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Abstract

To help store water, facilitate navigation, generate energy, mitigate floods, and support industrial and agricultural production,

people have built and continue to build obstructions to natural flow in rivers. However, due to the long and complex history of

constructing and removing such obstructions, we lack a globally consistent record of their locations and types. Here, we used

a consistent method to visually locate and classify obstructions on 2.1 million km of large rivers (width [?] 30m) globally. We

based our mapping on Google Earth Engine’s high resolution images from 2018–2020, which for many places have meter-scale

resolution. The resulting dataset, the Global River Obstruction Database (GROD), consists of 29,877 unique obstructions,

covering six different obstruction types: dam, lock, low head dam, channel dam, and two types of partial dams. By classifying

a subset of the obstructions multiple times, we are able to show high classification consistency (87% mean balanced accuracy)

for the three types of obstructions that fully intersect rivers: dams, low head dams, and locks. The classification of the three

types of partial obstructions are somewhat less consistent (61% mean balanced accuracy). Overall, by comparing GROD to

similar datasets, we estimate GROD likely captured 90% of the obstructions on large rivers. We anticipate that GROD will be

of wide interest to the hydrological modeling, aquatic ecology, geomorphology, and water resource management communities.
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Key Points: 17 

• We manually identified 29,877 river obstructions on 2.1 million km of large rivers across the 18 

globe. 19 

• The Global River Obstruction Database provides rich new context for understanding human 20 

impacts on rivers. 21 

• GROD identifies many in-river structures missed by other global dam databases.  22 

mailto:yangxiao@live.unc.edu)


manuscript submitted to Water Resources Research 

 

Abstract 23 

To help store water, facilitate navigation, generate energy, mitigate floods, and support industrial 24 

and agricultural production, people have built and continue to build obstructions to natural flow 25 

in rivers. However, due to the long and complex history of constructing and removing such 26 

obstructions, we lack a globally consistent record of their locations and types. Here, we used a 27 

consistent method to visually locate and classify obstructions on 2.1 million km of large rivers 28 

(width ≥ 30m) globally. We based our mapping on Google Earth Engine’s high resolution 29 

images from 2018–2020, which for many places have meter-scale resolution. The resulting 30 

dataset, the Global River Obstruction Database (GROD), consists of 29,877 unique obstructions, 31 

covering six different obstruction types: dam, lock, low head dam, channel dam, and two types 32 

of partial dams. By classifying a subset of the obstructions multiple times, we are able to show 33 

high classification consistency (87% mean balanced accuracy) for the three types of obstructions 34 

that fully intersect rivers: dams, low head dams, and locks. The classification of the three types 35 

of partial obstructions are somewhat less consistent (61% mean balanced accuracy). Overall, by 36 

comparing GROD to similar datasets, we estimate GROD likely captured 90% of the 37 

obstructions on large rivers. We anticipate that GROD will be of wide interest to the 38 

hydrological modeling, aquatic ecology, geomorphology, and water resource management 39 

communities. 40 

Plain Language Summary 41 

Many obstructions have been built on rivers across the globe to help store water, facilitate 42 

navigation, generate energy, mitigate floods, and support industrial and agricultural production. 43 

However, the lack of publicly available information on where these obstructions are reduces our 44 

ability to assess their environmental impact. In this study, we used publicly available satellite 45 

data from Google to manually identify river obstructions on all large rivers across the globe 46 

(width ≥ 30 meter) to develop the Global River Obstruction Database, or GROD. GROD consists 47 

of 29,877 unique obstructions assigned to one of the six types: dam, low head dam, lock, channel 48 

dam (dam that obstructs one channel of a multi-channel river), and two types of partial dams 49 

