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Abstract

This work presents a new approach to defining drought, establishing an empirical relationship between historical droughts (and

wet spells) documented in impact reports, and a broad range of observed drought-related climate features. A Random Forest

(RF) algorithm was trained to identify the particular combinations of predictors – such as precipitation, soil moisture and

potential evapotranspiration – that led to categorical, documented drought or non-drought events. Unlike traditional drought

definitions, the new RF drought indicator combines meteorological, hydrological, agricultural, and socioeconomic drought,

providing drought information for all impacted sectors. The metric also quantifies the conditional probability of drought (rather

than being threshold-based), considering multiple climate features and their interactive effect, and can be used for forecasting.

The approach was validated out-of-sample across several random selections of training and testing datasets, and demonstrated

better predictive capabilities than commonly used drought indicators in a range of performance metrics. Furthermore, it showed

a comparable performance to the (expert elicitation-based) US Drought Monitor (USDM) which is the current state-of-the-art

record of historical drought in the USA. As well as providing an alternative historical drought indicator to USDM, the RF

approach offers additional advantages by being automated, by providing drought information at the grid-scale, and by having

predictive capacity. As a proof-of-concept case, the RF drought indicator was trained on Texan climate data and droughts,

and validated in all Texas ecoregions. However, the introduced approach can be easily implemented to develop a RF drought

indicator for new regions if adequate information on historical droughts is available.
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Abstract 16 

This work presents a new approach to defining drought, establishing an empirical relationship 17 

between historical droughts (and wet spells) documented in impact reports, and a broad range of 18 

observed drought-related climate features. A Random Forest (RF) algorithm was trained to 19 

identify the particular combinations of predictors – such as precipitation, soil moisture and 20 

potential evapotranspiration – that led to categorical, documented drought or non-drought events. 21 

Unlike traditional drought definitions, the new RF drought indicator combines meteorological, 22 

hydrological, agricultural, and socioeconomic drought, providing drought information for all 23 

impacted sectors. The metric also quantifies the conditional probability of drought (rather than 24 

being threshold-based), considering multiple climate features and their interactive effect, and can 25 

be used for forecasting.  26 

The approach was validated out-of-sample across several random selections of training and 27 

testing datasets, and demonstrated better predictive capabilities than commonly used drought 28 

indicators in a range of performance metrics.  Furthermore, it showed a comparable performance 29 

to the (expert elicitation-based) US Drought Monitor (USDM) which is the current state-of-the-30 

art record of historical drought in the USA. As well as providing an alternative historical drought 31 

indicator to USDM, the RF approach offers additional advantages by being automated, by 32 

providing drought information at the grid-scale, and by having predictive capacity.  33 

As a proof-of-concept case, the RF drought indicator was trained on Texan climate data and 34 

droughts, and validated in all Texas ecoregions. However, the introduced approach can be easily 35 

implemented to develop a RF drought indicator for new regions if adequate information on 36 

historical droughts is available. 37 

1 Introduction 38 

By the mid-1980s, drought had been defined in the scientific literature in more than 150 39 

ways  (Wilhite & Glantz, 1985). Existing definitions reflect perception differences across various 40 

disciplines (e.g. meteorology, hydrology, agriculture, society  and economy) of the most 41 

important impacts of droughts (Wilhite & Glantz, 1985). Research in the late 1990s grouped 42 

existing conceptual definitions into four forms of drought (AMS, 1997). Meteorological drought 43 

(also termed climatological drought) refers to a period of below normal precipitation. 44 

Agricultural or soil moisture drought is concerned with the deficiency in water available for 45 

agriculture or natural ecosystem as a result of subsequent soil moisture depletion. Hydrological 46 

drought is concerned with the direct or indirect impacts of shortfall in surface and subsurface 47 

water supply. Socioeconomic drought refers to the effect of any of the meteorological, 48 

agricultural or/and hydrological droughts on people and water-dependent economies. More 49 

recently, the IPCC report defined drought as ‘a period of abnormally dry weather long enough to 50 

cause a serious hydrological imbalance’ (IPCC, 2014; Seneviratne et al., 2012).  51 

Drought indicators typically assess anomalies in a particular climate feature and make 52 

drought conclusions based on pre-defined thresholds (Heim, 2002; J. Keyantash & Dracup, 53 

2002; Yihdego et al., 2019). Among the most common indicators used in drought analysis are the 54 

Standardised Precipitation Index (SPI; McKee et al. 1993) and the Palmer drought severity index  55 

(PDSI; Palmer 1965). SPI is based solely on precipitation (P) anomaly, while PDSI simulates 56 

soil moisture anomaly from the difference of potential evapotranspiration (PET) and P. More 57 

recently, (Hobbins et al. 2016) developed the Evaporative Demand Drought Index (EDDI), a 58 

drought indicator that is based solely on PET anomaly.  59 
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Drought indicators typically define a drought event as statistically anomalous in a 60 

distribution of a specific climate feature (e.g.  McKee et al. 1993; Stagge et al. 2015). There are 61 

however circumstances where near-normal conditions of several climate variables occurring 62 

simultaneously lead to impactful droughts even though they wouldn’t necessarily be labelled as 63 

droughts using common drought indicators. For example, in the agricultural context, moderate 64 

pre-existing soil moisture shortages combined with a moderate precipitation shortage will likely 65 

result in a drought. None of these hydroclimatic variables, when considered in isolation, needs to 66 

be an extreme anomaly for a drought to occur (IPCC, 2014). Similarly, a pre-existing soil 67 

moisture surplus combined with abnormally low precipitation might not lead to a drought. 68 

Therefore, looking for droughts only in the extremes of a distribution can be misleading. 69 

 70 

Furthermore, drought indicators usually focus on a narrow selection of climate or agro-71 

hydrological variables (and sometimes a single one) and so ultimately cannot identify all forms 72 

of droughts (Van Loon & Van Lanen, 2012). For effective drought planning and response, it is 73 

important to develop monitoring tools capable of providing drought information for all sectors 74 

impacted by droughts (Wilhite, 2009). This requires simultaneous assessment of several drought-75 

related variables (Brown et al., 2008). Several approaches integrate various aspects of the land-76 

atmosphere-ocean system (e.g. Azmi et al. 2016; Brown et al. 2008; Fernando et al. 2019; 77 

Keyantash and Dracup, 2004; Li et al. 2015; Zhang and Jia, 2013), improving drought 78 

identification. However, they were not designed to detect all forms of drought, although some 79 

exceptions exist (Azmi et al., 2016). The development of a comprehensive drought index was 80 

described by the United States Western Governors’ Association (WGA) as a top priority for 81 

improving monitoring capabilities and assisting sectors at risk in planning mitigation activities 82 

