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Abstract

The ongoing coronavirus disease 2019 (COVID-19) pandemic has caused more than 150 million cases of infection to date and

poses a serious threat to global public health. In this work, global COVID-19 data were used to examine the dynamical variations

from the perspectives of immunity and contact of 85 countries across the five climate regions: tropical, arid, temperate, cold,

and polar. A new approach is proposed to obtain the transmission rates based on the COVID-19 data between the countries

with the same climate region over the Northern Hemisphere (NH) and Southern Hemisphere (SH). Our results suggest that the

COVID-19 pandemic will persist over a long period of time or enter into regular circulation in multiple periods of 1-2 years.

Moreover, based on the simulated results by the COVID-19 data, it is found that the temperate and cold climate regions have

higher infection rates than the tropical and arid climate regions, which indicates that climate may modulate the transmission

of COVID-19. The role of the climate on the COVID-19 variations should be concluded with more data and more cautions.

The non-pharmaceutical interventions still play the key role in controlling and prevention this global pandemic.
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Abstract: The ongoing coronavirus disease 2019 (COVID-19) pandemic has caused more than4

150 million cases of infection to date and poses a serious threat to global public health. In this5

work, global COVID-19 data were used to examine the dynamical variations from the perspec-6

tives of immunity and contact of 85 countries across the five climate regions: tropical, arid,7

temperate, cold, and polar. A new approach is proposed to obtain the transmission rates based8

on the COVID-19 data between the countries with the same climate region over the Northern9

Hemisphere (NH) and Southern Hemisphere (SH). Our results suggest that the COVID-19 pan-10

demic will persist over a long period of time or enter into regular circulation in multiple periods11

of 1-2 years. Moreover, based on the simulated results by the COVID-19 data, it is found that12

the temperate and cold climate regions have higher infection rates than the tropical and arid13

climate regions, which indicates that climate may modulate the transmission of COVID-19.14

The role of the climate on the COVID-19 variations should be concluded with more data and15

more cautions. The non-pharmaceutical interventions still play the key role in controlling and16

prevention this global pandemic.17
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scenario analysis.19

1 Introduction20

Rapidly spreading and ravaging the world, severe acute respiratory syndrome-coronavirus 221

(SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic through human-22

to-human transmission (Armitage et al., 2020; Chinazzi et al., 2020; Wang et al., 2020), resulting23

in more than 158,000,000 total confirmed cases and more than 3,000,000 deaths in more than 20024

countries/regions as of May 11, 2021 (WHO, https://covid19.who.int/). This global pandemic25

has serious impacts on public health and on social and economic development (Baker et al.,26

2020; Zerhouni et al., 2020). A great number of measures have been quickly adopted to reduce27

the transmission and to mitigate the impact of the pandemic (Cohen and Corey 2020; Hsiang28

et al., 2020; Thorp, 2020). The effective measures and strategies employed in China provided29

a useful example to other countries in preventing and curing COVID-19 (Guan et al., 2020;30

Kraemer et al., 2020; Wu and McGoogan, 2020; Xu et al., 2020; Zhou et al., 2020).31

However, there is neither a specific drug nor vaccine treatment for COVID-19 because typ-32

ically months to years are needed to develop and test such therapeutics (Ferretti et al., 2020;33

Tian et al., 2020). Therefore, non-pharmaceutical interventions have been widely used by all34

countries as the only immediate means of curbing SARS-CoV-2 transmission, e.g., physical (so-35

cial) distancing, closing schools and workplaces, limiting the sizes of gatherings, wearing face36

masks and eye protection, and quarantine (Ali et al., 2020; Chu et al., 2020; Cui et al., 2020;37

Giordano et al., 2020; Hu et al., 2020; Matteo et al., 2020; Parmet and Sinha, 2020; Sjodin et38

al., 2020; Ruktanonchai et al., 2020). Physical distancing as implemented in China during the39

outbreak has been able to control COVID-19 (Zhang et al., 2020), and the national emergency40

response has delayed the growth and limited the size of the COVID-19 spread in China, averting41

hundreds of thousands of cases (Prem et al., 2020; Tian et al., 2020). Restrictive physical dis-42

tancing measures combined with widespread testing and contact tracing could end the ongoing43

COVID-19 pandemic (Britton et al., 2020; Giordano et al., 2020; Hao et al., 2020; Lai et al.,44

2020).45

To employ the correct measures at the right time in controlling the COVID-19 pandemic, it is46

of crucial importance to accurately understand the routes and timings of transmission, especially47

accurate prediction of COVID-19 variations in the future (Kissler et al., 2020). Mathematical48

models can not only probe the complexity of infectious disease dynamics (e.g. period, bifurcation49

and chaos), but can also elucidate the mechanisms of transmission and indicate new approaches50

for prevention and control strategies (Heesterbeek et al., 2015). Assuming that the COVID-51

19 pandemic adapts to similar climate scenarios based on known coronavirus biology, it will52

exhibit seasonal variations and become a seasonal epidemic according to the results of a climate-53

dependent epidemic model (Baker et al., 2020). Based on a SEIRS epidemic model, it was54

proposed in a recent work that COVID-19 can exist at any time of year, and it will likely55

enter into regular circulation if immunity to SARS-CoV-2 is not permanent (Kissler et al.2020).56
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However, they only used less than five years data of betacoronaviruses HCoV-OC43 and HCoV-57

HKU1 to predict COVID-19 variations which is a serious limitation based on the transmission58

characteristics of known coronavirus strains (Baker et al., 2020; Kissler et al., 2020).59

It is well known that climate changes have significant impacts on large of human diseases60

which are concluded using numerous long term disease datasets and climate datasets, such as the61

impacts of temperature and specific humidity on the human influenza infections (Shaman et al.,62

2010; Tamerius et al., 2013; Liu et al., 2019), and the positive influence of low temperature and63

low relative humidity on the coronaviruses (Yang and Marr 2011; Sundell et al., 2016; Aboubakr,64

et al., 2020).65

In terms of the COVID-19, the role of climate in COVID-19 mitigation strategies is still66

a dispute topic (OReilly et al., 2020). Although some literatures (Araujo et al., 2020; Liu et67

al., 2020; Sajadi et al., 2020; Wang et al., 2020) explore the impacts of climate factors (e.g.,68

temperature and specific humidity) on the COVID-19 variations and suggest that SARS-CoV-269

is less transmissible in hot and humid climates, there is no sufficient evidence supporting that70

large numbers of COVID-19 cases are associated with cold and dry climates due to only not less71

than two years data (Baker et al., 2020; OReilly et al., 2020; Prata et al., 2020).72

Environment changes (e.g., climate changes) affect the outbreak and transmission of many73

diseases directly or indirectly (Tamerius et al., 2013; Baker et al., 2021). Specific humidity74

has been shown to be important for influenza transmission in both laboratory settings and75

population-level studies. Therefore, it is important explore the disease transmission or outbreak76

characteristics in geospatial perspectives.77

However, with limited data on the current epidemic, these early-stage results are inevitably78

inconclusive. Furthermore, the relative importance of climate drivers when compared with high79

population susceptibility during the pandemic stage of an emerging infection such as SARS-80

CoV-2 has not been fully characterized (Baker et al., 2020; Paraskevis et al., 2021). Therefore,81

any COVID-19 risk evaluations and predictions based on climate information alone should be82

interpreted with caution. The role of the climate changes on the COVID-19 variations will be83

not explored in this study because of the limited information from the no more than two years’84

COVID-19 transmission.85

Projecting the transmission dynamics of the global COVID-19 pandemic is very important86

and urgent in order to employ the correct strategies and measures to control the outbreak of this87

disease. For the study of the global COVID-19 pandemic, the following questions must first be88

addressed (1) What are the differences in the present transmission of COVID-19 in the different89

climate regions of various countries? (2) Does a reasonable approach exist to explore the future90

changes of COVID-19 in the world, but not as previous studies based on known coronavirus91

strains? (3) What are the future risks of the global COVID-19 pandemic?92

To address the above questions, this study aimed to (1) evaluate and predict the transmission93

dynamics of the COVID-19 pandemic over different climate regions, (2) to propose an innovated94

approach to investigate the future dynamical behaviors rather than relying on information on95

other coronaviruses, and (3) to explore the COVID-19 variations using different strategies in96

future. These analyses are only interpreted based on the COVID-19 data objectively.97
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2 Methods98

2.1 SEICR model99

Based on the transmission characteristics of the COVID-19 pandemic and previous literatures100

(Cui et al., 2020; Hu et al., 2020), the entire population at time t is divided into five components,101

i.e., susceptible individuals S(t), exposed individuals E(t), infectious individuals I(t), confirmed102

individuals C(t), and removed individuals R(t). We assume that the confirmed individuals C(t)103

cannot transmit among the population because they will be quarantined if they are confirmed.104

The COVID-19 disease is transmitted from S(t) to E(t) by the contact behaviours and the trans-105

mission characteristic of the SARS-CoV-2 composed a standard incidence rate. The exposed106

individuals E(t) transitions to the infectious individuals I(t) in a rate. Part of I(t) becomes107

the confirmed individuals C(t) by the COVID-19 detection, and the other I(t) transitions to108

the removed individuals R(t) in a recovery rate. The confirmed individuals C(t) becomes death109

partly and the residual will be recovered as the removed individuals R(t). The details of the110

disease transmission among the different individuals are well illustrated by the flowchart figure111

(Figure 1).112

According to the above analysis, the corresponding SEICR disease model can be described113

by the following system of ordinary differential equations:114 

S′ = −c(t)pSI
N

,

E′ =
c(t)pSI

N
− σE,

I ′ = σE − (δ(t) + γI)I,

C ′ = δ(t)I − (αc + γc)C,

R′ = γII + γcC,

(2.1)

where the contact rate function is115

c(t) =

{
c0, t ≤ tc

(c0 − cf )e−rb(t−tc) + cf , t > tc
(2.2)

and the detection rate function is116

1

δ(t)
=


1

δ0
, t ≤ tc

(
1

δ0
− 1

δf
)e−rd(t−tc) +

1

δf
. t > tc.

