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Abstract

Multiphase fluid flow in porous media has been extensively studied for its applications in carbon capture and storage, hydro-

carbon recovery, aquifer contamination, soil hydrology and subsurface energy resources. Fluid displacement in porous media

can be investigated using highly time-resolved synchrotron X-ray microtomography. One consequence of extremely fast imaging

can be compromised image quality, including noise and decreased contrast, which makes the images hard to be segmented.

We trained an established convolutional neural network (CNN) architecture (U-Net) with 18,072 images from multiphase flow

experiments generated by synchrotron μCT. The trained neural network can segment synchrotron μCT images of core-flooding

experiments rapidly and accurately without any pre-processing of the raw image. Segmenting one μCT scan volume of size

1004x496x496 takes 5.6 minutes on an Nvidia Quadro K5200 GPU, while a conventional segmentation pipeline using CPU for

the same size data takes 50.2 minutes. On the test dataset, the AUC-ROC score of individual class reached above 0.99 and the

mean accuracy of the three segmentation classes reached 99%. The average IoU of the three classes is 0.98. The accuracy of

the CNN segmentation is of the same order as conventional methods but it is significantly faster.

1



manuscript submitted to Water Resources Research

Fast Segmentation of 4D Microtomography Volumes1

from Core-flooding Experiments in Porous Rock using2

Convolutional Neural Network3

Y. Yang, S. Seth, I. B. Butler, F. Fusseis4

University of Edinburgh5

Key Points:6

• Machine learning segmentation enables fast segmentation of µCT data and can7

reduce processing time by ten-fold.8

• Machine learning segmentation quality is insensitive to µCT noise and ring arte-9

facts.10

• Machine learning segmentation is applicable to the fast processing of large datasets11

such as those from time resolved synchrotron microtomography.12
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Abstract13

Multiphase fluid flow in porous media has been extensively studied for its applications14

in carbon capture and storage, hydrocarbon recovery, aquifer contamination, soil hydrol-15

ogy and subsurface energy resources. Fluid displacement in porous media can be inves-16

tigated using highly time-resolved synchrotron X-ray microtomography. One consequence17

of extremely fast imaging can be compromised image quality, including noise and decreased18

contrast, which makes the images hard to be segmented. We trained an established con-19

volutional neural network (CNN) architecture (U-Net) with 18,072 images from multi-20

phase flow experiments generated by synchrotron µCT. The trained neural network can21

segment synchrotron µCT images of core-flooding experiments rapidly and accurately22

without any pre-processing of the raw image. Segmenting one µCT scan volume of size23

1004×496×496 takes 5.6 minutes on an Nvidia Quadro K5200 GPU, while a conven-24

tional segmentation pipeline using CPU for the same size data takes 50.2 minutes. On25

the test dataset, the AUC-ROC score of individual class reached above 0.99 and the mean26

accuracy of the three segmentation classes reached 99%. The average IoU of the three27

classes is 0.98. The accuracy of the CNN segmentation is of the same order as conven-28

tional methods but it is significantly faster.29

1 Introduction30

Experimental studies of fluid flow related processes in porous media, including mul-31

tiphase flow and reactive flow, have increasingly made use of X-ray microtomography32

(µCT) techniques to image fluid distributions and changes in porous media in-situ. These33

studies range from those which employ laboratory µCT instruments (e.g. Pak et al., 2015;34

AlRatrout et al., 2018) to those which employ synchrotron µCT to generate 4D time re-35

solved data that reveals dynamic fluid flow processes (e.g. Berg et al., 2014; Reynolds36

et al., 2017; Berg et al., 2013). The high photon flux at synchrotron X-ray sources en-37

ables experimenters to acquire multiple µCT scan volumes, each scan lasting a few sec-38

onds or less, over hours of experimentation. With 4D datasets often approaching a few39

terabytes and comprising many 10s to 100s of discrete data volumes, the efficiency of im-40

age processing and segmentation can present a bottleneck to downstream data analy-41

sis. Furthermore, fast scans with brief exposure times and few projections, combined with42

progressive damage to scintillators resulting from high X-ray fluxes can lead to increased43
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noise, image artifacts and low contrast, making image segmentation both difficult and44

time consuming.45

µCT image segmentation is part of a µCT image processing workflow. By segmen-46

tation, reconstructed µCT images are classified into labelled images such that objects47

of interest in the images are separated for further analysis. Conventionally, the image48

quality of the reconstructed µCT images is evaluated at first. Then a selection of denois-49

ing filters are tested based on the type of noise and artefacts present in the reconstructed50

images. The denoised images are evaluated again for the difficulty of segmentation, and51

then tested with different segmentation algorithms such as global thresholding, water-52

shed (Neubert & Protzel, 2014), random walker (Grady, 2006) or adaptive threshold-53

ing (Sauvola & Pietikäinen, 2000). Due to the, often, extremely large volume of data,54

the optimal processing workflow is decided based on both effectiveness and efficiency.55

Although the conventional segmentation workflow can produce accurate and re-56

liable results, there are two factors that make it suboptimal for large datasets of 10s to57

