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Abstract

Ocean variability is a dominant source of remote rainfall predictability, but in many cases the physical mechanisms driving

this predictability are not fully understood. This study examines how ocean mesoscales (i.e., the Gulf Stream SST front)

affect decadal southeast US (SEUS) rainfall, arguing that the local imprint of large-scale teleconnections is sensitive to resolved

mesoscale features. Based on global coupled model experiments with eddying and eddy-parameterizing ocean, we find that

a resolved Gulf Stream improves localized rainfall and remote circulation response in the SEUS. The resolved Gulf Stream

influences the boundary layer, driving a barotropic circulation response, thus affecting decadal SEUS rainfall due to a westward

extension of the North Atlantic Subtropical High. The eddy-parameterizing simulation fails to capture the sharp SST gradient

associated with the Gulf Stream and overestimates the role of tropical SST in the SEUS rainfall due to its classical wintertime

connection with the El Niño/Southern Oscillation.
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Key Points 16 

 The Gulf Stream influences regional rainfall patterns in the Southeast US 17 

 Eddying CCSM4 improves the representation of the North Atlantic Subtropical High variability and 18 

its connection to the Southeast US rainfall 19 

 Eddy-parameterizing CCSM4 and CMIP5 models may overestimate the role of tropical sea 20 

surface temperature in decadal Southeast US rainfall 21 
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Abstract  35 

Ocean variability is a dominant source of remote rainfall predictability, but in many cases the physical 36 

mechanisms driving this predictability are not fully understood. This study examines how ocean 37 

mesoscales (i.e., the Gulf Stream SST front) affect decadal southeast US (SEUS) rainfall, arguing that the 38 

local imprint of large-scale teleconnections is sensitive to resolved mesoscale features. Based on global 39 

coupled model experiments with eddying and eddy-parameterizing ocean, we find that a resolved Gulf 40 

Stream improves localized rainfall and remote circulation response in the SEUS. The resolved Gulf 41 

Stream influences the boundary layer, driving a barotropic circulation response, thus affecting decadal 42 

SEUS rainfall due to a westward extension of the North Atlantic Subtropical High. The eddy-43 

parameterizing simulation fails to capture the sharp SST gradient associated with the Gulf Stream and 44 

overestimates the role of tropical SST in the SEUS rainfall due to its classical wintertime connection with 45 

the El Niño/Southern Oscillation.  46 

 47 

 48 

 49 

 50 

Plain Language Summary 51 

Current global climate models (GCMs) typically fail to fully resolve mesoscale ocean features (with length 52 

scales on the order of 10 km) such as western boundary currents, which potentially limit rainfall 53 

predictability over decadal timescales. Improvements in high-performance climate modeling enable us to 54 

incorporate high-resolution ocean models (0.1°) that capture these important mesoscale features with 55 

increased fidelity. Here we show that the inclusion of ocean mesoscales produces a more realistic Gulf 56 

Stream and improves both localized rainfall patterns and large-scale teleconnections. A resolved Gulf 57 

Stream drives a nearly barotropic circulation response and generally reproduces the observed variability 58 

of the North Atlantic Subtropical High that regulates Southeast US rainfall. The results further imply that 59 

high-resolution GCMs with increased ocean model resolution may be needed in future climate prediction 60 

systems. 61 

 62 

 63 

 64 

 65 
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1 Introduction 68 

The ability to predict decadal rainfall variability over land remains one of the grand challenges in climate 69 

prediction. Regional prediction of rainfall has limited skill on timescales from seasons to decades 70 

(Hawkins & Sutton, 2011; Knutti & Sedláček, 2013; Kushnir et al., 2019; Pathak et al., 2019; Shepherd, 71 

2014). For example, several recent studies have shown the underestimated signals in models, or the so-72 

called “signal-to-noise paradox” (e.g., Scaife et al. 2014; Scaife & Smith, 2018; Siegert et al. 2016; 73 

Strommen & Palmer, 2019; Zhang et al., 2021; Zhang & Kirtman, 2019b) in decadal rainfall predictability 74 

(Smith et al., 2019, 2020), implying potentially serious issues in current modeling systems that fail to 75 

capture the observed decadal rainfall signals.  76 

The ocean plays a crucial role in modulating low-frequency rainfall variability (see Battisti et al., 2019 for 77 

review of current understanding). Variations in sea surface temperature (SST) (e.g., El Niño/Southern 78 

