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Abstract

The Australian 2019/2020 bushfires were unprecedented in both their extent and intensity, causing a catastrophic loss of habitat

and human and animal life across eastern-Australia. Between October 2019 and February 2020 hundreds of fires burned, peaking

in size in December and January and releasing the equivalent of half of Australia’s annual carbon dioxide (CO2) emissions. We

use a high-resolution atmospheric-chemistry transport model to assess the impact of the bushfires on particulate matter with

a diameter less than 2.5 μm (PM2.5) concentrations across eastern Australia. The health burden from short-term population

exposure to PM2.5 is then quantified using a concentration response function. We find that between October and February an

additional ˜1.9 million people in eastern-Australia were exposed to ‘Poor’, ‘Very Poor’ and ‘Hazardous’ air quality index levels

due to the fires. The impact of the bushfires on AQ was concentrated in the cities of Sydney, Newcastle-Maitland and Canberra-

Queanbeyan during November, December and, also in Melbourne, in January. The health burden of bushfire PM2.5 across

eastern-Australia, regionally and at city level is also estimated. Our estimate indicates that between October and February 171

(95% CI: 66 – 291) deaths were brought forward. The health burden was largest in New South Wales (109 (95% CI: 41 – 176)

deaths brought forward), Queensland (15 (95% CI: 5 – 24)) and Victoria (35 (95% CI: 13 – 56)). At a city level the health

burden was concentrated in Sydney (65 (95% CI: 24 – 105)), Melbourne (23 (95% CI: 9 – 38)) and Canberra-Queanbeyan (9

(95% CI: 4 – 14)), where large populations were exposed to high PM2.5 concentrations due to the bushfires.
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Key Points: 18 

• ~1.9 million people were exposed to ‘Poor’, ‘Very Poor’ or ‘Hazardous’ air quality 19 
index levels in eastern-Australia due to the fires. 20 

• The bushfire PM2.5 health burden was largest in NSW (109 (95% CI:41-176)), 21 
Queensland (15 (95% CI:5-24)) and Victoria (35 (95% CI:13-56)).  22 

• The health burden was concentrated in Sydney (65 (95% CI:24-105)), Melbourne (23 23 
(95% CI:9-38)) and Canberra-Queanbeyan (9 (95% CI:4-14)). 24 

Abstract 25 

The Australian 2019/2020 bushfires were unprecedented in both 26 

their extent and intensity, causing a catastrophic loss of habitat and 27 

human and animal life across eastern-Australia. Between October 28 

2019 and February 2020 hundreds of fires burned, peaking in size 29 

in December and January and releasing the equivalent of half of 30 

Australia’s annual carbon dioxide (CO2) emissions. We use a high-31 

resolution atmospheric-chemistry transport model to assess the 32 
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impact of the bushfires on particulate matter with a diameter less 33 

than 2.5 µm (PM2.5) concentrations across eastern Australia. The 34 

health burden from short-term population exposure to PM2.5 is then 35 

quantified using a concentration response function. We find that 36 

between October and February an additional ~1.9 million people in 37 

eastern-Australia were exposed to ‘Poor’, ‘Very Poor’ and 38 

‘Hazardous’ air quality index levels due to the fires. The impact of 39 

the bushfires on AQ was concentrated in the cities of Sydney, 40 

Newcastle-Maitland and Canberra-Queanbeyan during November, 41 

December and, also in Melbourne, in January. The health burden of 42 

bushfire PM2.5 across eastern-Australia, regionally and at city level 43 

is also estimated. Our estimate indicates that between October and 44 

February 171 (95% CI: 66 – 291) deaths were brought forward. The 45 

health burden was largest in New South Wales (109 (95% CI: 41 – 46 

176) deaths brought forward), Queensland (15 (95% CI: 5 – 24)) 47 

and Victoria (35 (95% CI: 13 – 56)). At a city level the health burden 48 

was concentrated in Sydney (65 (95% CI: 24 – 105)), Melbourne 49 

(23 (95% CI: 9 – 38)) and Canberra-Queanbeyan (9 (95% CI: 4 – 50 

14)), where large populations were exposed to high PM2.5 51 

concentrations due to the bushfires.  52 

1 Introduction 53 

The Australian 2019/2020 bushfires were unprecedented in both their extent and intensity 54 

(Brew et al., 2020), causing a catastrophic loss of habitat and human and animal life. Between 55 

October 2019 and February 2020 hundreds of fires burned in the south-east of the country, 56 

peaking in size in December and January. By burned area the bushfires were the largest in 57 
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south-east Australia since European occupation (late 1700s) (Wintle et al., 2020), burning more 58 

than 10 million hectares of vegetation. The burned area of the 2019/2020 fires was larger than 59 

the Ash Wednesday (1983) and Black Saturday (2009) fires combined (Brew et al., 2020). The 60 

immediate impacts of the bushfires included the destruction of almost 6,000 buildings and the 61 

deaths of 34 people and more than three billion terrestrial vertebrates (Verzoni, 2021).  62 

The severity of the 2019/2020 bushfire season was promoted by a decrease in rainfall and 63 

increase in temperatures due to a combination of meteorological and climatic conditions 64 

(Australian Bureau of Meteorology, 2019a). Australia had experienced two consecutive very 65 

dry years prior to 2019 (2017-2018), with 2019 being the warmest and driest on record (van 66 

Oldenborgh et al., 2020). This was combined with a strong positive Indian Ocean Dipole (IOD) 67 

phase from July 2019 onwards (Australian Bureau of Meteorology, 2020) and a negative 68 

Southern Annular Mode (SAM) event (Australian Bureau of Meteorology, 2019b), both of 69 

which reduce rainfall across south-eastern Australia.  70 

The vegetation cover in east Australia is dominated by native tree and grass species (native 71 

forests and woodlands, native shrublands and heathlands, native grasslands and minimally 72 

modified pasture), annual crops and highly modified pastures (Australia State of the 73 

Environment, 2016). The forests are temperate broadleaf and are principally eucalypts, one of 74 

the most fire prone species in the world. Fires in eucalypt forests spread largely through the 75 

leaf litter layer, and the dryness of this layer effectively controls the occurrence of fires (Boer 76 

et al., 2020). In 2019, the moisture content of leaf litter reached record low levels and the total 77 

area of leaf litter exceeded critical flammability levels; being the highest in the past 30 years 78 