(dam that extends partially across a river). By repeatedly classifying subsets of GROD 50 

obstructions, we estimate high classification consistency. And by comparing GROD to two other 51 

comprehensive obstruction datasets, we estimate that GROD covers ~90% of obstructions for the 52 

rivers studied. We anticipate that the release of GROD will help people around the world better 53 

understand and manage human impacts on rivers. 54 

1 Introduction 55 

Globally, the study of rivers would benefit from improved data on locations and characteristics 56 

of non-reservoir-producing obstructions, such as low head or partial dams and locks (Lange et 57 

al., 2019; Mantel et al., 2017). Efforts to date have focused on mapping large dams that generate 58 

reservoirs (Lehner & Grill, 2013; Mulligan et al., 2020). Despite the existence of millions of 59 

small obstructions around the world (Belletti et al., 2020; Lehner & Grill, 2013; Smith et al., 60 

2002) most remain undocumented or are inconsistently mapped (Mantel et al., 2017). 61 

Increasingly, non-reservoir-producing river obstructions are recognized as both individually and 62 

cumulatively affecting movement of water, sediment, and species as well as altering river habitat 63 

(Januchowski‐Hartley et al., 2020; Lucas et al., 2009). Limited data on river obstructions can 64 

lead to substantial underestimation of their ecological, environmental, and socio-economic 65 

impacts. 66 

https://paperpile.com/c/PLtflz/uJGX+qjPX
https://paperpile.com/c/PLtflz/uJGX+qjPX
https://paperpile.com/c/PLtflz/6Y9a+SXKN
https://paperpile.com/c/PLtflz/ft0v+6Y9a+gVob
https://paperpile.com/c/PLtflz/ft0v+6Y9a+gVob
https://paperpile.com/c/PLtflz/qjPX
https://paperpile.com/c/PLtflz/B42u+y7id
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 67 

Documenting the types, locations, and characteristics of different obstructions is critical for 68 

adaptive management and decisions regarding monitoring for safety, as well as potential 69 

removals and construction (Januchowski-Hartley et al., 2013; Lange et al., 2019; Neeson et al., 70 

2015). Efforts are ongoing to map obstructions that do not necessarily generate reservoirs, but 71 

primarily at the regional scale (Graf, 1999; Jones et al., 2019). For example, in the last decade, 72 

dozens of projects in North America have focused on inventorying and generating decision 73 

support tools to identify priorities for obstruction removal or remediation (e.g. 74 

https://streamcontinuity.org/). In the Laurentian Great Lakes Basin, more than 275,000 dams, 75 

weirs, and road-river crossings were mapped (Januchowski-Hartley et al., 2013), and continue to 76 

be central to research, monitoring, and remediation decisions in the region (e.g. 77 

https://greatlakesconnectivity.org/). Similar projects and initiatives continue across 13 North 78 

Atlantic States and 14 Southeast States in the United States along with the Commonwealth of 79 

Puerto Rico (https://southeastaquatics.net/), including collation and maintenance of mapping and 80 

online databases of potential obstructions to hydrological and ecological connectivity determined 81 

through on-the-ground assessments. In Europe, Belletti et al. (2020) collated locations for 82 

>600,000 river obstructions (AMBER Atlas) across 36 countries. Careful compilation has been 83 

used to merge datasets of heterogeneous sources into consistent larger scale databases, though 84 

compilation becomes harder to do in regions of the world where records have not been well kept 85 

or not made public. Alternatively, participatory approaches to data collection (e.g. (Mulligan et 86 

al., 2020; Whittemore et al., 2020) can be a consistent way of mapping river obstructions that 87 

includes both large, reservoir-generating dams and smaller obstructions. 88 

By expanding our previous work focusing on United States (Whittemore et al., 2020), we present 89 

the complete Global River Obstruction Database (GROD), which maps dams, low head dams 90 

(weirs), locks, and partial dams (e.g., wing dams)—from here termed obstructions—along the 91 

world's large rivers (>30m wide; (Allen & Pavelsky, 2018)). By manually identifying and 92 

classifying obstructions from high-resolution images in Google Earth Engine (Gorelick et al., 93 

