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Abstract

Surface-atmosphere fluxes and their drivers vary across space and time. A growing area of interest is in downscaling, localizing,

and/or resolving sub-grid scale energy, water, and carbon fluxes and drivers. Existing downscaling methods require inputs

of land surface properties at relatively high spatial (e.g., sub-kilometer) and temporal (e.g., hourly) resolutions, but many

observed land surface drivers are not available at these resolutions. We evaluate an approach to overcome this challenge for

land surface temperature (LST), a World Meteorological Organization Essential Climate Variable and a key driver for surface

heat fluxes. The Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array

of Detectors (CHEESEHEAD19) field experiment provided a scalable testbed. We downscaled LST from satellites (GOES-16

and ECOSTRESS) with further refinement using airborne hyperspectral imagery. Temporally and spatially downscaled LST

compared well to observations from a network of 20 micrometeorological towers and airborne in addition to Landsat-based LST

retrieval and drone-based LST observed at one tower site. The downscaled 50-meter hourly LST showed good relationships with

tower (r2=0.79, precision=3.5 K) and airborne (r2=0.75, precision=2.4 K) observations over space and time, with precision lower

over wetlands and lakes, and some improvement for capturing spatio-temporal variation compared to geostationary satellite.

Further downscaling to 10 m using hyperspectral imagery resolved hotspots and cool spots on the landscape detected in drone

LST, with significant improvement in precision by 1.3 K. These results demonstrate a simple pathway for multi-sensor retrieval

of high space and time resolution LST.
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Key Points: 29 
• Fusion of satellites with models for high space and time resolution land surface temperature 30 

needed for many surface-atmosphere studies 31 
• Developed an approach that evaluates well across array of towers and aircraft observations from 32 

an intensive field experiment 33 
• Additional downscaling with airborne hyperspectral imagery further refines identification of hot 34 

spots as seen in drone observations 35 
  36 
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Abstract 37 

Surface-atmosphere fluxes and their drivers vary across space and time. A growing area of 38 
interest is in downscaling, localizing, and/or resolving sub-grid scale energy, water, and carbon 39 
fluxes and drivers. Existing downscaling methods require inputs of land surface properties at 40 
relatively high spatial (e.g., sub-kilometer) and temporal (e.g., hourly) resolutions, but many 41 
observed land surface drivers are not available at these resolutions. We evaluate an approach to 42 
overcome this challenge for land surface temperature (LST), a World Meteorological 43 
Organization Essential Climate Variable and a key driver for surface heat fluxes. The 44 
Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-density 45 
Extensive Array of Detectors (CHEESEHEAD19) field experiment provided a scalable testbed. 46 
We downscaled LST from satellites (GOES-16 and ECOSTRESS) with further refinement using 47 
airborne hyperspectral imagery. Temporally and spatially downscaled LST compared well to 48 
observations from a network of 20 micrometeorological towers and airborne in addition to 49 
Landsat-based LST retrieval and drone-based LST observed at one tower site. The downscaled 50 
50-meter hourly LST showed good relationships with tower (r2=0.79, precision=3.5 K) and 51 
airborne (r2=0.75, precision=2.4 K) observations over space and time, with precision lower over 52 
wetlands and lakes, and some improvement for capturing spatio-temporal variation compared to 53 
geostationary satellite. Further downscaling to 10 m using hyperspectral imagery resolved 54 
hotspots and cool spots on the landscape detected in drone LST, with significant improvement in 55 
precision by 1.3 K. These results demonstrate a simple pathway for multi-sensor retrieval of high 56 
space and time resolution LST. 57 

Plain Language Summary 58 

The temperature of Earth’s surface over land – land surface temperature (LST) – is an important 59 
variable to observe and forecast. Variation in LST over space and time at scales of meters and 60 
hours influence processes in the atmosphere, soils, vegetation, and water. For worldwide 61 
coverage of LST, we rely on Earth-observing satellites. However, there are challenges in how 62 
finely LST can be observed over space versus how often LST can be observed over time, given 63 
the characteristics of any one satellite’s orbit, not to mention the obscuring effect of clouds. 64 
Therefore, methods are needed that combine multiple satellites if we want to observe LST at 65 
high space and time resolution. Here, we develop such an approach and test its accuracy over a 66 
testbed of extensive LST observations made by towers, drones, and aircraft during a field 67 
experiment in Northern Wisconsin USA. 68 
 69 
Keywords: Land-surface temperature, remote sensing, CHEESEHEAD19, ECOSTRESS, GOES 70 
 71 
Index terms: 480 Remote sensing; 1910 Data assimilation, integration and fusion; 3322 72 
Land/Atmosphere interactions; 1980 Spatial analysis and representation  73 
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1. Introduction 74 

