5

Chen  H,  and  J  Sun  (2015)  Changes  in  Drought  Characteristics  over  China  Using  the

Standardized Precipitation Evapotranspiration Index. J. Climate, 28, 5430–5447.

15

29

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

30

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://crudata.uea.ac.uk/cru/data/drought/)
https://spei.csic.es/spei_database.html
https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82)
https://esgf-node.llnl.gov/search/cmip6/)
https://esgf-node.llnl.gov/search/cmip6/)


Confidential manuscript submitted to Geophysical Research Letters

Chen Z.  M.,  T.  J.  Zhou,  L.  X.  Zhang,  et  al.  (2020) Global  land monsoon precipitation

changes in CMIP6. Geophysical Research Letters, 47, e2019GL086902. https://doi.org/

10.1029/2019GL086902

Cook B. I., J.E. Smerdon, R. Seager., et al. 2014: Global warming and 21st century drying.

Clim. Dyn. 43: 2607-2627. 

Cook B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J.

(2020)  Twenty-first  century  drought  projections  in  the  CMIP6  forcing  scenarios.

Earth's Future. 8, e2019EF001461. https://doi.org/10.1029/2019EF001461

Dai  A.  (2011)  Drought  under  global  warming:  A review  Wiley  Interdiscip.  Rev.  Clim.

Chang. 2 45–65.

Droogers P. and R. Allen (2002) Estimating reference evapotranspiration under inaccurate

data conditions. Irrigation and Drainage Systems 16: 33–45. 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K.

E. (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)

experimental  design  and  organization,  Geosci.  Model  Dev.,  9,  1937–1958,

https://doi.org/10.5194/gmd-9-1937-2016.

Hariadi M. H. (2017) Projected drought severity changes in Southeast Asia under medium

and  extreme  climate  change.  Wageningen  University  and  Research,  and  Royal

Netherlands Meteorological Institute, Ministry of Infrastructure and the Environment,

KNMI  Scientific  Report  WR-2017-02.  (M.Sc.  thesis  report).  Available  from:

16

31

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

32

https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1029/2019GL086902
https://doi.org/10.1029/2019GL086902


Confidential manuscript submitted to Geophysical Research Letters

http://bibliotheek.knmi.nl/knmipubWR/WR2017-02.pdf.

Harris I., T. J. Osborn, P. Jones, and D. Lister (2020) Version 4 of the CRU TS monthly

high-resolution  gridded  multivariate  climate  dataset.  Scientific  Data,  7,  109(2020).

https://doi.org/10.1038/s41597-020-0453-3

Juneng,  L.  and  Tangang,  F.  (2005)  Evolution  of  ENSO-related  rainfall  anomalies  in

Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-

Pacific sector, Clim. Dyn., 25, 337–350.

Kumar M. D., P. K. Viswaathan and Nitin Bassi (2015) Water Scarcity and Pollution in

South and Southeast Asia: Problems and Challenges, in Paul G. Harris and Graeme

Lang (eds.),  Routledge Handbook of  Environment  and Society  in  Asia,  Routledge,

Taylor & Francis Group, London, pp. 197-215.

O'Neill, B. C., Tebaldi, C., van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti,

R.,  Kriegler,  E.,  Lamarque,  J.-F.,  Lowe,  J.,  Meehl,  G.A.,  Moss,  R.,  Riahi,  K.,  and

Sanderson, B. M. (2016) The Scenario Model Intercomparison Project (ScenarioMIP)

for CMIP6. Geosci. Model Dev., 9: 3461-3482.

Räsänen, T. A. and Kummu, M.(2013) Spatiotemporal influences of ENSO on precipitation

and flood pulse in the Mekong River Basin, J. Hydrol., 476, 154–168.

Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. Meng, K. Arsenault, B.

Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D.

Toll, 2004: The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85,

17

33

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

34

https://doi.org/10.1038/s41597-020-0453-3


Confidential manuscript submitted to Geophysical Research Letters

381-394, doi:10.1175/BAMS-85-3-381

Schrier G. van der, J. Barichivich, K. R. Briffa, P. D. Jones (2013) A scPDSI-based global

data set of dry and wet spells for 1901-2009. J. Geophys. Res. Atmos., 118, 4025–

4048, doi:10.1002/jgrd.50355.

Sodhi,  N.  S.  et  al.  (2010)  The  state  and  conservation  of  Southeast  Asian  biodiversity.

Biodivers. Conserv. 19, 317–328.

Stibig, H. J., Achard, F., Carboni, S., Rasi, R. & Miettinen, J. (2014) Change in tropical

forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11, 247–258.

Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J.

Sheffield (2014) Global warming and changes in drought. Nature Climate Change, 4,

17-22

Ukkola A. M.,  M. G. D. Kauwe, M. L. Roderick,  G. Abramowitz,  A. J.  Pitman (2020)

Robust  Future  Changes  in  Meteorological  Drought  in  CMIP6  Projections  Despite

Uncertainty  in  Precipitation.  Geophysical  Research  Letters,  47,  e2020GL087820,

https://doi.org/10.1029/2020GL087820.