2017), we mapped 29,877 obstructions along 2.1 million km of river length. Aside from the 94 

dataset, we describe, in chronicle order, five phases of the dataset development (Figure S1) that 95 

we think would be valuable to similar mapping efforts in the future—Phase 1: setup and initial 96 

mapping; Phase 2: intermediate evaluation; Phase 3: revision and final internal evaluation; Phase 97 

4: evaluation with external datasets; Phase 5: first application of GROD. 98 

2 Methods 99 

2.1 Phase 1: Setup and initial mapping 100 

2.1.1 Setting up the mapping and data storage environment 101 

We used openly available Google tools for all mapping and data management. Specifically, we 102 

used the satellite image background, a mosaic of recently-captured high-resolution images from 103 

Google Earth Engine (Gorelick et al., 2017), for project participants to map obstructions. We 104 

overlaid river centerlines from the Global River Widths from Landsat (GRWL; (Allen & 105 

Pavelsky, 2018)) on top of the satellite images to help guide the mapping process. To create an 106 

interactive mapping interface, we used Google Earth Engine’s JavaScript code editor interface 107 

https://paperpile.com/c/PLtflz/r49Y+uJGX+qBU6
https://paperpile.com/c/PLtflz/r49Y+uJGX+qBU6
https://paperpile.com/c/PLtflz/LzWU+V3jw
https://streamcontinuity.org/
https://streamcontinuity.org/
https://paperpile.com/c/PLtflz/r49Y
https://greatlakesconnectivity.org/
https://southeastaquatics.net/
https://paperpile.com/c/PLtflz/gVob/?noauthor=1
https://amber.international/barrier-atlas/
https://paperpile.com/c/PLtflz/SXKN+XOp8
https://paperpile.com/c/PLtflz/SXKN+XOp8
https://paperpile.com/c/PLtflz/XOp8
https://paperpile.com/c/PLtflz/RCck
https://paperpile.com/c/PLtflz/sfRH
https://paperpile.com/c/PLtflz/sfRH
https://paperpile.com/c/PLtflz/sfRH
https://paperpile.com/c/PLtflz/RCck
https://paperpile.com/c/PLtflz/RCck
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and geometry tools (Gorelick et al., 2017). Lastly, we used a shared Google Drive folder to 108 

organize mapping results and a shared Google Sheet to track mapping progress.  109 

2.1.2 Mapping procedures 110 

To allow multiple participants to work on the mapping simultaneously and reduce the chance of 111 

duplication, we divided our mapping area into tiles. Specifically, following Whittemore et al., 112 

(Whittemore et al., 2020), we divided the GRWL-covered land surface area into 1,039 tiles (each 113 

12º by 6º). A typical mapping session, which starts from a new tile, contains the following the 114 

following action items: 115 

1. Select a tile by inputting a unique tile ID, following which river centerlines are shown 116 

overlaying the satellite images within the selected tile from Google Earth Engine’s 117 

satellite view; 118 

2. Scroll along the river centerlines, and upon finding a structure, follow the classification 119 

criteria (see the following section) and choose an obstruction type to mark the location. 120 

Note that markers are usually placed on the structure itself and close to its center, e.g. for 121 

a dam, the marker is placed on the dam wall instead of at the center of the reservoir 122 

created by it; 123 

3. Save the mapped data by saving the file on Google Earth Engine at the end of each 124 

mapping session; 125 

4. Export mapped data as a csv file into a designated folder in the participant's Google Drive 126 

folder; 127 

5. Repeat steps 1–4 until all GRWL rivers in the tile have been searched for obstructions. 128 

Then mark the tile as “completed” in the shared spreadsheet containing mapping 129 

progress.  130 

2.1.3 Classification criteria 131 

We followed the criteria detailed by Whittemore et al. (2020) to classify each obstruction and 132 

summarize the processes here. In general, GROD includes six types of obstructions that are the 133 

most common in rivers. They consist of three types of obstructions that cross the full width of the 134 

river (Group I obstructions): dam, lock, and low head dam, and three other types that only 135 

partially obstruct flow across the river width (Group II obstructions): channel dam, partial dams 136 