Oscillation, ENSO) can result in substantial impacts on local air-sea feedbacks and teleconnection 79 

patterns affecting regional US precipitation variability (Grondona et al., 2000; Infanti & Kirtman, 2016; 80 

Mamalakis et al., 2018). However, extra-tropical mesoscale oceanic drivers of precipitation are not 81 

necessarily well represented in current GCMs (e.g., the fifth Coupled Model Intercomparison Project, 82 

CMIP5). In recent years, improvements in high-performance computing have enabled high-resolution 83 

GCMs with eddying (e.g., eddy-resolving and eddy-permitting) ocean models to include more mesoscale 84 

ocean processes (e.g., Delworth et al., 2012; Roberts et al., 2020; Wang et al., 2019; Zhang, 2020; 85 

Zhang et al., 2021). Studies with eddying GCMs show considerable benefits, for example, with better 86 

representation of ocean surface climatology (Kirtman et al., 2012; Siqueira & Kirtman, 2016), 87 

improvements in air-sea interactions (Bryan et al., 2010; Kirtman et al., 2017), and implications for 88 

remarkable impacts on precipitation changes especially over ocean regions (He et al., 2018).  89 

Compared with their lower-resolution counterparts, eddying GCMs more accurately simulate fronts and 90 

the sharpness of SST gradients in the Gulf Stream (e.g., Siqueira & Kirtman, 2016) that are necessary to 91 

reproduce the observed distributions of the rainfall climatology (Bryan et al., 2010; Johnson et al., 2020; 92 

Minobe et al., 2008). Mesoscale air-sea interaction processes in the western boundary currents may 93 

influence the overlying atmospheric boundary layer and the upper troposphere and atmospheric 94 

circulation (Feliks et al., 2011; Siqueira et al., 2021; Small et al., 2008). However, whether and the degree 95 

to which the inclusion of ocean mesoscales affects remote regional precipitation over land – particularly 96 

decadal southeast US (SEUS) rainfall and teleconnections – remains unclear. 97 

Low-frequency SEUS rainfall significantly responds to ocean surface conditions and large-scale patterns 98 

of SSTs such as ENSO, the Pacific Decadal Oscillation (PDO) (e.g., Fuentes-Franco et al., 2016; Li et al., 99 

2012) and the Atlantic Multi-decadal Oscillation (AMO) (e.g., Burgman & Jang, 2015; Kwon et al., 2009). 100 

For instance, ENSO can play an essential role in modulating seasonal to interannual SEUS rainfall 101 

variability, especially during winter seasons (Hoerling et al., 1997; Infanti & Kirtman, 2019; Schmidt et al., 102 

2001; Trenberth et al., 1998). The impacts of tropical cyclones (Chan & Misra, 2010; Knight & Davis, 103 
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2007; Nogueira & Keim, 2011) and surface soil moisture (Koster et al., 2004; Yoon & Leung, 2015) on 104 

SEUS rainfall have also been addressed in previous studies. Of particular interest here is the North 105 

Atlantic subtropical high (NASH). Li et al. (2011) and Li et al. (2012) have noted that the displacement of 106 

the NASH western ridge influences the SEUS rainfall in summer by changing the moisture transport and 107 

vertical motion. The westward extension of the NASH towards the continental US contributes to increased 108 

northward flow and low-level convergence, leading to upward motion and more precipitation over the 109 

SEUS.  110 

Here we diagnose how mesoscale ocean features affect decadal-scale SEUS precipitation and 111 

teleconnections based on the hypothesis that SST variability associated with the Gulf Stream front affect 112 

the position of the NASH and hence rainfall over SEUS. Possible influences of SSTs and the NASH on 113 

the SEUS rainfall at decadal timescales is discussed based on a suite of global coupled model 114 

simulations with the Community Climate System Model Version 4.0 (CCSM4; Gent et al., 2011) using 115 

eddying and eddy-parameterizing ocean component models.  116 

2 Data and Method  117 

2.1 Data 118 

Observed monthly precipitation data are obtained from the Global Precipitation Climatology Project 119 

(GPCP) version 2.3 combined precipitation dataset (1979-present; Adler et al., 2018) and the gauge-120 

based Global Precipitation Climatology Center (GPCC) precipitation product (1901-2016; Schneider et al., 121 