100s of µCT scan volumes. First, it is slow, and in the case of the data used in this study58

taking approximately 50 minutes per µCT scan volume on average (for computing spec-59

ifications see section 2). Second, the conventional segmentation workflow involves sig-60

nificant human supervision and decision making, and due to variations in the degree of61

noise and artefacts between µCT scan volumes, the parameters of each processing step62

often need to be hand-tuned for each µCT scan volume to achieve reliable segmentation63

results.64

Recently, deep learning segmentation methods have been increasingly used on med-65

ical CT data (e.g. Skourt et al., 2018; Weston et al., 2019). Although X-ray µCT has66

been a conventional imaging technique in multiphase fluid flow study, deep learning meth-67

ods are mainly used for predicting fluid flow and porous media properties (e.g. Mo et68

al., 2019; Alqahtani et al., 2020; Kanin et al., 2019). For example, Karimpouli and Tah-69

masebi (2019) segmented different mineral phases of Berea sandstone µCT images us-70

ing a deep learning method. However, to our knowledge, there is no published work on71

segmenting µCT images of multiphase fluid flow in porous rocks using a deep learning72

method yet.73

Unlike conventional segmentation methods that only take a single, or a simple com-74

bination of features into account, deep neural networks allow abstraction of multiple lev-75
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els of features, such as curves, lines and even complex patterns of data, and use such fea-76

tures to perform segmentation (Rawat & Wang, 2017). CNNs (LeCun et al., 2015) are77

a class of deep neural network that have been proved effective in visual recognition tasks78

(e.g. Krizhevsky et al., 2012; Long et al., 2015; Girshick et al., 2014). Ronneberger et79

al. (2015) proved the reliability of CNN in segmenting low-contrast gray scale biomed-80

ical images, and introduced the U-Net architecture. Since experimental multiphase flow81

data may also show the characteristics of gray scale images with low-contrast objects,82

we have chosen to use the this architecture to train a segmentation model to yield ac-83

curate and precise segmentation of multiple tomographic volumes.84

CNN is a supervised learning method that requires access to an adequate amount85

of manually annotated training samples, i.e., it requires training images where a human86

has established the boundaries between different classes. Although time consuming, man-87

ual annotation is sensible when objects are easily and readily identifiable. However, un-88

like conventional images with relatively smooth and simple boundaries, pore scale ex-89

perimental images have highly irregular, multi-scale, and even fractal boundaries which90

make manual annotation difficult and imprecise (Figure 1). For the experimental µCT91

data in our study, manual annotation has three main problems: 1) the highly irregular92

and multi-scale boundaries, 2) similar grey scale for different objects, i.e., brine and rock,93

and 3) noise and artefacts. Therefore, we acquired the ground truth segmentation of the94

input images using a weakly supervised algorithm, with a few pre-processing steps such95

as denoising and masking (details of this approach are in section 2.2).96

Our goal is to reproduce, or emulate, the segmentation generated by the weakly97

supervised approach, using machine learning to achieve an accurate, fast and scaleable98

result. By training the CNN segmentation model, it learns the ‘relation’ between the raw99

µCT image and the optimal segmentation regardless of the processing steps leading to100

the segmentation. Given an input of raw µCT image, the trained model can produce the101

desired segmentation result that has the same ‘relation’ to the input image as it learned102

from the training.103

In this contribution we trained an U-Net architecture to efficiently segment syn-104

chrotron µCT images obtained during core-flooding experiments. The images comprise105

three classes of objects: rock, oil and water. The trained CNN network is able to seg-106

ment the three classes directly from reconstructed images accurately and rapidly with-107
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Figure 1. Cross section of a cylinder core of Indiana limestone imaged by synchrotron µCT.

The core is fully saturated with H2O, the lighter grey colour is oolitic limestone grains, the

darker grey colour is H2O in the pore space. The green box shows the cropping area which is the

region of interest.

–5–



manuscript submitted to Water Resources Research

out pre-processing steps such as applying of noise filters. It can reduce processing times108

10-fold compared to conventional segmentation methods. We have tested the accuracy109

of the trained CNN model on a similar dataset with brief retraining, and we also tested110

the robustness of the model against artificial ring artefacts. We show the model perfor-111

mance to be robust and accurate. We provide both the trained network and a template112

training code (Python) so users can fine-tune the model to their own data (https://github.com/yclipse/CNN-113

core-flooding-muCT).114

2 Materials and Methods115

2.1 Multiphase Fluid Flow Data Acquisition116

We used the beam line 2-BM at the Advanced Photon Source in Argonne National117

Laboratory in Chicago, U.S. A carbonate rock, Indiana limestone, was used as porous118

medium in the experiments. The rock was cored (21.2mm length × 3mm diameter) and119

installed in an X-ray transparent cell (Fusseis et al., 2014). For fluid injection we used120

n-dodecane and potassium iodide solution (2.4M KI as a contrast agent) as oil and aque-121

ous phase respectively. The fluids are immiscible, and the processes involve no chemi-122

cal reaction between the fluids and the rock. Synchrotron X-ray images were acquired123

using pink beam by one second acquisition time in every 20 seconds during fluid injec-124

tions (600 projections per scan, 1
600s exposure time per projection, referred to as fast scan).125