1 (obstruction length < 50% of river width), and partial dams 2 (obstruction length ≥ 50% of 137 

river width). We defined the obstruction types so that they span abilities to obstruct flow. For 138 

example, dams should have a more substantial influence on flow than locks, which should have a 139 

heavier impact on flow than lLw head dams. Whenever a structure was composed of multiple 140 

obstruction types, we assigned it the type that affects the flow the least. For example, if an 141 

obstruction was composed of a low head dam and a lock, we labeled it as a low head dam as 142 

water can flow over the obstruction even when the lock gates were closed. An additional type 143 

named “Uncertain” was used during mapping to temporarily indicate obstructions that were hard 144 

to identify at that moment. All obstructions assigned uncertain type later on went through 145 

https://paperpile.com/c/PLtflz/sfRH
https://paperpile.com/c/PLtflz/XOp8
https://paperpile.com/c/PLtflz/XOp8/?noauthor=1
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secondary screening to either be removed from the dataset or be incorporated as one of the six 146 

types in GROD.  147 

Challenges of classifying three-dimensional structures based on two-dimensional satellite images 148 

from limited angles are handled using contextual information. We used features such as structure 149 

shape, extent, and material, as well as the existence of structure shadow, visible water flow on 150 

top, and relative channel width change up/downstream of the structure to determine obstruction 151 

type. Thus, the type chosen for each obstruction is based on the best judgement of how the 152 

obstruction influences the flow at the time of the image acquisition, rather than an objective 153 

determination of the design purpose of the obstruction. In some cases, additional views from 154 

other sources such as Google Street View were used to aid in the identification.  155 

2.1.4 Data cleanup 156 

After completing the global mapping, we conducted two data cleaning steps. First, we removed 157 

duplicates in the global dataset by manually examining 1,216 potential locations. These locations 158 

were identified automatically where any two (or more) obstructions were within 200 meters 159 

distance and were added to the dataset by different participants. Then, we manually reexamined 160 

all obstructions that were labeled as uncertain (n>3000) and either removed them or assigned 161 

them into one of the six obstruction types. 162 

2.2 Phase 2: Intermediate evaluation 163 

To estimate how consistently we classified GROD obstructions, three participants reclassify the 164 

same 10% random subset of obstructions (n = 3,336). The reclassified results were compared to 165 

the initial types given to these obstructions, as well as among those from the three participants. 166 

The former comparison informs us of the consistency in repeatedly classifying obstructions, and 167 

the latter comparison informs us of the consistency with which different participants classify 168 

each type of obstructions. 169 

Throughout the evaluation, we used two metrics to report consistency between two 170 

classifications: balanced accuracy and F1 score (Van Rijsbergen, 1979), both of which can be 171 

estimated for each type of obstruction. Balanced accuracy is the mean of sensitivity and 172 

specificity, while the F1 score is calculated as the harmonic mean of sensitivity and precision 173 

(see “Evaluation metrics” in the Supporting Information). Compared to accuracy, balanced 174 

accuracy takes into account both positive and negative cases and is not affected as much by class 175 

imbalance; Values of the F1 score range from 0 to 1, with a higher F1 score indicating better 176 

agreement, with low false positive and false negative rates. In this study, we used the values of 177 

these two metrics to infer consistency of classification, rather than using them to represent the 178 

accuracy of classification, which would require us to attribute one classification as truth. 179 

2.3 Phase 3: Revision and final internal evaluation 180 

After Phase 2, to improve the accuracy of the GROD data, we determined that we should focus 181 

primarily on Group I obstructions since they are more likely to be classified consistently (from 182 

details on what we have found from intermediate evaluation, see Table S1 and the Supporting 183 