2017) from the National Center for Atmospheric Research (NCAR). The GPCP data has a 40-year record 122 

and lower resolution on global 2.5° grids, whereas the GPCC provides land-surface precipitation with 123 

1°x1° spatial resolution and a long-time record. To represent the NASH variability, we use the 124 

geopotential heights at 850 hPa from the NOAA’s twentieth-century reanalysis version-2c data (20CV2c; 125 

Compo et al., 2011).    126 

We assessed thirty coupled models from CMIP5 that were used as supplementary analyses (Table S1). 127 

All CMIP5 models are considered as low-resolution GCMs with an eddy-parametrized ocean. To equally 128 

weight each model, we only consider the first realization of each model’s historical simulation. The results 129 

based on CMIP5 models are analyzed and compared with observational estimates.   130 

2.2 Model Experiments  131 

To examine the influence of ocean mesoscales on climate simulations, we perform two different sets of 132 

experiments using CCSM4 with eddy-parameterizing (1° ocean; hereafter, LRC) and eddying (0.1°; 133 

hereafter, HRC) ocean components, respectively. CCSM4 is a fully coupled climate model consisting of 134 

component models for atmosphere, land, ocean, sea ice, and the coupling infrastructure. A general 135 

description of CCSM4 can be found in Gent et al. (2011).  136 

In this study, the LRC experiment is a present-day control simulation (greenhouse gas concentrations for 137 
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1990) using 1° atmosphere/land coupled to the ocean and sea-ice models with the nominal 1° horizontal 138 

resolution. LRC is initialized with an ocean at rest and allows for 200 years of spin-up period and then a 139 

300-year simulation is integrated for analysis (the same simulation as used in Zhang & Kirtman, 2019a). 140 

HRC experiments include three high-resolution simulations that are identical except for a small 141 

perturbation in the initial conditions. The initial condition for our first HRC simulation is taken from the end 142 

of the previously completed LRC experiment, and we ran the HRC model for 155-years and only 143 

analyzed the last 55-years. The two other HRC simulations are initialized, with small initial perturbations, 144 

at year 48 of the first, and run for 70-years. We drop the first 20-years of both of these simulations in our 145 

analysis. The details of CCSM4 HRC and LRC model experiments are discussed in Zhang et al. (2021).  146 

To diagnose the potential impact of atmospheric resolutions, we perform an additional experiment 147 

(hereafter, LRC-OCN) with a pre-released version of CCSM4, which has the same ocean and sea-ice 148 

model resolution (1°) as LRC and the exact atmospheric and land model resolution (0.5°) as HRC (see 149 

details in Kirtman et al., 2012). LRC-OCN has a present-day control simulation of 150 years, and the first 150 

50-years are taken as spin-up periods. 151 

3 Results and Discussion  152 

We first show the observed (GPCC and GPCP) and model simulated (HRC and LRC) decadal variance of 153 

rainfall over the SEUS and western North Atlantic in Figure 1 (left panels). We removed any linear trend 154 

from the datasets and applied a 5-year low-pass Butterworth filter to the anomalies to represent internal 155 

rainfall variability at decadal timescales. Here we define the SEUS as land regions bounded by 25°N to 156 

38°N and 266°E to 284°E. Compared with both observational estimates, the model simulations generally 157 

show smaller decadal variance. CMIP5 multi-model mean estimates (based on thirty model historical 158 

simulations in Table S1) show 21% lower decadal SEUS rainfall variance than observational estimates 159 

based on GPCP. Overall, CMIP5 models (73%), including CCSM4, underestimate decadal rainfall 160 

variance in the SEUS.  161 

We identify an increase in the decadal variance of the SEUS rainfall in HRC compared to LRC (Figs. 1c 162 

and 1d). Whether this improvement is due to finer ocean resolution remains unassessed in Fig. 1 given 163 

that both the atmospheric and oceanic resolutions are different between LRC and HRC. However, the 164 

role of the ocean resolution is isolated in Fig. S1a. Here we note that the slightly larger decadal variance 165 

in SEUS rainfall detected in LRC-OCN (0.5° atmosphere; Fig. S1) compared to LRC (1° atmosphere; Fig. 166 

