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Abstract

This paper presents the results of an ensemble data assimilation methodology over the Wasserstein space for high-dimensional

nonlinear dynamical systems, focusing on the chaotic Lorenz-96 model and a two-layer quasi-geostrophic model of atmospheric

circulation. Unlike Euclidean data assimilation, this approach is equipped with a Riemannian geometry and formulates data

assimilation as a Wasserstein barycenter between the forecast probability distribution and the normalized likelihood function.

The methodology does not rely on any Gaussian assumptions and can intrinsically treat systematic model and observation errors.

To cope with the computational cost of the Wasserstein distance, the paper examines the efficiency of the entropic regularization.

Comparisons with the standard particle and stochastic ensemble Kalman filters demonstrate that under systematic errors the

presented methodology could extend the forecast skills of nonlinear dynamical systems.
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Key Points:16

• An ensemble data assimilation methodology based on the Wasserstein distance is pre-17

sented for treating systematic errors in high-dimensional systems.18

• The proposed methodology does not require any a priori assumption about the shape19

of the probability distributions.20

• To reduce the computational cost, the methodology relies on entropic regularization.21
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Abstract22

This paper presents the results of an ensemble data assimilation methodology over23

the Wasserstein space for high-dimensional nonlinear dynamical systems, focusing on24

the chaotic Lorenz-96 model and a two-layer quasi-geostrophic model of atmospheric25

circulation. Unlike Euclidean data assimilation, this approach is equipped with a26

Riemannian geometry and formulates data assimilation as a Wasserstein barycenter27

between the forecast probability distribution and the normalized likelihood function.28

The methodology does not rely on any Gaussian assumptions and can intrinsically29

treat systematic model and observation errors. To cope with the computational cost of30

the Wasserstein distance, the paper examines the efficiency of the entropic regulariza-31

tion. Comparisons with the standard particle and stochastic ensemble Kalman filters32

demonstrate that under systematic errors the presented methodology could extend the33

forecast skills of nonlinear dynamical systems.34

1 Introduction35

The science of data assimilation (DA) aims to optimally combine the information content36

of observations with forecasts of Earth system models (ESM) to improve the estimation37

of their initial conditions and thus their predictive capabilities (Kalnay, 2003). Current38

DA methodologies, either variational (Courtier et al., 1994; A. C. Lorenc, 1986; Poterjoy39

& Zhang, 2014; Rabier et al., 2000; Zupanski, 1993) or filtering (J. Anderson & Lei, 2013;40

J. L. Anderson, 2001; Bishop et al., 2001; Janjić et al., 2011; Kalman, 1960; Lei et al., 2018;41

Tippett et al., 2003), largely rely on penalization of second-order statistics of the unbiased42

model and observation errors over the Euclidean space. For example, in the three-dimensional43

variational (3D-Var) DA (Courtier et al., 1998; Z. Li et al., 2013; A. Lorenc et al., 2000;44

A. C. Lorenc, 1986), a least-squares cost function comprising of weighted Euclidean distances45

of the state from the previous model forecasts (background state) and the observations is46

formulated. Solution of this cost function leads to an analysis state, which is a weighted47

average of the forecasts and observations across multiple dimensions of the problem with the48

weights dictated by prescribed background and observation error covariance matrices. The49

variants of the Kalman filtering DA methods (Evensen, 1994a, 2003; Houtekamer & Zhang,50

2016; Nerger et al., 2012b; Reichle et al., 2002) also follow the same principle but in these51

methods, the background covariance contains information from past observations and model52

evolution.53

Apart from the Euclidean distance, other measures and distance metrics including the54

quadratic mutual information (Kapur, 1994), Kullback-Leibler (KL) divergence (Kullback &55

Leibler, 1951), Hellinger distance (Hellinger, 1909), and Wasserstein distance (Villani, 2003)56

have been also utilized in DA frameworks. Among others, Tagade & Ravela (2014) introduced57

a nonlinear filter, where the analysis is obtained through maximization of the quadratic58

mutual information. Maclean et al. (2017) utilized the Hellinger distance to measure the59

difference between the predicted and observed spatial patterns in oceanic flows. Chianese et60

al. (2018) introduced a variational DA method in which minimization of the KL divergence61

led to an approximation of the bias terms and model parameters. Similarly, R. Li et al.62

(2019) employed the KL divergence in an optimization framework to incorporate inequality63

constraints in the Ensemble Kalman Filter (EnKF, Evensen, 1994b). Recently, Pulido & van64
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Leeuwen (2019) developed a mapping particle filter in which particles are pushed towards65

the posterior density by minimizing the KL divergence between the posterior and a series of66

intermediate probability densities.67

In recent years, the Wasserstein or the Earth mover’s distance, originating from the the-68

ory of optimal mass transport (OMT, B. Chen et al., 2019; Y. Chen et al., 2017, 2018a,b;69

Kantorovich, 1942; Kolouri et al., 2017; Monge, 1781; Villani, 2003), has been gaining at-70

tention in the DA community. Reich (2013) first introduced a new resampling approach71

in particle filters using the OMT, to maximize the correlation between prior and posterior72

ensemble members. Ning et al. (2014) further utilized the Wasserstein distance to treat po-73

sition errors arising from uncertain model parameters. Following on this work, Feyeux et al.74

(2018) proposed to replace the weighted Euclidean distance with the Wasserstein distance in75

variational DA frameworks to treat position error. Tamang et al. (2020) proposed to use the76

Wasserstein distance to regularize a variational DA framework for treating systematic errors77

arising from the model forecast in chaotic systems. However, DA frameworks utilizing the78

Wasserstein distance are computationally expensive as they require obtaining a joint distri-79

bution that couples two marginal distributions. Finding this joint distribution often relies80

on interior-point methods (Altman & Gondzio, 1999) or the Orlin’s algorithm (Orlin, 1993)81

that have super-cubic run time – making the Wasserstein DA computationally challenging82

for high-dimensional geophysical problems. More recently, to reduce the computational cost,83