(2.3)

c(t) is the contract rate which is determined by many factors, such as population density,117

total population and traffic types. c0 is the contact rate and δ0 is the detection rate at the118

early disease transmission period tc. cf is the minimum contact rate under the current control119

strategies. rb denotes the contact rate modeled as an exponentially decreasing rate, which120

assumes that the contact times are decreasing with the implementation of intervention.121

δ(t) is the detection rate of the COVID-19 disease that is mainly resulted by the level of122

the public health system, the medical resources and the gross domestic product (GDP). δf123
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Table 1: Definitions of the parameters used in the model
Parameter Definition (Units) Value References

c(t) the contact rate at time t estimated

c0 the initial contact rate estimated

cf the minimum contact rate estimated

rb the exponential decreasing rate of the contact rate estimated

tc the time period before control 14 assumed

p the probability of transmission per contact estimated

δ(t) the detection rate at time t estimated

δ0 the initial detection rate estimated

δf the maximum detection rate estimated

rd the exponential increasing rate of the detection rate estimated

σ the transition rate from E to I 1/5 Tang et al (2020)

γI the recovery rate of I estimated

γc the recovery rate of C estimated

αc the death rate of C estimated

is the maximum detection rate under the current control strategies, and each country has its124

own maximum detection rate value. rd denotes the exponentially decreasing rate of the testing125

period. Considering that the contact rate and detection rate will gradually decrease or increase126

with the gradual strengthening of control measures, and finally reach the minimum contact rate127

or maximum detection rate, we use the above function form as shown in the literature (Tang et128

al., 2020).129

Parameter p is the transmission rate of COVID-19, which depends on the SARS-CoV-2130

virus. σ is the transition rate from exposed individuals E(t) to infectious individuals I(t). γI131

and γc are the recovery rates of I(t) and C(t), respectively. αc is the death rate of C(t). During132

the incubation period of 14 days (Lauer et al., 2020), for some COVID-19 cases, it is difficult133

to develop symptoms. Therefore, tc = 14 days is set as the key time period in which the134

prevention and control measurements are not employed in different countries over the world.135

Parameters except σ and tc are estimated by fitting the model to data (cumulatively number of136

confirmed cases, cumulatively number of recovered cases and cumulatively number of deaths),137

by the nonlinear least square method as previous study (Cui et al., 2020; Hu et al., 2020; Yu et138

al., 2021). Definitions of the parameters are shown in Table 1.139

According to the model (2.1), the controlled reproductive number R∗ is determined by the140

parameters of the contact rate c(t), the transmission rate p, the detection rate δ(t), and the141

recovery rate of γI with the following form:142

R∗ =
c(t)p

δ(t) + γI
, (2.4)

which indicates the average secondary cases infected by one infected individual in the infectious143

period.144

When c(t) = c0 and δ(t) = δ0, the controlled reproductive number R∗ is the basic reproduc-145

tive number R0146

R0 =
c0p

δ0 + γI
. (2.5)

It should be noted that although the COVID-19 variations between countries may be caused147
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by different factors, such as different climate factors, population densities, and different respons-148

es. In this study, we aim to only employ a reasonable and general model addressing the disease149

variations to avoid large uncertainties induced by these complex factors.150

2.2 Climate classification and selecting the 85 countries151

The Köppen-Geiger system classifies climate into five main classes and 30 sub-types. The classifi-152

cation is based on threshold values and seasonality of monthly air temperature and precipitation.153

The five climatic regions include tropical, arid, temperate, cold, and polar. This classification is154

identical to that presented by Köppen in 1936 with three differences. First, temperate (C) and155

cold (D) climates are distinguished using a 0◦C threshold instead of a 3◦C threshold. Second,156

the arid (B) sub-climates W (desert) and S (steppe) were identified depending on whether 70%157

of precipitation occurred in summer or winter. Third, the sub-climates s (dry summer) and w158

(dry winter) within the C and D climates were made mutually exclusive by assigning s when159

more precipitation falls in winter than in summer and assigning w otherwise. Note that the160

tropical (A), temperate (C), cold (D), and polar (E) climates are mutually exclusive but may161

intersect with the arid (B) class. To account for this, climate type B was given precedence over162

the other classes. The detailed classification can be found in the Table 2 of the Methods section163

of Beck et al. (2018).164

At April 30, 2020, there are 186 countries reported the COVID-19 cases with the values165

from 1 to more than 1 million. In this study, we only focus on the countries with a number166

of cumulative confirmed cases larger than 1,000 are considered and are classified based on the167

Köppen-Geiger climate classification maps (Figure 2A).168

Through April 30, 2020, there were 85 countries with confirmed cases of more than 1,000,169

which were distributed in the Northern Hemisphere (NH), totaling 78 countries, and in the170

Southern Hemisphere (SH), totaling 7 countries (Figure 2B). In our study, if a country covers171

more than two climate types, it will be classified in the climate region with the largest area.172

Then, for different climate regions, there are 17 countries in the tropical region, 27 countries173

in the arid region, 16 countries in the temperate region, 24 countries in the cold region, and174

one country in the polar region (Figure 2B and Table S1). For the simulation and sensitivity175

analyzes in this study, the focus is on the 85 countries distributed over the five climate regions.176

2.3 Hypotheses177

A new approach is proposed herein to predict the COVID-19 dynamical behaviors and is based178

on the following hypotheses.179

(1) Two seasons are defined, including a warm season (May to October) and a cold season180

(November to April).181

(2) In the same season, the same climate regions across the NH and SH have the same182

transmission rates of the SARS-CoV-2 virus. For example, in the warm season, NH and SH183

have the same transmission rate across the same climate regions.184

(3) Because the countries in the NH and SH experience opposite seasons during the same185
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time period (e.g., from November 2019 to April 2020 defined the cold season in the NH and186

the warm season in the SH), for the same climate region, the COVID-19 transmission of the187

countries of the NH in the warm season with a fixed infection rate p∗ computed by the data in188

the countries of the SH is predicted without using the infection rate obtained by the COVID-19189

dataset from the cold season, and vice versa.190

(4) p∗ is established by the COVID-19 data using the SEICR model. To remove the uncer-191

tainties of the p∗ obtained from the countries in the same climate regions across NH, p∗ used192

in the COVID-19 prediction of the countries in the NH is averaged by the transmission rates of193

different countries in the SH, and vice versa. For example, for each climate region, the trans-194

mission rate of p∗ used in predicting the future disease variations in the NH have the following195

form:196

p∗ =

{
p1, cold season,

p2, warm season,
(2.6)

where p1 is averaged from the transmission rates of the countries in the NH in the cold season197

by the data (if available) from November 2019 to April 2020, and p2 is averaged from the198

transmission rates of the countries in the SH in the warm season by the data from November199

2019 to April 2020.200

(5) Since there is no obvious difference in the climate between the warm and cold seasons in201

tropical regions, the infection rate used in prediction is stilled obtained by the historical data of202

the countries in the NH and SH, respectively.203

(6) When predicting future COVID-19 transmission, it is assumed that immunity to SARS-204

CoV-2 is not permanent for different scenarios with mR from the recovered individuals to the205

susceptible individuals again, and 1
m is the immune period (in days). The model is as follows:206 

S′ = −c(t)pSI
N

+mR,

E′ =
c(t)pSI

N
− σE,

I ′ = σE − (δ(t) + γI)I,

C ′ = δ(t)I − (αc + γc)C,

R′ = γII + γcC −mR,

(2.7)

In the simulation process, tc is assumed to be 14 d. The length of the time series for207

each country is defined as t∗. For the contact rate c0 and cf , they are certainly and majorly208

determined by the population number, population density, culture and travel habits which are209

difficult to obtain the empirical values. Therefore, they are estimated by fitting model to data.210