Information under “Intermediate evaluation results”), pose greater influence on river flow, and 184 

tend to more substantially impact the ecology (e.g., fish movement) of rivers. In comparison, 185 

https://paperpile.com/c/PLtflz/1Kdk
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Group II obstructions are more challenging to classify consistently, and their identification is 186 

more heavily affected by river flow stage. We nonetheless included them in the dataset because 187 

knowing their locations will be valuable to others (see supplementary materials). 188 

To ensure the highest accuracy, we reclassified all Group I structures. After reclassification, we 189 

conducted our final assessment, checking classification consistency across different participants. 190 

Two authors reclassified a random subset of obstructions from Group I obstructions (N = 500 191 

total; dams (n = 206), low head dams (n = 246), and locks (n = 48)). To evaluate the dataset, we 192 

merged the classification results from both participants and calculated the balanced accuracy and 193 

F1 against the reclassified Group I types.  194 

2.4 Phase 4: Evaluation with external datasets 195 

The classification accuracy from the evaluations in Phase 2 and 3 revealed how well we 196 

consistently classify obstructions of each type. However, as GROD is likely to be used to 197 

evaluate river fragmentation, it is important to also know the likelihood of obstructions being 198 

missed during the mapping process. To estimate the omission rate of GROD, we used two 199 

independent data sources, AMBER Atlas and OpenStreetMap (OSM), which contain similar 200 

obstruction types included in GROD. The details of how we extracted and cleaned the OSM data 201 

are documented in Supporting Information under “Downloading and preprocessing 202 

OpenStreetMap Global Dam Data”. In total, we obtained 52,670 obstruction point locations from 203 

OSM and 629,955 point locations from AMBER Atlas. Then, we narrowed down both datasets 204 

to a combined dataset of 4,807 locations by checking whether the points overlapped the river 205 

mask used to derive GRWL. The merged data were then further constrained to only include 206 

obstruction types compatible with the types included in GROD. The final subset of data includes 207 

2,740 points from AMBER Atlas (consisting of types “WEIR”, “DAM”, “SLUICE”) and 550 208 

points from OSM (consisting of types “dam”, “weir”, “lock_gate”). 209 

To estimate the omission rate of GROD, we compared GROD with random subsets of the 210 

cleaned OSM and AMBER Atlas database. Specifically, we randomly sampled 100 points 211 

separately from the cleaned OSM and AMBER Atlas databases and examined the 200 locations 212 

manually. At each location, we checked: (1) whether the point from OSM or AMBER Atlas was 213 

valid for comparison with GROD and (2) if valid, whether there was a GROD point 214 

corresponding to that location. Points were considered invalid for comparison if, at that location: 215 

(1) the obstructions existed but did not correspond to one of the six types included in GROD 216 

(e.g. bridges or roads), or (2) the obstruction existed but did not obstruct flow along the GRWL 217 

river flow direction (e.g. obstructions situated on the side of the main GRWL river channel and 218 

obstructing a tributary connected to the GRWL-defined river), or (3) the obstruction could not be 219 

observed at the given location. For cases when either AMBER Atlas or OSM identified a valid 220 

obstruction but no GROD points could be associated with it, we counted it as truly missing. 221 

To estimate the omission rate, we divided the total numbers of true missing cases, separately for 222 

OSM and AMBER Atlas, by the total count of locations examined (n = 100). At the same time, 223 
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we also estimated the invalid rate for these two datasets by dividing the total number of invalid 224 

cases by the total count (n = 100).   225 

2.5 Phase 5: First application of GROD 226 

One of the important applications of datasets like GROD is to assess and quantify how 227 

obstructions modify hydrological or ecological connectivity (Belletti et al., 2020; Grill et al., 228 

2019; Jones et al., 2019). To demonstrate how GROD can be used to do so, we estimated 229 

obstruction density based on two different sets of spatial aggregation, using HydroBASINS 230 