The µCT image resolution is 2.2 micron. A total of 140 time stamps of µCT scan vol-126

umes each sized 1004 × 1646 × 1646 were acquired during the experimentation (Fig-127

ure 2).128

The 140 µCT scans recorded three individual experimental processes: brine injec-129

tion (0-40), oil injection (40-80) and simultaneous injection of both fluids (80-140) (Fig-130

ure 2). Although the physical processes during the experiments are complex and entirely131

different, the differences shown on the µCT images are simple and repetitive: pores switch-132

ing between oil-filled, partially-filled and brine-filled states. Therefore, in terms of im-133

age segmentation, even a small segment of the full data is highly representative. In this134

study, we used the first half of the brine injection process to train, validate and test the135

CNN model, and we used the second half of the oil injection process for extended test-136

ing. These two sets of data cover all of the different attributes of the µCT images.137
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Figure 2. Experimental design. A total of 140 time stamps of µCT scan volumes were ac-

quired during the experiment. The first 40 time stamps of scans recorded the process of brine

displacing oil in the Indiana limestone core. The 40th-80th scans recorded the process of oil dis-

placing brine. The last 60 scans recorded the fluid displacement process by injecting oil and brine

simultaneously. The first 18 scans were used to train, validate and test the initial model, while 20

more scans from time stamp 60-80 were used to extend the initial model and test it further. An

independent reference scan was acquired before the experimentation, which is used to generate a

high quality binary mask of the rock.

Before the core-flooding experiment, we imaged the pore structure of the Indiana138

limestone core with a high-resolution reference scan (Figure 2 Reference Scan). The ref-139

erence scan had 2.5× more exposure time than the fast scans and each scan involved 1500140

projections, therefore the reference scan µCT images are of significantly higher image141

quality than the images acquired from the fast scans. On the reference scan images (Fig-142

ure 1) there are fewer artefacts and less noise, the object edges are sharper, and the pore143

space is fully saturated with a single fluid that contrasts well with the rock. We segmented144

the high quality reference image into a binary image labelled with rock and pore space145

using the seeded random walker algorithm (Grady, 2006). The pore space binary image146

is used as a mask to further separate the two fluid phases (for details of the ground truth147

segmentation see section 2.2). All processing and computation was done on a HP Z820148

workstation. It has 192Gb usable memory and 2 Intel(R) Xeon(R) E5-2640 V3 proces-149

sors (32 cores). The GPU is an Nvidia™ Quadro K5200 (8Gb, 8 cores).150
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Figure 3. The image segmentation work flow for generating ground truth. (a) raw µCT

image containing three object classes: oil, brine and rock. The fluid classes are hardly distin-

guishable because the rock has similar intensity characteristics as the brine. Green box shows the

cropped area that was used as network input. (b) the raw µCT image with rock masked as black

using the rock segmentation acquired from the dry reference scan which makes further segmenta-

tion of the two fluid classes possible. (c) masked image filtered by the non-local-means algorithm

to reduce noise. (d) ground truth segmentation produced by seeded random-walker algorithm.
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Figure 4. Gray value profile along a line in (yellow) raw reconstructed image. The three

different classes,i.e., rock, brine and oil are all included in the profile line. These classes are not

separable by their gray values, especially between brine and rock. The range of the grey values

of the three classes are highlighted in blue, purple and yellow for rock, oil and brine respectively.

The kernel density estimation also shows no sign of distinguishable difference between classes.

2.2 Ground Truth Segmentation151

The µCT projections (raw data acquired from fast µCT scans) were reconstructed152

using filtered back projection (Octopus8.6™(Dierick et al., 2004)). The reconstructed im-153

ages are referred to as the ‘raw µCT images’ that are a sequence of cross-sectional im-154

age slices of the scanned object normal to the rotation axis. The raw µCT images are155

the input images for the CNN segmentation. Shown in Figure 3(a), the raw µCT image156

has three target classes (inside the cylindrical rock core) marked in red boxes as exam-157

ples: the appearance of oil is dark grey shade, the appearance of brine is light grey shade,158

and the appearance of rock is also light grey but lighter grey than brine. Figure 4 shows159

the grey values plotted along a profile line containing all three phases of an example raw160

reconstructed image. The figure shows that the classes are similar in terms of their gray161

value distribution, and therefore, they cannot be easily separated by their grey values162

alone. We acquired the ground truth images by processing the images as follows.163

We registered and applied the binary pore space mask using Avizo9™ with the fast164

scan reconstructed µCT images. Figure 3(b) shows the raw CT images after applying165

the mask. The rock-brine-oil system now is more distinguishable, but the brine and oil166

are still very noisy. We used a non-local means filter (Buades et al., 2005) to denoise the167
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two classes in the masked images (Figure 3(c)). We used the ImageJ implementation of168

the filter and used a sigma value of 30 and the default window size. This reduces the noise169

in brine and oil, but at the cost of making the class boundary less pronounced. We im-170

plemented the seeded random-walker algorithm (Grady, 2006) to separate brine and oil171