Land surface temperature (LST) is a World Meteorological Organization Essential Climate 75 
Variable that links the thermodynamics of earth’s land surface with the dynamics of the 76 
overlying atmosphere (Berlward, 2016; Dirmeyer et al., 2012). LST, equivalent to surface skin 77 
temperature, refers to the apparent temperature of an infinitesimally thin surface of ground 78 
(English, 2008). It is a consequence of the difference in the net radiative energy budget of the 79 
surface and rate of heat conduction into the ground. LST can vary greatly over short distances 80 
(Yi et al., 2020), as anyone who has walked across wet and dry sand on a beach during a sunny 81 
summer day can attest. For LST observation systems, then, the challenge becomes how to 82 
integrate that variation at space and time scales relevant to land-atmosphere interactions. 83 
 84 
LST is most commonly measured based on principles related to radiative observations made 85 
across various wavelengths in the thermal infrared spectrum, given the tight relationship of 86 
electromagnetic blackbody radiation to temperature, as provided by the Planck function and in 87 
integrated form to the Stefan-Boltzmann relationship. The peak of earth’s outgoing surface 88 
longwave radiation is in this region and thermal infrared brightness temperatures reflect surface 89 
temperatures integrated over a few micrometers, making it a good proxy for LST (Hulley and 90 
Ghent, 2019). After calculation of emissivity, these observations allow for inversion of LST from 91 
longwave radiation measurements (Wang et al., 2014). On a fixed or moving platform, 92 
thermopile sensors facing earth can measure longwave radiation and be used to calculate in situ 93 
LST, after accounting for atmospheric correction. Typically, LST observations on a fixed grid 94 
are derived from thermal infrared brightness temperature or outgoing longwave radiation 95 
observations made by earth-observing satellites, in polar, irregular, or geostationary orbits 96 
(English, 2008; Scarino et al., 2013; Li et al., 2013). Orbits, costs, and logistics lead to tradeoffs 97 
retrieving high time frequency (typically from geostationary orbits) versus high spatial resolution 98 
(typical from polar or irregular orbits). Additionally, satellite LST is not easily retrieved in areas 99 
under heavy cloud cover. 100 
 101 
Continuous high time and space resolution LST, including the diel cycle, is of high value for a 102 
number of scientific investigations (e.g., Kröninger et al., 2019). LST can vary by tens of 103 
degrees K over meters and change within seconds to hours, for example due to shadows, wind, 104 
passing of clouds (Yi et al., 2020), or irrigation. These changes in LST then influence the heating 105 
of the soil, vegetation, and atmosphere over the course of the day (Dirmeyer et al., 2013; Taylor 106 
et al., 2012), and the dynamics that ensue as a result. In many land surface models, for example 107 
those used in numerical weather prediction, LST is usually a derived value inferred from the 108 
modeled surface energy balance and soil physics, often averaged over an entire grid cell or a land 109 
cover tile, and not resolved at scales below hundreds of meters. Continuous LST over scales of 110 
meters and hours would provide a valuable benchmark to evaluating atmospheric surface layer 111 
and soil heat diffusion parameterizations, estimating turbulent heat fluxes (Xu et al., 2018), 112 
assimilation of LST for model grids (Bosilovich et al., 2007; Zheng et al., 2012), scaling of land-113 
atmosphere fluxes and feedbacks (Metzger, 2018; Xu et al., 2018), and answering science 114 
questions related to fine-scale sub-kilometer space and sub-daily time heterogeneity of 115 
landscapes and habitats (Guillevic et al., 2019; Pincebourde et al., 2020). Biological organisms, 116 
in particular, are strongly influenced by small-scale microclimates and scaling these responses 117 
across regions is nonlinear (Bütikoger et al., 2020).  118 
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 119 
Given these needs, fusion approaches have been designed to combine multiple satellite data 120 
products and increase their joint space, time, and clear sky coverage (Anderson et al., 2021; Gao 121 
et al., 2012; Hu et al., 2020; Liu et al., 2006). However, current and upcoming generation 122 
satellites and computational capacity provide an even richer array of data fusion options (Freitas 123 
et al., 2013; Khan et al., 2021; Tomlinson et al., 2011). For example, NASA’s ECOsystem 124 
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is a thermal 125 
imager on the International Space Station (ISS) that, from this relatively low (~400 km) and fast 126 
precessing orbit, can image the globe at roughly 1-5 day repeat (at different hours of day every 127 
orbit) and at 70-m resolution (Fisher et al., 2020). Meanwhile, the latest NOAA Geostationary 128 
Operational Environmental Satellites (GOES-16 and GOES-17) image the Western Hemisphere 129 
at a nominal 15-minute timestep with approximately 2 km resolution depending on view 130 
geometry. Fusion of these products have not been evaluated. High space and time resolution LST 131 
has been attempted in some locations (e.g., Sismanidis et al., 2016a,b, 2018), but there is a need 132 
for greater evaluation across multiple approaches and sensors. 133 
 134 
A number of remotely sensed features beyond thermal infrared also relate to LST and could 135 
improve downscaling (Yue et al., 2020). For example, observations in visible and microwave 136 
wavelengths relate to processes such as vegetation activity and soil moisture, respectively, that in 137 
turn relate to fine-scale variation in LST. Hyperspectral remote sensing (aka imaging 138 
spectroscopy), in particular, may allow for fine-tuning of LST by linking to surface mineralogy 139 
and crown-level foliar functional characteristics that affect foliar thermodynamics.   140 
 141 
Prior studies often lacked a comprehensive spatial and temporal database of in situ LST at 142 
relevant space and time scales for evaluating LST fusion products and their uncertainty, critical 143 
for model assimilation (Freitas et al., 2010; Bosilovich et al., 2007). The recent Chequamegon 144 
Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of 145 
Detectors (CHEESEHEAD19) (Butterworth et al., 2021) field campaign included an array of 146 
towers, drones, and aircraft, in addition to custom remote sensing thermal imagery from Landsat-147 
8 (Gerace et al., 2020) that provides a comprehensive, open-access testbed for any fusion 148 
approach. Radiometric-derived LST over various landscapes is available over a four-month 149 
period across a nearly 1000 km2 area of a heterogenous, flat landscape of northern Wisconsin 150 
USA. Furthermore, visible and near infrared hyperspectral airborne imagery at 1 m resolution 151 
was flown in the domain several times, providing a second data source to evaluate alternative 152 
downscaling and fusion approaches based on surface cover characteristics rather than emissivity. 153 
 154 
Here, we evaluate a novel high space (50 m and 10 m) and time (hourly) resolution LST fusion 155 
approach using next generation thermal imagery. We ask: how reliably can we fuse high space 156 
and high temporal resolution satellites to generate continuous, cloud-free gridded LST? Further, 157 
hyper-resolution drone LST imagery at the sub-meter scale allows us to further evaluate 158 
downscaling of this gridded product to even smaller domains, necessary for some scientific 159 
applications (Pincebourde et al., 2020). Thus, within a subset of our study area, we also test 160 
whether we can further downscale to higher resolution by connecting hyperspectral indices 161 
combined with the LST fusion. Finally, we discuss the implication of the work for advancing 162 
land-atmosphere interaction science.  163 



5 

2. Materials and Methods 164 

Our general approach employs hierarchical fusion (Fig. 1). As a prior, cloud-free, coarse-165 
resolution (12 km) estimate of LST, we used data-assimilation constrained hourly LST from a set 166 
of three land surface models. These modelled LSTs are then fit on a pixel level to gap-fill 167 
geostationary satellite LST to generate gap-free medium resolution (1-2 km) hourly LST. Further 168 
spatial downscaling is accomplished using the suite of cloud-screened, quality-controlled high-169 
resolution (50 m) LST and generating a regression surface that links the medium and high-170 
resolution LST across all collected time points. The resulting high space and time resolution LST 171 
grids are then evaluated against a range of independent tower, aircraft, and satellite estimates of 172 
LST. Finally, an additional ultra-high resolution downscaling to 10 m is conducted using 173 
hyperspectral imagery over an area where coincident ultra-high resolution drone LST were also 174 
measured. 175 