Tamang et al. (2021) used entropic regularization of the OMT formulation (Cuturi, 2013)84

through a new framework, called Ensemble Riemannian Data Assimilation (EnRDA) to cope85

with systematic biases.86

In this paper, we expand EnRDA by testing and documenting its performance over “high-87

dimensional” nonlinear dynamical systems under systematic errors. Unlike Euclidean DA88

with a known connection with the family of Gaussian distributions through Bayes’ theorem,89

the EnRDA does not rely on any parametric assumptions about the input probability distri-90

butions. Therefore, it does not guarantee an analysis state with a minimum mean squared91

error. However, as it will be clear later on, it enables to optimally (i) interpolate between92

the forecast distribution and the normalized likelihood function without any parametric as-93

sumptions about their shapes and (ii) formally penalize systematic translations between94

them arising due to geophysical biases.95

The paper poses the hypothesis that under geophysical biases and high-dimensional non-96

linear dynamical systems, EnRDA can lead to an analysis state with reduced uncertainty97

– compared to classic “unbiased” minimum mean-squared error Euclidean DA techniques.98

To test this hypothesis, we implement EnRDA on the chaotic Lorenz-96 system (Lorenz,99

1995) and a two-layer quasi-geostrophic (QG) model (Pedlosky et al., 1987). The results100

demonstrate that DA over the Wasserstein space provides an alternative approach that may101

enhance high-dimensional geophysical forecast skills when the distributions of the state vari-102

ables are not necessarily Gaussian and are corrupted with systematic errors.103

The outline of the paper is as follows. Section 2 provides a brief background on optimal104

mass transport and Wasserstein distance. The EnRDA methodology is presented in Section105

3. Section 4 presents different test cases of implementation on the Lorenz-96 and the QG106

model and documents the performance of the presented approach in comparison with the107

classic implementation of the standard particle filter with resampling and the Stochastic108

Ensemble Kalman Filter (SEnKF). A summary and concluding remarks are presented in109
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Section 5. The details of the entropic regularization for the EnRDA, and covariance inflation110

and localization procedures for the SEnKF are provided in Appendix A.111

2 Background on OMT and the Wasserstein Barycen-112

ters113

We provide a brief background on the theory of optimal mass transport (OMT) and Wasser-114

stein barycenters. The OMT theory, first put forward by Monge (1781), aims to find the115

minimum cost of transporting distributed masses of materials from known source points to116

target points. The theory was later expanded as a new tool to compare probability distri-117

butions (Brenier, 1987; Villani, 2003) and since then has found its applications in the field118

of data assimilation (Feyeux et al., 2018; L. Li et al., 2018; Ning et al., 2014; Tamang et al.,119

2020), subsurface geophysical inverse problems (J. Chen et al., 2018; Yang & Engquist, 2018;120

Yang et al., 2018; Yong et al., 2019) and comparisons of climate model simulations (Vissio121

et al., 2020).122

Let us consider a discrete source probability distribution p(x) =
∑M

i=1 pxiδxi and a tar-123

get distribution p(y) =
∑N

j=1 pyjδyj with their respective probability masses {px ∈ RM
+ :124 ∑

i pxi = 1} and {py ∈ RN
+ :

∑
j pyj = 1} supported on m- and n-element column vectors125

xi ∈ Rm and yj ∈ Rn, respectively. The notation px ∈ RM
+ represents probability masses px126

containing non-negative real numbers supported on M points, whereas δx is the Dirac func-127

tion at x. In the Monge formulation, the goal is to seek an optimal surjective transportation128

map T a#p(x) = p(y) that “pushes forward” the source distribution p(x) towards the target129

distribution p(y), with a minimum transportation cost as follows:130

T a = argmin
T

M∑
i=1

c(xi, T (xi)) s.t. T a#p(x) = p(y) , (1)

where c(·, ·) ∈ R+ represents the cost of transporting a unit mass from one support point in131

x to another one in y.132

The problem formulation by Monge as expressed in Equation 1, however, is non-convex133

and the existence of an optimal transportation map is not guaranteed (Y. Chen et al., 2019)134

– especially, when the number of support points for the target distribution exceeds that of135

the source distribution (N > M) (Peyré et al., 2019). This limitation was overcome by136

Kantorovich (1942) who introduced a probabilistic formulation of OMT – allowing splitting137

of probability mass from a single source point to multiple target points. The Kantorovich138

formalism recasts the OMT problem in a linear programming framework that finds an opti-139

mal joint distribution or coupling Ua ∈ RM×N
+ that couples the marginal source and target140

distributions with the following optimality criterion:141

Ua = argmin
U

tr(CTU) s.t.


U ∈ RM×N

+

U1N = px ,

UT
1M = py

(2)
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where tr(·) is the trace of a matrix, (·)T is the transposition operator and 1M represents an142

M -element column vector of ones. In the above formulation, the known {C ∈ RM×N
+ : cij =143

‖xi − yj‖22} denotes the so-called transportation cost matrix which is defined based on the144

`2-norm ‖·‖2 or the Euclidean distance between the support points of the source and target145

distributions. Here, the (i, j)th element uaij of optimal joint distribution Ua represents the146

respective amount of mass transported from support point xi to yj. Then, the 2-Wasserstein147

distance or metric between the marginal probability distributions is defined as the square148

root of the optimal transportation cost dW(px,py) =
(
tr(CTUa)

) 1
2 (Dobrushin, 1970; Villani,149

2008). It should be noted that due to the linear equality and non-negativity constraints in150

Equation 2, the family of joint distributions that satisfy these constraints forms a bounded151

convex polytope (Cuturi & Peyré, 2018) and consequently, the optimal joint distribution Ua
152

is located on one of the extreme points of such a polytope (Peyré et al., 2019).153

Recalling that over the Euclidean space, the barycenter of a group of points is equivalent154

to their (weighted) mean value. The Wasserstein metric offers a Riemannian generalization155

of this problem and allows to define the barycenter of a family of probability distributions156

(Bigot et al., 2012; Rabin et al., 2011; Srivastava et al., 2018). In particular, for a group157

of K probability mass functions p1, . . . ,pK , a Wasserstein barycenter pη is defined as their158

Fréchet mean (Fréchet, 1948) as follows (Agueh & Carlier, 2011):159

pη = argmin
p

K∑
k=1

ηkd
2
W(p,pk) , (3)

where {(η1, . . . , ηK)T ∈ RK
+ :

∑
k ηk = 1} represent the weights associated with160

the respective distributions. In special cases where the group of K distributions is161