(van Oldenborgh et al., 2020). Typically, <2% of eucalypt forests burn in the most extreme fire 79 

seasons (Boer et al., 2020). However, during the 2019/2020 bushfires 21% of the biome burned, 80 

well above the burned percentages seen anywhere else in the world.  81 
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Emissions from the bushfires also had a large impact at a global scale, releasing >300 tonnes 82 

of CO2 between August and January, equivalent to half of Australia’s annual carbon emissions 83 

(Lee, 2019). In addition, the fires produced large-scale enhancements in trace gases over a large 84 

region of the South Pacific, and plumes from the fires (carbon monoxide) circumnavigated the 85 

Southern hemisphere (Jenner, 2020; Pope et al., 2021).   86 

Substantial epidemiological and toxicological evidence supports the association between 87 

wildfire PM2.5 exposure and short-term all-cause mortality and short-term respiratory morbidity  88 

(Delfino et al., 2009; Faustini et al., 2015; Johnston et al., 2011; Naeher et al., 2007; Reid et 89 

al., 2016; Zanobetti and Schwartz, 2009). However, research to identify the toxicity of different 90 

components of PM2.5 chemical composition is ongoing, and so equal toxicity for all PM2.5 is 91 

commonly assumed in health impact assessments. The health burden of wildfires is 92 

concentrated in the tropics, Australia, Canada and the USA and is substantial (Black et al., 93 

2017; Crippa et al., 2016; Johnston et al., 2012; Liu et al., 2015; Reid et al., 2016). The PM2.5 94 

associated health burden from long-term exposure is dominated by exposure to wildfires in 95 

large parts of these countries (Lelieveld et al., 2015). Therefore, reducing population exposure 96 

to pollutants from wildfires is likely to yield an near-term, large health benefit in these regions 97 

(Johnston et al., 2012).  98 

Climate change is projected to increase the frequency, intensity and spread of wildfires both 99 

globally (Sutton et al., 2011) and in Australia (Lucas et al., 2007). Fire weather conditions in 100 

Australia are predicted to worsen, with forest fire danger index (FFDI) projected to increase in 101 

all climate change scenarios (0-10% by 2020 and 0-30% by 2050) (Lucas et al., 2007). 102 

Alongside this, the number of days where fire danger is ‘very-high’ or ‘extreme’ was projected 103 

to increase by between 5-65% by the end of 2020, with an increase in the length of the fire 104 

season (Lucas et al., 2007). The largest changes in FFDI were predicted to be seen in New 105 
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South Wales due to the Mediterranean climate of the region. Mild, wet winters encourage the 106 

growth of fuel, and hot, dry summers lead to an increase in the FFDI (Lucas et al., 2007). The 107 

increase in bushfire frequency and intensity is likely to increase population exposure to 108 

pollutants from bushfires, and therefore the health burden of bushfire events.  109 

The first study to investigate the impact of the 2019/2020 bushfires on mortality from exposure 110 

to PM2.5 used PM2.5 concentrations observed at ground-based air quality monitoring sites across 111 

eastern Australia to estimate daily mean PM2.5 exposure (Borchers Arriagada et al., 2020). 112 

Inverse distance weighting was used to interpolate PM2.5 monitoring data spatially to statistical 113 

area level 2 (SA2s) centroids within 100 km of each monitoring site. SA2s generally include a 114 

population of ~10,000 (3,000 – 25,000) and are designed to be representative of individual 115 

communities that interact together socio-economically. The entire SA2 population was then 116 

assumed to be exposed to the interpolated PM2.5 concentration. Bushire smoke affected days 117 

were defined, for each monitoring site, as days where the daily mean PM2.5 concentration 118 

exceeded the 95th percentile of historical daily mean PM2.5 concentrations. The contribution of 119 

bushfire smoke to the total PM2.5 mass (bushfire smoke PM2.5) was estimated using the 120 

difference between the observed PM2.5 concentration and the long-term historical monthly-121 

mean PM2.5 concentration at each monitoring site. Using the bushfire smoke PM2.5 the health 122 

impacts of bushfire PM2.5 exposure were estimated, applying the WHO (2013) short-term 123 

exposure-response function for all-cause, all-age mortality. The estimated health impact on 124 

mortality was substantial, with an estimated 417 (95% CI: 153 – 680) deaths brought forward 125 

across eastern-Australia due to bushfire smoke between October 1st 2019 and February 10th 126 

2020. The health impact on mortality was highest in New South Wales and Victoria (219 (95% 127 

CI: 81 – 357) and 120 (95% CI: 44 – 195)).  128 
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In a separate study, Ryan et al. (2021) used a random forest model, trained using ground-based 129 

observations, to predict air pollutant concentrations, including PM2.5, without bushfires. These 130 

were compared with ground-based observations during the period of the bushfires to estimate 131 

the bushfire contribution to PM2.5 concentrations each day. Population-weighted bushfire PM2.5 132 

exposure and short-term health impacts in New South Wales and Victoria were then estimated 133 

in the same way as Borchers Arriagada et al. (2020). The estimated health impact lay within 134 

the lower limit of Borchers Arriagada et al. (2020) in New South Wales and Victoria at 152 135 

(95% CI: 95 – 209) and 92 (95% CI: 57 – 126), compared with 219 (95% CI: 81 – 357) and 136 

120 (95% CI: 44 – 195). The difference was attributed to the different approaches to 137 

quantifying the bushfire fraction of PM2.5, as well as the study by Ryan et al. (2021) only 138 

including populations within the large cities (~80% of the region) rather than the entire region 139 

population.  140 

This paper will use an atmospheric chemistry transport model (ACTM) to explicitly simulate 141 

PM2.5 concentrations between September 1st 2019 and January 31st 2020 at 30 km resolution. 142 

This aims to provide a more accurate daily estimation of the bushfire smoke contribution to 143 

total PM2.5 mass, by simulating PM2.5 concentrations accounting for real time meteorological 144 

conditions and atmospheric processes, and calculating explicitly the PM2.5 increment due to the 145 

fires. Regional population exposure is likely to be better captured, since this is more 146 

challenging to capture using sparse monitoring network that may not capture strong PM2.5 147 

concentration gradients which are likely to have been observed during the fire event. This 148 

allows us to estimate the health impacts of bushfire PM2.5 exposure at both city and region-149 

wide scales.  150 
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2 Materials and Methods 151 