(AWG, 2004).  83 

 84 

Recent research applied machine learning techniques to predict existing drought indices 85 

using a number of climate variables as predictor variables (Deo & Şahin, 2015; Khan et al., 86 

2020; Park et al., 2016; Soh et al., 2018). These efforts enabled the reconstruction of drought 87 

indices over time and space where the original drought indices could not be developed mainly 88 

due to lack of data needed to derive them. Machine learning-based indictors developed this way 89 

at best mimic the predictive capabilities of the drought indicator they are trying to emulate. 90 

However, as the drought indicators are themselves not perfect, fail to accurately depict drought 91 

events. Ultimately, the enhancement brought by most of these machine learning-based indicators 92 

is limited to extrapolation in time (i.e. future predictions and past reconstruction) and/or space 93 

(areas with no data) – the quality of prediction offered by the drought index did not improve. 94 

 95 

Very little effort has been made to incorporate real drought impacts data in the 96 

development of drought indices. This is curious since, in reality, the main purpose of using 97 

drought indicators is to enable governments and water-dependent sectors to better address 98 

impacts associated with droughts (AWG, 2004). Arguably, for better decision-making in water 99 

resources and agricultural management, it is important that drought definitions only include 100 

droughts that have impacts, and avoid the very real possibility of giving false warnings about 101 

events simply because they were found in the extreme of a distribution.  102 

The aim of this paper is to introduce a new approach to defining drought using machine 103 

learning that can address some of the limitations of existing approaches. Texas is used as the test 104 

region, taking advantage of the wealth of drought information available from drought impact 105 
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reports and other resources. The following section describes the data used to train the Random 106 

Forest (RF) algorithms, and the applied methods to test and validate the developed RF drought. 107 

Results are provided in section 3, then discussed and summarized afterwards. 108 

The main text should start with an introduction. Except for short manuscripts (such as 109 

comments and replies), the text should be divided into sections, each with its own heading. 110 

Sections are numbered (1, 2, 3, etc.). A maximum of four levels of heads may be used, with 111 

subsections numbered 1.1., 1.2.; 1.1.1., 1.2.1; 1.1.1.1., and so on. Headings should be sentence 112 

fragments. Examples of headings are: 113 

2 Materials and Methods 114 

A RF binary classification algorithm was trained to discern ‘drought’ and ‘no drought’ 115 

conditions from monthly climate data. The labelled data that was used to build and test the RF 116 

model comprised monthly climate data as predictor variables (or features), and a binary class of 117 

‘drought’ and ‘no drought’ labels as a response variable. We developed a database of binary 118 

labels by compiling several hundred reports that provide information on drought impacts and 119 

monthly weather conditions at 30 Texan counties. Corresponding climate data was extracted 120 

from several global datasets of drought-related variables. 121 

 122 

Training the RF algorithm was conducted on 75% of the labelled data, while the 123 

remaining 25% of the data was used for out-of-sample testing of the trained model. The 124 

performance of the RF algorithm was assessed across 100 different random selection of training 125 

and testing subsets and compared with commonly used drought indicators along with the US 126 

Drought Monitor (USDM), which is the state-of-the art drought monitor in Texas. A detailed 127 

description of the methodology is provided below. 128 

2.1 Predictor variables 129 

Predictor variables comprise a range of drought-related climate variables and phenomena 130 

that describe the land-atmosphere-ocean system. These include monthly estimates of 131 

precipitation (P), soil moisture (SM), potential evapotranspiration (PET), actual 132 

evapotranspiration (ET), change in water storage (CWS), Normalised Difference Vegetation 133 

Index (NDVI), and El Niño–Southern Oscillation (ENSO). Soil moisture of the previous month 134 

(SMprev) and the calendar month were also incorporated as predictor variables.  The source and 135 

reference of each dataset are provided in Table 1. The spatial resolution of all the employed 136 

gridded datasets is 0.25° except PET and CWS which have a coarser resolution of 0.5°. All the 137 

gridded datasets were resampled to a common 0.5° grid using nearest neighborhood 138 

interpolation. Predictor variables were then extracted at 30 grid points (Figure 1) in all time steps 139 

during 1982-2016 where matching drought event labels are available. The 30 grid points are 140 

located in 30 counties, most of them are about the size of a grid cell, i.e. 0.5°. These are 141 

distributed over all 12 Texan eco-regions identified by the United States Environmental 142 

Protection Agency (EPA, https://www.epa.gov/; Figure 1).  143 

https://www.epa.gov/
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 144 
Figure 1: Location of 30 grid cells used in this study over a layer of Texas ecoregion map (level 145 

3) developed by the EPA (https://www.epa.gov/). 146 

 147 

 148 

Table 1: Climate variables used as predictor variables 149 

Climate variable and 

unit × month-1 

Name and  

Reference 

Temporal and 

spatial coverage 

and resolution 

Data description and access link 

Change in total water 

storage (mm) 

GRACE-REC 

(Humphrey & 

Gudmundsson, 2019) 

1979-2016 

monthly 

0.5° global land 

JPL_MSWEP – 1st member: Statistical model 

trained with GRACE JPL mascons and forced 

with MSWEP precipitation. The change in total 

water storage in a given month was computed by 

subtracting the total water storage anomalies of 

the previous month from the current month.   

https://figshare.com/  

Evapotranspiration 

(mm) 

DOLCE V2.1 

(Hobeichi, 2020) 

(Hobeichi et al., 2020) 

1980-2018 

monthly 

0.25° global 

land 

Observationally constrained hybrid 

evapotranspiration product derived by merging 11 

available ET products. 

 http://dx.doi.org/10.25914/5eab8f533aeae  
Precipitation (mm) GPCC V2018 

(Schneider et al., 2018) 

 

1891-2016 

monthly 

0.25° global 

land excluding 

Antarctica 

Monthly Land-Surface Precipitation from Rain-

Gauges built on GTS-based and Historical Data 

https://psl.noaa.gov/data/gridded/data.gpcc.html  

Potential 

Evapotranspiration 

(mm) 

Priestley-Taylor PET 1901-2017 

monthly 

Calculated from CRU TS4.02 monthly cloud 

cover and mean temperature using the R package 

https://figshare.com/
http://dx.doi.org/10.25914/5eab8f533aeae
https://psl.noaa.gov/data/gridded/data.gpcc.html


manuscript submitted to Water Resources Research 

 

0.5° global land 

excluding 

Antarctica 

rstash (https://github.com/rhyswhitley/r_stash; 
Davis et al. 2017) 