2.1 Site description 176 

Analyses are centered on the observations collected during the CHEESEHEAD19 field 177 
campaign (Butterworth et al., 2021) conducted near Park Falls, Wisconsin USA in central region 178 
of the North American continent from June to October 2019. CHEESEHEAD19 was an intensive 179 
surface-atmosphere field experiment investigating the role of surface spatial heterogeneity on 180 
atmospheric dynamics and the surface energy balance. As a result, a suite of observations was 181 
collected over a 10 km × 10 km core domain and a 30 km × 30 km extended domain, centered on 182 
the WLEF Park Falls Ameriflux very tall eddy covariance (US-PFa) tower, which is also a 183 
NOAA greenhouse gas (LEF) tall tower. Observations included 20 micrometeorology towers 184 
within the core domain, ground-based atmospheric profiling, drone and airborne remote sensing 185 
at various locations throughout, and more than 10,000 km of low-level meteorological aircraft 186 
observations in the extended domain. Upwelling and downwelling longwave radiation 187 
observations from towers, IR skin temperature retrieved from aircraft, and an independent 188 
satellite LST estimate from Landsat were used here to evaluate the LST product. 189 

2.2 Input data 190 

All data products used for the generation of high (50 m) and ultra-high (10 m) resolution LST 191 
were acquired from public open-access data repositories (Table 1). Each data product was 192 
extracted for all acquisitions from 1 June to 31 October ,2019 and subset to a domain that 193 
encompassed the CHEESEHEAD19 extended domain (Fig. 1). Descriptions of each data product 194 
are provided here. 195 
 196 
For the prior modeled LST, we acquired LST from the National Land Data Assimilation System 197 
version 2 (NLDAS-2) (Xia et al., 2012). NLDAS is an observation reanalysis that constructs an 198 
optimal meteorological driver forcing based on gauge precipitation and bias-corrected shortwave 199 
radiation. This forcing is provided to a suite of land surface models, which output a common set 200 
of responses, including LST. NLDAS products are provided on a ⅛ degree grid (approximately 201 
12.5 km) across North America at hourly timestep. We extracted LST for the three land surface 202 
models that are part of NLDAS and output surface skin temperature: Mosaic (Koster and Saurez, 203 
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1992), Noah-2.8 (Chen et al., 1996), and VIC (Liang et al., 1994). We calculated mean and 204 
variance moments on the modeled LST as a prior. 205 
 206 
NOAA's Geostationary Operational Environmental Satellites (GOES) are the primary U.S. 207 
operational geostationary weather satellites in orbit over the Western Hemisphere (Schmit et al., 208 
2017). In recent years, LST has become a primary operational product of the GOES-R Advanced 209 
Baseline Imager (ABI) in the current generation GOES-16 and GOES-17 satellites (Yu et al., 210 
2009). These outputs, at an approximately 2 km spatial resolution, are produced based on 211 
thermal channel split-window retrieval using the 11.2 um and 12.3 um channels with high 212 
surface emission and low atmospheric absorption. The algorithm also uses prescribed surface 213 
emissivity and an atmospheric radiative transfer model to produce an output at least once an hour 214 
for the Northern Hemisphere (more fully described at: https://www.goes-r.gov/products/baseline-215 
LST.html). Target accuracy is 2.5 K and evaluations have shown it to be approaching 1.5 K (Yu 216 
et al., 2012).   217 
 218 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is a 219 
thermal imager flown on the International Space Station (ISS) (Fisher et al., 2020; Hulley et al., 220 
2017). ECOSTRESS was launched in June 2018 and has been providing harmonized Level 2 70 221 
× 70 m data products on surface temperature, evapotranspiration, water use efficiency, and 222 
drought stress since launch. We acquired the Level 2 Land Surface Temperature and Emissivity 223 
product and the ECOSTRESS cloud cover product (described at 224 
https://lpdaac.usgs.gov/documents/423/ECO2_User_Guide_V1.pdf). LST is derived from a 225 
physically-based Temperature and Emissivity Separation (TES) algorithm (Gillespie et al. 1998; 226 
Hulley and Hook 2011). Atmospheric correction is performed using the RTTOV radiative 227 
transfer model (Matricardi 2008; Saunders et al. 1999). Retrieval is based on thermal radiances 228 
in the 8.29 um, 8.78 um, 9.20 um, 10.49 um, and 12.09 um bands. Validation accuracy was 229 
reported as 1.07 K (Hulley et al., in press). QA flags were used to limit to best or nominal quality 230 
observations. The ECOSTRESS Level-2 CLD cloud-mask 231 
(https://lpdaac.usgs.gov/products/eco2cldv001/) was applied to mask any cloud contaminated 232 
pixels. The ISS orbit is not sun-synchronous, so scenes are retrieved at different times of day, 233 
with a repeat interval of 1-5 days depending on location. A total of 118 full domain scenes were 234 
retrieved over the CHEESEHEAD19 domain during the study period spanning all hours of the 235 
day. Of these, 49 images were at least 50% cloud free. From that subset, 25 images (~weekly) 236 
were retained that were significantly (p<0.001) correlated (r>0.3) with the GOES imagery and 237 
had <50% cloud cover. 238 
 239 
The University of Wisconsin hyperspectral imager is a visible to near-infrared (400-2500 nm) 240 
imaging spectrometer designed for airborne applications (HySpex, Norsk Elektro Optikk, Oslo, 241 
Norway). The HySpex consists of two boresighted imagers measuring a total of 474 narrow 242 
bands between 400-1000 nm (3.26 nm spectral resolution) and 930-2500 nm (5.45 nm spectral 243 
resolution). In CHEESEHEAD19, the HySpex was flown on a State of Wisconsin Department of 244 
Transportation Cessna 210 at 1,400 m altitude above ground, allowing for a nominal 1 m pixel 245 
size over the core domain. The HySpex was flown multiple times over the study period (26 June 246 
through 30 August). The CHEESEHEAD19 study area is covered by 21 flightlines flown +/- 2 247 
hr around solar noon. Here, observations from dates closest to the date of the drone overflight 248 
were used. Images were orthorectified (following Schlapfer and Richter 2002) and 249 
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atmospherically corrected (following Adler-Golden et al. 1999) to surface reflectance using 250 
LibRadTran (Emde et al. 2016) open-source code by Liu et al. (2019). Flightlines were subset to 251 
the regions of drone overflights. In our analyses, we used a normalized spectral index approach 252 
that reduced the need for additional processing to reduce bidirectional reflectance variation. 253 