1d) implies that the increased atmospheric resolution is also partially responsible for the increased 167 

variance, but the resolved ocean meso-scale features also remain important. We also note that even 168 

though the decadal SEUS rainfall variability is slightly larger in LRC-OCN compared to LRC, the rainfall 169 

climatology only indicates small differences (not shown).  170 
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 171 

Figure 1. Decadal variance and leading EOF patterns (unit: mm/day) of monthly rainfall anomalies over 172 

the Southeast US and western North Atlantic region: (a, e) GPCP, (b, f) GPCP, (c, g) LRC, and (d, h) 173 

HRC. The land region within the black dashed box (25°N to 38°N, 266°E to 284°E) indicates the region of 174 

the Southeast US.   175 

 176 

The leading spatial pattern of decadal rainfall variability (EOF1) in HRC (Fig. 1g) suggests that a tilted 177 

zonal dipole over the ocean in HRC, similar to the GPCP observations (Fig. 1f), is possibly linked to the 178 

Gulf Stream with maximum rainfall over the SEUS. However, the signal is weaker over SEUS than 179 

observational estimates (Figs. 1e and 1f). The center of action in LRC (and LRC-OCN, Fig. S1b) is further 180 
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south and east of the observed and HRC, and indicates relatively weak connectivity with the Gulf Stream. 181 

Based on these differences we hypothesize that resolved mesoscale processes in the Gulf Stream affect 182 

the center of decadal rainfall variability upstream and over SEUS.  183 

 184 

 185 

Figure 2. Correlation between decadal Southeast US rainfall index (25°-38°N, 266°-284°E) and global 186 

SST anomalies based on (a) CMIP5 (median correlation coefficients at each grid for thirty CMIP5 models), 187 

(b) OBS, (c) LRC, and (d) HRC. All the data have been applied with a 5-year low-pass filter. The maps 188 

only show the 95% confidence interval for the correlations based on the Student’s t test (two-tailed).  189 

 190 

To examine the role of SST variability in modulating decadal SEUS rainfall, we show in Figure 2 the 191 

correlation between decadal SEUS rainfall index and global SST anomalies for the observational 192 

estimates and the models, with shading significant at 95% confidence level based on the Student’s t test 193 

(two-tailed). The decadal SEUS rainfall index is defined as the area-averaged values of 5-year low-pass 194 

filtered rainfall anomalies over the SEUS (25°-38°N, 266°-284°E) land points. Both LRC and CMIP5 195 

models (median correlation coefficients for thirty CMIP5 models) show a strong correlation between the 196 

decadal SEUS rainfall index and the (ENSO-like) eastern tropical Pacific SST anomalies (Figs. 2a and 2c). 197 

A similar pattern is also identified with LRC-OCN with finer atmospheric resolution than LRC (not shown). 198 

This dominant role of ENSO SST in decadal SEUS rainfall in LRC and CMIP5 models can be attributed to 199 
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the typical strong wintertime connection between ENSO and SEUS rainfall that may persist on decadal 200 

timescales (Fig. S2). During boreal winter, near the peak of El Niño events, warm tropical SSTs affect the 201 

corresponding tropical convection, leading to a shift in the subtropical jet streams that brings more 202 

moisture to the SEUS (e.g., Infanti & Kirtman, 2019; Ropelewski & Halpert, 1986; Schmidt et al., 2001). 203 

La Niña generally leads to the opposite response. 204 

However, the strong positive link between the decadal SEUS rainfall index and ENSO SST signal is weak 205 

or even missing in HRC and observational estimates (Figs. 2b and 2d). Interestingly, HRC and 206 

observational estimates suggests that decadal SST in the Gulf Stream and its surrounding regions can be 207 

the dominant contributor to decadal SEUS rainfall variability. We note that the correlation between 208 

decadal SEUS rainfall and Gulf Stream SST is detected in HRC is stronger than observational estimates, 209 

possibly because the spatial resolution of the currently available observed SST dataset – HadISST – is 210 

still too low to reproduce realistic decadal SST variability (Deser et al., 2010; Solomon & Newman, 2012), 211 

but we cannot eliminate the possibility that HRC overemphasizes the importance of the Gulf Stream 212 

variability. Nevertheless, HRC produces an improvement of decadal SEUS rainfall induced 213 

teleconnections compared with LRC, indicating the significant impact of ocean mesoscales on the SEUS 214 

rainfall-SST teleconnections. We further argue that LRC and most CMIP5 models may overestimate the 215 

role of tropical Pacific SST in the SEUS rainfall over decadal timescales. This overestimation can be 216 

explained by the classical wintertime connection between SEUS rainfall and tropical Pacific SST 217 

anomalies due to ENSO (Fig. S2). A similar finding was presented by Infanti and Kirtman (2019), who 218 

argued that instead of tropical Pacific SST, the Gulf Stream played a leading role in the 36-month 219 

prediction of the SEUS drought based on high-resolution CCSM4 initialized prediction experiments.  220 