Gaussian {N (µ1,Σ1), . . . ,N (µK ,ΣK)} with mean µ1, . . . ,µK and positive definite co-162

variance Σ1, . . . ,ΣK , the Wasserstein barycenter is also a Gaussian density N (µη,Ση)163

with µη =
∑
k

ηkµk and Ση is the unique positive definite root of the matrix equation164

Σ =
∑
k

ηk
(
Σ

1
2 ΣkΣ

1
2

) 1
2 (Agueh & Carlier, 2011).165

3 Ensemble Riemannian Data Assimilation (EnRDA)166

Let us assume that the evolution of the ith ensemble member xi ∈ Rm of ESM simulations167

can be presented as the following stochastic dynamical system:168

xti =M(xt−1i ) + ωti i = 1, . . . ,M , (4)

where M : Rm −→ Rm is the deterministic nonlinear model operator, evolving the model169

state in time with a stochastic error term ωti ∈ Rm. This dynamical system is observed at170

time t through an observation equation yt = H(xt) + υt, where H : Rm −→ Rn maps the171

state to the observation space and υt ∈ Rn represents an additive observation error. Note172

that the error terms are not necessarily drawn from Gaussian distributions but need to have173

finite second-order moments.174
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Hereafter, we drop the time superscript for brevity and represent the model (or back-175

ground) probability distribution as p(x) =
∑M

i=1 pxiδxi with its probability mass vector176

{px ∈ RM
+ :

∑
i pxi = 1}. Furthermore, the normalized likelihood function is repre-177

sented as p̃(y|x) centered at the given observation y with its probability mass vector178

{p̃y|x ∈ RN
+ :

∑
j p̃y|xj = 1}. The probability distribution of the analysis state p(xa), is179

then defined as the Wasserstein barycenter between forecast distribution and the normalized180

likelihood function:181

p(xa) = argmin
p(z)

{
η d2W [ p(x), p(z)] + (1− η) d2W [p̃(y|x), p(z)]

}
, (5)

where η ∈ [0, 1] is a displacement parameter that controls the relative weight of the back-182

ground and observation. The displacement parameter η is a hyperparameter that captures183

the relative weights of the histogram of the background state and likelihood function in char-184

acterization of the analysis state distribution as a Wasserstein barycenter. The optimal value185

of η needs to be determined offline, using reference data through cross-validation studies. It186

is important to note that the above formalism requires all dimensions to be observable and187

thus those dimensions with no observations cannot be updated, which is a limitation of the188

current formalism compared to the Euclidean DA. This limitation is further discussed later189

on in Section 5.190

To solve the above DA problem, we need to characterize the background distribution and191

the normalized likelihood function. Similar to the approach used in particle filter (Gordon et192

al., 1993; van Leeuwen, 2010), we suggest approximating them through ensemble realizations.193

For constructing the histogram of the normalized likelihood function, we can draw N samples194

at each assimilation cycle by perturbing the available observation y with the observation error195

N (0,R).196

To obtain the Wasserstein barycenter p(xa) in Equation 5, we use the McCann’s formalism197

(McCann, 1997; Peyré et al., 2019):198

p(xa) =
M∑
i=1

N∑
j=1

uaij δzij , (6)

where zij = η xi + (1 − η) yj represents the support points of the analysis distribution and199

uaij are the elements of the joint distribution {Ua ∈ RM×N
+ :

∑
i

∑
j uij = 1}. It is important200

to note that the analysis state histogram, at each assimilation cycle, is supported on at most201

M + N − 1 points, which is the maximum number of non-zero entries in the optimal joint202

coupling (Peyré et al., 2019). To keep the number of ensemble members constant throughout,203

M ensemble members are resampled from p(xa) using the multinomial resampling scheme204

(T. Li et al., 2015).205

Computation of the joint distribution in Equation 2 is computationally expensive as206

explained previously and can be prohibitive for high-dimensional geophysical problems. As207

suggested by Cuturi (2013), to reduce the computational cost, we regularize the cost function208

in the optimal transportation plan formulation of EnRDA by a Gibbs-Boltzmann entropy209

6



function:210

Ua = argmin
U

tr(CTU)− γ tr
(
UT[log(U− 1M1

T
N)]
)

s.t.


U ∈ RM×N

+

U1N = px ,

UT
1M = p̃y|x

(7)

where γ ∈ R+ is a regularization parameter. The entropic regularization transforms the211

original OMT formulation to a strictly convex problem, which can then be efficiently solved212

using Sinkhorn’s algorithm (Sinkhorn, 1967). The details of Sinkhorn’s algorithm for solving213

regularized optimal transportation problems are presented in Appendix A.1. The regular-214

ization parameter γ balances the solution between the optimal joint distribution and the one215

that maximizes the relative entropy. It is evident from Equation 7 that at the limit γ −→ 0,216

the solution of Equation 7 converges to the analysis joint distribution with a minimum mor-217

phing cost. However, as the value of γ increases, the convexity of the problem also increases,218

enabling the deployment of more efficient optimization algorithms than classic solvers of219

linear programming problems (Dantzig et al., 1955; Orlin, 1993). At the same time, the220

number of non-zero entries of the joint coupling increases from M +N − 1 to MN points as221

γ −→ ∞, which results in a maximum entropy solution that converges to Ua −→ pxp̃
T
y|x. For222

a more comprehensive explanation of EnRDA, one can refer to Tamang et al. (2021).223

As an example, we examine here the solution of Equation 5 between a banana-shaped224

distribution denoted by F(ξ1, ξ2, ξ3, b) ∝ exp
(
− ξ1(4 − b x1 − x22) − ξ2(x

2
1 − ξ3x

2
2)
)

and a225

bivariate Gaussian distribution as a function of the displacement parameter η ∈ [0, 1] –226

resembling the background distribution p(x) and the normalized likelihood function p̃(y|x),227

respectively with regularization parameter γ = 1000. As seen from Figure 1, for lower values228

of η, the analysis state distribution is closer to the observation and its shape resembles the229

Gaussian distribution. However, as the value of η increases, the analysis state distribution230

moves closer to the background distribution and starts morphing into a banana-shaped231

distribution. Therefore, the analysis state distribution is defined as the one that is sufficiently232

close to the background distribution and the normalized likelihood function not only based233

on their shape but also their central location – depending on the displacement parameter.234

Thus, unlike the Euclidean barycenter, this approach does not guarantee that the mean235

or mode of the analysis state probability distribution is a minimum mean-squared error236

estimate of the initial condition. In the next section, we present results from systems of well-237

known dynamics to test the main hypothesis of the paper, that is, to investigate whether238