2.3 Evaluating LST data 254 

Several data products were used to evaluate the 50 m and 10 m downscaled LST. These are 255 
noted in Table 2 and briefly described here. The University of Wyoming King Air (UWKA) is a 256 
meteorological research aircraft that flew linear transects in CHEESEHEAD19 focused on eddy 257 
covariance applications during three 4-day periods within the experiment window (9-13 July 258 
2019, 20-23 August 2019, 24-28 September 2019). Flights were flown in mid-morning and mid-259 
afternoon, usually 15 legs at 100 m and 400 m altitude above ground spanning the 30 × 30 km 260 
extended domain, at approximately 90 m s-1. UWKA included a downward-looking radiative 261 
thermometer (Heimann KT-19.85), which reports observed brightness temperature for the 9.5-262 
11.5 um IR spectrum with 0.5 K accuracy and 0.2 K RMSE precision over 1 s (~90 m at flight 263 
speed). This instrument reported temperature at 100 m flight altitude above ground was 264 
compared to our LST fusion to evaluate spatial variability. UWKA geospatial coordinates were 265 
used to average all 100-m above ground flight leg LST observations overlapping each pixel.  266 
 267 
Twenty eddy covariance flux towers were located in the 10 × 10 km inner domain. These towers 268 
were located in a range of ecosystems, including mixed forests, evergreen forests, wetlands, and 269 
grass fields. Seventeen of these had four-component net radiation measurements (Huskeflux 270 
NR01) available, from which upwelling and downwelling longwave radiation were extracted to 271 
calculate LST. Followed Malakar et al. (2018), we estimated surface emissivity at 10.6 μm and 272 
11.3 μm based on the ASTER satellite global emissivity database, provided at 30 m resolution 273 
(Hulley et al., 2015). Surface emissivity was averaged over a 90 × 90 m box around the center 274 
coordinate of each tower. Hourly-averaged LST estimates for each tower were then used to 275 
compare to LST from the hourly fusion product. 276 
 277 
Landsat 8 based LST was also acquired for this domain. Here, we acquired an enhanced LST 278 
product from Landsat based on the two-channel split window algorithm from Gerace et al. 279 
(2020), an improvement over the operational single-channel algorithm. Given the high cloud 280 
cover of most scenes during the intermittently and anomalously rainy CHEESEHEAD19 281 
campaign, we focused on a single scene collected on 26 September 2019 as an evaluation LST 282 
whereas ECOSTRESS was used for training given its more frequent repeat coverage. Landsat 283 
LST thermal resolution is 100 m, but output at 30 m by cubic convolution to match the visible 284 
bands. We directly compared this LST to our downscaled 50 m LST, first re-upscaling the 285 
Landsat temperature data to 50 m. 286 
 287 
The NOAA uncrewed airborne system drone is a DJI S-1000 that was outfitted with a 288 
downward-pointing FLIR Tau 2 infrared camera during CHEESEHEAD19, as well as iMet-XQ 289 
sensors to sample temperature, moisture, and pressure in situ. The infrared camera has a 7.5-mm 290 
lens, 336 × 256 pixel resolution, and view angle of 90° × 69° (Dumas et al. 2016, 2017; Lee et 291 
al. 2017, 2019). The DJI S-1000 was flown in July at a single eddy covariance flux tower site 292 
hourly throughout the day, over an area of approximately 500 m × 500 m, which was a distance 293 
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sufficient to cover a significant number of pixels. We focus on data obtained during the flights 294 
on 12 July; flights on the other days with the DJI S-1000 during the July campaign were smaller 295 
in radius and thus less useful for downscaling.  296 

2.4 LST fusion methodology 297 

We apply a fusion approach similar to the STARFM approach for downscaling of MODIS to 298 
Landsat resolution, based on pixel-level and neighborhood correlation (Gao et al., 2006; Gao et 299 
al., 2015). However, by virtue of having a large number of high-resolution images and the need 300 
to capture diel cycle of LST, the approach was modified to capture diel time variation. The 301 
basics are provided below and evaluated in the results. 302 
 303 
The first step was to gap-fill cloud covered LST data in GOES, as indicated by the GOES cloud 304 
flag. To do so, we used the NLDAS LST estimate from each of the three models. The average 305 
and standard deviation are used here as a prior estimate of LST. For each GOES pixel, the 306 
relevant NLDAS pixel is geolocated using a nearest neighbor approach. A linear regression 307 
debias is then applied to the hourly NLDAS LST for the same hour in each day when GOES LST 308 
was observed, so that each 12.5 km NLDAS pixel would have ~40 independent regressions 309 
against each ~2 km GOES pixel. Regression was performed using the fitexy routine in the IDL 310 
Astronomy Library (Landsman, 1993), allowing the slope and intercept to account for errors in 311 
both the predictor variable X (uncertainty of GOES, nominally set to 1.5 K) and response 312 
variable in Y (standard deviation of NLDAS LST across the three models). For the 153-day 313 
period, each GOES pixel had 24 separate regressions (one for each hour of the day) applied to 314 
the matching NLDAS pixel. This enabled us to bias of mean and variance of LST over the 315 
season, and also correct for differences in the magnitude of the diel cycle. Missing values of LST 316 
in GOES were then replaced with these debiased NLDAS values. 317 
 318 
Next, ECOSTRESS was used to downscale the gap-free 2 km GOES image to a standard 50 m 319 
grid. Both were first re-projected into a standard UTM grid with 50x50 m square pixels. For each 320 
ECOSTRESS pixel (for most points, up to 25 observations over the 153-day period, generally 321 
equally distributed across all hours of day and night), we extracted all nearest GOES 322 
observations matching in space and time. Linear slope and intercept were then calculated for 323 
each again using fitexy with the documented uncertainty of 1 K for ECOSTRESS. Slopes outside 324 
of the 98% confidence interval (0.9-1.4) of all calculated slopes were rejected to prevent 325 
unreasonable LST extrapolations. For the missing slope values, a neighborhood smoothing 326 
algorithm was applied from nearby pixels, and intercept recalculated based on regression of 327 
slope to intercept (r=−0.24). Unlike STARFM, which only uses 1 or 2 Landsat scenes to 328 
downscale MODIS, here we are using all ECOSTRESS images and all matching GOES images 329 
to develop a seasonal fit. This seasonal fit is then applied to the GOES gap-filled imagery to 330 
downscale the image to hourly, 50 m resolution LST. 331 
 332 
For ultra-high resolution (10 m) downscaling test, additional covariates were brought from 1 m 333 
HySpex imagery. Data from three three HySpex flight acquisition scenes (26 June 2019, 11 July 334 
2019, 8 August 2019) were chosen to bracket the acquired drone LST image on 12 July 2019. 335 
The drone LST and HySpex imagery were upscaled to 10 m resolution using simple averaging 336 
and coaligned to a common grid. This had the benefit of increasing the signal-to-noise in the 337 
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hyperspectral data. Following the approach by Dubois et al. (2018), analyses of the hyperspectral 338 
imagery utilized normalized difference spectral indices (NDSIs) with all two-band combinations 339 
of wavelengths:  340 
 341 
  NDSI(i,j) = (Band_i - Band_j) / (Band_i + Band_j)  (Equation 1) 342 
 343 
Statistically, this enables identification of key narrowband spectral features while the use of 344 
ratios greatly decreases cross-track illumination effects related to sun-target-sensor geometry 345 
(i.e., bidirectional reflectance distribution function, BRDF). The downscaled 50 m LST from 346 
ECOSTRESS was subtracted from the upscaled 10 m drone LST to produce an LST anomaly 347 
map. Each HySpex NDSI was separately regressed against the LST anomaly map. The highest 348 
R2 band ratios consistent in all three HySpex dates were then selected to develop a linear model 349 
to predict fine-scale LST from the anomaly map and three selected HySpex bands, after which 350 
multiple linear regression was used to construct an ultra-high resolution 10 m LST. Use all of 351 
474 bands in Hyspex allowed us to evaluate possible novel combinations of reflectance that 352 
could help explain variation in LST. Code that walks through the fusion methodology can be 353 
found at: https://github.com/DesaiLab/LSTfusion  354 