To investigate the impact of immunity and contact parameters on the future transmission period211

of the COVID-19 pandemic (t > t∗), several assumptions were made regarding the immune loss212

rate m and contact rate c. Immune loss rates are m = 0, 1
365 , and 2

365 , which indicate permanent213

immunity, one year immunity, and half-year immunity, respectively. The corresponding contact214

rates are c = cf , 1.2cf , and c0.215

Then, there are nine scenarios for the above immune loss rates and contact rates:216

Scenario 1 (S1): m = 0, c = cf ;.217
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Scenario 2 (S2): m = 1
365 , c = cf ;.218

Scenario 3 (S3): m = 2
365 , c = cf ;.219

Scenario 4 (S4): m = 0, c = 1.2cf ;.220

Scenario 5 (S5): m = 1
365 , c = 1.2cf ;.221

Scenario 6 (S6): m = 2
365 , c = 1.2cf ;.222

Scenario 7 (S7): m = 0, c = c0;.223

Scenario 8 (S8): m = 1
365 , c = c0;.224

Scenario 9 (S9): m = 2
365 , c = c0..225

2.4 Estimating the parameters and fitting the model226

The parameters of model (2.1) and model (2.6) are estimated by the nonlinear least square

method by fitting model to the number of cumulative confirmed cases(Yc(t) ), number of re-

covered cases(Yr(t) ), and number of death cases(Yd(t) ). The objective function for our model

(2.1) is

L(θ) = ΣT
i=1[(Cc(t) − Yc(t))

2 + (Cd(t) − Yd(t))
2 + (Cd(t) − Yr(t))

2]

where dCc(t)/dt = δ(t)I, dCd(t)/dt = αcC and dCr(t)/dt = γcC. T is the length of the data and227

θ = (E0, I0, c0, δ0, αc, γI , γc, cf , rb, δf , rd, p).228

After obtained the estimated parameters, the simulated COVID-19 data and the predicted229

COVID-19 data will be computed by the model (2.1) and model (2.7) using the estimated230

parameters. The model performance (or the simulation accuracy) is quantitatively measured231

by the correlation coefficient (CC), the relative bias (RB) and the distance between indices of232

simulation and observation (DISO) as previous studies (Cui et al., 2020; Hu et al., 2020).233

The values of the estimated parameters, CC, RB and DISO of the 85 countries are provided234

in the Table S2 of the supplementary files.235

2.5 Framework of this study236

From the above analysis, three issues should be emphasised and clarified again. The first issue237

is that the role of the climate factors on the COVID-19 variations are excluded in this study.238

The second issue is that a general disease model is established for all the 85 countries across239

the five different climate regions, and the COVID-19 variations will be analyzed and discussed240

according to the general model and the COVID-19 data objectively. The last issue is that the241

general model can not include all the factors (e.g. GDP per capita and population density)242

impacting the COVID-19 variations. In fact, the detection capacity is mainly determined by the243

level of the public health system which is largely impacted by the GDP per capita. The contact244

rate directly reflects the population density. In our model, the detection rate and contact rate245

are all included. With these issues in mind, the framework of this study is provided in Figure 3246

which can help us have a well understanding of the design and structure of this study.247
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3 Data availability248

In this study, the global COVID-19 pandemic data of 85 countries from the date of the first249

cases of every country to April 30, 2020 is derived from an R package with real-time da-250

ta(https://github. com/GuangchuangYu/nCov2019). The COVID-19 pandemic data include251

the number of cumulative confirmed cases, number of recovered cases, and number of death252

cases. The reason why we chose the data up to April 30, 2020 is that the dataset of the early253

stage of the COVID-19 transmission has the inherent and the initial characteristics and can254

avoid many other factors controlled by human activities. The corresponding parameters of the255

SEICR model established by that period can reflect the initial characteristics.256

For each country, the population number is from the 2018 World Health Organization (WHO)257

data and is considered to be the total population in the simulation and prediction processes. The258

global shape data were downloaded from https://gadm.org. Global climate is classified into five259

regions: tropical, arid, temperate, cold, and polar, which is based on the latest Köppen-Geiger260

climate classification maps at 1-km resolution (Beck, 2018).261

4 Results262

In this section, the simulation results of the COVID-19 variations and the estimated parameters263

in Table 1 are firstly provided. Then, we predict the future changes of the COVID-19 pandemic264

in the 85 countries over different climate regions at nine scenarios with the changes of contact265

rates and immunity rates.266

4.1 Dynamical variations of the present COVID-19 pandemic267

COVID-19 was assessed as a pandemic on March 11, 2020 by the WHO with 120,957 cases268

and 4,390 deaths, and the number of the global cumulative confirmed cases increased to more269

than 1 million in only 23 days by April 3, 2020. With such rapid transmission, the number of270

the global cumulative confirmed cases reached more than 2, 4, 6, 8, and 10 million in 24, 12,271

21, 16, and 13 d, respectively, which were first reported on April 27, May 9, May 30, June 15,272

and June 28, 2020, respectively (Figure S1). For the spatial distributions, the United States of273

America (America), Brazil, India, and Russia contributed to large parts of the global COVID-19274

cases (Figures S1C-S1F). The details of the spatial transmission are obtained in supplementary275

text. The climate classification results and the selected 85 countries are displayed in Figure 1,276

which are identified by the Köppen-Geiger climate classification maps and the number of the277

cumulative confirmed cases.278

For the simulation, the model (2.1) in this work captured the COVID-19 variations of the279

cumulative confirmed cases, cumulative recovered cases, and cumulative deaths for the 85 coun-280

tries distributed over different climate regions (Supplementary Figures S2-S6). The CC values281

between the observed total cumulative confirmed cases and the simulated total cumulative con-282

firmed cases are nearly to 1. The RB values are smaller than 0.1. And the corresponding283
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comprehensive performances of the model (2.1) are well evaluated with the DISO values nearly284

to 1 (Table S2).285

For tropical regions, the COVID-19 variations of the typical countries of Bolivia, Brazil,286

Colombia, India, Peru, Philippines, and Singapore are simulated by model (2.1). The cumulative287

confirmed cases, cumulative recovered cases, and cumulative deaths of Colombia, India, and The288

Philippines are captured with high accuracy (Figure S2). The variations of cumulative confirmed289

cases and cumulative deaths of Bolivia and Peru in the SH are well captured.290

For typical countries in arid regions, the simulated time series are consistent with the vari-291

ations of the cumulative confirmed cases, cumulative recovered cases, and cumulative deaths292

(Figure S3), especially for Chile and Egypt. Moreover, the model has high simulation ability293

for the countries with confirmed cases larger than 100,000, such as Spain, Turkey, and America.294

For Mexico and South Africa, the recovered cases are not well captured, which is mainly caused295

by the quality of the recovered data. The COVID-19 pandemic variations are well simulated in296

temperate, cold, and polar regions (Figures S4-S6), such as France, Germany, Italy, and Japan297

in temperate regions (Figures S4) and Canada, Russia, and South Korea in cold regions (Figure298

S5). The COVID-19 pandemic variations of the other countries over the five climate regions are299

also well simulated (see Figures S2-S6). For most countries, the CC values are larger than 0.9,300

and the RB values are smaller than 10%.301

The spatial distributions of the corresponding key parameters of the 85 countries are dis-302

played in Figures 4, S7, and S8. Among the 85 countries, six countries have the transmission303

rates p larger than 0.15, such as Cameroon, Algeria, and Pakistan, followed by 15 countries with304

an infection rate between 0.1 and 0.15 (i.e., Brazil, Peru, China, and America in Figure 4A).305

For the basic reproductive number R∗0, Spain, Germany, South Korea, Spain, and America have306

the values larger than 10 (Figure 5B), which explains the large number of confirmed cases in307

these countries (Figures 1A and 1B). Under the current control strategies, the controlled basic308

reproductive number R∗f decreased to below the disease transmission threshold value R∗0 = 1 in309

approximately 71% of the countries (Figure 5C). The spatial distributions of the contact rates310

c0 at early transmission period and the minimum contact rates cf in Figures S7 and S8 illustrate311

the spatial distributions of R∗0 and R∗f , respectively (Figures 4B and 4C, respectively).312

In addition, the averaged parameter values of the 85 countries over the five climate regions313

using the COVID-19 data before May 1, 2020 were explored (Table 1). The table shows that314

the contact rate at the early transmission period, c0, and the minimum contact rate cf increased315

from a polar climate to tropical climate with the values ranging from 7.46 to 13.62 and from 0.37316

to 8.43, respectively. The transmission rates p in cold and temperate climate regions with the317

respective values of 0.08 and 0.086 are larger than those in the polar, arid, and tropical climate318

regions, i.e., 0.055, 0.069, and 0.071, respectively. This result indicates that the COVID-19319

pandemic caused by the SARS-CoV-2 virus poses a higher risk for transmission in cold and320

temperate climate regions than in other climate regions. The basic reproductive number R∗0 of321

temperate climate regions are the largest compared to those of the other regions at the early322

transmission period. After some intervention strategies, such as community quarantine, safe323

social distancing, closing schools and workplaces, limiting the sizes of gathering, and wearing324
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masks, the controlled reproductive number R∗f values of the five climate regions are 0.03, 0.67,325