EnRDA can lead to an improved approximation of the analysis state under systematic error239

in high-dimensional nonlinear dynamics, where the distribution of the background state is240

not necessarily Gaussian.241

4 Numerical Experiments and Results242

4.1 Lorenz-96243

The Lorenz model (Lorenz-96, Lorenz, 1995), which is widely adopted as a testbed for244

numerous DA experiments (Lguensat et al., 2017; Shen & Tang, 2015; Tang et al., 2014; Tian245

et al., 2018; Trevisan & Palatella, 2011), offers a simplified representation of the extra-tropical246
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Figure 1: The analysis distribution obtained as a Wasserstein barycenter for different values
of the displacement parameter η ∈ [0, 1] between a background distribution represented by
a banana-shaped distribution p(x) : F(ξ1, ξ2, ξ3, b) with ξ1 = 0.02, ξ2 = 0.06, ξ3 = 1.6,
and b = 8, and the normalized likelihood function represented by a bivariate Gaussian

p̃(y|x) : N (µ1,Σ1), where µ1 =

[
−35

0

]
and Σ1 =

[
3 0
0 2

]
.

dynamics in the Earth’s atmosphere. The model coordinates {x = (x1, . . . , xK)T ∈ RK} at247

K dimensions represent the state of an arbitrary atmospheric quantity measured along the248

Earth’s latitudes at K equally spaced longitudinal slices. The model is designed to mimic249

the continuous-time variation in atmospheric quantities due to interactions between three250

major components namely advection, internal dissipation, and external forcing. The model251

dynamics is represented as follows:252

dxk
dt

= (xk+1 − xk−2)xk−1 − xk + F , k = 1, . . . , K , (8)

where F ∈ R+ is a constant external forcing independent of the model state. The Lorenz-96253

model has cyclic boundaries with x−1 = xK−1, x0 = xK , and xK+1 = x1. It is known that for254

small values of F < 8/9, the system approaches a steady state condition with each coordinate255

value converging to the external forcing xk −→ F, ∀k, whereas for F > 8/9, chaos develops256

(Lorenz & Emanuel, 1998). For standard model setup with F = 8, the system is known to257

exhibit highly chaotic behavior with the largest Lyapunov exponent of 1.67 (Brajard et al.,258

2020).259

4.1.1 Experimental Setup, Results and Discussion260

We focus on the 40-dimensional Lorenz-96 system (i.e. K = 40) and compare EnRDA results261

with the classic implementation of the particle filter (PF, Gordon et al., 1993; Poterjoy & An-262

derson, 2016; Van Leeuwen, 2009; van Leeuwen, 2010) and the Stochastic Ensemble Kalman263

filter (SEnKF, J. L. Anderson, 2016; Burgers et al., 1998; Evensen, 1994b; Houtekamer &264

Mitchell, 1998; Janjić et al., 2011; Van Leeuwen, 2020). Similar to the experimental set-265

ting suggested in (Lorenz & Emanuel, 1998; Nerger et al., 2012a), we initialize the model by266

8



choosing x20 = 8.008 and xk = 8 for all other model coordinates. In order to avoid any initial267

transient effect, the model in Equation 8 is integrated for 1000 time steps using the fourth-268

order Runge-Kutta approximation (Kutta, 1901; Runge, 1895) with a non-dimensional time269

step of ∆t = 0.01 and the endpoint of the run is utilized as the initial condition for DA270

experimentation.271

Similar to the suggested experimental setting in (van Leeuwen, 2010), we obtain the272

ground truth by integrating Equation 8 with a time step of ∆t over a time period of T =273

0–20 in the absence of any model error. The observations are assumed to be available at274

each assimilation time interval of 10∆t and deviated from the ground truth by a Gaussian275

error υt ∼ N (0, σ2
obs Σρ), with σ2

obs = 1 and the correlation matrix Σρ ∈ R40×40
+ with 1 on the276

diagonals, 0.5 on the first sub- and super-diagonals, and 0 everywhere else. The observation277

time step of 10∆t is equivalent to 12 hours in global ESMs (Lorenz, 1995).278

To characterize the distribution of the background state for each DA methodology, 50279

(5000) ensemble members (particles) for the SEnKF and EnRDA (PF) are generated using280

model errors ωt ∼ N (0, σ2
t I40) with σ2

t = 0.25 for t > 0 and σ2
0 = 4, where throughout Im281

represents an m × m identity matrix. To alleviate the known degeneracy problem in the282

PF, a higher number of particles was used. Furthermore, to introduce additional systematic283

background error, we utilize an erroneous external forcing of Fm = 6 instead of the “true”284

forcing value F = 8. To have a robust inference, the average values of the error metrics285

are reported for 50 experiments using different random realizations. As will be elaborated286

later on, we set the EnRDA displacement parameter η = 0.44, determined through a cross-287

validation study based on a minimum mean-squared error criterion. This tuning is similar288

to tuning inflation and localization parameters in a typical EnKF, or tuning length-scales in289

3D- or 4D-Var. Note that we already introduced some systematic error because the truth290

has zero model error, while the prior does have model errors. In a fully unbiased set up the291

truth and the prior are drawn from the same distribution.292

The results of EnRDA are shown in Figure 2. In the left panel, the temporal evolution of293

the ground truth and EnRDA analysis state is shown over all dimensions of the Lorenz-96,294

while a snapshot at time 10 [t] is presented in the right panel. The analysis state obtained295

from EnRDA follows the ground truth reasonably well during all time steps with a root mean-296

squared error (rmse) of 0.85. The comparison of EnRDA with the classic implementations297

of the SEnKF and PF are shown in Figure 3 (a–c). It can be seen that the rmse of the298

PF increases sharply over time, suggesting that the problem of filter degeneracy still exists299

despite the higher number of particles. This problem is exacerbated due to the presence300

of bias causing a rapid collapse of the ensemble variance over time as more particles fall301

outside of the support set of the likelihood function. The root mean-squared error of both302

the SEnKF and EnRDA is stabilized over time and is smaller by ∼20% (80%) in EnRDA303

compared to the SEnKF (PF). It is important to note that the presence of systematic bias due304

to erroneous choice of the external forcing inherently favors EnRDA over SEnKF since the305

latter is a minimum variance unbiased estimator at the limit M −→ ∞, where M represents306

the number of ensemble members.307
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Figure 2: (a) Temporal evolution of the ground truth xtr and analysis state xa by ensemble
Riemannian data assimilation (EnRDA) for K = 40 dimensions of the Lorenz-96 over T = 0–
20 [t] and (b) their snapshots at T = 10 [t] together with the available observations y.