2.1 Model Description 152 

PM2.5 concentrations between September 1st 2019 to January 31st 2020 were simulated using 153 

the Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) model 154 

(version 3.7.1), a fully coupled atmospheric chemistry model. A detailed model description can 155 

be found in Conibear et al. (2018a), and this model version has been used to successfully 156 

simulate PM2.5 air pollution for India (Conibear et al., 2018a, 2018b, 2018c), SE Asia (Kiely et 157 

al., 2020, 2019), and China (Reddington et al., 2019; Silver et al., 2020). The model domain 158 

covered eastern-Australia (128.9 to 170.6°E and -9 to -48°N) at 30 km horizontal resolution 159 

(130x150 grid boxes), with 33 vertical levels (up to 10 hPa) and included 89% (22.1 m) of the 160 

Australian population. The contribution of bushfires to surface PM2.5 concentrations between 161 

September 1st and January 31st was calculated by simulating two scenarios, with and without 162 

fire emissions. This allowed the contribution of the fires to air quality and health be quantified 163 

(PM2.5 Fires - PM2.5 No Fires = PM2.5 Fires Only).  164 

Meteorological conditions were initialised using ERA5 6-hourly analyses at 0.1º resolution on 165 

38 pressure levels (Hoffmann et al., 2018). Nudging was used in order to keep simulated 166 

meteorology in line with the meteorological analyses. Several nudging sensitivity experiments 167 

were carried out to investigate the sensitivity of simulated PM2.5 concentrations to the nudging 168 

option used (Supplementary Material: Figure S4). Nudging of potential temperature, the 169 

horizontal and vertical winds and the water vapour mixing ratio in all vertical levels, rather 170 

than just above the boundary layer, improved simulated PM2.5 concentrations by reducing the 171 

Root Mean Square Error (RMSE) to 22.9 µg m-3 from 24.1 µg m-3, Normalised Mean Absolute 172 

Error (NMAE) to 0.72 from 0.74 and Normalised Mean Bias (NMB) to -0.17 from -0.49, 173 

respectively. Though the Pearson correlation coefficient (r) was slightly reduced to 0.39 from 174 
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0.42 (Supplementary Material: Table S1). Therefore, the results of the simulations where all 175 

meteorological variables in all vertical levels were nudged are presented here.  176 

Chemical boundary conditions were provided by the Whole Atmosphere Community Climate 177 

Model (WACCM) 6-hourly simulation data (Marsh et al., 2013; UCAR, 2020a). WACCM 178 

meteorology is driven by the NASA Global Modelling and Assimilation Office (GMAO) 179 

Goddard Earth Observing System Model (GEOS-5) model. Anthropogenic emissions for 2014 180 

from the Community Emissions Data System (CEDS) (used in the 6th Coupled Model 181 

Intercomparison Project (CMIP6)) and the Fire Inventory from NCAR (FINN) version 1 (v1) 182 

fire emissions are used in WACCM. Model output is given on 88 vertical levels at 0.9x1.25º 183 

(UCAR, 2020b).  184 

Global anthropogenic emissions were taken from the Emission Database for Global 185 

Atmospheric Research with Task Force on Hemispheric Transport of Air Pollution version 2.2 186 

(EDGAR-HTAP2) (Janssens-Maenhout et al., 2015) at 0.1° resolution for 2010. Sector specific 187 

diurnal cycles were subsequently added to the emissions, using diurnal cycles from Olivier et 188 

al. (2003). EDGAR-HTAP2 is a global, gridded, air pollution emission inventory compiled of 189 

officially reported, national gridded inventories. Where national emissions datasets or specific 190 

sectors are not available 2010 EDGAR v4.3 grid maps are used. Emissions include SO2, NOx, 191 

CO, NMVOC, NH3, PM10, PM2.5, BC and OC. Emissions include all anthropogenic emissions 192 

except large-scale biomass burning (e.g. wildfires).  193 

The Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) (Emmons et al., 194 

2009) is used to calculate gas-phase chemical reactions. Aerosol chemistry and physics are 195 

represented using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) 196 

scheme, with sub-grid scale aqueous chemistry (Zaveri et al., 2008). Aerosols are represented 197 
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by four sectional discrete size bins (0.039–0.156 µm, 0.156–0.625 µm, 0.625–2.5 µm, 2.5–10 198 

µm). The use of the MOSAIC scheme balances detailed chemistry with computational expense.  199 

2.1.1 Wildfire emissions 200 

Wildfire emissions are taken from FINNv1 near-real time (FINNv1 NRT), since FINNv1.5 201 

was not available at the time model simulations were carried out. FINN combines satellite 202 

observations, land cover, biomass consumption estimates and emissions factors to calculate 203 

daily fire emissions globally at 1 km resolution. FINN uses satellite observations from the 204 

MODIS Thermal Anomalies Product to provide detections of active fires. Burned area is 205 

assumed to be 1 km2 for each fire identified and scaled back based on the density of vegetation 206 

from the MODIS Continuous Fields (VCF) (i.e. if 50% bare = 0.5 km2 burned area). The type 207 

of vegetation burned during a detected fire is determined using the MODIS Collection 5 Land 208 

Cover Type (LCT). This assigns each fire pixel to one of 16 possible land cover/land use classes 209 

and also the density of vegetation at 500 m resolution, scaled to 1 km. The 16 land cover types 210 

are then aggregated into 8 generic categories to which fuel loadings are applied (Wiedinmyer 211 

et al., 2011). Fuel loadings are from Hoelzemann et al. (2004) and emissions factors are from 212 

Akagi et al. (2011), Mcmeeking (2008) and Andrae and Merlet (2001). Fire types included are 213 

wildfires, prescribed and agricultural burning. However, trash burning or biofuel use are not 214 

included.  215 

The key difference between FINN v1 NRT and FINN v1.5 is that FINN v1 NRT uses MODIS 216 

near real time fire counts rather than the reprocessed fire counts, which FINN v1.5 uses. The 217 

differences between the two datasets over Australia for the year 2018 (and 2019 following the 218 

v1.5 release) are quantified (Supplementary Material: Figure S1) to identify any differences in 219 

emissions. Generally, emissions for 2019 indicate that emissions per fire hotspot were much 220 

higher than previous years (2010-2018). This is likely due to the high levels of dry fuel 221 
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availability during 2019 (van Oldenborgh et al., 2020). Emissions in FINN v1.5 and NRT are 222 

in good agreement for 2018, while for 2019 FINN NRT PM2.5 (~1 Tg) are slightly higher than 223 