0.60, 0.81, and 0.94 for polar, cold, temperate, arid, and tropical climate regions, respectively.326

Table 2: Parameter values obtained from the simulation, including contact rate at early trans-

mission period, c0, minimum contact rate cf , transmission rate p, basic reproductive number

R∗0, and controlled reproductive number R∗f , which are averaged from the parameter values of

COVID-19 data from the 85 countries studied.
Climate regions c0 cf p R∗0 R∗f

Tropical 13.62 8.43 0.071 4.35 0.94

Arid 11.92 6.99 0.069 4.44 0.81

Temperate 10.62 5.08 0.086 5.99 0.60

Cold 9.62 5.18 0.080 4.17 0.67

Polar 7.46 0.37 0.055 3.93 0.03

According to the above analysis, the cumulative confirmed cases of the countries over the327

different climate regions have the best simulated accuracy compared with the cumulative recov-328

ered cases and deaths due to differences in data quality. Therefore, to investigate COVID-19329

pandemic transmission, the focus was on daily new confirmed cases computed from the difference330

of the cumulative confirmed cases.331

4.2 Future risks of the COVID-19 pandemic in different scenarios332

In this section, the future changes of the COVID-19 pandemic are explored under nine different333

scenarios with three contact rates, i.e., c = cf , 1.2cf , andc0, indicating the increased contact334

value, and three immune loss rates, i.e., m = 0, 1
365 , and

2
365 , indicating permanent immunity, one335

year immunity, and half-year immunity, respectively. Second outbreak and periodic variations336

of the COVID-19 pandemic are detected over the five climate regions. The results are displayed337

in Figures 5-8 and S9-S12.338

In tropical climate regions, some obvious periodic variations are obtained in Brazil, Colombia,339

India, Peru, and Singapore under the conditions of most of Scenarios 4-9 (Figures 5B-5E and340

5G). The number of daily new confirmed cases in Bolivia and The Philippines reach their peak341

values, and then decrease to zero under the nine scenarios, which indicates that the COVID-342

19 disease will be controlled in the two countries in the future (Figures 5A, 5F). Cameroon,343

Dominican Republic, Ecuador, Nigeria, Panama, and Puerto Rico exhibit periodic variations of344

the number of new daily confirmed cases with increased contact rates (Figures S9A, S9C, S9D,345

and S9G-S9I). Cuba, Ghana, Malaysia, and Thailand will control the disease according to the346

small number of daily new confirmed cases (Figures S8B, S8E, S9F, and S9J). Moreover, the347

number of daily new confirmed cases in Bolivia, The Philippines, Cuba, Malaysia, and Thailand348

will become zero in approximately 200 d (i.e., by the end of 2020). However, more than 1,000349

days will be needed to control COVID-19 in Ghana under large contact rates of c = 1, 2cf , and350

c0 (Figure S9E).351

For the countries in arid climate regions, Chile, Egypt, Mexico, Pakistan, South Africa,352

11



Spain, Turkey, and America exhibit multiple periodic variations (Figure 6). Among the afore-353

mentioned countries, the periods of Egypt, Mexico, Pakistan, South Africa, Spain, Turkey and354

America are larger than 1 year. Except for the peak values of the different scenarios for Spain355

at the same time points (Figure 6I), the other countries have peak values under the different356

scenarios with different time points. The proposed model successfully predicted the variations357

of the number of daily new confirmed cases in China (Figure 6B). The number of daily new358

cases in Iran and Saudi Arabia will become nearly zero in approximately 200 d (Figures 6D and359

6G). The number of daily new cases in Afghanistan, Algeria, Bahrain, Iraq, Israel, Kazakhstan,360

and Kuwait have regular circulations with multiple periods, which indicates that COVID-19361

will exist in a long-term period due to the large contact rates mainly caused by the economic362

recovery (Figure S10).363

Except for the number of daily new confirmed cases in Ireland reaching nearly zero in ap-364

proximately 240 d, the other countries in temperate climate regions have periodic circulations of365

COVID-19 pandemic transmissions (Figures 7 and S11). Bangladesh, France, Germany, Italy,366

Japan, New Zealand, Austria, Belgium, Austria, Belgium, Greece, Guinea, Indonesia, and The367

Netherlands show that the COVID-19 pandemic will reach regular circulation within the period368

of more than 1 year.369

In cold climate regions, several countries exhibit periodic variations of the number of daily370

new confirmed cases, such as Russia, Sweden, and Armenia (Figures 8B, 8D, and S12A). The371

number of daily new confirmed cases reaches the peak value in a short time period, and then372

becomes nearly zero under the different scenarios in countries such as Bulgaria and Solvakia373

(Figures S12D and S12Q). For Iceland in the polar climate region, the COVID-19 pandemic is374

controlled under the nine scenarios for future changes (Figure omitted).375

5 Discussion376

The ongoing COVID-19 pandemic has rapidly spread in more than 200 countries and has caused377

157,289,118 cases leading to 3,277,272 deaths according to the data last updated: 2021/5/9,378

4:43pm CEST OF WHO COVID-19 Dashboard, and poses a severe threat to public health379

worldwide. The projection of the transmission dynamics of COVID-19 into the future plays a380

significant role in devising and implementing prevention and control strategies. In this study,381

a SEICR model is proposed to investigate the future variations of the COVID-19 pandemic382

from nine scenarios based on different immune loss rates and contact rates over five different383

worldwide climate regions.384

In the development and constructer of the general SEICR model, the contact rate and the385

detection rate are considered. In fact, the detection capacity is mainly determined by the level386

of the public health system which is largely impacted by the GDP per capita. The contact rate387

directly reflects the population density. It is a huge challenge for a general model to capture the388

COVID-19 variations for all the 85 countries. Moreover, it is well known that more parameters389

will caused more uncertainties for a model. Three statistic metrics: CC, RB and DISO are390

employed to quantify the model performance which suggest that our model can capture the391
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COVID-19 variations of the 85 countries.392

The results obtained from our model are objectively obtained according to the COVID-19393

data from the 85 countries. The relationships between the climate factors and the COVID-19394

variations or the roles of the climate changes on the COVID-19 are not discussed in this study.395

We only explore whether there exist COVID-19 transmission differences between the different396

climate regions. The impacts of the climate factors on the COVID-19 disease will be investigated397

in our future work with more datasets and new approaches.398

Our results show that temperate and cold climate regions have a larger infection rate than399

arid and tropical climate regions, which illustrates that cold and dry conditions may increase400

the transmission rate of the SARS-CoV-2 virus. However, it does not mean that a COVID-19401

outbreak will not occur in tropical and arid climate regions, because more factors in a complex402

system contribute to rapid transmission, such as contact rate, medical level, and the quality of403

the public health system (Hufnagel et al., 2004; Baker et al., 2020; Paraskevis et al., 2021). It404

should also be considered that our results support the limited role of climate on the transmission405

of COVID-19 (Baker et al., 2020), rather than cold and dry climates increasing the transmission406

of the virus, due to the limited data on the current epidemic.407

Some recent works try to explore the relationships between climate factors and COVID-408

19 pandemic which mainly focus on temperature and humidity (Liu et al., 2020; Ma et al.,409

2020; Meo, et al., 2020; Peter, et al., 2020; Prata et al., 2020). For example, low temperature,410

mild diurnal temperature range and low humidity likely favor the transmission of COVID-19411

(Liu et al., 2020). A positive association is found between daily death counts of COVID-19412

and diurnal temperature range (DTR). Absolute humidity is negatively associated with daily413

death counts of COVID-19 (Ma et al., 2020). A significant decrease in incidence of daily cases414

and deaths in countries with high temperatures and low humidity (warmest countries), com-415

pared to those countries with low temperatures and high humidity (coldest countries) (Meo,416

et al., 2020). But these results have large uncertainties because the COVID-19 data and417

climate factor data are insufficient and all the studies only focus on the regional COVID-19418

pandemic (Gupta et al., 2020; Liu et al., 2020; Prata et al., 2020). WHO also pointed that419

there is currently no conclusive evidence that either weather (short term variations in mete-420

orological conditions) or climate (long-term averages) have a strong influence on transmission421

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/). Therefore, it must em-422

ploy more dataset to investigate the effects of climate factors on the COVID-19 transmission.423

Climatic factors affecting COVID-19 transmission should be cautiously reexamined when the424

data are sufficient.425

Although it may require several months or years to search for effective pharmaceutical treat-426

ments and vaccines (Kissler et al., 2020), in this study the following was assumed: permanent427

immunity with m = 0 and duration of immunities with m = 1
365 and m = 2

365 (i.e., one year428

immunity and half-year immunity, respectively) in model (4.1) to explore the COVID-19 vari-429

ations. Our results suggest that contact rate plays a key role in controlling the disease, while430

immunity plays a temporary role. In particular, under the same contact rates, the longer immu-431

nity period will be beneficial to disease control, but it cannot control disease extinction. When432
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the immunity to SARS-CoV-2 is not permanent, the COVID-19 pandemic exhibits periodic433

variabilities in some countries of the five climate regions (e.g., Brazil and India in Figures 5B434

and 5D, respectively), which indicates that the disease will enter into regular circulation as the435

most recent conclusion (Kissler et al., 2020). If the immunity to SARS-CoV-2 is permanent,436

the disease could disappear after causing a major outbreak for more than 60 d, such as in Saudi437