Soil moisture of the 

current and previous 

months 

(m3 m-3) 

CCI-SM 

(Gruber et al., 2019) 

(Gruber et al., 2017) 

(Dorigo et al., 2017) 

(Dorigo et al., 2017) 

1979-2019 daily 

0.25° daily 

global land 

excluding land 

covered with 

snow 

COMBINED CCI Soil Moisture product 

datasets v04.7 
https://esa-soilmoisture-cci.org/  

month  1980-2016 Calendar month 

ENSO Index (Smith & Sardeshmukh, 

2000) 

 

1870-2020 

1-month running 

mean 

A Bivariate EnSo Timeseries or the 

"BEST" ENSO Index  it combines (i) SOI: 

Southern Oscillation Index ( based on the 

observed sea level pressure differences between 

Tahiti and Darwin) and (ii) Niño 3.4 SST 

(NINO3.4 is the average sea surface temperature 

anomaly in the region bounded by 5°N to 5°S, 

from 170°W to 120°W) 

based on the mean climatology for the period 

1871-2001.  

https://psl.noaa.gov/ 

NDVI NASA-GIMMS v1.1  

(Pinzon & Tucker, 2014) 

July 1981 to Dec 

2017 

0.0833° 

bimonthly 

NDVI from Advanced Very High Resolution 

Radiometer, averaged to monthly by taking the 

maximum of bimonthly values 

https://gimms.gsfc.nasa.gov/ 

 150 

 151 

Most of these predictor variables appear in existing drought monitoring approaches 152 

(Beguería et al. 2014; Brown et al. 2008; Karnieli et al. 2010; McKee et al. 1993; Nanzad et al. 153 

2019). Incorporating ENSO as a predictor variable was guided by studies showing droughts in 154 

Texas are related to La Niña events, which affect Pacific moisture patterns (Pu et al., 2016; 155 

Schubert et al., 2004; Seager et al., 2014). SMprev was used to provide information on the 156 

resilience of the system to withstand drought.  157 

2.2 Binary database of ‘drought’ and ‘no drought’ events 158 

‘Drought’ and ‘no drought’ events attributed to a grid cell during a period of time are based on 159 

information extracted from two main sources. The source that contributed to most of the 160 

‘drought’ events is the Drought Impacts Reporter (DIR), a national interactive drought impact 161 

database developed and maintained by the U.S. National Drought Mitigation Center (NDMC) 162 

(Wilhite et al., 2007). Sources contributing to the DIR database include news articles, scientific 163 

publications, National Weather Service Drought Information Statements, agency reports, and 164 

reports submitted by government officials and the public. The DIR comprises information on 165 

drought impacts reported by a wide range of drought-impacted sectors. Submitted reports from 166 

any source are then reviewed for drought impact information and verified by NDMC before 167 

becoming publicly available at https://droughtreporter.unl.edu/. Reported impacts include the 168 

agricultural sector, livestock, water, energy, and fire sectors, social impacts, forestry, recreation 169 

and tourism, and more.    170 

  171 

A major source of ‘no-drought’ events are the Texas Climate Monthly Reports (TCMR), 172 

monthly bulletins produced by the Office of the State Climatologist at Texas A&M University. 173 

https://github.com/rhyswhitley/r_stash
https://esa-soilmoisture-cci.org/
https://psl.noaa.gov/
https://droughtreporter.unl.edu/
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They provide a summary of weather conditions throughout Texas, describe big weather events 174 

such as floods, storms, and hurricanes, and report the number of days with rain and monthly 175 

precipitation totals picked up in several locations. Monthly bulletins are produced from 1990 176 

onwards and can be accessed at https://climatexas.tamu.edu/products/texas-climate-177 

bulletins/index.html. 178 

 179 

Building the database of Texas drought events involved a careful assessment of the DIR, 180 

TCMR, and relevant literature. Periods where regions were trending toward drought or 181 

recovering from it are not marked as events. Furthermore, we excluded reports of small scale 182 

impacts and only included county scale impacts; this ensured scale consistency between 183 

observed drought impacts and the measured drivers described in Section 2.1.  184 

The final (spatiotemporally incomplete) database for this test case comprises a total of 185 

1005 records in 500/505 split for ‘no drought’ and ‘drought’ respectively. Each record consists 186 

of a location (a county), a time (year and month) and a label (‘drought’ or ‘no drought’). Table 187 

S1 in the supplementary material shows these records along with the relevant source. 188 

2.3 Random Forest Algorithm 189 

2.3.1 Building a Random Forest classification and probability Model 190 

Random forest algorithm (Breiman 2001) grows a collection of classification trees (or 191 

alternatively probability trees) each fitted on bootstrap samples (samples are drawn with 192 

replacement) of labelled data (predictor variables and associated labels) available for training. As 193 

a result of the bootstrapping procedure, trees in the forest are trained on different - but not 194 

mutually exclusive - subsets of labelled observations. In each tree, data undergo recursive binary 195 

splits based on the predictor variables. The sample data at a parent node is split on a predictor’s 196 

cutoff value (e.g P=100 mm) and results into exactly two child nodes. A subset of predictors of 197 

predefined size is available for the split at each node. The RF algorithm carries out an 198 

optimization procedure that controls the selection of an appropriate predictor at each node, the 199 

cutoff values at which the data will split, and whether there will be further splitting. These 200 

decisions are based on a metric known as the Gini index (Breiman et al., 1984) which measures 201 

the relevance and consequence of each feature available for split at each node, and that ensures 202 

that as the trees grow, the impurity decreases, i.e. the variance within subsequent child nodes 203 

decreases. Each tree keeps growing until the impurity does not decrease further, or until the 204 

number of samples in the terminal node – also called leaf node - falls below a threshold. 205 

 206 

Each terminal node in the forest is assigned a class ‘drought’ or ‘no drought’ and a 207 

probability of drought. The class represents the majority label in the terminal node. The 208 

probability of drought is equal to the proportion of ‘drought’ labels at the terminal node, and it 209 

represents the conditional probability of drought emergence given the features described from 210 

the top of the tree down to this terminal node. The reliability of conditional probabilities 211 

computed by the RF approach is examined and demonstrated by Malley et al. (2012). 212 

 213 

This work applies a new implementation of random forest developed in the “RANdom 214 

forest GEneRator” (ranger; Wright and Ziegler, 2017), an open source software package in R. 215 