FINNv1.5 (~0.9 Tg). However, there is a much larger range of disagreement in the estimates 224 

of 2019 annual fire emissions between the five key fire emissions datasets (~1 to >7.5 Tg) 225 

(Supplementary Material: Figure S2). Due to the large discrepencies in annual fire emission 226 

estimates from the five key fire emission datasets available, we also carry out a further 227 

simulation where FINN NRT emissions are scaled by 1.5 (referred to later as scaled_1.5) to 228 

test the sensitivity of simulated PM2.5 concentrations to total fire emissions.  229 

Release of Fire Emissions 230 

The high temperatures associated with combustion mean that wildfires can often inject 231 

emissions above the surface due to buoyancy of the fire plume. In WRF-Chem a default plume-232 

rise parameterization is used to release fire emissions (Freitas et al., 2007). However, several 233 

studies have found that the plume-rise parameterization potentially represents an incorrect 234 

vertical distribution of the emissions (Archer-Nicholls et al., 2015; Crippa et al., 2016). Kiely 235 

et al. (2020, 2019) found that releasing emissions evenly through the boundary layer (BL) 236 

improved agreement between simulated surface PM2.5 concentration and observations for 237 

Indonesian fires.  Therefore, we test two options: 1) releasing emissions evenly through the 238 

boundary layer and 2) plume-rise. The results of this sensitivity study indicate that simulated 239 

PM2.5 concentrations are relatively insensitive to the emission option used (Supplementary 240 

Material: Figure S4) but releasing emissions evenly through the BL performs better. Therefore, 241 

we present the results of releasing emissions evenly through the BL in this study.  242 

2.2 Observations 243 

Ground-based monitoring sites  244 
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Daily mean PM2.5 mass concentrations, calculated from hourly PM2.5 observations, at ground-245 

based monitoring sites are used to assess model performance in simulating PM2.5 246 

concentrations. Data from the New South Wales, Queensland, Australian Capital Territory 247 

Government and the Victoria EPA monitoring networks were combined, providing data across 248 

80 observational sites. A map of sites used is available in the Supplementary Material 249 

(Supplementary Material: Figure S3). Daily means were calculated from hourly data if >18 250 

hours of data was available each day, otherwise a missing data flag was applied. Model 251 

performance was evaluated using r, NMB, RMSE and NMAE (Supplementary Material: Table 252 

S1). Multiple observations were available in several large cities (Newcastle, Sydney, Canberra, 253 

Melbourne – see Figure 1 for locations), allowing the model performance to be evaluated in 254 

locations where populations are likely to have been exposed to high concentrations of PM2.5.  255 

2.2.1 Health Impact Assessment 256 

The health impact from short-term exposure to elevated PM2.5 from the Australian fires is 257 

calculated using a concentration-response function (CRF). The CRF of the World Health 258 

Organisation (2013) was used to estimate the impact of short-term exposure to PM2.5 on 259 

mortality.  260 

 261 

E" =	%B'. pop+. AF+	
.

+/0

 
(1) 

 

 262 

Here, Em represents the excess mortality caused by exposure to PM2.5 over the theoretical 263 

minimum risk level of exposure (Equation ((3): DX–X0) each day. N is the number of days 264 
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within the simulation and i is the day in simulation, Bd is the baseline death rate, popi is the 265 

population exposed each day and AFi is the attributable fraction of risk each day due to 266 

exposure to PM2.5. 267 

 268 

AF = (
RR − 1
RR ) 

 

(2) 

 

RR = exp8(∆:;:<)	 (3) 

 

 

The AF is calculated using the concept of relative risk (RR), which is the probability of 269 

mortality from a disease endpoint within an exposed population compared to within an 270 

unexposed population. The concentration of bushfire PM2.5 a population is exposed to is given 271 

by DX (PM2.5 FIRES - PM2.5 NO FIRES) and the safe- limit of exposure is X0. Since there is little 272 

evidence to suggest a safe-limit of exposure to PM2.5 we assume X0 to be zero (Holgate, 1998; 273 

Macintyre et al., 2016; Schmidt et al., 2011). 274 

 275 

β =
ln(RR)
∆C  

 

(4) 
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We use relative risk values from the World Health Organisation (2013) of 1.0123 (95% CI: 276 

1.0045, 1.0201) per 10 µg m-3, which we use to estimate beta (ß) using Equation (4). Since the 277 

RR used is for all-cause, all-age mortality, we use all-cause, all-age baseline mortality rates in 278 

the calculations. Calculated health impacts are separated by region and city using shapefiles. 279 

2.2.1 Population and Baseline Mortality Data 280 

Population count data for 2018 is from the Australia Bureau of Statistics (Australian Bureau of 281 

Statistics, 2019) at 1 km resolution. This indicates our model domain includes 89% of the 282 

Australian population. Baseline all-cause, all-age 2018 mortality rate data for each region in 283 

our model domain is taken from the Australia Bureau of Statistics (Australian Bureau of 284 

Statistics, 2020) (Supplementary Material: Table S6).  285 

3 Results 286 

3.1 Fire Emissions 287 

FINN emissions clearly indicate that the PM2.5 emissions between late-October 2019 and mid-288 

January 2020 were unprecedented, lying far above the daily mean emissions observed in the 289 

previous 8 years (Figure 1 and Supplementary Material: Table S1). The Australian bushfires 290 

in 2019-2020 began in the northern region of eastern-Australia (close to Brisbane and 291 

Newcastle) and shifted south through the season (Figure 1). As the fires moved southwards, 292 

PM2.5 emissions also increased, with the highest PM2.5 emissions occurring in south-eastern 293 

Australia in late December- early January. 294 
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 295 

 296 

The impact of the fires on PM2.5 air quality (AQ) is clear from ground-based observations 297 

across south-east Australia (Figure 2). Observations indicate that between October 2019 and 298 

February 2020 daily mean PM2.5 concentrations averaged across all sites reached 70 µg m-3 on 299 

several days. In the no fires simulation concentrations remain below 20 µg m-3, indicating that 300 

a large fraction of the total PM2.5 mass observed is due to fires. The impact of the fires on 301 

populations can be more clearly seen when PM2.5 concentrations in individual cities are 302 

examined (Figure 2). Newcastle and Sydney exhibit the same pattern of PM2.5 variability, 303 

following the pattern seen regionally across eastern-Australia closely. High PM2.5 304 

concentrations are first observed in late October and affect the cities sporadically until mid-305 