Arabia in Figure 6G.438

With the strict disease control measures employed, a small contact rate plays an important439

role in controlling the COVID-19 pandemic. However, large contact rates (i.e., c = 1.2cf and440

c = c0) will result in COVID-19 fluctuations, including some obvious multiple periods, such441

as in Egypt (Figure 6C), Mexico (Figure 6E), and Germany (Figure 7C). This result suggests442

that decreasing the contact rate based on the non-pharmaceutical interventions is the most443

effective means to reduce worldwide transmission of SARS-CoV-2, e.g., by maintaining safe444

physical distancing, closing schools and workplaces, limiting the sizes of gatherings, wearing445

face coverings and eye protection, and instituting community quarantines (Chu et al., 2020; Hu446

et al., 2020; Li et al., 2020).447

Since the first COVID-19 case was reported, all the countries and regions of the world448

have been affected, and peoples’ way of life has changed. Comprehensive strategies have been449

developed to fight against the COVID-19 pandemic by each country based on their specific450

epidemiological situations, capacities, and the capabilities of their public health systems, espe-451

cially for low- and middle-income countries. Our findings suggest that this pandemic will spread452

over all five climate regions in the future which are proved by the present COVID-19 pandemic453

variations in the world.454

The effective strategy to date has been to decrease contact with COVID-19 sufferers, and the455

reduction of contact rate can help prevent the COVID-19 pandemic from taxing the capacity456

of public health systems across the globe. Non-pharmaceutical interventions are always the457

effective strategy in control and prevention the COVID-19 which will may eliminate the COVID-458

19 pandemic completely together with the roles of the vaccines.459
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Figure Captions4

Figure 1: Flowchart of COVID-19 SEICR epidemic model.5

Figure 2: (A) Climate classification result based on the Köppen-Geiger climate classification6

maps, where represents the tropical, arid, temperate, cold and polar climate, respectively; (B)7

85 countries in the five climate regions.8

Figure 3: Framework of this study.9

Figure 4: (A) Distributions of the transmission rate p (A); (B) the basic reproductive number10

R∗0, and (C) the controlled reproductive number R∗f of the 85 countries.11

Figure 5: Sensitivity analysis of the daily new confirmed cases of Bolivia, Brazil, Colombia,12

India, Peru, Philippines, and Singapore in tropical region.13

Figure 6: Sensitivity analysis of the daily new confirmed cases of Chile, China, Egypt, Iran,14

Mexico, Pakistan, Saudi Arabia, South Africa, Spain, Turkey, United States in arid region.15

Figure 7: Sensitivity analysis of the daily new confirmed cases of Bangladesh, France, Ger-16

many, Italy, Japan, New Zealand, and United Kingdom in temperate region.17

Figure 8: Sensitivity analysis of the daily new confirmed cases of Canada, Russia, South18

Korea and Sweden in cold region.19
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Figure 1: Flowchart of COVID-19 SEICR epidemic model.

3



Figure 2: (A) Climate classification result based on the Köppen-Geiger climate classification maps,

where represents the tropical, arid, temperate, cold and polar climate, respectively; (B) 85 countries in

the five climate regions.
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Figure 3: Framework of this study.
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Figure 4: (A) Distributions of the transmission rate p, (B) the basic reproductive number R∗
0, and (C)

the controlled reproductive number R∗
f of the 85 countries.
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Figure 5: Sensitivity analysis of the daily new confirmed cases of Bolivia, Brazil, Colombia, India, Peru,

Philippines, and Singapore in tropical region.
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Figure 6: Sensitivity analysis of the daily new confirmed cases of Chile, China, Egypt, Iran, Mexico,

Pakistan, Saudi Arabia, South Africa, Spain, Turkey, United States in arid region.
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Figure 7: Sensitivity analysis of the daily new confirmed cases of Bangladesh, France, Germany, Italy,

Japan, New Zealand, and United Kingdom in temperate region.
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Figure 8: Sensitivity analysis of the daily new confirmed cases of Canada, Russia, South Korea and

Sweden in cold region.
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Text S Background of the COVID-19 pandemic5

For the spatial diffusions of the COVID-19 pandemic, different countries have significant6

differences that mainly result from economic restart and increased testing capability (Figure S1).7

On April 3, 2020, the confirmed cases were mainly distributed over the NH, while the tropical8

regions of the NH and the SH had a small proportion of confirmed cases. In particular, the9

United States of America (America), Spain, and Italy had confirmed COVID-19 cases numbering10

greater than 100,000, i.e., 254,556, 117,710, and 115,242 cases, respectively. The countries11

with confirmed cases numbering between 80,000 and 100,000 were China (82,875) and Germany12

(85,122). The countries within Central Asia, Mongolia, and the countries in Africa (except south13

Africa) had confirmed cases numbering fewer than 1,000 (Figure S1A).14

Except for America, Spain, and Italy, the new countries with numbers of confirmed cases15

greater than 100,000 on April 27, 2020 were Germany (increased from 85,122 to 159,103) and16

France (increased from 59,929 to 162,220), and the total number of confirmed cases worldwide17

(2,026,027) was larger than 2 million by the same date (Figure S1B). In fact, America (increased18

from 254,556 to 987,916), Germany, and France contributed to more than 90% of the increase19

in confirmed cases. There was no significant increase in South America and Africa at this time.20

It only took 12 d for the number of worldwide confirmed cases to increase from 2 million to 421

million by May 9, 2020. The new countries with numbers of confirmed cases larger than 100,00022

at this point were Russia (198,676), Turkey (135,569), Iran (106,220), and Brazil (147,003)23

(Figure S1C). America had the largest number of confirmed cases, i.e., 1,324,352 at this point.24

Peru and India were the newest countries with confirmed cases numbering more than 100,00025

on May 30, 2020, at which time the total number of confirmed cases worldwide was 6,069,38526

(Figure S1D). On June 15 and 28, 2020, the total number of worldwide confirmed cases reached27

8,035,398 and 10,138,506, respectively (Figures S1E and S1F, respectively). More than 15 coun-28

tries had confirmed cases numbering greater than 100,000 at this point, including Brazil, Peru,29

and South Africa in the Southern Hemisphere (SH) (Figure S1F). America had the largest num-30

ber of confirmed cases at this point, i.e., 2,597,742, followed by Brazil with 1,319,385 confirmed31

cases.32
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 3 

Table S1 85 countries in the five climate regions: tropical climate, arid climate, 4 

temperate climate, cold climate and polar climate base on the Koppen-Geiger climate 5 

classification criteria.  6 
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Table S2 12 estimated parameters and 3 statistical metrics (CC: correlation coefficient, 8 

AE: absolute error, DISO: distance between indices of simulation and observation) of 9 

the 85 countries. Where N, S represent the northern hemisphere and southern 10 

hemisphere; A, B, C, D, E represent the tropical climate, arid climate, temperate climate, 11 

cold climate and polar climate. 12 
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Table S1 85 countries in the five climate regions: tropical climate, arid climate, temperate climate, 35 

cold climate and polar climate base on the Koppen-Geiger climate classification criteria.  36 

Climate 
regions 

Countries 

Tropical 
climate 

Bolivia Brazil Cameroon Colombia Cuba 
Dominican 
Republic 

Ecuador Ghana India Malaysia Peru Nigeria 

Panama Philippines Puerto Rico Singapore Thailand  

Arid 
climate 

Afghanistan Algeria Argentina Australia Azerbaijan Bahrain 

Chile China Djibouti Egypt Iran Iraq 

Israel Mexico Kazakhstan Kuwait Morocco Oman 

Qatar 
Saudi 
Arabia 

South Africa Spain Turkey 
United Arab 

Emirates 

Uzbekistan      

Temperate 
climate 

Austria Bangladesh Belgium France Germany Greece 

Guinea Indonesia Ireland Italy Japan Luxembourg 

Netherlands 
New 

Zealand 
Portugal 

United 
Kingdom 

Netherlands New Zealand 

Cold 
climate 

Armenia Belarus 
Bosnia and 

Herzegovina 
Bulgaria Canada Croatia 

Czech 
Republic 

Denmark Estonia Finland Hungary Lithuania 

Moldova Norway Poland Romania Russia Serbia 

Slovakia Slovenia South Korea Sweden Switzerland Ukraine 

Polar 
climate 

Iceland      

 37 
 38 
 39 



Table S2 12 estimated parameters and 3 statistical metrics (CC: correlation coefficient, 40 