Ranger provides a higher computational speed and better memory storage efficiency compared to 216 

other available implementations (e.g. Random Jungle (Kruppa et al., 2014), and randomForest 217 

https://climatexas.tamu.edu/products/texas-climate-bulletins/index.html
https://climatexas.tamu.edu/products/texas-climate-bulletins/index.html
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(Liaw & Wiener, 2002)) while maintaining a similar performance (Wright & Ziegler, 2017). We 218 

used the default parameters described in the ranger package to build both the RF classification 219 

model and a RF probability model. These involve 500 trees, 3 predictor variables available for 220 

split at each node (i.e. √𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), and the same size as the training dataset is used 221 

for number of bootstrap samples.  222 

 223 

It is important to note that the sub-sampling of predictors at each node along with the 224 

bootstrapping procedure and the fact that trees are built in parallel force variation between trees 225 

and ensure that they have a small pairwise correlation. 226 

 227 

The outcome from training the RF algorithm on drought event data can be either a RF 228 

binary classification model or a RF probability model. This is determined during the training 229 

process and is based on whether the purpose is to classify new samples as ‘drought’ or ‘no 230 

drought’, or to compute the conditional probability of drought. Here we developed and used both 231 

models.  232 

 233 

2.3.2 Prediction 234 

To predict the binary class and the drought probability of a given new sample, its driver 235 

values are propagated through all the trees in the forest and the terminal node values at each tree 236 

– for both class and the probability – are collated. The final class assigned to the new sample is 237 

based on the majority class from all trees, and the estimated conditional probability of drought is 238 

the average probability estimate over all trees.  239 

2.3.2 Variable importance 240 

We use conditional permutation to assess the importance of each predictor variable as 241 

described in (Strobl et al., 2008). To measure the importance of a particular predictor variable, 242 

for example ET, ET is randomly permuted, then predictions are made using the remaining 243 

variables and the permuted variable (substitute of ET). The difference in prediction accuracy 244 

before and after permuting ET averaged over all permutations in the forest is used as a metric of 245 

its importance.  The most important variable is the one that achieves the largest reduction in 246 

prediction accuracy when randomly permuted. Conditional permutation variable importance 247 

reflects the true impact of each predictor variable more reliably than the default variable 248 

importance scheme in the Ranger package, namely Gini importance (Sandri & Zuccolotto, 249 

2008). For each predictor variable, Gini importance measures the reduction in impurity on the 250 

response variable achieved by each predictor at every split across all nodes in all trees. The 251 

conditional permutation importance was proven more reliable than the Gini importance in 252 

situations where some predictor variables are highly pairwise correlated (Strobl et al., 2008), 253 

and/or have different scales of measurement and categories (Strobl et al., 2007). Conditional 254 

permutation variable importance was derived using the R party package (http://party.R-forge.R-255 

project.org). 256 

http://party.r-forge.r-project.org/
http://party.r-forge.r-project.org/
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2.4 Comparison of drought indicators 257 

We compared the prediction skill of the RF drought indicator (tested out-of-sample) with 258 

commonly used drought indicators. We provide a quick summary of these, and refer readers to 259 

the associated publications for further details. 260 

 261 

SPI: Assesses drought solely from precipitation. At a given location, long term monthly 262 

precipitation is transformed into a normal distribution, and the computed SPI value represents the 263 

unit standard normal deviate. Previous studies have associated droughts with SPI values  of less 264 

than  −1 e.g. (Bachmair et al., 2015), −0.8 (in USDM) or 0 (McKee, 1995). We calculated 265 

monthly SPI using the SPEI R package for each grid point presented in Figure 1 from the same 266 

precipitation dataset used to develop the RF model. We derived SPI for several accumulation 267 

periods including 1, 3, 6, 9 and 12 months. In this study we carry out the analysis using each of 268 

the three drought cutoffs, i.e. -1, -0.8 and 0.  269 

 270 

Evaporative Demand Drought Index (EDDI) (Hobbins et al., 2016): monitors drought solely 271 

from PET anomalies, where PET is derived using the American Society of Civil Engineers 272 

standardized reference ET equation (Walter et al., 2000), which estimates PET by simplifying 273 

the Penman–Monteith equation mainly from satellite-based estimates of temperature, humidity, 274 

windspeed, and solar radiation. Unlike SPI, the probability distribution of PET is computed 275 

empirically using an inverse normal approximation. Positive (negative) EDDI values are 276 

commonly used to discern drought (no drought) conditions. We downloaded EDDI maps for the 277 

period 1980-2016 from https://psl.noaa.gov/eddi/ using the R package ‘eddi’. 278 

 279 

PDSI: assesses droughts using anomalies of soil moisture, where soil moisture is calculated from 280 

P and PET using a simple soil moisture balance model. Negative (positive) PDSI values are used 281 

to discern drought (wet) conditions. In this work we calculated PDSI from the same P and PET 282 

datasets used to develop the RF drought indicator. We used the R package scPDSI to calculate a 283 

self-calibrated version of PDSI. 284 

 285 

The U. S. Drought Monitor (USDM) (Svoboda et al., 2002): is currently the state-of-the-practice 286 

for drought monitoring in the U.S. It consists of weekly maps that show regions where land has 287 

been Abnormally Dry (D0), or in drought with intensity ranging from moderate (D1) to 288 

exceptional (D4). Drought categories are produced from blending i) several drought indices 289 

including SPI and PDSI, (ii) the analysis of various observed and modelled climate variables 290 

such as P, temperature, snow water equivalent, water in the soil, streams, lakes and others, (iii) 291 

reported drought impacts, and (iv) experts assessment of i), ii) and iii) and judgments. In this 292 

sense USDM is a retrospective, assimilated observationally-based product, that could not, for 293 

example, be applied to climate projections. The spatial resolution of the USDM Maps is the 294 

approximate scale of a climate division, that is 10 regions in Texas. USDM maps are available 295 

from 2000. We downloaded USDM maps from https://www.drought.gov/drought/ and 296 

aggregated weekly maps into monthly binary ‘drought’ / ‘no-drought’ maps whenever possible. 297 

Regions consistently in drought (non-drought) during a month were labelled ‘drought’ (no-298 

drought), whereas regions that were in drought during part of the month were not used in the 299 

comparison. 300 

 301 

https://www.drought.gov/drought/
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2.5 Out-of-sample testing and performance metrics 302 

We assessed the performance of the RF algorithm by testing its ability to correctly classify 303 

unseen events (not used in training). To achieve this, 75% of events were used to train the RF 304 

model, and the remaining 25% of events used to test it. The 75/25 sampling was randomized 100 305 

times to create 100 different RF models. The performance of the RF approach was then assessed 306 

by comparing the performance of each RF model at its 25% of out-of-sample events, and 307 

aggregating across the 100 cases. Six statistical metrics commonly used in binary classification 308 

were then used to compare the out-of-sample success of the RF model compared to existing 309 

drought metrics: 310 

• Accuracy: correct predictions expressed as a fraction of total predictions. 311 