Figure 3: Temporal evolution of the root mean-squared error (rmse) for the (a) Particle Filter
(PF) with 5000 particles, (b) Stochastic Ensemble Kalman Filter (SEnKF), and (c) Ensemble
Riemannian Data Assimilation (EnRDA) each with 50 ensemble members in 40-dimensional
Lorenz-96 system. The results report the mean values of 50 independent simulations.

As previously noted, the displacement parameter η plays an important role in EnRDA as308

it controls the shape and position of the analysis state distribution relative to the background309

distribution and the normalized likelihood function. Currently, there exists no known closed-310

form solution for optimal approximation of this parameter. Therefore, in this paper, we focus311

on determining its optimal value through heuristic cross-validation by an offline bias-variance312

trade-off analysis. Specifically, we quantify the rmse of the EnRDA analysis state for different313

values of η for 50 independent simulations.314

The bias and rmse, together with their respective 5th–95th percentile bounds, as functions315

of the displacement parameter η are shown in Figure 4a. As explained earlier, when η316

increases, the analysis distribution moves towards the background distribution. Since the317

background state is systematically biased due to the erroneous external forcing, the analysis318

bias increases monotonically with η; while the rmse shows a minimum point. Therefore, there319

exists a form of bias-variance trade-off in the analysis error, which leads to an approximation320
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of an optimal value of η based on a minimum rmse criterion. It is important to note that the321

background uncertainty and thus the optimal value of η varies in response to the ensemble322

size as shown in Figure 4b. The reason is that a larger number of ensemble members reduces323

the uncertainty in the characterization of the background, but the bias is not affected. To324

compensate, a larger optimal value for η is needed. This optimal value approaches an325

asymptotic value as the ensemble sample size increases and will achieve the highest value at326

the limit M −→∞, when the sample moments converge to the biased forecast moments.327

Figure 4: (a) Bias and root mean-squared error (rmse) for a range of displacement parameter
η ∈ [0.1, 0.6] in Ensemble Riemannian Data Assimilation (EnRDA) with 50 ensemble mem-
bers, obtained across 40-dimensions of the Lorenz-96 system. The shaded regions indicate
the 5th–95th percentile bound for the respective error metrics obtained from 50 independent
simulations. (b) Variation of rmse as a function of the number of ensemble members and η.

One may argue that such a tuning favors EnRDA since it explicitly accounts for the effects328

of bias, either in background or observations, while there is no bias correction mechanism in329

the implementation of the SEnKF and the PF. To make a fairer comparison, we investigate an330

alternative approach to approximate the displacement parameter solely based on the known331

error covariance matrices at each assimilation cycle. Recalling that in classic DA, the analysis332

state is essentially the Euclidean barycenter, where the relative weights of the background333

state and observations are optimally characterized based on the error covariances under334

zero bias assumptions. However, over the Wasserstein space, the displacement parameter335

determines the weight between the entire distribution of the background and the normalized336

likelihood function. Theoretically, knowing the Wasserstein distances from ground truth to337

both likelihood function and forecast distribution enables to obtain an optimal value for338

η. Even though such distances are not known in reality, the total Wasserstein distance339

between the normalized likelihood function and the forecast distribution is known at each340

assimilation cycle. Therefore, given an estimate of the distance between the ground truth341

and the normalized likelihood function or the forecast distribution, leads to an approximation342

of η.343

It is known that the square of the Wasserstein distance between two equal-mean Gaus-344
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sian distributions N (µ,Σ1) and N (µ,Σ2) is d2W = tr(Σ1 + Σ2 − 2(Σ
1
2
1 Σ2Σ

1
2
1 )

1
2 ) (Y. Chen345

et al., 2019). Therefore, under the assumption that only the background state is biased,346

the square of the Wasserstein distance between the true state xtr, as a Dirac delta func-347

tion, and the normalized likelihood function reduces to tr(R). At the same time, the348

square of the Wasserstein distance between the normalized likelihood function and fore-349

cast distribution is tr(CTUa). Therefore, we can approximate the interpolation parameter350

as ηa = tr(R)
(
tr(CTUa) + tr(R)

)−1
without any explicit a priori knowledge of bias.351

Comparisons of the rmse values for the studied DA methodologies as a function of ensem-352

ble size are shown in Figure 5. For EnRDA, the displacement parameter is obtained from the353

bias-aware cross-validation (η = 0.44, EnRDA-I) and from the known error covariances as354

explained above (EnRDA-II). The SEnKF and EnRDA result in smaller error metrics with355

a much smaller ensemble size than PF. As seen, EnRDA can perform well even for smaller356

ensemble sizes as low as 20. Its results quickly stabilize with more than 40 ensemble members357

and exhibit a marginal improvement over the SEnKF (12–24%) in the presence of bias. The358

rmse of the SEnKF also stabilizes quickly but remains above the standard deviation of the359

observation error indicating that in the presence of bias, the lowest possible variance, known360

as the Cramer-Rao Lower Bound (Cramér, 1999; Rao et al., 1973) cannot be met.361

Figure 5: The root mean-squared error (rmse) for the different number of ensemble mem-
bers/particles in the Particle Filter (PF), Stochastic Ensemble Kalman Filter (SEnKF),
and Ensemble Riemannian Data Assimilation (EnRDA) when the displacement parameter
is obtained from bias-aware cross-validation (ENRDA-I) and a dynamic approach without a
priori knowledge of bias (EnRDA-II) for Lorenz-96 system. The dashed line is the standard
deviation of the observation error.

It is also important to note that the higher rmse of the PF compared to the SEnKF and362

EnRDA is due to the problem of filter degeneracy which is further exacerbated by the pres-363

ence of systematic errors in model forecasts (Poterjoy & Anderson, 2016). To alleviate this364

problem, one may investigate the use of methodologies suggested in recent years including365

the auxiliary particle filter where the weights of the particles at each assimilation cycle are366
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defined based on the likelihood function from the next cycle using a pre-model run (Pitt &367

Shephard, 1999), the backtracking particle filter in which the analysis state is backtracked368

to identify the time step when the filter became degenerate (Spiller et al., 2008) as well as369

sampling from a transition density to pull back particles towards observations (van Leeuwen,370

2010).371

4.2 Quasi-Geostrophic Model372

The multilayered quasi-geostrophic (QG, Pedlosky et al., 1987) model is known as one of the373

simplest circulation models capable of providing a reasonable representation of the mesoscale374

variability in geophysical flows. In its simplified form, the QG model describes the conser-375

vation of potential vorticity {ζk}Kk=1 in K vertically-mixed vertical layers:376 (
∂