The influence of the NASH on interannual variations of the SEUS rainfall has been discussed in several 221 

earlier studies (e.g., Li et al., 2011; Li et al., 2012). Here we aim to investigate the role of the NASH in 222 

decadal SEUS rainfall variability by comparing HRC with LRC. We focus on 850 mb geopotential heights 223 

as it is a common indicator for the NASH. Figure 3 shows the composite of standardized decadal 850hPa 224 

geopotential height anomalies during wet and dry conditions over the SEUS. The corresponding 225 

composite of standardized decadal SST anomalies during wet and dry conditions is also shown in Figure 226 

S3. During the SEUS wet conditions, the warm SST and strong high-pressure anomalies along the Gulf of 227 

Mexico, SEUS, and Gulf Stream in HRC produce increased northward moisture transport and low-level 228 

convergence, which leads to upward motion and ultimately more precipitation over the SEUS. We argue 229 

this increased rainfall is due to the westward extension of the NASH (Li et al., 2011; Li et al., 2012; Jones, 230 

2019). During the SEUS dry conditions, we find cold SST anomalies along the Gulf Stream and a robust 231 

low-pressure anomaly centered around the Gulf Stream extension in HRC, contributing to southward flow 232 

(with dry moisture advection) and low-level divergence and thus downward motion and less precipitation 233 

over the SEUS. HRC generally resembles the spatial patterns of the NASH variability based on 234 

observational estimates (Figs. 3a-d), though HRC somewhat overestimates the amplitude of the decadal 235 

NASH pressure anomalies and its connection to the SEUS rainfall (Figs. 4a and 4b).   236 
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 237 

 238 

Figure 3. Composite of standardized decadal 850hPa geopotential height anomalies (unit: m) during wet 239 

and dry conditions over the SEUS based on (a, b) OBS, (c, d) HRC, and (e, f) LRC. Wet (dry) condition is 240 

identified when decadal SEUS rainfall index is above (below) plus (minus) one standard deviation.  241 

 242 

LRC, conversely, fails to capture decadal NASH variability and its connection to the SEUS rainfall. For 243 

example, as seen in Figure 4, LRC largely fails to capture the westward expansion or shift of the NASH 244 

that is apparent in the observational estimates and in HRC. Changes in decadal SEUS rainfall in LRC are 245 

possibly due to variations of the pressure anomaly centers over the western US (Figs. 3e and 3f) and 246 

tropics.  247 

Comparison between LRC and HRC suggests that a resolved Gulf Stream may improve the 248 

representation of the NASH that affects decadal SEUS rainfall. The resolved Gulf Stream in HRC 249 

influences the boundary layer, driving a nearly barotropic circulation response, and bringing more 250 

moisture, and ultimately increasing the SEUS rainfall owing to the westward extension of the NASH, as 251 

shown conceptually in Figure 5.  It is possible that the North Atlantic Oscillation (NAO) can play a role in 252 

decadal SEUS rainfall variability (e.g., Hurrell & Van, 1997; Ning & Bradley, 2016; Whan & Zwiers, 2017), 253 

though we find no significantly larger NAO amplitude in HRC compared with LRC.  254 

 255 
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 256 

Figure 4. Correlation between decadal Southeast US rainfall index and 850hPa geopotential height 257 

anomalies based on (a) OBS, (b) HRC, and (c) LRC.  The maps only show the correlation at the 95% 258 

level based on the Student’s t test (two-tailed). 259 

 260 

 261 

Figure 5. Diagram of the westward extension of the NASH for increased rainfall over the Southeast US.  262 
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4 Summary and Conclusion 263 

This study investigates decadal SEUS rainfall and its teleconnections using high-resolution eddying 264 

CCSM4 simulations compared with its lower-resolution counterparts that are eddy parameterized. The 265 

inclusion of ocean mesoscales produces more realistic and warmer SST, sharper SST gradient (Siqueira 266 