January, reaching ~75 µg m-3. In contrast, the impacts of the fires on PM2.5 AQ in Canberra are 306 

not seen until November and December. However, concentrations are much higher in Canberra, 307 

Figure 1. PM2.5 fire emissions (Tonnes day-1) across Australia between March 2019 and March 
2020 from the FINN near-real time fire emission dataset. The timeseries shows the 2010-
2018 daily mean PM2.5 emissions (grey) and the 2019-2020 daily mean PM2.5 emissions 
(maroon). Inset map: Map of total PM2.5 fire emissions (Tonnes km-2) across eastern 
Australia between March 2019 and March 2020. 
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reaching >100 µg m-3 in November and >300 µg m-3 in December. PM2.5 AQ in Melbourne is 308 

affected latest, with PM2.5 concentrations reaching 50 to >150 µg m-3 in December and January.  309 

(a) 
 

(b) 
 

Figure 2. (a) Observed (black) and simulated (dotted magenta and dashed cyan) daily 
mean PM2.5 concentrations. Simulations shown are no fires (dashed cyan) and fires 
(dotted magenta). The mean PM2.5 concentration from all 80 observational sites 
across eastern-Australia is shown for the model and observations. (b) The same as 
above but for individual cities (Sydney, Newcastle, Canberra and Melbourne). The 
observed (black) and simulated (dotted magenta and dashed cyan) daily mean 
PM2.5 concentrations are shown for each city. The total number of observational 
sites in each city is also shown on the left of each panel.  
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3.2 Model Evaluation 310 

Evaluation of the WRF-Chem model indicates that the model generally underestimates PM2.5 311 

in early September (by ~70%) but then tends to overestimate PM2.5 (by ~30%) in early October 312 

(before the fires) across all sites (Figure 2). This is also generally true at city scale (Figure 2). 313 

During the fire period (late-October – November) there is a substantial enhancement in PM2.5 314 

in both the observations and WRF-Chem fires simulation. The fires simulation captures the 315 

variability in PM2.5 observations reasonably well (r=0.39), particularly compared to the no fires 316 

simulation (r=0.14). The fires simulation also captures the concentrations observed in the peaks 317 

and ambient conditions well (RMSE = 22.9 µg m-3, NMB = -0.17), compared to the no fires 318 

simulation (RMSE = 25.3 µg m-3, NMB = -0.45) and the scaled fire emissions simulation 319 

[scaled_1.5]  (RMSE = 24.3 µg m-3, NMB = -0.03), in which fire emissions between September 320 

and February were scaled by 1.5 (see Supplementary Material: Fire Emissions and Figure S2 321 

for more details) . The model performs well in all of the cities, which have several observational 322 

sites (Sydney, Newcastle and Melbourne), capturing the variability and magnitude of the peaks 323 

in PM2.5 well. The model struggles to capture the magnitude of the PM2.5 peaks observed in 324 

Canberra but this is likely due to the lack of observations (3 sites), meaning the model struggles 325 

to represent a small number of point measurements. PM2.5 concentrations in cities for which 326 

there are many more observation locations (5 - 24 sites) are represented better by the model. 327 

The improvement in model performance in cities where there are multiple observations gives 328 

confidence in the ability of the model to represent the population exposure to PM2.5 from the 329 

fires.  330 

Monthly mean modelled PM2.5 concentrations from the fires and no fire runs can be used to 331 

understand the impact of the bushfires on PM2.5 concentrations across south-east Australia 332 

(Figure S6, Figure S7 and Figure S8). This indicates that although monthly mean 333 
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concentrations were relatively low in October and November (monthly mean £ 25 µg m-3), a 334 

large fraction of PM2.5 around Brisbane (20-30%) and also Newcastle and Sydney (20-100%) 335 

was from fires. This bushfire fraction increases in magnitude and spatial extent as the fires peak 336 

in December and January, when >70% of PM2.5 is from fires over a large region including 337 

Melbourne, Canberra, Sydney, Newcastle and Brisbane. 338 

3.3 Air Quality Impacts 339 

 340 
Combining simulated PM2.5 concentrations with population data (at 1 km) allows the 341 

contribution of the fires to population exposure to poor AQ to be estimated across eastern-342 

Australia (Figure 3 (a), Supplementary Material: Figure S9) and in individual cities (Figure 4 343 

(a)). Across eastern-Australia exposure to New South Wales Air Quality Index (AQI) values 344 

before the fires (in September and October) were dominated by ‘V.Good’ and ‘Good’ values 345 

(Figure 3 (a) and Supplementary Material: Table S2). During September, on average, ~21.4 346 

million people were exposed to ‘V. Good’ and ‘Good’ AQI concentrations (Supplementary 347 

Material: Table S2), while ~6,000 people were exposed to concentrations poorer than ‘Good’ 348 

AQI. In October, there was an increase in the monthly mean population exposure to poor PM2.5 349 

AQ (‘Poor’, ‘V.Poor’ and ‘Hazardous’ PM2.5 AQI values) (Figure 3 (a)), however overall 350 

monthly mean exposure to poor AQ remained low. An average of 298,000, 12,100 and 93 351 

people were exposed to ‘Poor’, ‘V.Poor’ and ‘Hazardous’ PM2.5 AQI values. Throughout 352 

November exposure to poor AQ increased, exposing 1.35 m people to ‘Poor’ or ‘V.Poor’ PM2.5 353 

AQI (Figure 3). Between November 1st and February 1st the average population exposed to 354 

‘Poor’, ‘V.Poor’ and ‘Hazardous’ PM2.5 AQI values was ~1.5 m  in November, 935,000 in 355 

December and ~1.3 m in January. This equates to a population ~2 times the size of Canberra-356 
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Queanbeyan (~0.6 m) or almost half of the population of Brisbane (~3.5 m) being exposed to 357 

‘Poor’ or worse AQ on average from November-February.  358 

 359 

By comparing monthly mean population AQI exposure (calculated as the monthly mean AQI 360 

from the daily AQI) during the bushfires to if there were no fires (Supplementary Material: 361 