(Lehner & Grill, 2013) and national boundaries. The method behind these two aggregations was 231 

the same. For each unit (a basin from HydroBASINS level-3 or a country polygon), we 232 

calculated the total river length from the GRWL database as well as the total count of 233 

obstructions. Then we estimated the density of obstructions on rivers (converted to “n/1000km”) 234 

by normalizing obstruction count by total river length. 235 

3 Results 236 

3.1 GROD evaluation 237 

3.1.1 Internal evaluation: Classification consistency 238 

Comparing the evaluation metrics for Group I obstructions between the final GROD dataset and 239 

that based on the intermediate evaluation, we found substantial increase in accuracy in all three 240 

Group I types (Table 1), with balanced accuracy improving on average by 14 percentage points 241 

and F1 score improving on average by 23 percentage points. The most improved type was the 242 

lock. The final averaged balanced accuracy for Group I obstructions was 87% (F1 score: 83%), a 243 

20% improvement compared to the metric estimated for the Group I obstructions during the 244 

intermediate evaluation. Note that values for the intermediate evaluation were recalculated by 245 

https://paperpile.com/c/PLtflz/Kzeb+gVob+V3jw
https://paperpile.com/c/PLtflz/Kzeb+gVob+V3jw
https://paperpile.com/c/PLtflz/6Y9a
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limiting the initial data to only Group I obstructions, considering the fact that only three types of 246 

obstructions were used in the final evaluation. 247 

Table 1. Intermediate and final evaluation. Numbers in the parenthesis were from intermediate 248 

evaluation only for Group I obstructions. 249 

Obstruction type Balanced accuracy F1 

Dam (73%) 83% (70%) 79% 

Low head dam (72%) 83% (66%) 83% 

Lock (70%) 94% (52%) 88% 

3.1.2 External evaluation: GROD omission rate 250 

By manually comparing GROD to a random subset of obstructions (n = 200) from the AMBER 251 

Atlas and OSM dataset, we estimated a mean GROD omission rate of 9.5% from comparisons of 252 

similar obstruction types in AMBER Atlas and OSM along the same GRWL rivers (9% for 253 

AMBER Atlas and 10% for OSM). At the same time, we obtained substantial invalid rates for 254 

the comparison datasets (20% for AMBER Atlas and 22% for OSM), meaning that one in five 255 

obstructions we examined for AMBER Atlas and OSM was either not present on the image we 256 

examined at the location given or, despite having narrowed types down to the ones included in 257 

GROD, not belonging to the types or the rivers studied in GROD. Where GROD omission 258 

occurred did not show any obvious spatial pattern, suggesting the locations of omission are likely 259 

random. However, the omission rate we estimated is likely an approximate, as the external 260 

datasets we compared GROD to have their own caveats, as indicated by their high invalid rate.  261 

3.2 GROD and its spatial distribution 262 

We mapped 29,877 unique obstructions globally. Of the six types, low head dams were the most 263 

abundant, accounting for 38% (n = 11,372) of the obstructions, followed by dams, accounting for 264 

28.6% (n = 8,537) of the obstruction count (Table 2). Spatially, river obstructions are clustered in 265 

industrialized regions (Figure 1). Both dams and low head dams were spread widely in these 266 

regions. In contrast, the 1,728 locks identified in the GROD are heavily clustered in a few 267 
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regions, including western Europe, eastern China, and the eastern United States (for the 268 

distribution of each obstruction type, see Figure S3). 269 

 270 

 271 

Figure 1. Spatial distribution of each obstruction type in GROD: dam, low head dam, lock, 272 

channel dam, and two types of partial dams. 273 

Table 2. GROD obstruction types and counts. Total number of obstructions = 29,877. 274 
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Obstruction type Total number (n) Percent (%) Group 

Dam 8,537 28.6% I 

Low head dam 11,372 38.1% I 

Lock 1,728 5.8% I 

Channel dam 1,675 5.6% II 

Partial dam 1 (<50% width) 3,687 12.3% II 

Partial dam 2 (≥50% width) 2,878 9.6% II 

Regions with fewer obstructions are located either in high latitudes (northern and northwestern 275 