AE: absolute error, DISO: distance between indices of simulation and observation) of 41 

the 85 countries. Where N, S represent the northern hemisphere and southern 42 

hemisphere; A, B, C, D, E represent the tropical climate, arid climate, temperate climate, 43 

cold climate and polar climate. 44 

 45 
 NA NB 
 Cuba India Philippines Afghanistan Algeria 

c0 6.473391 17.99993 17.99987 19.18607 11.83355 
delta0 0.023963 0.01 0.01 0.01 0.01 
alphaC 0.003706 0.003571 0.004335 0.002948 0.014827 
gammaI 0.105591 0.177656 0.199994 0.199996 0.199997 
gammaC 0.032575 0.024361 0.006633 0.011508 0.045085 

cf 1.74794 14.99993 14.99983 4.803405 1.230857 
rb 0.39233 0.399998 0.39996 0.268468 0.18541 

deltaf 0.668788 0.71 0.670747 0.110002 0.110001 
rd 0.081773 0.062332 0.09073 0.05 0.05 
p 0.069742 0.036635 0.03927 0.066569 0.151795 

R0 3.484791 3.514036 3.366098 6.081999 8.553778 
Rf 0.318895 0.889606 0.710822 1.209116 0.714235 

relative bias 0.122338 0.119231 0.692627 0.10073 -0.15757 
Correlation 
coefficent 

0.999822 0.99982 0.998544 0.998266 0.998802 

DISO 0.999997 1.000434 1.001528 1.001473 1.000313 
 NB 
 Azerbaijan Bahrain China Djibouti Egypt 

c0 8.006466 17.99999 5.268128 9.368391 12.4351 
delta0 0.010031 0.033129 0.01 0.01 0.021189 
alphaC 0.001441 0.000373 0.002398 0.000261 0.006995 
gammaI 0.188126 0.2 0.071429 0.071429 0.19998 
gammaC 0.065094 0.049522 0.046451 0.049952 0.024218 

cf 4.980231 14.99999 1.74408 0.100001 9.434349 
rb 0.396904 0.399999 0.05 0.093453 0.399866 

deltaf 0.546805 0.133129 0.71 0.71 0.121205 
rd 0.200461 0.05 0.067832 0.249745 0.075996 
p 0.096008 0.022816 0.139062 0.040303 0.038897 

R0 3.879173 1.761656 8.996824 4.636904 2.186956 
Rf 0.651998 1.104982 0.312708 0.035328 1.172342 

relative bias -0.27053 -0.11486 2.678121 -0.0136 1.361281 
Correlation 
coefficent 

0.999377 0.99596 0.993808 0.997008 0.999815 

DISO 1.000388 1.000551 0.998805 1.001186 1.000124 



 NB 
 Iran Iraq Israel Kazakhstan Kuwait 

c0 11.48556 10.25557 9.496015 18.72308 14.99292 
delta0 0.167351 0.010042 0.011043 0.199857 0.060944 
alphaC 0.006966 0.005787 0.000891 0.000909 0.000633 
gammaI 0.071432 0.148548 0.072022 0.19259 0.199982 
gammaC 0.074694 0.069057 0.025218 0.024088 0.034893 

cf 8.437349 7.245433 6.441313 13.63191 11.99284 
rb 0.399979 0.398494 0.125846 0.399953 0.399958 

deltaf 0.867345 0.18063 0.429571 0.305528 0.160945 
rd 0.05714 0.159471 0.215372 0.050011 0.07029 
p 0.05573 0.032269 0.053925 0.04376 0.042885 

R0 2.680642 2.086739 6.164758 2.08774 2.464216 
Rf 0.574508 0.711464 0.693061 1.262733 1.449582 

relative bias 0.197539 -0.11186 -0.17356 0.060506 -0.24035 
Correlation 
coefficent 

0.999093 0.998241 0.999837 0.999291 0.998857 

DISO 0.999977 1.000209 1.000029 1.00006 1.001363 
 NB 
 Mexico Morocco Oman Pakistan Qatar 

c0 9.952451 5.36876 14.56819 4.971046 16.45529 
delta0 0.101969 0.01 0.010008 0.01 0.012526 
alphaC 0.017626 0.003791 0.000467 0.002016 0.000105 
gammaI 0.177966 0.071429 0.072039 0.199999 0.07151 
gammaC 0.092334 0.013672 0.017411 0.02176 0.009826 

cf 4.864495 1.591385 11.5562 1.573758 13.45325 
rb 0.050027 0.4 0.396649 0.399993 0.399343 

deltaf 0.210527 0.71 0.709219 0.110001 0.710101 
rd 0.398634 0.083547 0.078516 0.05 0.050006 
p 0.106124 0.069903 0.018064 0.185912 0.014681 

R0 3.773003 4.608804 3.207461 4.400865 2.874792 
Rf 1.448607 0.325895 0.524922 1.117705 1.045745 

relative bias -0.03705 0.472568 -0.09072 0.461512 0.239072 
Correlation 
coefficent 

0.999702 0.999244 0.999438 0.999115 0.999178 

DISO 1.000374 1.000225 1.000483 1.000489 1.000853 
 NB 

 Saudi Arabia Spain Turkey 
United Arab 

Emirates 
United States 

c0 14.47283 9.463395 11.3827 17.99957 9.709275 
delta0 0.016991 0.01 0.199988 0.01 0.01 
alphaC 0.000881 0.008833 0.002233 0.000698 0.003983 
gammaI 0.192148 0.071429 0.103888 0.19875 0.080743 
gammaC 0.014987 0.036849 0.021394 0.018224 0.00822 



cf 11.45962 6.005123 0.100141 14.99954 6.70927 
rb 0.399847 0.072505 0.055116 0.399981 0.05 

deltaf 0.716722 0.71 0.299996 0.709996 0.704733 
rd 0.059099 0.14808 0.399976 0.062419 0.073671 
p 0.031719 0.099154 0.094762 0.036069 0.074129 

R0 2.194983 11.52337 3.549625 3.110051 7.931598 
Rf 0.964744 0.765848 0.367956 0.831996 0.71783 

relative bias 0.322516 0.191984 2.091825 -0.05728 1.155269 
Correlation 
coefficent 

0.999093 0.999589 0.999823 0.99909 0.999556 

DISO 1.000792 1.000182 1.000008 1.001999 1.000787 
 NB NC 
 Uzbekistan Austria Bangladesh Belgium Brazil 

c0 8.184808 7.340245 18.00005 10.06183 8.761158 
delta0 0.043367 0.028074 0.01 0.01 0.010046 
alphaC 0.000401 0.002567 0.003281 0.011714 0.01082 
gammaI 0.153218 0.072188 0.199957 0.19918 0.137728 
gammaC 0.035533 0.053602 0.002955 0.018327 0.072269 

cf 5.18463 3.723683 14.99997 7.061719 4.789163 
rb 0.061691 0.396964 0.099771 0.050001 0.311581 

deltaf 0.743336 0.663903 0.533082 0.677825 0.262098 
rd 0.179193 0.219949 0.185108 0.121085 0.301128 
p 0.050319 0.082193 0.052614 0.093473 0.126294 

R0 2.095041 6.017343 4.510695 4.496172 7.487622 
Rf 0.324213 0.415882 1.105406 0.769077 1.512767 

relative bias -0.0399 0.113345 -0.34945 0.611867 -0.2205 
Correlation 
coefficent 

0.998905 0.999824 0.999791 0.999844 0.999518 

DISO 1.000014 0.999969 1.000353 1.000111 1.000522 
 NC 

 Cameroon Colombia 
Dominican 
Republic 

Ecuador France 

c0 9.492254 9.942427 10.69862 17.99999 12.79555 
delta0 0.01 0.092983 0.011912 0.2 0.01 
alphaC 0.003343 0.003883 0.003811 0.003461 0.009272 
gammaI 0.199996 0.130853 0.113308 0.2 0.071429 
gammaC 0.04133 0.016915 0.01037 0.006984 0.018066 

cf 0.9562 5.575623 1.477094 14.99999 4.673993 
rb 0.399995 0.382788 0.393681 0.399999 0.05 

deltaf 0.110023 0.197742 0.700477 0.3 0.71 
rd 0.05 0.308576 0.071754 0.05 0.072445 
p 0.199986 0.072646 0.094498 0.04898 0.06096 

R0 9.039745 3.226837 8.073767 2.204122 9.57908 
Rf 0.766594 1.232673 0.414111 1.510668 0.436846 



relative bias -0.12169 0.250526 0.57464 1.478985 0.780343 
Correlation 
coefficent 

0.991382 0.999287 0.999611 0.979518 0.996487 

DISO 1.001216 1.00005 1.000108 1.016614 1.003933 
 46 
 47 
 48 
 49 

 NC 
 Germany Ghana Greece Guinea Indonesia 

c0 18.81672 17.99728 7.138195 8.770922 6.777624 
delta0 0.01 0.015226 0.022894 0.010071 0.042376 
alphaC 0.003444 0.000841 0.002706 0.000745 0.006817 
gammaI 0.071429 0.071615 0.080468 0.198052 0.071481 
gammaC 0.072925 0.009586 0.010581 0.026067 0.010164 

cf 6.750704 14.99473 3.41983 1.540469 3.753583 
rb 0.05 0.050044 0.386614 0.398491 0.053214 

deltaf 0.71 0.11537 0.174496 0.607388 0.356422 
rd 0.088863 0.050079 0.142307 0.05013 0.05001 
p 0.044817 0.010122 0.035573 0.182876 0.044078 