Table S2 and Table S3) exposure to high AQI value can be attributed to the fires rather than as 362 

a result of other effects (e.g. long-range transport of PM2.5). This indicates that in the no fires 363 

simulation between September and the end of January in total 1.6 million people would have 364 

been exposed to ‘Poor’ AQI values, ~163,000 to ‘V. Poor’ AQI values and 130,000 to 365 

Figure 3. (a) Daily population exposure (in millions and %) to New South Wales Air Quality Index (AQI) 
values across eastern-Australia (fires simulation) between September 1st and January 31st. AQI values 
correspond to PM2.5 concentrations of 0-8.5 (V. Good), >8.5-16.75 (Good), >16.75-25 (Fair), >25-37.5 
(Poor), >37.5-50 (V. Poor), >50 (Hazardous), all in µg m-3. More information on how the AQI is 
calculated is available in Supplementary Material: Table S9. (b) Daily population-weighted bushfire 
PM2.5 exposure (in µg m-3) across all states in the model domain (red) and regionally for Victoria 
(green), Australian Capital Territory blue (yellow) and Queensland (purple) (fires-no fires simulation) 
between September 1st and January 31st. 

(b) 
 

(a) 
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‘Hazardous’ AQI values if there were no fires. Therefore, the fires led to an additional ~1.9 366 

million people being exposed to ‘Poor’ or worse AQI values on average (~1.1 million exposed 367 

to ‘Poor’, 437,000 to ‘V.Poor’ and 339,000 to ‘Hazardous’ AQI values) across eastern 368 

Australia between September and February (Supplementary Material: Table S2 and Table S3).  369 

In order to understand the impact of poor AQ from the fires on the population, the bushfire 370 

PM2.5 concentration can be weighted by the total population in each region (population 371 

weighted bushfire PM2.5). We calculate the population-weighted bushfire PM2.5 concentration 372 

for the regions most severely affected by the fires (Figure 3 (b), Table 1 and Supplementary 373 

Material: Table S5). This indicates that the population in ACT was exposed to the highest PM2.5 374 

due to the fires. Here, population-weighted bushfire PM2.5 concentrations reached 155.1 µg m-375 

3 on January 4th and exceeded 100 µg m-3 on several days. This is far above the maximum 376 

population-weighted PM2.5 concentrations in any of the other regions (Queensland (22.9 µg m-377 

3) NSW (53.4 µg m-3) Victoria (81.8 µg m-3)) and far above the maximum between September 378 

1st and January 31st across all regions, of 58.3 µg m-3. The mean population-weighted PM2.5 379 

concentration between September and February across all regions was 11.6 µg m-3, with the 380 

highest mean population-weighted PM2.5 concentrations in ACT (14.1 µg m-3) and NSW (13.4 381 

µg m-3). Comparing these results with Borchers Arriagada et al. (2020), population-weighted 382 

bushfire PM2.5 concentrations are considerably lower in this study (Table 1 and Supplementary 383 

Material: Table S5). This is evident from the difference in the mean and maximum population-384 

weighted PM2.5 concentrations across all regions (mean: 11.6 µg m-3 vs 23.7 µg m-3 and 385 

maximum: 58.3 µg m-3 vs 98.5 µg m-3). The disparity is dominated by the large differences 386 

between estimates for ACT and Victoria (Table 1 and Supplementary Material: Table S5), 387 

where observations were relatively sparse. 388 
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  389 

Figure 4. (a) Daily population exposure (in millions and % of total population) to New South Wales 
Air Quality Index (AQI) values in individual cities (Brisbane (Queensland), Sydney (NSW), 
Newcastle-Maitland (NSW), Canberra-Queanbeyan (ACT) and Melbourne (Victoria)) between 
September 1st and January 31st. AQI values correspond to PM2.5 concentrations of 0-8.5 (V. 
Good), >8.5-16.75 (Good), >16.75-25 (Fair), >25-37.5 (Poor), >37.5-50 (V. Poor), >50 
(Hazardous), all in µg m-3.More information on how the AQI is calculatedis available in 
Supplementary Material: Table S9. (b) Daily population-weighted bushfire PM2.5 concentration 
(in µg m-3) in the cities of Brisbane (blue), Newcastle-Maitland (purple), Sydney (green), 
Canberra-Queanbeyan (yellow), Melbourne (grey) and Adelaide (orange) (fires- no fires 
simulation) between September 1st and January 31st. 

(a) 
 

(b) 
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When individual cities are considered (Figure 4 (a)) the effect of the southward shift of fires 390 

between October and January on population exposure to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ 391 

PM2.5 AQI can be clearly seen. In October, there is widespread exposure to ‘Poor’ PM2.5 AQ. 392 

The effects of population exposure are largest in Brisbane, Newcastle-Maitland, Sydney and 393 

Melbourne with 93,000, 220,000, 49,000, and 468,000 people exposed to ‘Poor’ or worse PM2.5 394 

AQI values on average (Figure 4  (a) and Supplementary Material: Table S4). The impacts of 395 

fires on PM2.5 AQ becomes most evident from November. During November average 396 

population exposure to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ PM2.5 AQ is evident in Sydney 397 

(112,000, 86,000 and 10,000 people exposed) and Newcastle-Maitland (235,000, 170,000, and 398 

2,500 people exposed). Alongside this, in Canberra-Queanbeyan an average of 15,000, 1,100 399 

and 174 people are exposed to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ PM2.5 AQI values in 400 

November. The pattern of increasing population exposure to poor PM2.5 AQ continues in 401 

December, as the fires intensify, with a clear southward shift (Figure 4 (a)). Populations in 402 

Sydney, Newcastle-Maitland and Canberra-Queanbeyan continue to be exposed to ‘Poor’ and 403 

worse AQ. This leads to 3.6 m, 1.7 m and 237,000 people being exposed to ‘Poor’ or worse 404 

AQ in Sydney, Newcastle-Maitland and Canberra-Queanbeyan, respectively, on average in 405 

December (Supplementary Material: Table S4). During this time in Brisbane, Melbourne and 406 

Adelaide ~5,000, 1.1 m and 53,000 people on average are exposed to ‘Poor’ or worse AQ. 407 

Finally, in January, the southward shift in fires continues, with a clear decrease in exposure to 408 

‘Poor’ or worse AQI in Brisbane, Sydney and Newcastle-Maitland but increases in monthly 409 

mean exposure to ‘Poor’ AQ in Canberra-Queanbeyan, Melbourne and Adelaide. This leads to 410 

286,000, 979,000 and ~48,000 people being exposed to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ 411 