(Figure 3(d)). Seeded random walker is a region growing method which is capable of in-172

ferring ambiguous boundaries. Implementation in Scikit-image was used and took 50.2173

minutes to run, on average, on the same size data volume as above.174

We chose a total of 18 consecutive µCT scan volumes from the start to the end of175

brine invasion, these volumes recorded the on-going process of brine displacing oil. These176

volumes of size 1004 × 1646 × 1646 were segmented in this weakly supervised fashion177

to generate target annotation for the CNN training dataset.178

For the ground truth segmentation, an internal validation of the conservation of179

pore space (i.e. pore space is fixed over all time stamps) was used to estimate the error180

in segmentation of the fluid volumes. The experimental procedures ensure that the pore181

space is filled with two fluids, i.e., either oil or brine. The proportion of the fluids can182

change through the experiment but the volume of oil and brine together should always183

sum up to the pore space volume. we measured the total fluid volume of each scan. We184

also measured the total pore space volume from the reference scan. We assume the av-185

erage total fluid volume should be equal to the total pore space volume. We found that186

there is 1.86% of random error, determined from segmenting different fluids in replicate187

volumes, this is taken as the random error of the ground truth annotation. This amount188

of error is unlikely to affect any qualitative measurements in 3D such as connectivity.189

The amount of error also has negligible impact on quantitative measurements such as190

bulk volume. For such pore-scale images with very irregular and blurry class boundaries,191

manual segmentation of eighteen thousand images will be extremely time-consuming, and192

may not guarantee a reduction in error. In addition to determining the error based on193

volumetric measurements, we visually compared the results of the ground-truth segmen-194

tation with greyscale image data and found the differences in the fine details of pore struc-195

ture to be insignificant.196

This segmentation workflow is not scalable partly because of the high computa-197

tional requirements, but also because segmentation parameters cannot be applied across198

different batches of scans. We acquired a total of 140 µCT scan volumes during the ex-199
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periment, and used only the first 18 µCT scan volumes (containing 18,072 images) to200

train the CNN model. This means that 90% of the data were processed using the more201

efficient CNN model.202

2.3 Convolutional Neural Network Segmentation203

2.3.1 Training Methods204

Before training, we prepared the training dataset. Every raw reconstructed image205

was paired with the corresponding ground truth segmentation image to make a set of206

input-target image pairs to train the network. A total of 18 µCT scan volumes were ran-207

domly divided into 14 training sets, 2 test sets and 2 validation sets (Figure 2 Training,208

Val and Test). Each µCT scan volume has 1004 reconstructed slices. The raw reconstructed209

images (1646×1646 pixels) were down-sampled (2×2 mean pooling) to size 823×823210

pixels. A rectangular area of size 496×496 pixels was cropped as the training area (shown211

as the green box in Figure 3). The down-sampling of the original images was: 1) to fit212

the images into the GPU memory. 2) To exclude pores adjacent to the perimeter which213

do not contain useful information because the perimeter has different wettability than214

the rock (for a solid material, wettability indicates the tendency of one particular fluid215

phase to spread over the solid surface in presence of another fluid). The choice of the par-216

ticular size 496×496 was based on the architecture of the CNN network, which has four217

max-pooling layers which each will divide the input size by two, so the input size needs218

to be four times divisible by 2.219

We used the CNN architecture U-Net introduced by Ronneberger et al. (2015) and220

implemented by van Vugt (2017) using the open-source deep learning platform Pytorch221

(Paszke et al., 2017). The network comprises a contracting path (Figure 5 left box) and222

an expanding path (Figure 5 right box). The contracting path, like conventional CNN,223

uses 3×3 convolution, followed by a rectified linear unit (ReLU), and then 2×2 max-224

pooling for down-sampling. The expanding path up-samples the feature map with 2×225

2 up-convolution followed by 3×3 transposed convolution with ReLU. A concatenation226

of the feature map of the corresponding contracting path is applied to the up-convolved227

feature map (Figure 5 grey arrow). In total the network has 23 convolutional layers.228

Figure 6 shows the overall workflow of training, validating and applying the CNN229

model. In training, the model takes a training image as its input and produces a pre-230
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Figure 5. Modified from Ronneberger et al. (2015), this figure shows the architecture of the

U-Net. It consists of a contracting path that extracts different levels of features, and an expand-

ing path that up-convolves the image to produce the final segmentation. The two paths form

a U-shaped network. The original paper uses VALID padding (i.e. no padding), so the height

and width of each feature map decreases after each convolution. In this implementation SAME

padding (i.e. zero padding by 1 on each side) is used so the height and width of the feature map

will stay the same (e.g. Silburt et al., 2019).
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diction of the probability of each pixel belonging to a class (i.e. rock, oil and brine). Then231

the prediction is compared with the ground truth image to yield a training loss value which232

quantifies the difference between the prediction and ground truth. The model iteratively233

updates the internal adjustable parameters (i.e. weights) as training proceeds, to min-234

imize the loss and, thus, to improve the prediction in a step-wise manner. We trained235

the model for 34 epochs, where a training epoch is a full traverse of all training data.236

Figure 6. CNN training, testing and application work flow. The training process uses training

datasets and validation datasets to adjust the best fit of a CNN model representing the rela-

tion between input images and ground-truth images. The testing process verify the model with

a held-out dataset. The application process uses the trained CNN model to segment new µCT

data.