Vicente-Serrano  S.M.,  Beguería  S.,  López-Moreno  J.I.,  (2010a)  A Multi-scalar  drought

index sensitive to global warming: The Standardized Precipitation Evapotranspiration

Index-SPEI.  Journal  of  Climate,  23(7),  1696-1718,  DOI:  10.1175/2009JCLI2909.1.

http://digital.csic.es/handle/10261/22405.

Vicente-Serrano S.M., Beguería S., López-Moreno J.I., Angulo M., El Kenawy A. (2010b) A

18

35

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

36

http://digital.csic.es/handle/10261/22405


Confidential manuscript submitted to Geophysical Research Letters

global 0.5° gridded dataset (1901-2006) of a multiscalar drought index considering the

joint  effects  of  precipitation  and  temperature.  Journal  of  Hydrometeorology  11(4),

1033-1043, DOI: 10.1175/2010JHM1224.1. http://digital.csic.es/handle/10261/23906.

Wang B., M. Biasutti,  M. P. Byrne, et al.  (2020) Monsoon Climate Change Assessment.

Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-19-0335.1.

Wang Lin, Chen Wen, Zhou Wen, Huang Gang (2015) Understanding and detecting super

extreme droughts in Southwest China through an integrated approach and index. Q. J.

R. Meteorol. Soc., 142: 529–535, DOI: 10.1002/qj.2593.

Wells N., Goddard S. and Hayes M.J. (2004) A self-calibrating Palmer Drought Severity

Index. Journal of Climate, 17, 2335-2351

Xin X., R. Yu, T. Zhou, and B. Wang (2006) Drought in late spring of South China in recent

decades. J. Climate, 19, 3197–3206, https://doi.org/10.1175/JCLI3794.1.

Zhang  H.,  &  Delworth,  T.  L.  (2018).  Robustness  of  anthropogenically  forced  decadal

precipitation  changes  projected  for  the  21st  century.  Nat  Commun,  9(1),  1150.

https://doi.org/10.1038/

Zhang L., Zhou T., Chen X., Wu P., Christidis N., Lott F. (2020). The late spring drought of

2018 in South China, Bull. Amer. Met. Soc., 101(1): S59-S64. DOI:10.1175/BAMS-D-

19-0202.1.

19

37

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

38

https://doi.org/10.1038/s41467-018-03611-3
http://digital.csic.es/handle/10261/23906


Confidential manuscript submitted to Geophysical Research Letters

Fig. 1 The spatial distribution for observed linear trend of drought from 1951 to 2018 for (a)

SPEI (unit: (68yr)-1) (b) extreme drought (SPEI≤-2.0) occurrence (unit: month (68yr)-1). (c)-

(d)  are  the  temporal  changes  of  (c)  occurrence  (unit:  month  yr-1)  and  (d)  affected  area

fraction (unit: %) for different drought categories averaged over Southeast Asian monsoon

region (10-30°N, 90-120°E). The yellow, orange, brown and red lines represent abnormally

dry (SPEI≤-0.5), moderate drought (SPEI≤-1.0), severe drought (SPEI≤-1.5), and extreme

drought (SPEI≤-2.0), respectively. 
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Fig.2 Probability distribution function (PDF) of drought changes in piControl and Hist. (a)

SPEI averaged over the land area of Southeast Asian monsoon region. (b)-(c) are same as

(a), but for annual mean precipitation (mm day-1), ET (mm day-1) and surface soil moisture

(0-10cm)  (kg  m-2)  anomalies  relative  to  piControl.  (e)-(f)  are  for  extreme  drought

occurrence and affected area fraction over the Southeast Asian land monsoon region. The

solid lines are the multi-model ensemble (MME) mean of piControl (black line) and Hist for

1950-2014 (red line), and the shadings denote the range of 10th to 90th across models. The

vertical blue dash lines denote the return value of 20-yr period. The horizontal lines and dots

denote the range of standard deviation and the mean value of PDFs, respectively. The mean

value and the inter-model 10th-90th range are shown in the right corner of each plot. 
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Fig.3 The 20-yr running mean changes in extreme drought (a) occurrence (month year-1) and

(b) affected area fraction (%) over the Southeast Asian monsoon region in Hist (black) and

four future projections (colored lines) based on multi-model ensemble (MME) of the 14

CMIP6 models. The gray shadings denote the range of internal variability, which has been

corrected by the ratio between the standard deviation of observation and Hist in 1950~2014

(FigS5). The dark blue, light blue, brown and red are for SSP1-2.6, SSP2-4.5, SSP3-7.0 and

SSP5-8.5, respectively. The black vertical dash lines denote the time of emergence (TOE).

 

22

43

418

419

420

421

422

423

424

425

426

427

428

44



Confidential manuscript submitted to Geophysical Research Letters

Fig. 4 Same as Fig.3, but for the changes in anomalous annual mean (a) precipitation (P),

(b) evapotranspiration (ET) and (c) P minus ET (PmE) area-averaged over the Southeast

Asian monsoon region relative to piControl. 
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