PM2.5 AQI values in Canberra-Queanbeyan, Melbourne and Adelaide on average 412 

(Supplementary Material: Table S4). Despite reductions in the total population exposed to 413 

hazardous AQI values in Newcastle-Maitland and Sydney, widespread population exposure to 414 
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‘Poor’, ‘V. Poor’ and ‘Hazardous’ PM2.5 AQI values continues during January. On average 415 

515,000 and ~820,000 people are exposed to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ PM2.5 AQI 416 

values in Newcastle-Maitland and Sydney in January (Supplementary Material: Table S4).  417 

Population-weighted bushfire PM2.5 (fires - no fires) for individual cities can be used to identify 418 

the cities most severely affected by bushfire-sourced PM2.5 (Figure 4 (b), Table 1 and 419 

Supplementary Material: Table S5). In line with the region population-weighted PM2.5 420 

concentrations, Canberra-Queanbeyan (ACT) is affected most severely by PM2.5 from the fires. 421 

Population-weighted PM2.5 concentrations in Canberra-Queanbeyan reach 156.2 µg m-3 and 422 

average 14.2 µg m-3 between September 1st and January 31st. The maximum population-423 

weighted PM2.5 concentrations in Sydney (58.4 µg m-3) and Newcastle-Maitland (48.7 µg m-3) 424 

is much below Canberra-Queanbeyan. However, as a result of the prolonged exposure to poor 425 

AQ in Syndey and Newcastle-Matiland, the mean population-weighted PM2.5 concentrations 426 

in both cities (13.8 µg m-3 and 14.3 µg m-3) are similar to Canberra-Queanbeyan.  427 

These results clearly indicate widespread population exposure to dangerous PM2.5 AQI levels 428 

throughout November, December and January. This is likely to have a large impact on public 429 

health due to short-term exposure to high PM2.5 concentrations. We estimate these effects in 430 

the next section. 431 

  432 
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Table 1. Mean and maximum (September 1st – January 31st) population-weighted PM2.5 433 
concentrations for regions and cities in eastern-Australia. 434 

Region 
 

Mean Population-
weighted PM2.5 (µg 
m-3) 

Maximum 
population-
weighted PM2.5 

(µg m-3) 
 

Australian Capital Territory 14.1  155.1 

New South Wales 13.4 53.4 

Queensland 9.7 22.9 

Victoria 9.1 81.8 

All domain 11.6 58.3 

City 

Mean Population-
weighted PM2.5 (µg 
m-3) 

Maximum 
population-
weighted PM2.5 

(µg m-3) 

Brisbane 9.7 26.4 

Newcastle-Maitland 14.3 48.7 

Sydney 13.8 58.4 

Canberra-Queanbeyan 14.2 156.2 

Melbourne 9.0 80.5 

Adelaide 7.0 26.5 

 435 
 436 
 437 
3.4 Health Impacts  438 
 439 
 440 
Using the World Health Organisation (2013) concentration response function, the number of 441 

deaths brought forward due to PM2.5 from the fires between October 1st and January 31st can 442 

be estimated using the concentration of PM2.5 due to fires (i.e. the difference in PM2.5 443 

concentrations between the fires and no fires simulations) (Figure 5). This indicates the impact 444 

of short-term exposure to bushfire PM2.5 has a substantial impact on health from mid-October 445 

to mid-January (Figure 5 (a)). In total 171 (95% CI: 64 – 277) deaths were brought forward as 446 
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a result of PM2.5 exposure from the bushfires (Supplementary Material: Health Impacts and 447 

Table S7) and 624 (95% CI: 230 – 1008) from exposure to all PM2.5.  448 

Regioanlly, the health impact of exposure to PM2.5 was largest in New South Wales (NSW), 449 

Queensland and Victoria (Figure 5 (b)). We estimate that exposure to PM2.5 between October 450 

and February led to 287 (95% CI: 107 – 463), 112 (95% CI: 41 – 181), and 155 (95% CI: 57 – 451 

250) deaths being brought forward in New South Wales (NSW), Queensland and Victoria, 452 

respectively. Of these deaths, 109 (95% CI: 41-176), 15 (95% CI: 5-24) and 35 (95% CI: 13-453 

56) deaths brought forward were due to exposure to PM2.5 from the bushfires (Supplementary 454 

Material: Table S8). Comparing these estimates with the results of Borchers Arriagada et al. 455 

(2020) and Ryan et al. (2021) (Figure 5 (b)) the estimates in this study are within the range of 456 

both studies in NSW. We estimate 109 (95% CI: 41 – 176) deaths are brought forward by 457 

bushfire PM2.5, while  Borchers Arriagada et al. (2020) estimate 219 (95% CI: 81 – 357) and 458 

Ryan et al. (2021) estimate 152.1 (95% CI: 95 – 209). Our results lie below the lower end of 459 

estimates in Victoria at 35 (95% CI: 13 – 56) deaths brought forward by bushfire PM2.5. This 460 

is considerably lower than Borchers Arriagada et al. (2020) estimate of 120 (95% CI: 44 – 195) 461 

and Ryan et al. (2021) estimate of 92 (95% CI: 57 – 126) deaths brought forward. All three 462 

studies use the same population, baseline mortality datasets and concentration-response 463 

function. Therefore, the disparity in results between the studies is likely due to a number of 464 

other factors. Firstly, our study uses modelled PM2.5 concentrations, rather than observations. 465 

Since the model generally underestimates PM2.5 concentrations, the overall health impact 466 

estimated is likely to be underestimated due to a reduction in population exposure to PM2.5. 467 

Secondly, the bushfire fraction of the total PM2.5 mass could be overestimated in the Borchers 468 

Arriagada et al. (2020) study due the use of monthly mean historical PM2.5 concentrations to 469 

account for the no fire fraction of PM2.5. This would lead to an overestimation in the health 470 

impact of bushfire PM2.5. The estimate of Ryan et al. (2021), which used a random forest model 471 
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to account for the non-bushfire PM2.5 fraction, is also lower than Borchers Arriagada et al. 472 