∂t
+ uk

∂

∂λ
+ vk

∂

∂φ

)
ζk = 0 , k = 1, . . . , K , (9)

where uk = −∂Ψk

∂φ
and vk =

∂Ψk

∂λ
represent the zonal and meridional components of the377

velocity field, obtained from the geostrophic approximation; {Ψk}Kk=1 is the streamfunction378

in K layers; and λ and φ are the zonal and meridional coordinates, respectively.379

For a two-layer QG model (K = 2), the potential vorticity at any time step is the sum380

of the relative vorticity, the planetary vorticity and the stretching term, given by:381

ζk = ∇2Ψk + f + (1− 2δ2k)
f 2
0

g′hk
(Ψ2 −Ψ1) k = 1, . . . , 2 , (10)

where ∇2(·) =
∂2(·)
∂λ2

+
∂2(·)
∂φ2

is the Laplace operator, f = f0 + β(φ − φ0) is the Coriolis382

parameter linearly varying with the meridional coordinate φ (β-plane approximation), f0 is383

the Coriolis parameter at mid-basin where φ = φ0, g
′ =

g(ρ2 − ρ1)
ρ2

is the reduced value of384

the gravitational acceleration g, ρk and hk are the density and thickness of the kth layer,385

respectively. The QG model has been the subject of numerous experiments to test the386

performance of DA techniques (Cotter et al., 2020; Evensen, 1994b; Evensen & Van Leeuwen,387

1996; Fisher & Gürol, 2017; Penny et al., 2019).388

4.2.1 Experimental Setup, Results and Discussion389

Due to the high-dimensionality of the QG model and the well-known problem of filter de-390

generacy in the PF, we chose to omit its application on the QG model. Similar to the study391

conducted in (Evensen, 1992, 1994b), the streamfunction is chosen as the state variable for392

the DA experiments. The streamfunction field, at each vertical layer, is discretized over a393

uniform grid of dimension mλ×mφ with spacing of ∆λ = ∆φ = 100 km, where mλ = 65 and394

mφ = 33. The model domain is assumed to have periodic boundaries along the zonal direction395

and free-slip conditions, that is, vk = 0,∀k, holds on the northern and southern boundaries.396

The standard model parameter values of f0 = 7.28× 10−5 s−1, β = 2× 10−11 m−1 s−1, and397
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g = 9.81 m s−2 are used. The total depth of the atmospheric column is set to 10 km with398

depths and densities of top and bottom layer as h1 = h2 = 5 km, and ρ1 = 1 and ρ2 = 1.05399

kg m−3, respectively. We first initialize the streamfunction in the two layers as a function of400

the zonal and meridional coordinates by setting Ψ1(λ, φ) = −12.5 × 106 tan−1
(
20(φ/∆φ −401

mφ/2)m−1φ
)
−1.25×106 sin

(
2π(λ/∆λ− 1)mλ

−1) sin2
(
2π(φ/∆φ− 1)(mφ − 1)−1

)
m2 s−1 and402

Ψ2(λ, φ) = 0.3 Ψ1(λ, φ).403

From the initial value of the streamfunction field in each layer, potential vorticity is404

obtained using a nine-point second-order finite difference scheme to compute the Laplacian405

in Equation 10. The model in Equation 9 is then integrated with a time step of ∆t = 0.5 hr406

using the fourth-order Runge-Kutta approximation to advect and obtain potential vorticity407

at internal grid points for the next time step. The streamfunction at the next time step is408

then calculated from this potential vorticity by solving the set of the Helmholtz equations409

(Equation 10). To avoid any form of initial transient behavior and to create vortex structures410

in the streamfunction, the QG model is integrated first for 720 time steps and then the411

endpoint of the run is used as the initial condition for subsequent DA experimentation.412

The ground truth of the streamfunction is obtained by integrating the QG model with413

a time step of ∆t over a time period of T = 0 − 15 day in the absence of any model error.414

Observations are assumed to be available at an assimilation time interval of 24∆t or 12 hr.415

To construct observations, representative, random and systematic errors are applied to the416

ground truth. The representative error is applied by lowering the resolution of the ground417

truth through box averaging over a window of size nλ×nφ, where nλ = 5 and nφ = 3. Then418

a heteroscedastic biased Gaussian noise with mean (standard deviation) 0.6×106 m2 s−1,419

equivalent to 33 (10%) of the mean magnitude of the ground truth is applied.420

Figure 6: (a) The true state xtr, (b) background state xb, and (c) observations y for bottom
layer field of streamfunction in the quasi-geostrophic model at first assimilation cycle T = 12
hr. The black plus (grey cross) signs show the location of the global extrema for the true
state (background and observation).

To characterize the distribution of the background state, 50 ensemble members for both421

SEnKF and EnRDA are generated using model errors ωt ∼ N (0, α σ2
t Imλ×mφ) for each layer422

with σ2
0 = 108 m4 s−2 and σ2

t = 5 × 106 m4 s−2 for t > 0, where the factor α ∈ [0, 1] grows423

linearly from 0 at the northern and southern boundaries to 1 at mid-basin. To introduce424
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systematic errors in the forecast, we utilize a multiplicative error of 0.015% in the QG model425

by multiplying the potential vorticity obtained from Equation 10 at every ∆t with a factor426

of 1.00015. At each assimilation cycle, N = 500 samples of the observations are obtained by427

perturbing the observations with the heteroscedastic Gaussian noise with standard deviation428

10% of the mean magnitude of the ground truth.429

In the SEnKF, to alleviate the well-known problem of undersampling (J. L. Anderson,430

2012) and improve its performance, we utilize covariance inflation (J. L. Anderson & An-431

derson, 1999) and localization (Hamill, 2001; Houtekamer & Mitchell, 2001) as discussed in432

Appendix A.2. For EnRDA, similar to the Lorenz-96 setup (Section 4.1.1), the displacement433

parameter is set to η = 0.4 through a cross-validation study based on a minimum rmse434

criterion as shown in Table 1. To increase the robustness of the inference about the results,435

the quality metrics are averaged using 10 simulations with different random realizations.436

Figure 7: The streamfunction analysis state xa by (a) Stochastic Ensemble Kalman Filter
(SEnKF), and (d) Ensemble Riemannian Data Assimilation (EnRDA) as well as (b, e) their
respective absolute error fields and (c, f) zonal mean of the error for the bottom layer of
quasi-geostrophic model, at the first assimilation cycle T = 12 hr. The root mean-squared
error (rmse) values (×106 m2 s−1) for the entire fields are also reported in (a) and (d).