• False alarm rate: incorrect ‘drought’ predictions expressed as a fraction of all ‘drought’ 312 

predictions.  313 

• Success ratio or precision: correct ‘drought’ predictions expressed as a fraction of all 314 

‘drought’ predictions. 315 

• Threat Score or Critical Success Index: measures how well ‘drought’ predictions correspond 316 

to ‘drought’ observations. It is calculated as correct ‘drought’ predictions expressed as a 317 

fraction of both  ‘drought’ predictions and ‘drought’ observations combined. 318 

• True positive rate or sensitivity (also known as recall and hit rate): correct ‘drought’ 319 

predictions expressed as a fraction of ‘drought’ observations. 320 

• True negative rate of specificity: correct ‘no-drought’ predictions expressed as a fraction of 321 

‘no-drought’ observations. 322 

A perfect score is 0 for the “False alarm rate”, and 1 for all the other performance metrics. 323 

 324 

We computed these performance metrics for the RF-drought indicator, EDDI, PDSI, SPI, 325 

and USDM at all 100 testing datasets. We also assessed the predictive ability of 8 other well 326 

known machine learning classifiers (Balakrishnama & Ganapathiraju, 1998; Breiman, 2001; 327 

Friedman, 1991; Kuhn, 2008; Mitchell, 1997; Nelder & Wedderburn, 1972; Scholkopf et al., 328 

1997; Swain & Hauska, 1977; Wilhite et al., 2007; Zou & Hastie, 2005) trained with the same 329 

training datasets as the RF classifier, by computing these performance metrics across the same 330 

100 out-of-sample testing iterations. The other machine learning algorithms are listed in Table 331 

S2 in the supplementary material, we refer the reader to the associated publications for 332 

description of each algorithm. 333 

4 Results 334 

3.1 Performance of RF and other ML classifiers out-of-sample 335 

Figure 2 shows the performance results of the random forest and other ML classification 336 

algorithms, each trained on 75% of events and tested out-of-sample at 25%, across 100 random 337 

selections of training and testing samples. Random forest achieves above 90% score in accuracy, 338 

true positive, true negative and success ratio across the majority of iterations. The median threat 339 

score exceeds 80%, and the median false alarm rate is about 10%. In comparison with the other 340 

ML approaches, overall, the random forest algorithm performs the best across all metrics. 341 
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 342 

Figure 2: Performance results of RF classification algorithm and 9 other ML classifiers at testing 343 

samples across 100 different sub-sampling of training and validating samples. Performance 344 

scores are explained in section 2.5. 345 

 346 

The competitiveness of RF with the best available ML algorithms has been demonstrated 347 

across a range of applications (e.g. (Cutler et al., 2007; Fernández-Delgado et al., 2014; 348 

McGovern et al., 2017; Park et al., 2016; Rodriguez-Galiano et al., 2012) ). Figure 2 shows that 349 

RF stands out as much more capable than the other employed ML algorithms in identifying 350 

teleconnections between climate features and droughts. There are two additional benefits in 351 

using random forests. First, RF is capable of quantifying the conditional probability of drought, a 352 

very important feature that is not found in most other classifiers. Also, as highlighted in section 353 

2.3.2, RF allows the assessment of the importance of its predictor variables, which gives insight 354 

into the factors influencing droughts, as well as the least important climate features in explaining 355 

and quantifying droughts in different circumstances.  356 

3.2 Performance of RF out-of-sample, compared to SPI, PDSI, EDDI and USDM  357 

Figure 3 illustrates the performance results of the RF drought indicator relative to EDDI, 358 

PDSI, USDM and SPI computed for 6 months accumulation period (at two drought cutoffs, −0.8 359 
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and 0, denoted by SPI-0.8 and SPI0 respectively). The drought indicators are computed across the 360 

100 different testing datasets. Overall, RF and USDM achieve the highest scores across all 361 

metrics followed by SPI-0.8 and SPI0. We exclude SPI at -1 drought cutoffs from the plot as it 362 

consistently shows inferior performance than each of SPI-0.8 and SPI0. 363 

 364 
Figure 3: Performance scores of RF classifier and commonly used drought indicators i.e. 365 

USDM, EDDI with drought threshold value of 0I, PDSI with drought threshold value of 0, and 366 

SPI with drought threshold values of 0 (SPI0) and -0.8 (SPI-0.8) and computed for a six-month 367 

accumulation period. Scores are computed at testing samples across 100 different sub-sampling 368 

of training and validating samples. Performance scores are explained in section 2.5. 369 

 370 

Figure 3 shows that the RF approach is more accurate than EDDI, SPI (at both 371 

thresholds), and PDSI, and has comparable accuracy to USDM. While the accuracy metric 372 

provides a summary of performance, the true positive and true negative scores compare the 373 

ability to correctly predict drought and no drought, respectively. USDM, EDDI, SPI0 and PDSI 374 

appear to do significantly better in identifying ‘drought’ compared to ‘no drought’. This indicates 375 

that most of the inaccuracy in these three indicators come from their tendency to mistakenly 376 
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predict ‘drought’ when there is actually ‘no drought’. The RF approach scores higher than 377 

USDM in True negative and lower in True positive. The difference in score between True 378 

positive ratio and True negative ratio is the smallest in the RF approach and the highest in EDDI. 379 

Overall, the score of the RF approach is the least variable across the six performance metrics 380 

among all the indicators. The RF approach gives fewer false alarms of droughts than the other 381 

indicators and has the best success ratio. In comparison, USDM stands out in the ‘threat score’, 382 

scoring slightly higher than the RF drought indicator.  383 

 384 

PDSI shows poor performance overall. It was previously reported that monthly PDSI do 385 

not capture droughts on short time scales, i.e. less than a year (Dai, 2017). SPI computed for 6 386 

months accumulation period performed the best compared to the other examined accumulation 387 

periods (i.e. 1, 3, 9 and 12), and its performance varies according to the drought cutoff. At a −0.8 388 

cutoff, where droughts correspond to SPI ≤ −0.8, SPI-0.8 scored low in True positive and threat 389 

score, which indicates that SPI-0.8 tends to miss droughts. This explains why SPI-0.8 achieved a 390 

near optimal score in the True negative metric. In contrast, at a 0 cutoff, SPI0 scored low in True 391 

negative and a near optimal score in True positive, which indicates that SPI0 tends to predicts 392 

drought when there is actually no drought. 393 

 394 

3.3 RF drought probability maps 395 

We built the final RF drought indicator for Texas on all event data without excluding a 396 

proportion for validation. In Figure 2 and Figure 3, the purpose of training the RF algorithm on a 397 

subset (75%) of the labelled of data was to validate the RF algorithm on unseen data and get a 398 

robust estimate of the derived RF model. The RF drought indicator is then used to derive drought 399 

probability maps for Texas. 400 

In the following, we reference a Texas Climate Monthly Reports (TCMR) of a given month, for 401 

example January 2010 as TCMR/1-2010, where the actual reference is 402 

https://climatexas.tamu.edu/products/texas-climate-bulletins/january-2010.html.  403 