R0 10.35633 2.097721 2.456706 7.706946 2.623829 
Rf 0.425942 1.251073 0.478668 1.117939 0.641197 

relative bias 0.205364 0.198528 0.206366 0.005824 0.751881 
Correlation 
coefficent 

0.999738 0.996198 0.999207 0.998703 0.999776 

DISO 1.000168 1.000903 0.999736 1.000927 1.000049 
 NC 
 Ireland Italy Japan Luxembourg Malaysia 

c0 6.128225 8.036487 18.00078 11.20151 12.5507 
delta0 0.017721 0.01 0.01 0.055575 0.01 
alphaC 0.00534 0.008387 0.002033 0.001339 0.001384 
gammaI 0.071554 0.074965 0.071431 0.173354 0.094522 
gammaC 0.040518 0.017404 0.013883 0.025799 0.047609 

cf 3.109068 4.436377 14.99857 0.835687 9.550633 
rb 0.050172 0.399963 0.398578 0.399993 0.050002 

deltaf 0.717106 0.453987 0.709996 0.155582 0.709997 
rd 0.084532 0.163169 0.057109 0.097667 0.086095 
p 0.043469 0.0956 0.022466 0.148512 0.038812 

R0 2.983888 9.042397 4.96613 7.266669 4.66044 
Rf 0.305475 0.802095 0.624021 0.380534 0.489854 

relative bias 0.721503 0.467122 -0.38225 0.24839 -0.10463 
Correlation 
coefficent 

0.999149 0.999944 0.998472 0.99965 0.99963 

DISO 1.000315 1.000007 1.002438 0.999872 1.000169 



 NC 
 Netherlands Nigeria Panama Portugal Puerto Rico 

c0 16.18329 16.86809 7.456741 6.046566 18.71613 
delta0 0.078154 0.010001 0.155537 0.126875 0.174435 
alphaC 0.006923 0.003747 0.001946 0.002144 0.003704 
gammaI 0.199996 0.199944 0.197588 0.088246 0.199994 
gammaC 0.001 0.024218 0.003841 0.002673 0.001 

cf 4.656963 13.86596 3.325681 3.038055 3.814382 
rb 0.330706 0.399541 0.294889 0.074671 0.399988 

deltaf 0.778153 0.110047 0.25605 0.528075 0.874398 
rd 0.05 0.050001 0.050653 0.242884 0.058711 
p 0.072154 0.027737 0.119637 0.143682 0.086611 

R0 4.198049 2.228556 2.526297 4.038582 4.329348 
Rf 0.525921 1.484907 0.921922 0.73089 0.431355 

relative bias 0.016501 0.789146 0.092852 0.290766 0.163482 
Correlation 
coefficent 

0.999856 0.996418 0.999579 0.999848 0.998105 

DISO 0.999981 1.004192 0.999928 0.99998 0.999686 
 NC ND 

 Singapore Thailand 
United 

Kingdom 
Armenia Belarus 

c0 18 18 7.174881 9.349559 17.99991 
delta0 0.01 0.01 0.01 0.192244 0.01 
alphaC 0.000107 0.001535 0.01029 0.001331 0.000852 
gammaI 0.2 0.071429 0.071429 0.085355 0.199858 
gammaC 0.008325 0.065163 0.001 0.034402 0.018949 

cf 15 15 4.174201 5.159436 14.99986 
rb 0.4 0.4 0.064296 0.398786 0.399936 

deltaf 0.229108 0.71 0.556076 0.507335 0.382843 
rd 0.05 0.070412 0.097263 0.399464 0.170297 
p 0.034208 0.021002 0.104852 0.126457 0.051902 

R0 2.932092 4.64246 9.238751 4.259079 4.451748 
Rf 1.385719 0.458404 0.736565 1.100821 1.343821 

relative bias -0.42694 -0.0288 -0.1548 0.603834 -0.2567 
Correlation 
coefficent 

0.993065 0.994608 0.999762 0.997592 0.999299 

DISO 1.019029 1.003338 1.000251 0.999863 1.001087 
 ND 

 Bosnia and 
Herzegovina 

Bulgaria Canada Croatia 
Czech 

Republic 
c0 6.478302 17.99998 18 4.240905 10.50122 

delta0 0.028147 0.019695 0.01 0.010016 0.179312 
alphaC 0.003179 0.003044 0.004967 0.001845 0.00166 
gammaI 0.192389 0.130459 0.2 0.071807 0.098007 



gammaC 0.027956 0.010958 0.035085 0.032247 0.015252 
cf 3.179862 14.99993 15 0.141038 2.039459 
rb 0.389094 0.050002 0.4 0.050038 0.15286 

deltaf 0.132607 0.119698 0.577441 0.178246 0.28241 
rd 0.296674 0.05 0.084935 0.370415 0.088892 
p 0.092303 0.010188 0.043834 0.136164 0.095031 

R0 2.711418 1.221362 3.757167 7.057327 3.598522 
Rf 0.903123 0.779341 0.888414 0.242291 0.514987 

relative bias 0.019559 0.188882 0.221225 -0.19582 0.108214 
Correlation 
coefficent 

0.999382 0.995255 0.999497 0.999697 0.99977 

DISO 0.999925 0.9985 1.000785 1.000006 0.999929 
 ND 
 Denmark Estonia Finland Hungary Lithuania 

c0 6.107866 6.143929 14.34974 4.649406 6.149698 
delta0 0.04799 0.052792 0.010004 0.019767 0.017288 
alphaC 0.004489 0.001348 0.002745 0.008434 0.001774 
gammaI 0.072804 0.186411 0.198675 0.071833 0.17696 
gammaC 0.054363 0.005906 0.03648 0.013828 0.016418 

cf 3.098829 2.614569 10.83475 0.635325 1.517232 
rb 0.052364 0.392527 0.063218 0.077137 0.050052 

deltaf 0.213865 0.440529 0.426119 0.120369 0.344554 
rd 0.084165 0.101748 0.099829 0.05005 0.399874 
p 0.04477 0.108735 0.047487 0.067179 0.135536 

R0 2.263758 2.792857 3.265411 3.409875 4.290936 
Rf 0.537845 0.467721 0.837468 0.355754 0.497941 

relative bias 1.066476 0.850237 0.552484 0.103281 0.103745 
Correlation 
coefficent 

0.998746 0.998811 0.999651 0.999339 0.998679 

DISO 0.999835 0.99964 1.000235 1.000002 0.999841 
 ND 
 Moldova Norway Poland Romania Russia 

c0 12.05996 7.368357 9.682529 11.13287 10.54204 
delta0 0.012808 0.178133 0.089174 0.010007 0.01 
alphaC 0.00257 0.000977 0.003332 0.004484 0.001099 
gammaI 0.073539 0.071429 0.071798 0.199817 0.190059 
gammaC 0.02089 0.001 0.013673 0.021416 0.010975 

cf 9.013071 1.864943 6.614747 0.955953 7.542038 
rb 0.310429 0.145819 0.153558 0.182804 0.05 

deltaf 0.117477 0.278133 0.326283 0.110057 0.709999 
rd 0.275821 0.088392 0.144269 0.050004 0.061107 
p 0.022077 0.090918 0.054082 0.173001 0.075265 

R0 3.083456 2.684387 3.25308 9.179138 3.966088 
Rf 1.041785 0.488644 0.902577 0.636146 1.023346 



relative bias 0.149725 0.185195 0.271386 -0.18828 0.396332 
Correlation 
coefficent 

0.999242 0.999406 0.999903 0.999734 0.999544 

DISO 1.000153 0.99973 1.000002 1.000069 1.001501 
 ND 
 Serbia Slovakia Slovenia South Korea Sweden 

c0 4.086788 10.14991 6.900642 5.793026 10.64219 
delta0 0.052178 0.015447 0.08138 0.01 0.010024 
alphaC 0.001632 0.000833 0.002568 0.000964 0.007685 
gammaI 0.084019 0.071429 0.105732 0.071429 0.103098 
gammaC 0.011131 0.017933 0.00684 0.031809 0.002888 

cf 1.032082 7.149813 2.591537 2.739499 6.229471 
rb 0.060297 0.050001 0.332845 0.086901 0.313593 

deltaf 0.490176 0.715444 0.182539 0.709999 0.214989 
rd 0.065146 0.085174 0.081802 0.1987 0.097353 
p 0.121694 0.01 0.044453 0.14743 0.049685 

R0 3.65161 1.168347 1.639397 10.48842 4.67417 
Rf 0.386431 0.19421 0.408836 0.517182 0.986335 

relative bias 0.246419 0.224956 0.088009 0.147601 2.210679 
Correlation 
coefficent 