The true state, background state, and the observations of the bottom layer streamfunction437

at the first assimilation cycle T = 12 hr are shown in Figure 6. It can be seen that both the438

background state and the observations show possible systematic biases as the position and439

the values of their global extrema are significantly different from the ground truth.440

The results of the DA experiments using the SEnKF and EnRDA at the first assimilation441

cycle for the bottom layer are also shown in Figure 7. It can be seen that, in the SEnKF,442

the streamfunction values are slightly overestimated, signaling the persistence of bias in the443
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Table 1: Average root mean-squared error (rmse) values as a function of the displacement
parameter η ∈ [0.25, 0.6] for Ensemble Riemannian Data Assimilation (EnRDA) from 10
independent simulations of the two-layer quasi-geostrophic model.

rmse (×106 m2 s−1)

η 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Top layer 0.283 0.260 0.255 0.242 0.250 0.258 0.309 0.369
Bottom layer 0.211 0.198 0.194 0.189 0.206 0.222 0.294 0.368
Average 0.247 0.229 0.224 0.215 0.228 0.240 0.301 0.369

analysis state (Figure 7a). This is further evident as the analysis error field is coherent and444

structured (Figure 7b). On the other hand, it appears that EnRDA (Figure 7d) results in445

a more incoherent error field with a reduced bias (Figure 7e). The rmse for the EnRDA446

(0.28 × 106 m2 s−1) is lower than the one by the SEnKF (0.46 × 106 m2 s−1). However, the447

difference between the two methods shrinks over T = 0−15 days and the mean analysis rmse448

over both layers by the EnRDA (SEnKF) reaches 0.21×106 (0.25×106) m2s−1. Furthermore,449

in the SEnKF, due to the presence of systematic error, the zonal mean of the absolute error450

is consistently higher than that of the EnRDA, see (Figure 7c and f).451

Figure 8: The average root mean-squared error (rmse) values as a function of assimilation
intervals 6, 12 and 18 hr in the Stochastic Ensemble Kalman Filter (SEnKF) and Ensemble
Riemannian Data Assimilation (EnRDA) for the two-layer quasi-geostrophic model.

We further examined the performance of the EnRDA and the SEnKF on the QG model452

with a ± 50% change in the assimilation interval of 12 hr as shown in Figure. 8. To make453

the comparison fair between different assimilation intervals which have a different number454

of assimilation cycles and to eliminate the impact of transient behavior, we only report the455

statistics for the last 15 assimilation steps. With the increase in assimilation interval, the456
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systematic error grows in the forecast largely due to the multiplicative error being added457

to the forecast at every time step. Therefore, as is expected, with the increase in assimila-458

tion interval, the rmse grows monotonically and the performance of the DA methodologies459

degrades. However, the EnRDA demonstrates consistent improvement over a bias-blind460

implementation of the SEnKF (20–33%) across the range of assimilation intervals.461

5 Summary and Concluding Remarks462

In this study, we discussed recasting geophysical data assimilation (DA) as a barycenter463

problem over the Wasserstein space with Riemannian geometry, in an ensemble setting. The464

DA methodology, called the Ensemble Riemannian Data Assimilation (EnRDA), enables to465

obtain the analysis state probability distribution through optimal transportation of proba-466

bility masses between the background distribution and the normalized likelihood function.467

We demonstrated that this approach does not rely on any parametric assumptions about468

the distributions. Unlike DA over the Euclidean space, this approach does not guarantee a469

minimum mean squared approximation of the analysis when the model and observations are470

unbiased. However, it can formally correct systematic errors by allowing for a smooth tran-471

sition between the background distribution and the normalized likelihood function over the472

Wasserstein space. Therefore, we hypothesized that under a biased state space, EnRDA can473

lead to reduced uncertainty of the analysis state compared to classic DA over the Euclidean474

space with no ad-hoc bias correction.475

We verified the hypothesis by applying the EnRDA to the 40-dimensional chaotic Lorenz-476

96 system and a two-layer quasi-geostrophic representation of atmospheric circulation. Al-477

though initial comparisons of EnRDA with classic DA methodologies, in our case, the478

Stochastic Ensemble Kalman Filter and the Particle Filter, suggested improved performance,479

further comprehensive comparisons with bias-aware versions of the Euclidean DA method-480

ologies are required to fully characterize the pros and cons of DA over the Wasserstein space.481

We need to emphasize that in the absence of systematic errors, Euclidean DA methodologies482

is likely to achieve improved performance over EnRDA in terms of the mean squared error.483

However, one of the advantages of the EnRDA is that it is a fully nonlinear DA method,484

and it does not require any localization procedure.485

One of the major weaknesses of the presented methodology in its current form is that486

all dimensions of the problem are assumed to be observable. This is an important issue487

when it comes to the assimilation of sparse data. Future research is needed to address488

partial observability in DA over the Wasserstein space. A possible direction is through489

multi-marginal optimal mass transport (Pass, 2015), which could enable to couple different490

dimensions of the problem and propagate the information content of sparse observations491

to unobserved dimensions. Moreover, currently, the displacement parameter is constant492

across multiple dimensions of the problem. Future research is needed to understand how the493

displacement parameter can be estimated differently depending on the error structure across494

different dimensions of the state space. Another option is to perform the EnRDA only in that495

part of the state space that is directly observed and use the ensemble covariance to update496

the unobserved part of state space, similar to a SEnKF. We anticipate that expanding the497

application of the presented methodology for assimilating satellite data into land-atmosphere498
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models could be another useful future direction of research given the fact that these models499

are often markedly biased (Chepurin et al., 2005; Dee & Da Silva, 1998; De Lannoy et al.,500

2007; Lin et al., 2017).501

A Appendix502

A.1 Sinkhorn’s Algorithm for Optimal Mass Transport503

To solve the regularized optimal mass transport problem in Equation 7, we utilize Sinkhorn’s504

algorithm (Sinkhorn, 1967). To that end, first, the Lagrangian form of the Equation 7 using505

two Lagrange multipliers a ∈ RM and b ∈ RN is obtained as follows:506

L(U, a,b) = tr(CTU)−γtr
(
UT[log(U− 1M1

T
N)]
)
−aT(U1N−px)−bT(UT

1M−p̃y|x) . (11)