3. Results 355 

3.1 Cloud-free geostationary LST 356 

After the diurnal regression step is applied, hourly NLDAS average LST corresponds well to 357 
retrieved GOES LST across the study domain (Fig. 2). Overall 82% of the variation of GOES 358 
LST can be explained by NLDAS-modeled LST, though a small domain wide cold bias of −0.78 359 
K persists, with larger variance toward colder temperatures, potentially pointing to view-angle 360 
effects from shading or undetected clouds in GOES. Using the pixel-level, hour-specific 361 
regression, 60% of cloud-identified gaps were replaced with the modeled values. Missing 362 
observations were most prevalent late at night (9 UTC, 51% missing), during periods of fog or 363 
low-level stratus clouds, and a minimum in late afternoon (21 UTC, 25% missing), mostly 364 
during periods of extensive fair-weather cumulus cloud decks. Individual scenes had between 0-365 
97% of pixels missing, averaging over 50% in early summer, during a particularly rainy period, 366 
to less than 40% during the normally drier autumn. 367 
 368 

3.2 High-resolution fusion 369 

Similar levels of correlation were found between the GOES gap-filled LST with retrieved 370 
ECOSTRESS LST (Fig. 3, see Fig. 1 for example of overlapping GOES and ECOSTRESS 371 
image), though with significant spatial variation. In general, within-pixel temporal correlation 372 
(r=0.59 to 0.95) was stronger than across-pixel spatial correlation (r=0.32 to 0.74). Low 373 
correlations were primarily found over water bodies, in particular the larger lake in the north of 374 
the domain, potentially from differences in retrieval algorithms or a documented cold bias on 375 
cooler surfaces in ECOSTRESS (Hulley et al., in press).  376 
 377 
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The regression of GOES to ECOSTRESS also varied in space, with median slope and intercept 378 
of 1.1 and −0.87 K, respectively (Fig. 3a and Fig. 3b). Particularly notable is the identification of 379 
urban areas (the City of Park Falls on western side) and highways. Slope and intercept were 380 
negatively correlated (r=−0.24). Locations with low slope (weaker diel and/or seasonal variation 381 
in ECOSTRESS compared to GOES) generally had higher (warmer) intercepts; for example, 382 
indicative of urban heat island or asphalt heat storage effects. Conversely, high slopes (stronger 383 
diel and/or seasonal variation) occurred in areas with lower (colder) intercepts, such as 384 
topographically low spots where cold-air pooling may depress mean temperature, including 385 
lakes, rivers, and bottomland forested areas. 386 
 387 
These slopes and intercepts were applied to the GOES cloud-free LST to develop the downscaled 388 
high-resolution LST. Further evaluation of short time series of this product shows how the 389 
downscaled high-resolution LST better reflects differences in diurnal cycle and means from the 390 
coarser resolution NLDAS or GOES, and closer to the tower observed variations in LST, best 391 
resolved over wetlands (Fig. 4a), but also reflecting good correspondence at resolving the 392 
warmer nighttime temperatures over forests (Fig. 4a and 4b) and cooler daytime temperatures 393 
over lakes (Fig. 4d). 394 

3.3 Evaluation 395 

We evaluate downscaled LST against several estimates of LST from tower, aircraft, and satellite. 396 
Spatial patterns were well captured in the high-resolution LST as compared to aircraft LST (Fig. 397 
5a, r2=0.75) with small bias (−0.65 K) and a precision of 2.4 K. A larger > 5 K bias is apparent in 398 
high LST locations, where the fusion product smooths out extremes given its linear averaging 399 
approach. In contrast, seasonal temporal variation biases were found to be more prevalent with 400 
colder temperatures, where the downscaled LST tended to underestimate the coldest 401 
temperatures observed by the towers (Fig. 5b, r2 = 0.79), though with better correlation. No 402 
significant difference was found in the LST time series variation across land cover type, whether 403 
deciduous forest, evergreen forest, or wetland, with general RMSE of 3.5 K. Bias was larger than 404 
the airborne data at −2.6 K, especially later into the fall. Correlations within a land cover type 405 
were higher (r2~0.85 to 0.88) than when pooled, as mean bias varied by land cover type. 406 
Wetlands had slightly larger bias (−3.2 K), RMSE (3.6 K), and lower correlation than the 407 
forested areas. 408 
 409 
When the high-resolution LST was compared to independent satellite estimates of LST, a single 410 
Landsat scene generally revealed similar correspondence in primary spatial pattern, but overall 411 
correlation of the two products was much lower (r2=0.27, Fig. 6). The correlation was strongly 412 
influenced by underestimation of higher LST range of the observation by our fusion product, 413 
over urban areas and a few forest clearings, implying an alternate weighting scheme may allow 414 
for better correspondence in those locations which are less prevalent in the area and thus under-415 
represented in the calibration. As well, outside of those areas, variance of LST on this particular 416 
mid-day mid-summer scene is relatively small, within the RMSE shown for the high-resolution 417 
LST in the tower and aircraft comparison.  418 
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3.4 Additional downscaling 419 