We reference an impact report from the DIR database as DIR followed by its impact ID, e.g. 404 

DIR4115. 405 

3.3.1 The 2011 drought 406 

We examined a drought episode over Texas during 2010-2012 (known as the 2011 407 

drought) using drought probability maps derived by the new RF drought indicator for the period 408 

spanning from January 2010 to April 2012. The 2011 drought was considered one of the most 409 

catastrophic short-term droughts in the US and caused tremendous agricultural, hydrologic, 410 

economic and socio-economic losses (Combs, 2014; Grigg, 2014). It was thought to be linked to 411 

strong La Niña conditions in the Pacific which were established in the fall of 2010 and were 412 

responsible for the below normal rain received during 2010-2012 (Folger et al., 2013; Texas 413 

Water Development Board, 2012). The drought probability maps in Figure 4 illustrate how the 414 

2011 drought progressed in time and space throughout the examined period.  415 

https://climatexas.tamu.edu/products/texas-climate-bulletins/january-2010.html
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 416 
Figure 4: Drought probability maps predicted by RF during a drought episode. 417 

 418 

Weather stations across Texas reported abundant precipitation during winter 2010 419 

(TCMR/1-2010, TCMR/2-2010, TCMR/3-2010, TCMR/12-2010). As soon as the spring began, 420 

dry conditions were felt statewide. According to impact reports, dry conditions were reported in 421 

the South central plains, Western Gulf Coastal Plain (DIR4115) and Panhandle from March 422 

2010. In the next months, dry conditions worsened and caused severe impacts on the growing 423 

season (DIR25697). The drought probability maps in Figure 4 show an increase in drought 424 

probability from April through June, starting in Panhandle, west and south Texas and expanding 425 

gradually to the entire state. The first half of July brought substantial rain (TCMR/7-2010) due to 426 

Hurricane Alex, which according the probability map has temporarily obliterated drought in 427 

most of Texas. The very dry and very hot August (TCMR/7-2010) appeared to have quickly 428 

wiped out the moisture brought by the wet spell in July; this is reflected in the increase in 429 

drought probabilities. In September 2010, a tropical storm brought significant rain along the 430 

Western Gulf Coastal Plain, Southern Texas Plains and East Central Texas plain (TCMR/9-431 

2010), which as indicated in the September 2010 map temporarily broke the drought in these 432 

regions. Rain was also picked up by areas in the west and in the Panhandle, however, due to the 433 

very high temperatures, these areas were not relieved from the drought as observed in the 434 

drought probability map of September 2010. Very dry and very warm conditions returned in 435 

October (TCMR/10-2010) and quickly elevated drought probabilities. The drought areas, and 436 

many parts of Texas did not receive a single trace of rain. By the end of fall, drought exacerbated 437 

in Bastrop (DIR14853), Austin (DIR25214), Panhandle (DIR 3667), and many areas across the 438 

state were reported as natural disaster areas (DIR4115). The eastern part of the state experienced 439 

cold weather and rainy respite in January 2011 (TCMR/1-2011), which lowered the percentage 440 

of the land in drought. In February 2011, Texas experienced sub-zero temperatures with scarce 441 

precipitation (TCMR/2-2011), which put most of the state under drought. Probability maps show 442 

that drought conditions continued throughout Texas in March 2011. In April 2011, abnormally 443 
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dry and warm weather continued across the entire state. According to drought reports, since the 444 

beginning of 2011, bushfires devastated thousands of acres almost everywhere (DIR4160, 4158, 445 

4167, 3937, 4199, 4166, 4120, 4167). By April, the water level in lakes, wetlands and rivers had 446 

reached very low levels (DIR3667, 4212, 25155), and voluntary and compulsory reduction in 447 

water use was imposed in many areas across the state (DIR 24648, 3879). In April and May, the 448 

Dallas region in northern Texas picked up drought breaking rains (TCMR/4-2011, TCMR/5-449 

2011) which helped reduce the probability of drought before the abnormally warm summer had 450 

started (TCMR/6-2011). Drought continued during the summer causing more wildfires 451 

(DIR4465) and tremendous losses in agriculture statewide (DIR29694, 26744, 4019, 4022, 452 

14864, 3965). The drought persisted the entire 2011, however there were a few cold fronts that 453 

brought important rain over many areas in the eastern part of the state (TCMR/11-2011) in 454 

November, and the relieved areas experienced temporary decrease in drought probability during 455 

that month. December 2011 was in general wetter than usual in most of the state except in the far 456 

west (TCMR/12-2011). This is reflected in the significant decrease in drought probability during 457 

this month. January 2012 was another wetter than usual month. Substantial rain was observed in 458 

all weather stations except in the Panhandle, Rio Grande Valley and most of the Far West 459 

(TCMR/1-2012). The drought probability maps for the months of January to April 2012 show a 460 

drought free area stretching from the Central Great Plains to the South Central Plains.  461 

 462 

3.3.2 Comparing RF drought indicator with EDDI and SPI indices in representing the 463 

2011 drought 464 

We assessed the agreement between the RF drought indicator and EDDI and SPI in 465 

representing the 2011 drought during January 2010 and April 2012 using two metrics: 466 

correlation and difference in drought onset. The correlation between the RF drought probabilities 467 

and SPI is very strong everywhere (Figure 5a). In fact, unsurprisingly, precipitation was found to 468 

be the most explanatory variable in discerning ‘drought’ and ‘non drought’ as described in more 469 

detail below. Negative correlations were obtained because drought is denoted by negative values 470 

in SPI and higher (positive) probabilities in RF. In comparison, the correlation between RF and 471 

EDDI in Figure 5d is high (0.5-0.8) in the western half of the state but weakens in the eastern 472 

half of the state, with the lowest correlation observed in the Cross Timbers regions.  473 
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 474 
Figure 5: Correlation between RF drought probabilities and a) SPI, and d) EDDI.  Difference in 475 

RF drought onset and each of b) SPI-6 with a drought threshold of -0.8 (i.e. OnsetRF – onsetSPI-476 