Now, we set the first-order derivative of the Lagrangian form in Equation 11, with respect507

to (i, j)th element of the joint distribution (uij) to zero:508

∂L(U, a,b)

∂ uij
= cij + γ log(uij)− ai − bj = 0 ∀i, j , (12)

which ultimately leads to uij = exp

(
ai
γ

)
exp

(
−cij
γ

)
exp

(
bj
γ

)
. This can be rewritten509

in a matrix form as Ua = diag(s)V diag(t), where

{
V ∈ RM×N

+ : vij = exp

(
− cij

γ

)}
510

is the Gibb’s kernel of the cost matrix C, and s ∈ RM , t ∈ RN are the unknown scaling511

vectors. The notation diag(x) ∈ RM×M represents a diagonal matrix with its diagonal entries512

provided by x ∈ RM .513

By setting the derivatives of the Lagrangian with respect to the Lagrange multipliers as514

zero we recover the two conditions, which we can write as px = diag(s)V diag(t)1N and515

p̃y|x = diag(t)VT diag(s)1M leading to:516

s = px � (V t) and t = p̃y|x � (VT s) , (13)

where the notation x�y represents a Hadamard element-wise division of equal length vectors.517

The form presented in Equation 13 is known as the matrix scaling problem (Borobia & Cantó,518

1998) and can be efficiently solved iteratively:519

s(i) = px � (V t(i−1)) and t(i) = p̃y|x � (VT s(i)) , (14)

where i is the iteration count and the algorithm is initialized with a positive vector t(0) = 1N .520

In our implementation, we set the iteration termination criterion as

∥∥s(i) − s(i−1)
∥∥
2

‖s(i−1)‖2
≤ 10−4521

or i > 300. After the convergence of the solution for s and t, the optimal joint distribution522

can be obtained as Ua = diag(s)V diag(t).523
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A.2 Covariance Inflation and Localization in Ensemble Kalman524

Filter525

The ensemble size in the Stochastic Ensemble Kalman filter (SEnKF), if much smaller than526

the state dimension, such as in the presented case of the quasi-geostrophic model, leads to527

underestimation of the forecast error covariance matrix and subsequently filter divergence528

problems. To alleviate this problem, a covariance inflation procedure can be implemented by529

multiplying the forecast error covariance matrix by an inflation factor τ > 1 (J. L. Anderson530

& Anderson, 1999) where its optimal value depend on the ensemble size (Hamill et al., 2001)531

and other characteristics of the problem at hand.532

The covariance localization procedure in the SEnKF further attempts to improve its533

performance by ignoring the spurious long-range dependence in the ensemble background534

covariance by applying a prespecified cutoff threshold on the correlation structure of the535

field. An SEnKF equipped with a tuned localization procedure can be efficiently used in536

high-dimensional atmospheric and ocean models even with less than 100 ensemble members537

(J. L. Anderson, 2012). The covariance localization in an SEnKF is accomplished by modify-538

ing the Kalman gain matrix K ∈ Rm×m through implementation of a Hadamard element-wise539

product of the forecast error covariance matrix B ∈ Rm×m with a distance-based correlation540

matrix ρ ∈ Rm×m:541

K = (ρ�B)HT
(
H(ρ�B)HT + R

)−1
, (15)

where X�Y represent the Hadamard element-wise product between equal size matrices X542

and Y.543

Following the work of Gaspari & Cohn (1999), we utilized the fifth-order piece-wise544

rational function that depends on a single length scale parameter d and an Euclidean distance545

matrix {L ∈ Rm×m : lij = ‖xi − xj‖2} for obtaining the (i, j)th-element of the localizing546

correlation matrix ρ:547

ρij =



−1

4
r5 +

1

2
r4 +

5

8
r3 − 5

3
r2 + 1, 0 ≤ r ≤ 1 ,

1

12
r5 − 1

2
r4 +

5

8
r3 +

5

3
r2 − 5r + 4− 2

3
r−1 , 1 < r ≤ 2 ,

0 , r > 2 ,

(16)

where r =
lij
d

, and d is the length scale.548

In our implementation of the SEnKF in the QG model, the inflation factor and length549

scale were chosen between τ = 1.01−1.08 and d = 400−1800 [km] respectively depending on550

the experimental setup through trial and error analysis to minimize the root mean-squared551

error.552

19



Acknowledgements553

Data archiving is underway at the Data Repository for University of Minnesota (https://554

conservancy.umn.edu/handle/11299/166578). The first and second author acknowledge555

the grant from the National Aeronautics and Space Administration (NASA) Terrestrial Hy-556

drology Program (THP, 80NSSC18K1528) and the New (Early Career) Investigator Pro-557

gram (NIP, 80NSSC18K0742). The third author acknowledges support from the Euro-558

pean Research Council for funding via the Horizon2020 CUNDA project under number559

694509. The fourth author also acknowledges support from National Science Foundation560

(NSF, DMS1830418).561

References562

Agueh, M., & Carlier, G. (2011). Barycenters in the wasserstein space. SIAM Journal on563

Mathematical Analysis , 43 (2), 904–924.564

Altman, A., & Gondzio, J. (1999). Regularized symmetric indefinite systems in interior565

point methods for linear and quadratic optimization. Optimization Methods and Software,566

11 (1-4), 275–302.567

Anderson, J., & Lei, L. (2013). Empirical localization of observation impact in ensemble568

kalman filters. Monthly Weather Review , 141 (11), 4140–4153.569

Anderson, J. L. (2001). An ensemble adjustment kalman filter for data assimilation. Monthly570

weather review , 129 (12), 2884–2903.571

Anderson, J. L. (2012). Localization and sampling error correction in ensemble kalman filter572

data assimilation. Monthly Weather Review , 140 (7), 2359–2371.573

Anderson, J. L. (2016). Reducing correlation sampling error in ensemble kalman filter data574

assimilation. Monthly Weather Review , 144 (3), 913–925.575

Anderson, J. L., & Anderson, S. L. (1999). A monte carlo implementation of the nonlin-576

ear filtering problem to produce ensemble assimilations and forecasts. Monthly Weather577

Review , 127 (12), 2741–2758.578

Bigot, J., Klein, T., et al. (2012). Consistent estimation of a population barycenter in the579

wasserstein space. ArXiv e-prints , 49 .580

Bishop, C. H., Etherton, B. J., & Majumdar, S. J. (2001). Adaptive sampling with the581

ensemble transform kalman filter. part i: Theoretical aspects. Monthly weather review ,582

129 (3), 420–436.583
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