Ultra-high-resolution downscaling to 10 m required additional inputs at fine resolution. In this 420 
case, visible to near infrared hyperspectral observations provided useful information to explain 421 
sub-grid anomalies in the high-resolution 50 m LST. NDSI plots demonstrate a number of bands 422 
where visible and infrared band differences highly correlate with anomalies in subgrid LST as 423 
observed by the drone (Fig. 7). Most of the normalized differences with high correlation were on 424 
bands that were near each other, reflecting the role of specific spectral reflectance features of 425 
vegetation and soils that relate to LST variation. Here, we selected the top three consistent 426 
correlated NDSI band differences across the three flights. The three band pairs were: 1982.7 nm 427 
and 1470.5 nm in the shortwave infrared (NDSI_SWIR, r = 0.380), 709.1 nm and 760.2 nm in 428 
the red-edge spectral region (NDSI_EDGE, r=0.448), and 651.6 nm and 504.7 nm at the red-429 
green portions of the visible spectrum (NDSI_VIS, r=0.442). In all three combinations, the 430 
second listed wavelength was subtracted from the first. The latter two are close to commonly 431 
used vegetation indices of NDVI (typically 630-690 nm and 760-900 nm) and the photochemical 432 
reflectance index (PRI, 531 nm and 571 nm), and correlations in those bands are not too far off 433 
from the selected bands (boxes in Fig. 7), consistent to other studies linking LST and vegetation 434 
indices (e.g., Raynolds et al., 2008; Karnieli et al., 2010). With these three bands, a linear model 435 
was built to explain the subgrid LST anomalies and applied to the downscaled LST_50m (Fig. 436 
8), expressed as: 437 
 438 

LST_10m = 2.147 × NSDI_SWIR + 3.826 × NDSI_EDGE + 5.143 × NDSI_VIS  439 
+ 4.566 + LST_50m         (Equation 2) 440 

 441 
The resulting model produced an ultra-high resolution LST map that was reasonably correlated 442 
to the drone imagery (r2=0.34) and had significantly reduced bias compared to the 50 m LST 443 
from 2.35 K to near zero, and lower bias-removed RMSE from 3.0 K to 1.7 K. Most 444 
NDSI_SWIR values were positive (mean 0.12 +/- 0.07), while NDSI_EDGE (-0.59 +/- 0.10) and 445 
NDSI_VIS (-0.48 +/- 0.09) were negative. Since all three coefficients were positive, the effect of 446 
positive SWIR was to increase LST, while for the mostly negative red-edge or visible reflectance 447 
was to decrease LST. The effect of these is to bring out key LST features, especially on the “hot-448 
spot” side, such as a road and a larger open area, both of which were observed to have high LST 449 
but not well-detected in the original downscaled image. The higher NDSI_SWIR of these two 450 
features allowed this model to better capture its higher LST. The results paint a multi-step 451 
pathway toward downscaling LST to meter scale resolution.  452 

4. Discussion 453 

Land surface temperature exhibits high spatial and temporal variability. Depending on the 454 
application, capturing this variability can be essential for diagnosing land-atmosphere 455 
interactions, soil processes, and ecosystem thermal tolerances. Here, we demonstrated one 456 
approach to capture these scales of variations with multi-sensor fusion and find high skill in 457 
these when compared against independent LST observations. Both direct observations of LST 458 
and indirect observations of covariates provided information needed to downscale to hourly, 10 459 
m resolution LST. 460 
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4.1 Challenges in LST fusion 461 

Our LST fusion approach performed well on evaluation, but several lingering uncertainties 462 
remain which require further investigation. The first involves the gap-filling of cloud cover. 463 
Previous satellite fusion investigations generally focused on clear-sky LST. The primary 464 
assumption made in our methodology is that the relatively strong linear relationship of pixel-465 
level, hour-segregated NLDAS modeled LST, which does incorporate the effect of clouds into its 466 
LST estimates (at least as reflected in the input model forcing), to the cloud-screened GOES is 467 
translatable to gap-filling. This approach assumes that LST during cloud cover is similar to LST 468 
during clear-sky conditions, given the same temperature for that time of day.  Generally, the 469 
effect of clouds is to make LST cooler in daytime and warmer in nighttime compared to clear-470 
sky. An analysis of cloud cover (estimated as ratio of observed shortwave radiation to potential 471 
maximum shortwave) versus difference in fusion to tower observed LST did not show any clear 472 
trend, suggesting this assumption is broadly reasonable. 473 
 474 
Downscaling with ECOSTRESS and a linear model also brings additional uncertainty. The 475 
coverage of ECOSTRESS varies by time of day and cloud cover, which means that each pixel 476 
had differing numbers of valid ECOSTRESS LST observations across the study period. Here we 477 
assume no change in seasonality of the relationship or temporal differences. Rather, we assume 478 
that what ECOSTRESS is mainly providing is differences in mean LST within the subgrid of a 479 
single GOES pixel (intercept) and changes in the diel amplitude (slope). However, this assumes 480 
that other biases are negligible, no changes occurred in land surface from disturbance, and 481 
seasonal variation in those two factors are zero. Subsetting by sub-season would be helpful here, 482 
but given the repeat interval and number of cloud-free images, statistical power would degrade 483 
noticeably. With a longer time period dataset, additional subsetting may be warranted to evaluate 484 
such an approach. While some aspects may have been better captured using a non-linear model, 485 
deviation from linear slopes across our ECOSTRESS and GOES pairs was rarely seen and initial 486 
tests with quadratic forms did not find improved fits. Data mining approaches, including data 487 
sharpening approaches, may improve performance (Gao et al., 2012).  488 
 489 
Some of these performance issues show up when looking at the goodness of fit against towers 490 
and aircraft, and in the diel cycle plots. While the downscaling helps differentiate variation in 491 
LST by land cover type, it appears the methodology has challenges with a few land cover types. 492 
One is lakes, and especially lake-land edges, where pixel registration and gradients are missed 493 
leading to increased “noise” or blur in images around lakes. However, visual inspection of 494 
geolocation errors did not find anything significantly skewed. The second is picking up cold LST 495 
values in autumn. The drone comparisons also suggest that the 70 m resolution of ECOSTRESS 496 
may still be challenging for picking up even finer-scale urban, road, or other hot spots on the 497 
landscape. 498 
 499 
View angle differences among the sensors may also contribute to differing error structures and 500 
biases that were not corrected in the provided Level 2 products used here (Anderson et al., 2021; 501 
Ermida et al., 2014; Gerace et al., 2020; Guillevic et al., 2013;). Geostationary satellites in 502 
particular have strong angular effects as the sensor scans away from the central location, while 503 
ECOSTRESS has a +/- 25 degree acceptance swath, narrower than other polar orbiters. Surface 504 
skin temperature is also derived from different sets of wavelengths across the sensors and biases 505 
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from these may pose a challenge in addition to algorithmic differences in retrievals (Bosilovich 506 
et al., 2007). It is one reason we used mean bias removal in our regressions. 507 