0.8), c)  SPI with a drought threshold of 0 (i.e. onsetRF – onsetSPI0) and e) EDDI (i.e. onsetRF – 477 

onsetEDDI). Correlations and onsets are computed for the period spanning January 2010 – April 478 

2012. 479 

 480 

We examined the difference in drought onset with SPI at the two drought thresholds and 481 

over several accumulation periods. Figure 5b and Figure 5c display the results for  SPI-0.8 and 482 

SPI0 respectively, both computed for 1-month accumulation period. Drought appears in RF 483 

drought index well in advance of SPI-0.8 across the dry western half of the state and the majority 484 

of the state. One finding from Figure 3 is that SPI-0.8 tends to miss droughts, which according to 485 

Figure 5b results from a delayed start of droughts. In contrast, drought appears in RF after SPI0 486 

over the majority of the state, with the largest difference observed in the wettest part of the state. 487 

The reason is likely that SPI does not know how resilient the system is. For example, after 488 

several rainy months, water is abundant, and a month of abnormally low rain would not 489 

necessarily lead to a drought. While SPI accumulated over longer time periods than 1 month is 490 

likely to better capture the resilience of the system since it has longer P memory, at 1 month 491 

accumulation period the SPI has higher correlation with RF and a smaller drought onset 492 

difference (Figure S1 in the supplementary material). It has been reported that SPI computed for 493 

a short accumulation period is more suitable for use as a drought indicator for immediate impacts 494 

(European Comission, 2020). Figure 5b and c suggest that neither of the two drought thresholds 495 

is optimal, and a better threshold value is likely to be between 0 and −0.8.  496 

 497 

Figure 5e shows that the drought appears in RF with a small lag of ±1 month compared to 498 

EDDI. RF shows drought emergence before EDDI in the majority of the state except areas in the 499 

west central and the southwest. Considering the low correlation in the wet parts of the state and 500 
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the low ‘True negative’ score achieved by EDDI in Figure 3, EDDI appears to not capture 501 

drought dynamics under drought-breaking flash events such as tropical storms and hurricanes 502 

that hit the eastern part of the state. 503 

 504 

The RF drought indicator quantifies the probability of drought rather than its categorical 505 

severity as in EDDI, SPI, PDSI and USDM. Drought probability represents the conditional 506 

probability given the current climate (see section 2.3.2 for details). Monitoring drought 507 

probabilities and how they are evolving in time allows for recognizing a drought before it occurs 508 

(probability increases to near 0.5) or intensifies. We argue that drought probabilities provide a 509 

more reliable quantification of drought than severity categories, as they are not based on 510 

distribution assumptions nor are they computed in reference to a climatology. This is unlike the 511 

other drought indicators which assume a fixed number of droughts (percentile) falling in each 512 

drought category during a climatological period. Furthermore, the derived drought probabilities 513 

take into account the interaction of a range of climate variables in the land-ocean-atmosphere 514 

system that can influence droughts. 515 

 516 

3.4 Importance of climate features in explaining droughts 517 

We generated 100 RF models and computed the importance of each predictor variable as the 518 

average of its conditional permutation importance across all forests. As described in section 519 

2.3.2, the importance of a given predictor variable, for example ET, is the difference in 520 

prediction accuracy before and after permuting ET averaged over all permutations. Table 2 521 

shows the mean and the range of importance of each predictor variable across the 100 RF 522 

models, and its ranking. All the variables appear to offer useful information to discern ‘drought’ 523 

and ‘no drought’, since they all have non-zero importance. Also, as expected, precipitation is the 524 

climate feature that provides the maximum information about drought, followed by ENSO and 525 

SM. SMprev comes next, its high importance is likely to come from its provision of moisture 526 

memory and a signal of system resilience. ET and CWS empower drought predictions equally, 527 

followed by PET and NDVI. The month feature was the least important variable.  528 

 529 

Table 2: Importance of climate features in discerning ‘drought’ and ‘no drought’ measured using 530 

conditional permutation scheme (Strobl et al. 2008). ‘Mean’ (Range) is the mean (range of) 531 

importance computed across 100 generated RFs. 532 

 533 
Importance 

Rank 

1 2 3 4 5 6 7 8 9 

Climate 

feature 

P ENSO SM SMprev ET CWS PET NDVI Month 

Mean 0.089 0.069 0.058 0.0165 0.0073 0.0073 0.0058 

 

0.0038 

 

0.0028 

Range [0.084 – 

0.096] 

[0.066 – 

0.073] 

[0.053 – 

0.064] 

[0.0138 

- 0.019] 

[0.006 – 

0.0088] 

[0.0057 

– 0.008] 

[0.0045 – 

0.0072] 

[0.0027– 

0.0052] 

[0.002 – 

0.0037] 

 534 

Despite P being more important to drought than PET, PET anomalies can depict the 535 

beginning of drought better than P anomalies, at least as embodied in EDDI and SPI 536 

respectively, as inferred from Figure 5. One example of a situation where relying on P anomalies 537 

can be misleading is when abnormally low precipitation occurs after several wet months. In this 538 

case a drought will appear in the SPI signal, whereas in reality water is abundant and the lack of 539 



manuscript submitted to Water Resources Research 

 

rain will not necessarily lead to drought emergence. Another example is that abnormally high 540 

PET can lead to drought even when precipitation is near normal (Lukas et al., 2017) in which 541 

case, drought will not be indicated by SPI.  542 

 543 

3.5 RF forecast models 544 

In a further analysis, we use RF to build three forecast models – RF F1, RF F2 and RF F3 545 

– that quantify drought 1, 2 and 3 months ahead, respectively. In the training process, each event 546 

record consists of a label (‘drought’, ‘no drought’) observed at a month, and climate features 547 

observed 1 (RF F1), 2 (RF F2) and 3 (RF F3) months before. We assess the predictive skill of 548 

these forecast models following the same out-of-sample testing approach described in Section 549 

2.5. Figure 6 illustrates the results of the out-of-sample performance of RF drought indicator and 550 

each forecast model across 100 different testing datasets. The three forecast models score above 551 

83% in ‘Accuracy’, ‘True positive’, ‘True negative’, and ‘Success ratio’ across the majority of 552 

the out-of-sample testing, but as expected, could not beat the scores of the RF drought indicator 553 

with concurrent predictor variables. These values are comparable or better than EDDI, PDSI or 554 

SPI with concurrent predictor variables (Figure 3) and so offer hope for successful short-term 555 

predictive capacity. 556 

 557 

 558 

Figure 6: Performance results of RF classifier and RF drought indicators, RF F1, RF F2 and RF 559 

F3  at testing samples across 100 different sub-sampling of training and validating samples. 560 