0.999301 0.997907 0.999488 0.99728 0.999683 

DISO 1.000138 0.999494 0.999703 0.999014 1.000216 
 ND NE SA 
 Switzerland Ukraine Iceland Bolivia Peru 

c0 10.31769 10.22659 7.459023 10.01187 12.59996 
delta0 0.081772 0.010206 0.032352 0.01 0.01 
alphaC 0.004267 0.002476 0.000402 0.00528 0.003876 
gammaI 0.145388 0.073033 0.071598 0.199984 0.199998 
gammaC 0.052118 0.009228 0.056206 0.007565 0.045943 

cf 1.874143 2.441369 0.368887 6.090962 2.201096 
rb 0.050066 0.380431 0.229365 0.399978 0.218712 

deltaf 0.44988 0.218734 0.728983 0.709337 0.110001 
rd 0.255594 0.099513 0.083182 0.050001 0.05 
p 0.086883 0.075355 0.054769 0.042801 0.136258 

R0 3.946274 9.258054 3.929978 2.040719 8.175553 
Rf 0.364765 0.734191 0.034062 1.006105 1.202916 

relative bias 0.01713 0.499648 -0.02387 0.129968 -0.20721 
Correlation 
coefficent 

0.999809 0.999879 0.999092 0.999038 0.998669 

DISO 0.999969 1.00009 0.999683 1.000201 1.001295 
 SB SC 
 Argentina Australia Chile South Africa New Zealand 

c0 10.11513 6.483388 17.05675 16.59293 7.523986 
delta0 0.199939 0.01 0.010001 0.2 0.010097 



alphaC 0.003851 0.000828 0.001486 0.0015 0.000765 
gammaI 0.071534 0.071429 0.199987 0.2 0.17202 
gammaC 0.021153 0.048676 0.051542 0.027286 0.055639 

cf 7.111305 3.464129 2.168132 13.4288 0.101654 
rb 0.399958 0.05 0.39998 0.399999 0.117325 

deltaf 0.540229 0.71 0.11002 0.3 0.251505 
rd 0.39999 0.084629 0.050001 0.05 0.217022 
p 0.093931 0.080612 0.091104 0.041954 0.153375 

R0 3.49989 6.418324 7.400119 1.740335 6.336556 
Rf 1.09188 0.386945 0.783284 1.165253 0.045393 

relative bias 0.045542 0.196499 -0.16595 1.048383 -0.06725 
Correlation 
coefficent 

0.999734 0.993513 0.999147 0.994234 0.999802 

DISO 0.999986 1.003262 1.000228 0.999523 0.999976 
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Figure Captions33

Figure S1: Spatial distributions of the cumulative confirmed COVID-19 cases over the world,34

for the numbers of 1 million cases (A), 2 millions cases (B), 4 millions cases (C), 6 millions cases35

(D), 8 millions cases (E), and 10 millions cases (F).36

Figure S2: Simulation results of the cumulative confirmed cases, cumulative recovered cases,37

and cumulative deaths of Bolivia, Brazil, Cameroon, Colombia, Cuba, Dominican Republic,38

Ecuador, Ghana, India, Malaysia, Nigeria, Panama, Peru, Philippines, Puerto Rico, Singapore39

and Thailand in tropical region.40

Figure S3: Simulation results of the cumulative confirmed cases, cumulative recovered cas-41

es, and cumulative deaths of Afghanistan, Algeria, Argentina, Australia, Azerbaijan, Bahrain,42

Chile, China, Djibouti, Egypt, Iran, Iraq, Israel, Kazakhstan, Kuwait, Mexico, Morocco, Oman,43

Pakistan, Qatar, Saudi Arabia, South Africa, Spain, Turkey, United Arab Emirates, United44

States and Uzbekistan in arid region.45

Figure S4: Simulation results of the cumulative confirmed cases, cumulative recovered cases,46

and cumulative deaths of Austria, Bangladesh, Belgium, France, Germany, Greece, Guinea,47

Indonesia, Ireland, Italy, Japan, Luxembourg, Netherlands, New Zealand, Portugal and United48

Kingdom in temperate region.49

Figure S5: Simulation results of the cumulative confirmed cases, cumulative recovered cases,50

and cumulative deaths of Armenia, Belarus, Bosnia and Herzegovina, Bulgaria, Canada, Croatia,51

Czech Republic, Denmark, Estonia, Finland, Hungary, Lithuania, Moldova, Norway, Poland,52

Romania, Russia, Serbia, Slovakia, Slovenia, South Korea, Sweden, Switzerland and Ukraine in53

cold region.54

Figure S6: Simulation results of the cumulative confirmed cases, cumulative recovered cases,55

and cumulative deaths of Iceland in polar region.56

Figure S7: Distribution of the contact rates c0 at early transmission period of the 85 coun-57

tries.58

Figure S8: Same as Figure S6, but for the minimum contact rates cf .59

Figure S9: Sensitivity analysis of the daily new confirmed cases of Cameroon, Cuba, Do-60

minican Republic, Ecuador, Ghana, Malaysia, Nigeria, Panama, Puerto Rico, and Thailand in61

tropical region.62

Figure S10: Sensitivity analysis of the daily new confirmed cases of Afghanistan, Algeria,63

Argentina, Austrialia, Azerbaijan, Bahrain, Djibouti, Iraq, Israel, Kazakstan, Kuwait, Morocco,64

Oman, Qatar, United Arab Emirates and Uzbekistan in arid region.65

Figure S11: Sensitivity analysis of the daily new confirmed cases of Austria, Belgium, Greece,66

Guinea, Indonesia, Ireland, Luxembourg, Netherlands, and Portugal in temperate region.67

Figure S12: Sensitivity analysis of the daily new confirmed cases of Armenia, Belarus, Bosnia68

and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, Hungary,69

Lithuania, Moldova, Norway, Poland, Romania, Servia, Slovakia, Slovenia, Switzerland, and70

Ukraine in cold region.71
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Figure S1: Spatial distributions of the cumulative confirmed COVID-19 cases over the world, for the

numbers of 1 million cases (A), 2 millions cases (B), 4 millions cases (C), 6 millions cases (D), 8 millions

cases (E), and 10 millions cases (F).
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Figure S2: Simulation results of the cumulative confirmed cases, cumulative recovered cases, and cu-

mulative deaths of Bolivia, Brazil, Cameroon, Colombia, Cuba, Dominican Republic, Ecuador, Ghana,

India, Malaysia, Nigeria, Panama, Peru, Philippines, Puerto Rico, Singapore and Thailand in tropical

region.
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Figure S3: Simulation results of the cumulative confirmed cases, cumulative recovered cases, and cumu-

lative deaths of Afghanistan, Algeria, Argentina, Australia, Azerbaijan, Bahrain, Chile, China, Djibouti,

Egypt, Iran, Iraq, Israel, Kazakhstan, Kuwait, Mexico, Morocco, Oman, Pakistan, Qatar, Saudi Arabia,

South Africa, Spain, Turkey, United Arab Emirates, United States and Uzbekistan in arid region.
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Figure S4: Simulation results of the cumulative confirmed cases, cumulative recovered cases, and cumula-

tive deaths of Austria, Bangladesh, Belgium, France, Germany, Greece, Guinea, Indonesia, Ireland, Italy,

Japan, Luxembourg, Netherlands, New Zealand, Portugal and United Kingdom in temperate region.
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Figure S5: Simulation results of the cumulative confirmed cases, cumulative recovered cases, and cumu-

lative deaths of Armenia, Belarus, Bosnia and Herzegovina, Bulgaria, Canada, Croatia, Czech Republic,

Denmark, Estonia, Finland, Hungary, Lithuania, Moldova, Norway, Poland, Romania, Russia, Serbia,

Slovakia, Slovenia, South Korea, Sweden, Switzerland and Ukraine in cold region.
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Figure S6: Simulation results of the cumulative confirmed cases, cumulative recovered cases, and cumu-

lative deaths of Iceland in polar region.
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Figure S7: Distribution of the contact rates c0 at early transmission period of the 85 countries.

Figure S8: Same as Figure S5, but for the minimum contact rates cf .
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Figure S9: Sensitivity analysis of the daily new confirmed cases of Cameroon, Cuba, Dominican Republic,

Ecuador, Ghana, Malaysia, Nigeria, Panama, Puerto Rico, and Thailand in tropical region.
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Figure S10: Sensitivity analysis of the daily new confirmed cases of Afghanistan, Algeria, Argenti-

na, Austrialia, Azerbaijan, Bahrain, Djibouti, Iraq, Israel, Kazakstan, Kuwait, Morocco, Oman, Qatar,

United Arab Emirates and Uzbekistan in arid region.
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Figure S11: Sensitivity analysis of the daily new confirmed cases of Austria, Belgium, Greece, Guinea,

Indonesia, Ireland, Luxembourg, Netherlands, and Portugal in temperate region.
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Figure S12: Sensitivity analysis of the daily new confirmed cases of Armenia, Belarus, Bosnia and Herze-

govina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, Hungary, Lithuania, Moldova,

Norway, Poland, Romania, Servia, Slovakia, Slovenia, Switzerland, and Ukraine in cold region.
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