(2020), further supporting this. Finally, this study uses modelled PM2.5 concentrations to 473 

estimate PM2.5 exposure rather than the inverse weighting method used to estimate PM2.5 474 

concentrations by Borchers Arriagada et al. (2020) and Ryan et al. (2021). The use of inverse 475 

weighting may struggle to account for meteorological or orographic effects on PM2.5 476 

concentration gradients. However, this is also a limitation in this study given the relatively 477 

coarse model resolution (30 km), which may also struggle to resolve the strong concentration 478 

gradients around cities and the fires.   479 

When individual cities are considered in the health impact assessment it becomes clear that the 480 

health impact is concentrated in cities with high populations, where PM2.5 concentrations due 481 

to fires were high (Figure 5 (c)). Of the large cities we investigated, the health impact of 482 

exposure to PM2.5 from fires was largest in Sydney (65 (95% CI: 24 – 105)), Melbourne (23 483 

(95% CI: 9 – 38)) and Canberra-Queanbeyan (9 (95% CI: 4 – 14)) (Figure 5, Supplementary 484 

Material: Table S8).  485 

  486 
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  487 

Figure 5. (a) Estimated increase in the number of deaths brought forward across model 
domain (red) and the regions of Victoria (green), Australia Capital Territory [ACT] 
(blue), New South Wales [NSW] (yellow) and Queensland (purple) due to PM2.5 from 
bushfires (fires only) between October 1st and January 31st. Shading indicates the 95% 
confidence intervals of the estimate. The number of deaths brought forward due to 
bushfire PM2.5 (fires only) (red) between October 1st and January 31st is also broken 
down by region (b) and city (c) and the total number of deaths is shown above the bars. 
The estimated number of deaths brought forward in each region (b) due to bushfire 
PM2.5 (fires only) (red) in this study are compared to the Borchers Arriagada et al. 
(2020) (indigo) and Ryan et al. (2021) estimates for the same period. 

(a) 
 

(b) 
 

(c) 
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4 Conclusions 488 

We use the WRF-Chem regional air quality model to estimate the impact of the 2019/2020 489 

Australian bushfires across eastern Australia, complementing the work of Borchers 490 

Arriagada et al. (2020) and Ryan et al. (2021), which were based solely on analysis of 491 

PM2.5 observations. FINN fire emissions indicate PM2.5 emissions from the 2019/2020 492 

bushfires were unprecedented. Around 1 Tg of PM2.5 was emitted from the fires during 493 

2019 and ~0.3 Tg between January and February 2020. This is likely due to the high levels 494 

of dry fuel availability across the region during 2019 (van Oldenborgh et al., 2020).  495 

Two model simulations were performed 1) with FINN fire emissions (fires) and 2) without 496 

FINN fire emissions (no fires), which allowed the impact of the bushfires on PM2.5 air 497 

quality (AQ) and health to be quantified. Simulated PM2.5 concentrations from the fires 498 

simulation reproduced observed daily mean concentrations relatively well but with a low 499 

bias (r = 0.39, RMSE = 22.9 µg m-3, NMB = -0.17, NMAE = 0.72). Despite this, modelled 500 

PM2.5 concentrations captured the variability and magnitude of peaks seen in the 501 

observations across eastern-Australia and for specific cities. 502 

We find that between September and February large proportions of the population were 503 

exposed to dangerous (‘Poor’,’V.Poor’ and ‘Hazardous’) air quality levels. In total, the fires 504 

led to an additional ~1.9 million people being exposed to ‘Poor’ or worse AQI values on 505 

average (~1.1 million exposed to ‘Poor’, 437,000 to ‘V.Poor’ and 339,000 to ‘Hazardous’ 506 

AQI values) across eastern Australia between September and the end of January, compared 507 

to if there were no fires. The impact of the bushfires on AQ was concentrated in the cities 508 

of Sydney, Newcastle-Maitland and Canberra-Queanbeyan during November, December 509 

and, also in Melbourne, in January. While, generally Brisbane and Adelaide were less 510 

severely affected by the fires.   511 
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We estimate the health impacts of exposure to PM2.5 from fires across eastern-Australia, at 512 

regional and city level using a short-term exposure response function (World Health 513 

Organization, 2013). Our estimate indicates that between October and February 171 (95% 514 

CI: 64 – 277) deaths were brought forward due to the fires, 624 (95% CI: 230 – 1008) due 515 

to all PM2.5 and 456 (95% CI: 169 – 738) if there were no fires. The health impacts were 516 

largest in New South Wales, Queensland and Victoria with 109 (95% CI: 41 – 176), 15 517 

(95% CI: 5 – 24) and 35 (95% CI: 13 – 56) deaths brought forward due to fires in these 518 

regions (287 (95% CI:107 – 463), 112 (95% CI: 41 – 181) and 155 (95% CI: 57 – 250) all 519 

PM2.5), respectively. Our results lie within the range of estimated bushfire PM2.5 health 520 

impacts from both Borchers Arriagada et al. (2020) and Ryan et al. (2021) for New South 521 

Wales but below the lower limit for other regions, such as Victoria. This is most likely due 522 

to differences in how bushfire PM2.5 was estimated in each study and also differences in the 523 

estimated population-weighted bushfire PM2.5 concentrations. This study builds upon 524 

previous work by using an atmospheric chemistry transport model to isolate the impacts of 525 

the fires on air quality and also to investigate the impacts regionally, away from 526 

observational sites. At a city-level, the health impacts of PM2.5 exposure due to fires were 527 

concentrated in the cities with large populations and high PM2.5 concentrations due to fires. 528 

The highest number of deaths brought forward due to short-term bushfire PM2.5 exposure 529 

were in Sydney (65 (95% CI: 24 – 105)), Melbourne (23 (95% CI: 9 – 38)) and Canberra-530 

Queanbeyan (9 (95% CI: 4 – 14).  531 

This work confirms that there was a substantial AQ and health impact across eastern-532 

Australia from the 2019/2020 bushfires. Our study only considered mortality, therefore the 533 

full health impact of exposure to PM2.5 is likely to be higher and requires further studies 534 

addressing the impacts on hospital admissions, ambulance call outs and primary health care 535 

visits. Alongside this, the impact of other pollutants on health could also be quantified. In 536 
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the future, further work is required to characterise the health impacts of exposure to 537 

pollutants from wildfires. This would allow for more comprehensive estimates of the health 538 

impacts associated with population exposure. Finally, with more dry years like 2019/2020 539 

projected to occur in the future due to climate change the impact of wildfires such as 540 

2019/2020 are likely to be seen again. Therefore, fire risk management policies should be 541 

developed further to consider the impact of climate change on wildfire frequency and 542 

intensity across the country.  543 
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