4.2 Mechanisms of LST relationships to visible to VSWIR spectra 508 

Though limited to a small number of images, our attempt to further downscale with visible to 509 
shortwave infrared hyperspectral imagery demonstrated improved ability to resolve fine-scale 510 
features such as roads and smaller wetlands observed in the drone imagery. The three band 511 
indices that contributed most to the NDSI regression represent key vegetation and soil features 512 
that link to LST variation. The strongest was in the shortwave IR, a region known to detect 513 
differences in soil thermal and moisture status. The other two in the visible and red-edge reflect 514 
signals of vegetation presence and photosynthetic activity, respectively. Actively 515 
photosynthesizing vegetation will have lower LST due to the cooling effect of concomitant 516 
transpiration and given our formulation of NDSI, those areas had higher negative values in 517 
NDSI_EDGE and NDSI_VIS, which when combined with positive coefficients, led to lower 518 
LST over vegetated areas. The SWIR bands helped distinguish areas of exposed ground, and 519 
NDSI_SWIR was found to be most strongly positive over roads and open area. The broad areas 520 
of high correlation also partly overlap with commonly used band ratios including NDVI and PRI, 521 
suggesting that broadband visible-IR remote sensing has strong potential for downscaling LST.  522 

4.3 Comparison to other approaches 523 

While several papers have assessed fusion approaches for gridded LST, literature on joint 524 
temporal and spatial LST downscaling is relatively limited, with primary applications over urban 525 
areas (e.g., Sismanidis et al., 2016a,b, 2018). Our results show that sub-daily temporal and sub-526 
km spatial downscaling is possible while maintaining a similar level of uncertainty as previously 527 
published daily or less-frequent LST products (Freitas et al., 2010, Goettsche et al., 2013). 528 
Further, even without the additional spatialization from ECOSTRESS or HySpex, there is 529 
significant value in greater use of geostationary satellite LST. Several of these satellites can now 530 
provide up to one-minute time resolution for target-mode operations, and fusion of these through 531 
a data assimilation approach would help develop global high-temporal resolution LST (Freitas et 532 
al., 2013; Xiao et al., in press). Further work on using the higher frequency observations to 533 
reduce cloud coverage and increase estimate of temperature variability could prove useful for 534 
developing more sub-daily LST related products, including surface energy fluxes. 535 

4.4 Applications of high space and time resolution LST 536 

There is a downside with temporal and spatial downscaling of LST, which is the increase in 537 
uncertainty as more products are fused and local calibrations fail to extrapolate well. The higher 538 
uncertainty does lead to the question of whether such an approach adds value. Beyond the 539 
aforementioned importance of fine space and time variation in LST for biological and 540 
geophysical processes, a number of studies suggests that higher resolution LST, even with 541 
greater uncertainty, aids in interpreting observations and testing hypotheses. 542 
 543 
For example, the Environmental Response Function approach is a method to map surface-544 
atmosphere fluxes of carbon, energy, and momentum across space and time from fusion of eddy 545 
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covariance flux towers, flux footprint models, and input covariates (Metzger et al., 2013; Xu et 546 
al., 2017). For surface energy fluxes such as sensible heat flux, LST is a key driver. Eddy fluxes 547 
of sensible heat during periods of high variability in wind direction reveal the presence of hot 548 
spots and hot moments of heat flux across space. The ERF methodology can identify those only 549 
if the input covariates are of sufficient spatial (decameter) and temporal (hourly or better) 550 
resolution to resolve those. While these flux hot spots can be tied to landscape features, they also 551 
can be transient features of atmospheric circulation. Previous ERF studies relied on linear 552 
regridding of coarser resolution LST products, decreasing the accuracy of hot spot localization 553 
(e.g., Xu et al., 2017). Thus, even at acceptance of higher random uncertainty, a high space and 554 
time LST product is essential in this application. The variation in LST or difference of LST to air 555 
temperature is fit to an empirical model. Thus, it is the variation in LST that is guiding the 556 
methods, and accuracy is less important than spatial precision. In other cases, the magnitude of 557 
LST may be the driving factor, as is the case in models of evapotranspiration (Anderson et al., 558 
2021; Guillevic et al., 2019) or atmospheric boundary-layer growth (Desai et al., 2006), in which 559 
case, the additional spatial information may be of less use, but the higher temporal information 560 
captures land-surface heat capacity and moisture holding impacts that influence the diel cycle of 561 
LST.  562 
 563 
There are other cases where neither the variation nor magnitude matters, but rather the spatial 564 
structure. Consider Fig. 9, where we depict the radially integrated spatial power spectrum of LST 565 
from GOES-NLDAS, ECOSTRESS, and the fused product. A number of fine scale modes of 566 
variation are present in the higher resolution products not found in GOES, which overestimates 567 
the autocorrelation. Similarly, when looking over time (Fig. 10), the enhanced spatial resolution 568 
improves upon GOES ability to detect increasing spatial variation of LST in autumn and during 569 
the mid-day in summer. These patterns have been tied to generating heterogeneity in heat fluxes 570 
that promote mesoscale atmospheric circulations (Butterworth et al., 2021). 571 