North America, northern Asia), or in other regions where industrial activity and population 276 

density are relatively low (e.g. Amazon rainforest, central Africa, and western Australia). 277 
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Overall, of the 2.1 million km of rivers studied globally, ~49% of the length is minimally 278 

obstructed, defined as less than one obstruction per 1000 km of river length. 279 

 280 

Figure 2. Obstruction density for level-3 HydroBASINS (a) and for country level (b) based on 281 

Group I obstruction locations and GRWL river lengths. Only Group I obstructions were used for 282 

calculating density on this map. For results based on all six types of obstructions, see Figures 283 

S3–4.  284 
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 285 

When looking at river obstruction density at the country level (Figure 2b), the spatial patterns are 286 

similar to those based on drainage basins (Figure 2a). The majority of the top 10 countries are 287 

located in Europe, with the exception of Japan (rank 1) and South Korea (rank 7) (Figure S5). 288 

However, if we rank the countries by their absolute number of obstructions, we see the ranking 289 

instead affected by country size and river abundance, with the top 3 countries being China, India, 290 

and the United States (Figure S5). For rankings based on all 6 types of obstructions, see Figure 291 

S6. 292 

4 Discussions 293 

In this study, we presented GROD, a dataset consisting of 29,877 river obstructions along the 294 

world’s largest rivers. Using publicly accessible satellite images available from Google, we were 295 

able to manually identify human-made structures obstructing river flow. With five phases of 296 

dataset development, we are able to provide to the scientific community a dataset that is both 297 

comprehensive and accurate. Despite the challenges associated with classifying three-298 

dimensional obstructions using two-dimensional image representations of the Earth’s surface, we 299 

were able to achieve an averaged balanced accuracy of 87% across the Group I obstructions. We 300 

also compared GROD with other global/regional datasets to show that, by only mapping through 301 

the globe once, GROD is able to include ~90% of known obstructions on rivers ≥ 30 m wide. 302 

Additionally, as shown by Whittemore et al. (2020), GROD is likely much more comprehensive 303 

in including small river barriers compared to some of the other regional datasets and can serve as 304 

a baseline for regional-scale datasets, especially in places where such data are not publicly 305 

available. The successful coordination and development of GROD demonstrate the effectiveness 306 

and efficiency of conducting mapping using publicly available cloud-based resources. This is 307 

critical, especially for features like river obstructions that remain challenging to accurately 308 

identify using automated algorithms. We expect the release of GROD will be valuable for many 309 

research fields including those interested in changes to surface water flows and movement of 310 

aquatic migratory species.   311 

We identified three key sources of uncertainty associated with GROD. First, the non-uniform 312 

spatial resolution of imagery across the world: structures might be harder to classify if the 313 

images have lower spatial resolution and appear blurred. However, most of the highly populated 314 

regions where river obstructions tend to cluster had high resolution images, so a disparity in 315 

resolution should have minimal effect on our dataset. Second, satellite images from Google are 316 

updated regularly, which makes it a challenge to reproduce or evaluate mapping across different 317 

time periods. This is a limitation because updated images might reflect different flow states of 318 

rivers, or different development stages of ongoing building or demolishing of obstructions: for 319 

example, obstructions presented in our initial mapping might be submerged or demolished in the 320 

follow-up mapping effort. This limitation could, in theory, be addressed by conducting all 321 

mapping in a very narrow temporal window. However, doing so is impractical, given both the 322 

amount of effort and time required to manually map obstructions globally and the limitations of 323 

the imagery itself. Obtaining cloud-free imagery in many regions is quite challenging, especially 324 

during high flow seasons or in regions with monsoons (e.g. the Indian Subcontinent or Amazon 325 