Performance scores are explained in section 2.5. 561 

 562 

We also assessed how well the forecast models replicate the probability derived by the 563 

RF drought indicators. For this analysis, we calculate 4 new performance metrics at each of the 564 

testing events, and 100 testing datasets to measure the discrepancy of the forecast models with 565 

the RF drought indicator. The employed metrics are root mean squared error (RMSE), standard 566 

deviation (SD) difference, correlation and mean absolute bias. The results in Figure 7 show that 567 

the discrepancy between forecasted drought probabilities and the actual drought probability 568 

slightly increases as the forecast period increases as expected.  569 
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 570 
Figure 7: Performance of the three forecast models RF F1, RF F2 and RF F3 relative to RF 571 

drought indicator. 572 

 573 

Finally, Figure 8 shows maps of the correlation of the three forecast models with the RF 574 

drought indicator during the drought episode January 2010 – April 2012. Similar to our previous 575 

findings from Figure 7, correlation decreases as the forecast period increases, particularly in the 576 

wet east of the state. The lag in the drought onset is presented in Figure 8 d,e and f for RF F1, RF 577 

F2 and RF F3 respectively. The onset difference maps show that the onset lag is in the range ±1 578 

in the west for all the three forecast models, whereas in the east the forecast models tend to delay 579 

drought as the forecast period increases. 580 
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 581 
Figure 8: Correlation between RF drought probabilities and a) RF F1, b) RF F2, and b) RF F3. 582 

Difference in RF drought onset and each of d) RF F1, e) RF F2, and f) RF F3 583 

 584 

5 Discussion 585 

4.1 The new RF drought indicator versus USDM 586 

The advanced capabilities of the RF approach and USDM in discerning ‘droughts’ and 587 

‘non droughts’ compared to EDDI, SPI and PDSI highlight the importance of analysing the 588 

collective changes in climate features to better support drought quantification.  589 

 590 

USDM is the current state of the art index of the weekly drought conditions in the U.S.; 591 

the new RF drought indicator provides a valuable counterpart to USDM for drought monitoring 592 

at the monthly scale. There are however several advantages in using the RF approach: a) the RF 593 

algorithm is developed once, then building drought probability maps from current climate data is 594 

an automated process. In comparison, deriving USDM maps is not automated as it incorporates 595 

subjective opinion and experts’ interpretation; b) The spatial resolution of the RF drought 596 

indicator is 0.5° (or higher where finer resolution inputs are available), whereas USDM provides 597 

a big picture of the drought conditions over 10 Texan climate regions. The sparse resolution of 598 

USDM did not allow it to resolve droughts at the grid scale and resulted in prediction errors in 599 

the out-of-sample tests (Figure 3); c) USDM provides discrete drought categories, with limited 600 

ways for analysing them, and no clear method on how to aggregate them from weekly to other 601 

temporal scales (e.g. monthly). In comparison, the RF algorithm can be trained on data 602 

aggregated over several months and then applied to quantify droughts with longer time frames; 603 

d) The RF approach shows good forecast capabilities, while USDM does not have any forecast 604 
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capabilities. This is true both in terms of the lag models demonstrated here, and the applicability 605 

of the RF approach to climate model projection data. 606 

4.2 Transferability of the derived RF drought indicator to new regions  607 

The new RF drought indicator was developed by training a RF algorithm on patterns 608 

within the Texan region. Therefore, the particular RF drought indicator derived here is specific to 609 

Texas and should not be used to monitor and quantify droughts in new locations outside Texas. 610 

Clearly the physical processes linked with the initiation and persistence of drought are different 611 

over different regions around the world. One obvious example is that droughts in Texas are 612 

related to the cold phase of ENSO, whereas in many regions on land, droughts are related to the 613 

warm phase of ENSO (i.e. El Niño, e.g. Australia). However, the approach is entirely portable, 614 

assuming new RF models are developed for new locations and historical drought data of 615 

sufficient quantity and reliability exist in those locations.  616 

 617 

4.3 Future research directions 618 

There are a number of key processes linked with the initiation and persistence of drought 619 

that could be incorporated to improve the predictive skills of the RF drought indicator but were 620 

not included here, for example zonal moisture advection (Erfanian & Fu, 2019). Nevertheless, as 621 

new relevant climate variables become available, it is easy to test their ability to improve 622 

predictions, and if justified, incorporate them as additional predictors.  623 

 624 

We used a random forest to generate spatial predictions of drought. However, the spatial 625 

location of points was ignored in the modeling process, so that spatial autocorrelation was not 626 

accounted for. Hengl et al. (2018) developed a new framework called Random Forest for spatial 627 

data (RFsp) that extends RF to account for spatial dependence. The RFsp framework 628 

incorporates distances from observation points as predictor variables and therefore, adds 629 

geographical proximity effects into the prediction process. More recently, (Georganos et al., 630 

2019) developed a novel geographical implementation of RF, named Geographical Random 631 

Forest (GRF) that addresses spatial heterogeneity by disaggregating RF into geographical space 632 

in the form of local sub-models. GRF is implemented in the R package SpatialML 633 

(http://lctools.science/). We anticipate that applying any of the RFsp or the GRF approach in the 634 

future will further improve the performance of the RF drought indicators and the predictive skills 635 

of the RF forecasting models. It is important to note that both approaches require a larger number 636 

of grid cells than what was used here. 637 

 638 

Another topic for future research is using deep learning as an alternative, and more 639 

powerful approach than RF to capture the spatio-temporal characteristics of droughts (Reichstein 640 

et al., 2019). A few studies implemented deep learning for drought quantification (e.g. Deo and 641 

Şahin, 2015; Shen et al. 2019). These studies used drought indicators as spatially and temporally 642 

continuous labels. However, this approach is not optimal as drought indicators suffer from biases 643 

and should not be used as ‘ground-truth’ labels. Given the absence of spatially and temporally 644 

continuous drought data, using deep learning to quantify droughts remains challenging.    645 
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6 Conclusions 646 

In contrast to most scientific drought metrics, in this work we used recorded drought 647 

impacts as our observational definition of drought, and used a random forest model to establish 648 

an empirical relationship between drought impact and a broad range of drought-related climate 649 

predictors. This approach was able to predict unseen drought impact events with far greater 650 

success than existing climate-variable based drought metrics, such as SPI, PDSI or EDDI, and 651 

performed as well out-of-sample as the assimilated drought product USDM. However, unlike 652 

USDM, the approach offers considerable predictive ability, both in the short-term drought 653 

predictions and use with climate projections. While Texas was used as a test case here, the 654 

approach is applicable to any region with sufficient spatiotemporal drought records. 655 
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