5. Conclusions 572 

We demonstrated that a fusion of modeled land surface temperature with geostationary, irregular, 573 
and polar orbit observations and hyperspectral imagery provides a simple pathway for high space 574 
and time resolution LST for any region where those observations are available. LST estimates 575 
well captured many dynamics of spatial and temporal variation across a heterogeneous landscape 576 
of lakes, forests, wetlands, and urban areas in northern Wisconsin. Additional efforts should be 577 
placed on approaches to gap-filling for clouds, improvement of LST retrievals over water bodies 578 
and landscape transition edges, and multi-instrument evaluation. Our results suggest that 579 
continued effort to combine temporal and spatial estimates of LST can provide a fruitful path 580 
forward to better understand earth system processes, land surface data assimilation for modeling, 581 
and microclimate delineation. 582 
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Tables 858 

Table 1. Input data sources used in gap-filling and downscaling land surface temperature 859 
 860 
Product Description Spatial 

Resolution 
Temporal 
Repeat 
Frequency 

URL 

NLDAS-2 Data-assimilation model 
reanalysis LST 

⅛ degree hourly https://ldas.gsfc.
nasa.gov/nldas/ 

GOES-R Geostationary satellite 
LST over Western 
Hemisphere 

~2 km 15 minutes https://www.goe
s-
r.gov/products/b
aseline-LST.html 

ECOSTRESS Thermal imager on 
International Space 
Station 

70 m × 70 m 1-5 day; 
diurnal 
sampling 

https://ecostress.j
pl.nasa.gov/ 

UW HySpex Visible to Shortwave IR 
airborne hyperspectral 
imager 400-2500 nm 

Varies, ~1 m ~Monthly https://data.eol.u
car.edu/dataset/5
92.027 

  861 
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Table 2. Evaluation data sources 862 
 863 

Product Description Spatial 
Resolution 

Temporal 
Repeat 
Frequency 

URL 

University of 
Wyoming King 
Air (UWKA) 

Upwelling infrared 
surface temperature 

~10 m Twice-daily 
over three 
4-day 
periods 

http://flights.uwy
o.edu/projects/ch
eesehead19/ 

NCAR 
Integrated 
Surface Flux 
Station (ISFS) 

Upwelling longwave 
radiation from 19 eddy 
covariance towers 

~50 m 5-minute 
average 

https://data.eol.u
car.edu/dataset/5
92.025 

Landsat Two-
source LST 

Satellite land surface 
temperature 

30 m ~16 day https://doi.org/10
.3390/rs1202022
4 

NOAA UAS Drone based land 
surface temperature 

Varies, ~1 m Hourly in 
daytime 
over two 4-
day periods 

https://data.eol.u
car.edu/dataset/5
92.010 
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Figures 865 

Figure 1. Stommel diagram schematic of space and time scale of input data products (black 866 
text), evaluation LST (cyan), high-resolution (50 m) and ultra-high-resolution (10 m) 867 
downscaled LST (dark blue), and processes to create those (red arrows and text) over the 868 
CHEESEHEAD19 domain (map, upper right, and red box). Example input LST imagery is 869 
shown from 7 Aug 2019 0Z. 870 
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Figure 2. Strong correspondence of NLDAS-modeled land surface temperature against observed 872 
geostationary satellite (GOES) temperature allowed for filling of cloud gaps in GOES with 873 
NLDAS. 874 

  875 



27 

Figure 3. Pixel-by-pixel a) linear slope, b) intercept, c) correlation, and d) example regressions 876 
for three locations between 25 ECOSTRESS images collected from Jun-Oct 2019 and gap-filled 877 
GOES land surface temperature. Pixel-level temporal correlation ranges from 0.59 to 0.95 878 
(p<0.01) while individual image spatial correlation ranges from 0.32 to 0.74 (p<0.001).879 
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Figure 4. Comparison of land surface temperature diel cycle in a) deciduous forest, b) evergreen 881 
forest, c) wetland, and d) lake at four sites within ~2.5 km of each other from tower radiometric 882 
observations (orange), NLDAS (black line and gray shading representing spread in three 883 
models), GOES (blue crosses, gaps indicate clouds), and the ECOSTRESS fusion product (red 884 
line) for mid-July, 2019. 885 
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Figure 5. Comparison of fusion land surface temperature product against upwelling infrared 887 
temperature from a) ~105 flight LST observations from the University of Wyoming King Air and 888 
b) time-series from 17 eddy covariance towers in deciduous forests (green), evergreen forests 889 
(brown), and wetlands or lakes (blue). 890 
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30 

Figure 6. Comparison of a) Landsat two-channel land surface temperature retrieval at 30 m 892 
resolution and b) our 50 m fusion product reveals c) relatively good correlation, though warmer 893 
areas in Landsat are under-predicted by the fusion. 894 
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Figure 7. Normalized difference spectral index (NDSI) Pearson correlation (r) between band 896 
combinations from HySpex airborne hyperspectral imager and drone land surface temperature 897 
imagery. The top three most correlated band differences (1470.466 and 1982.657 nm, 709.077 898 
and 760.173 nm, and 504.697 and 651.595 nm, noted in black circles) were used to construct a 899 
linear model for downscaling the fusion LST. NDVI region (green square) and PRI region 900 
(yellow box) noted for comparison. 901 
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Figure 8. Comparison of a) high-resolution (0.5 m) NOAA UAS drone land surface temperature 903 
on 12 July 2019 at 2230Z to b) same image upscaled to 10m, c) original fusion LST product 904 
(average of 22 and 23 Z), and d) fusion product further downscaled with visible and near IR 905 
hyperspectral imagery collected on 26 June, 13 July, and 6 Aug 2019, demonstrating significant 906 
improvement in correlation (r2=0.14 and RMSE=3.0 K with 50 m and r2=0.34 and RMSE=1.7 K 907 
with 10 m imagery). 908 

  909 



33 

Figure 9. Radially integrated two-dimensional spatial power-spectrum for a single clear-sky day 910 
(16 June 2019) compared among a) GOES-NLDAS, b) ECOSTRESS, and c) the fusion land 911 
surface temperature product. The fusion product shows better correspondence of spatial 912 
autocorrelation and structure to ECOSTRESS than GOES. 913 
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Figure 10. Difference in spatial standard deviation of LST between the 50 m fusion and GOES 915 
as a function of hour of day (x-axis) and day of year (y-axis). Increasing heterogeneity in LST is 916 
found toward the autumn and afternoons in summer. 917 
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