Cross-entropy loss was used as the loss function during training. The loss function237

calculates the distance between the two probability distributions, i.e., the output pre-238

diction and the corresponding ground-truth. Cross-entropy decreases when the output239

and ground-truth have a higher resemblance. We used the Pytorch built-in cross-entropy240

loss function which is written as:241

Loss = −
∑
i∈I

∑
c∈C

yi,c log ŷi,c (1)242

where y = (y1, y2, . . . , yn) and ŷ = (ŷ1, ŷ2, . . . , ŷn) are the ground truth values and the243

network prediction values of all pixels of a training image flattened to 1D arrays. C is244
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the set of all classes and I is the set of all pixels. yi,c and ŷi,c are values of the ith pixel245

in class c.246

Hyper-parameters are user-defined parameters that control the overall learning be-247

haviours of the network during training. Learning rate is one dimensionless hyper-parameter248

that defines the size of steps to adjust the network weights to minimize loss; a higher learn-249

ing rate implies a larger adjustment in each iteration. Multiple learning rates were tested250

and we found the value of 5×10−5 to be optimal for loss to converge quickly and smoothly.251

During training, we divided the training datasets into mini batches each containing two252

images. This can improve the efficiency of training. An `2 regularization parameter of253

1 × 10−5 was applied to alleviate over-fitting (`2 regularization is also know as Ridge254

regression, it adds squared magnitude of coefficient as penalty term to the loss function255

to avoid over-fitting). The sequence of the input data was shuffled at the start of each256

epoch. This can eliminate bias that is produced by the high similarity of two adjacent257

µCT slices. The optimizer used to train was the Adam algorithm (Kingma & Ba, 2014)258

which is built into Pytorch.259

2.3.2 Validation260

At the end of each training epoch, a validation loss value is computed on the val-261

idation set (Figure 6 Training). The validation loss is not back-propagated and the net-262

work weights are not updated. Thus, the model occasionally ‘sees’ this data but never263

learns from it, and thus the process of validation provides an unbiased, on-going eval-264

uation of a model fit to the training dataset. The validation loss value is plotted through-265

out training and compared with the training loss value. The model is best-trained at the266

epoch when the validation loss starts to increase, or the validation accuracy ceases to267

decrease. After this the model starts to overfit.268

For the pixels in the network prediction of an input image, a pixel is assigned to269

a class if the corresponding probability is the highest among the three classes. There is270

a chance for a rare exception where a pixel has exactly equal probability for all three classes271

( 33% oil, 33% brine, 33% rock), or equal probability for any two classes (e.g. 50% brine272

and 50% rock). These pixels are assigned to the rock class for the reason that such pix-273

els are often on the contact surface between the fluids and the rock.274
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For each class of a prediction, we calculated the number of true positive (TP), false275

positive (FP), true negative (TN) and false negative (FN) pixels with respect to the ground276

truth. For example, for the oil class in a CNN segmented image, true positive pixels are277

the pixels which are assigned to oil, and the corresponding ground truth for the same278

pixels are also oil. False positive pixels are the pixels which are assigned to oil, but the279

corresponding ground truth for the same pixels are not oil. True negative pixels are the280

pixels which not assigned to oil, and which agree with the ground truth. False negative281

pixels are the pixels which are not assigned to oil, but the ground truth for these pix-282

els is oil.283

We used three metrics to measure the segmentation performance, they are the Rand284

index (accuracy, (Rand, 1971)), IoU (intersection over union) and AUC-ROC (area-under-285

curve of the receiver operating characteristic (Bradley, 1997)). The Rand index is the286

ratio of correctly classified pixels to total pixels. The Rand index was calculated using287

Eq. (2)288

accuracy =
TP + TN

TP + TN + FP + FN
(2)289

The intersection over union measures how well the prediction is spatially overlapped290

with the ground truth. It is the ratio between two values: the area of overlap and the291

area of union (Eq. (3)).292

IoU =
Area of intersection

Area of union
=

TP

TP + FN + FP
(3)293

The AUC-ROC is a common metric for assessing the performance of a classifier.294

ROC is a curve plotted in the coordinate system with true positive rate (TPR = TP
TP+FN)295

against false positive rate (FPR = FP
FP+TN), over various thresholds. An ROC curve296

essentially represents the trade-off between sensitivity and specificity of a classification297

model. AUC is the area under the ROC curve which measures the model’s separability298

of different classes. The AUC-ROC value varies between 0.5 and 1. When AUC equals299