& Kirtman, 2016), improved surface wind speed-SST coupling (Bryan et al., 2010), and better-267 

represented subsurface ocean thermal and vertical structures (Zhang et al., 2021) along the Gulf Stream 268 

and its extension. An increase in decadal SST variance is also detected with HRC compared to LRC (not 269 

shown), especially along the Gulf Stream extension region.  270 

With a better resolved Gulf Stream, the simulations indicate an improved annual mean rainfall climatology 271 

that is generally consistent with observational estimates. We find no notable improvement in the annual 272 

mean rainfall climatology over the SEUS, whereas enhanced decadal SEUS rainfall variance is detected 273 

with HRC in better agreement with observational estimates. Though atmospheric resolution may partly 274 

contribute to the increase in the decadal variance of the SEUS rainfall, the leading EOF pattern in HRC 275 

shows consistency with observations, indicating the influence of the resolved Gulf Stream with a local 276 

maximum over the SEUS. This dominant rainfall pattern in HRC and observational estimates is not the 277 

leading pattern in LRC or LRC-OCN, and thus, we conclude that this decadal variability is connected to 278 

resolved Gulf Stream variability. 279 

The above conclusion is further supported by the decadal SEUS rainfall teleconnections with global SST. 280 

Consistent with Infanti and Kirtman (2019), the SEUS rainfall shows a higher correlation with the North 281 

Atlantic SST than the tropical Pacific SST on decadal timescales in HRC and observations. HRC 282 

suggests an even higher correlation between decadal SEUS rainfall and the Gulf Stream SST than 283 

observational estimates, perhaps indicating that HRC over-predicts the connectivity between Gulf Stream 284 

variability and decadal SEUS rainfall variability. Conversely, LRC and CMIP5 models overestimate the 285 

role of tropical Pacific SST in decadal SEUS rainfall due to the classic wintertime connection between the 286 

SEUS rainfall and ENSO. Although the seasonality of decadal SEUS rainfall is not our focus in this 287 

manuscript, we re-examine the SEUS rainfall-SST relationship in the summer and winter seasons, 288 

respectively (Fig. S2). Perhaps surprising is that the overall correlation patterns, as shown in Figure 2, 289 

pick up the wintertime relationships (Fig. S2). Interestingly, HRC and observation show a positive 290 

(negative) correlation between the SEUS rainfall and tropical Pacific SST during winter (summer), which 291 

may explain why decadal SEUS rainfall shows no discernable connection with ENSO SST.  292 

A resolved Gulf Stream has both a localized impact and a remote circulation response affecting the SEUS. 293 

The resolved Gulf Stream influences the boundary layer and forces a near barotropic circulation response, 294 

and ultimately modulates the SEUS rainfall over decadal timescales. The representation of the NASH and 295 

its connection to the SEUS rainfall are improved in HRC with better represented ocean mesoscales. HRC 296 

can generally reproduce the observed westward extension and retreat of the NASH that regulates the 297 

variations of decadal SEUS rainfall (Figs. 3-5), despite that HRC may overestimate the correlation 298 
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between the SEUS rainfall and NASH. As suggested in HRC and observations, the westward extension 299 

of the NASH brings increased northward moisture transport and low-level convergence, leading to rising 300 

motion and ultimately more rainfall in the SEUS, which can be explained by a steady-state quasi-301 

geostrophic balance. However, the LRC simulation fails to capture the realistic Gulf Stream, the westward 302 

extension of the NASH, and its relationship with the SEUS rainfall.  303 

Uncertainty remains in this study as the length of high-resolution observation and model simulations is 304 

limited, and the results may be model-dependent. Many other factors that may influence decadal SEUS 305 

rainfall such as tropical cyclone activities and surface soil moisture are not addressed. However, this 306 

study, for the first time, demonstrates the potential benefits of an ocean eddying GCMs for regional 307 

rainfall simulations and predictions over land. Arguably, the results presented here demonstrate that 308 

using models that capture oceanic mesoscale features have the potential to improve the representation of 309 

rainfall variability remotely and regionally. How well this translates across models remains an open 310 

question and whether this improved simulated low-frequency variability of remote rainfall translates into 311 

improved predictions remains an open question. 312 

 313 

 314 

 315 
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