Basin) (Allen et al., 2020). For these reasons, GROD should be seen as an inventory sourced 326 

from a period of time covering several years, instead of as the accurate instantaneous capture of 327 

the year of the published dataset. Third, consistently classifying a structure, either repeatedly by 328 

https://paperpile.com/c/PLtflz/rnPn
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the same participant or among multiple participants, proved challenging. We believe this 329 

challenge could be partly linked with the specificity of our initial obstruction typology, for 330 

example differentiating between a dam and a channel dam is not always straightforward (see 331 

Whittemore et al. 2020). Additionally, because classification of an obstruction to a type is 332 

subjective and particularly challenging when structures are small relative to the resolution of the 333 

imagery. 334 

As identified by Whittemore et al. (2020) for regions of United States and France, we 335 

consistently found that the channel dam type had low classification consistency among 336 

participants (Table S2), likely due to the difficulties in differentiating between a dam on a single 337 

channel and a channel dam on one portion of a multichannel river. However, the effect from this 338 

limitation likely varies depending on the application: while it might be challenging to 339 

differentiate between all six types of obstructions (overall accuracy: 66%), the distinction 340 

between Group I and Group II is quite accurate (overall accuracy: 91%). And the advantage of 341 

having a finer typology is that the users can decide how to select and merge the data according to 342 

the application. 343 

Regional records or compiled datasets like AMBER Atlas (Belletti et al., 2020), SEACAP 344 

(Martin et al., 2014) or the projects across North America (https://streamcontinuity.org/), do 345 

report obstructions on much smaller rivers and streams, but such data are only limited to regions 346 

with historical records and an ongoing effort to compile relevant data. In many parts of the 347 

world, this type of information is either not publicly available or not recorded at all (Brejão et al., 348 

2020; Carvajal-Quintero et al., 2017; Kroon & Phillips, 2015; Shirley et al., 2021), which can 349 

lead to spatially biased representation of obstruction density if data were simply compiled 350 

together. Furthermore, existing river obstruction datasets, both regional (AMBER Atlas) and 351 

global (OSM), created by compiling existing datasets or participatory science, are not linked 352 

explicitly to a consistent river network. This in itself is not problematic, and should not affect 353 

completeness of obstructions, in the sense that these datasets aimed to include all possible 354 

obstructions resolved by the particular method used to map them. However, not linking 355 

obstruction data explicitly to a river network does limit what analyses can be carried out, and can 356 

result in additional work for end-users. For example, while comparing GROD with AMBER 357 

Atlas we frequently noticed that there are obstructions in that database that are very near to a 358 

large river but that are not actually on or obstructing flow to that channel. Given these 359 

limitations, it would be challenging to accurately calculate an equivalent to Figure 2 using 360 

AMBER Atlas or a similar dataset as it is currently available, because many of the obstructions 361 

do not pair with river channels.  362 

Looking to the future, we anticipate that combining the type and location information from 363 

GROD with the corresponding satellite images will provide us with a labeled dataset that can be 364 

used to develop machine-learning approaches that could potentially automate the mapping 365 

process and help solve some of the limitation we face when creating GROD. In fact, we have 366 

achieved image files for each record in GROD as png files after finalizing GROD, which will be 367 

made publicly available along with the GROD dataset. We also expect the locations of GROD 368 

obstructions will help better model sediment transport in the world's large rivers. GROD also 369 

helps divide rivers into reaches within which no human-made obstructions will cause abrupt 370 

changes in flow. Knowing such locations of flow disruption is critical for remote sensing of river 371 

discharge from satellites like the upcoming Surface Water and Ocean Topology satellite 372 

https://paperpile.com/c/PLtflz/gVob
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(Biancamaria et al., 2016) that aims to provide global river discharge products. Our experience 373 

with building GROD demonstrates that large-scale mapping projects can be planned efficiently 374 

and implemented thanks to recently available cloud-based geospatial platforms such as Google 375 

Earth Engine. GROD can serve as an example of how, with the help from community scientists, 376 

global mapping of important surface features can be conducted efficiently and accurately.  377 
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