1, it represents a perfect classification model that classifies all samples accurately. When300

the AUC value is around 0.5, it represents the case where all classifications are random301

due to a completely overlapped predictive probability distribution of true and false val-302

ues.303
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After training, the model is tested on ‘unseen’ data to check its generalizability and304

assess the segmentation quality. The separate test dataset was only used once the model305

had been trained (Figure 6 Testing). The test dataset provides a standard to evaluate306

the model.307

3 Results308

3.1 Training Result309

Figure 7 shows the training process by plotting the validation accuracy and loss310

over training epochs. The top graph shows that as training progresses the validation ac-311

curacy increases before finally stabilizing for all three classes. The bottom graph shows312

that the training loss drops sharply at the outset of training but became stable as the313

training progresses while the validation error starts at a relatively low value and decreases314

slowly. Theoretically it is assumed that a validation loss curve is U-shaped since it first315

drops as the algorithm learns to generalize, then stabilizes, and finally starts to rise as316

the model tends to overfit. Therefore the criterion to stop training is set as a continual317

increase of validation loss over 5 consecutive epochs. The network was trained for 34 epochs318

and the best fit was identified at the 29th epoch. The total training time was 205.4 hours.319

The segmentation by the model during training and after training are shown in Fig-320

ure 8. The first row shows the raw reconstructed image and the ground truth. The sec-321

ond row shows the segmentation of the same image during the 11th epoch of training322

and after 29 epochs of full training. This result illustrates an improvement of the model323

during training as at the 11th epoch the segmentation result is sub-standard since it only324

partially captures the pore space structure and the boundary decision is not well defined.325

However, at the 29th epoch the segmentation result is very similar to the ground truth.326

3.2 Testing Result327

The model trained for 29 epochs was identified as the best segmentation model and328

tested on the full testing dataset. The performance measured on the test set shows high329

accuracy for all three classes. The test result shows that the accuracy of rock, brine, oil330

and average accuracy over all three classes are 98.5%, 99.3%, 99.1% and 99.0% respec-331

tively. The AUC-ROC score for brine, rock and oil are 0.99, 0.99 and 0.99 respectively.332

It shows very high separability of the model. Table 1 shows that the CNN segmentation333
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Figure 7. Top: The plots shows the variation of accuracy and IoU score over training epochs

for three classes separately. Bottom: the image shows the variation of training loss and val-

idation loss over training epochs. The IoU curve completely overlaps with the curve of rock

accuracy.

result correctly labelled 93.6% oil phase as oil, 96.3% brine as brine, and 99.5% rock as334

rock. The total oil phase and brine phase were slightly underestimated with regard to335

the ground truth. We measured an IoU score of 0.98 showing that the CNN segmenta-336

tion is spatially overlapping with the ground truth correctly.337

The probability map (Figure 9) visualises the probability distribution of all three338

classes. It is generated by the softmax function that transforms the model output into339

a probability distribution such that the probability of three classes at the same pixel add340

up to 1. The colour map indicates that the likelihood of a pixel belonging to one par-341

ticular phase, with red implying extremely likely and blue implying extremely unlikely342

while white implying ambiguous likelihood. The three classes are well separated since343

the ambiguous likelihood pixels are of minor amounts and are mostly located at the bound-344

aries of two phases. It also illustrates a very robust performance of the model in segmen-345

tation.346
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Figure 8. CNN prediction during training and after training. (a) Raw reconstructed image

before segmentation. (b) Ground truth image. (c) CNN prediction of 3-phase probability at

the 11th training epoch. (d) CNN probability prediction after 29 epochs of training. The seg-

mentation was on the same image from the testing dataset. This illustrates the improvement of

segmentation quality during training.
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Figure 9. Probability distribution of each phase at the network output. The color bar shows

probability of a pixel belonging to that phase. This illustrates that the majority of segmentation

was certain (probability close to either 0 or 1) with very few uncertain pixels (probability equals

0.5). The uncertain pixels were classified into the rock class as they are always presented between

the contact between the rock and two fluids.
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Table 1. Contingency table of each class segmented by the CNN model compared with the

ground truth.

Ground truth

Oil Brine Rock

Oil 0.93 0.02 0.06

Estimation Brine 0.04 0.96 0.03

Rock 0.04 0.01 0.99

4 Discussion347

4.1 Segmentation Robustness348

Ring artefacts are concentric rings caused by mis-calibration or failure of a detec-349

tor element. They are one of the major and most common type of artefacts that hinders350

µCT image segmentation. We added artificial ring artefacts to an image selected from351

the test set (scan 17) to examine the robustness of the model to image quality degra-352

dation due to ring artefacts. The chosen test image is visually separable and does not353

suffer from original µCT ring artefacts. Artificial ring artefacts were generated by adding354

concentric circles with random radii and intensities at a fixed coordinate on the image.355

We measured the severity of this artefact in terms of the number of rings present (Fig-356

ure 10). The direct impact of the artificial added ring artefacts on the image quality is357

statistically shown in Figure 11: compared with the histogram curve of the original im-358

age (blue), the ring artefacts caused spikes on a histogram curve of the same distribu-359

tion (orange).360

Figure 12 shows the variation of AUC-ROC score and mean accuracy over degree361

of severity. The CNN segmentation performed surprisingly well for artificial ring arte-362

facts. Only the brine phase of the severely affected images shows some minor mis-classification.363

It is also surprising because the training images do not have any significant ring arte-364

facts. This test provides an insight on the insensitivity of the CNN segmentation with365

ring artefacts, which is one of the most intrusive feature for most conventional segmen-366

tation methods.367
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Figure 10. CNN segmentation model tested on artificial ring artefact. Left: Same µCT im-

age with increasing severity of artificial ring artefacts where the severity is measured in terms

of the number of rings added. Right: Corresponding CNN segmentation results where major

mis-classifications are marked by green circles.
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Figure 11. Image histogram of the three datasets segmented by the CNN model. All three

histograms show unimodal distribution with the maximum indicating the rock class. The ring

artefact image histogram shows the same distribution with the training/validation/testing image.

The extended test image histogram shows a shifted distribution which is due to different µCT

reconstruction method and parameters.
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Figure 12. The variation of accuracy and AUC-ROC of CNN segmentation over varying de-

gree of ring artefact. The segmentation quality is stable with a minor decrease of performance at

heavily degraded images.

4.2 Extended Test on Similar Data With Extra Training368

To exclude data leakage that may occur when using highly similar training and test-369

ing data, we also tested the trained model on 20 µCT scan volumes which belong to the370

same experiment as the training dataset but from later timestamps with the same rock371

and fluids (Figure 2 Extended Test, 60th-80th time stamps). This dataset is of the same372

size as the training dataset, and uses the same approach for determining the ground-truth.373

This dataset has more noise compared to the training data set, and has horizontal stripe374

artefacts which the training dataset does not have.375

The difference of image quality is because this dataset was reconstructed using a376

different reconstruction tool, TomoPy (Gürsoy et al., 2014) and, the reconstructed im-377

age appearance has a small, but systematic variation due to the different reconstruction378

parameters. The systematic variation is shown in the green curve on Figure 11: images379

from the extended dataset have a gray value distribution the maximum of which is shifted380

to the left compared with other datasets. Therefore, the trained model might not work381

accurately on these data right away (Figure 13(c)). To mitigate this, the model was briefly382

trained for five epochs using only the first volume of the 20, and tested with the remain-383

ing 19 volumes.384
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Figure 13 shows the CNN segmentation result by directly using the trained model385

did not capture most of the pore structures and did not separate the two fluids (Figure 13(c)).386

After five epochs of additional training, the CNN segmentation converged towards the387

ground truth image (Figure 13(d)). The extra test results are: accuracy of rock is 93.5%,388

accuracy of oil is 95.2%, accuracy of brine is 99.1%, and the mean accuracy is 95.9%. The389

average IoU of the three classes is 0.98. The performance remains good with only a mod-390

est decrease in accuracy. This confirms that the CNN model can quickly be adapted to391

handle similar datasets with brief re-training.392

We tested whether the prior training was essential, or whether 5 epochs alone were393

sufficient. The result (Figure 13(e)) shows that the result is inconsistent with the ground394

truth and confirms that the prior training is necessary and the CNN requires it in or-395

der to effectively adapt to new data, but needing relatively few epochs of additional train-396

ing to achieve that adaptation.397

To address the impact of CNN segmentation and conventional segmentation on ex-398

perimental measurements of the fluids, we compared the fluid saturation measured from399

CNN segmentation results and conventional segmentation results. Fluid saturation mea-400

sures how much of a fluid is present in the pore space of a rock. In this comparison, we401

expect the fluid saturation measured from both CNN segmentation and random-walker402

segmentation to give similar results.403

Figure 14 shows the saturation of oil measured from both CNN segmentation and404

conventional segmentation are very close. The plot shows that measurements taken from405

the random-walker segmentation is overall higher than the measurements taken from the406

CNN segmentation. A one-sided Wilcoxon test was performed with the two saturation407

measurements to examine if the measurement taken from random-walker is statistically408

larger. The Wilcoxon test returned a p-value of less than 0.002 and confirms that the409

difference is statistically significant. The median of the Wilcoxon test values is 2, indi-410

cating, however, that the amount amount of difference is small. The CNN segmentation411

model is able to produce reliable segmentation that is close to the result obtained us-412

ing conventional segmentation method. The CNN model has the ability to adapt to vari-413

ations in the dataset with minimal retraining.414
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Figure 13. Segmentation result of the model before and after extra training. (a) Raw re-

constructed image before segmentation. (b) Ground truth image. (c) CNN prediction of 3-class

probability using the trained network without additional training. (d) CNN segmentation result

after 5 epochs of additional training with one µCT scan volume. (e) CNN prediction trained

from scratch. This illustrates that the CNN model can be adapted to similar dataset with brief

re-training.
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Figure 14. Comparison of oil saturation measured from random-walker and CNN segmenta-

tion. Oil saturation of consecutive 19 scans from timestamp 60 to 80 was measured from both

CNN segmentation and conventional random-walker segmentation. The measurements of satura-

tion from the segmentation using two methods are highly similar.

4.2.1 Impact of Different Image Quality Disturbance415

Comparing the CNN model performance on the extended test and the ring arte-416

fact test, the CNN model can perform reliably with the impact of low to moderate de-417

gree of ring artefacts without additional training. But it needs a small amount of addi-418

tional training to perform well on the extended test. Figure 11 shows that the distur-419

bance in the ring artefact images are local spikes on the histogram, while the disturbance420

in the extended test images is a systematic shift of the image histogram. The model has421

better resistance to local disturbance produced by ring artefacts than to a systematic422

change of the image histogram. The results indicate that 1) the CNN segmentation can423

be applied to datasets that are affected by low to moderate degrees of ring artefacts with-424

out additional training, and 2) the CNN segmentation needs minor additional training425

to perform well on datasets that have a systematic shift of the histogram. It also sug-426

gests that for heterogeneous datasets, the training data set should be sampled across the427

entire range to decrease bias and reduce additional training. However it may require a428

greater amount of training to generalize the model.429
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4.2.2 Temporal Efficiency430

For a dataset of size 1004×496×496, the CNN model took 5 minutes 40 seconds431

to segment the dataset. The conventional segmentation pipeline using the random-walker432

algorithm took 50 minutes 13 seconds to segment the same dataset. The comparison shows433

a ten-fold speed advantage using the CNN method. This comparison was done on a CPU-434

dedicated workstation which has 32 CPU cores, without which the processing time of435

the conventional segmentation can be up to 15 hours and 32 minutes if using a single436

thread. The GPU used in this study was released in 2014. The GPU has a compute ca-437

pability of 3.5, while current GPUs have a compute capability of 8.6, meaning the micro-438

architecture is five-generations behind and lack of many powerful computational features.439

Although it is difficult to give a precise number of improvement, we estimate a further440

improvement in temporal efficiency at least ten times of magnitude if the latest GPU441

is used.442

4.3 Future Improvements443

The current training dataset can be augmented by introducing noise, mirroring,444

rotating, scaling, cropping or translating the original training images. Data augmenta-445

tion allows amplification of the training dataset based on existing dataset and therefore446

can further generalize the CNN model to achieve a more robust segmentation of differ-447

ent datasets. This data augmentation strategy was tested with the U-Net architecture448

and was found to produced excellent segmentation (Ronneberger et al., 2015).449

As a working CNN model of segmenting µCT data of core-flooding experiments,450

the current model learned the segmentation process, rather than applying an intrinsic451

knowledge of ‘what is rock’ and ‘what are fluids’. The reason is that the training data452

itself is highly biased towards the particular rock and fluid type of this experiment. Dif-453

ferent rocks have different internal structures. The appearance of a rock on µCT is highly454

dependent on the imaging settings, and even the same rock can look different under dif-455

ferent conditions such as X-ray energy and sources. Different fluids can vary in µCT im-456

ages too. It is beneficial to keep training on future experiments to generalise the model457

with more kinds of rocks and fluids. As more type of imaging conditions, noises, litholo-458

gies and fluid phases are collected in the training data, the model will be increasingly459

generalized. The future training needed will eventually decrease as the CNN network has460
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‘seen’ more rocks, fluids and experiments. It becomes a more mature model that can seg-461

ment multiphase fluid flow experiment data regardless of noise, rock type, fluid type and462

beam line condition.463

Comparison of different network architectures can be further tested. Apart from464

the U-Net, there are other powerful CNN architectures such as ResNet (He et al., 2016),465

GoogLeNet (Szegedy et al., 2015), VGGNet (Simonyan & Zisserman, 2014) etc. with dif-466

ferent advantages and specialities. The approach introduced in this paper can be imple-467

mented on different CNN architectures for a variety of segmentation demands.468

5 Conclusion469

Use of a convolutional neural network can significantly improve the segmentation470

workflow for multiphase flow µCT images. The advantages are five-fold. First, once a471

network for segmenting multiphase flow images is trained, it can be applied to future data472

without retraining or only with fine-tuning. Second, the segmentation is directly per-473

formed on the reconstructed image, and so considerable time spent on the pre-processing474

(tuning of filtering, registration, masking etc.) can be avoided. This is significant because475

faster segmentation means that more time can be devoted to analysis and interpretation476

of data. Third, the CNN method can segment a dataset of size 1004 × 496 × 496 in 5477

minutes, which is ten-fold faster than a conventional segmentation pipeline using the random-478

walker method. The speed advantage is obvious even on our CPU-dedicated worksta-479

tion, and the speed of CNN may be significantly increased by using a more recent GPU.480

Fourth, the algorithm is capable of segmenting images that are highly affected by ring481

artefacts, which often require additional correction or removal steps for conventional pro-482

cessing paths (e.g. Rashid et al., 2012; Brun et al., 2009). Finally, the performance of483

the CNN network improves as more data is available through re-training. With little re-484

training it can be easily adapted to new datasets when the previous training is biased.485

Overall the CNN segmentation is a powerful and efficient tool for µCT image segmen-486

tation, especially for large datasets.487
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