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Abstract

Here, we extend the Fisher-Kolmogorov-Petrovsky-Piskunov equation to capture the interplay of multiscale and multiphysics

coupled processes. We use a minimum of two coupled reaction-diffusion equations with additional nonlocal terms that describe

the coupling between scales through mutual cross-diffusivities. This system of equations incorporates the physics of interaction

of thermo-hydro-chemo-mechanical processes and can be used to understand a variety of localisation phenomena in nature.

Applying bifurcation theory to the system of equations suggests that geological patterns can be interpreted as physical rep-

resentation of three classes of well-known instabilities: Turing instability, Hopf bifurcation, and a chaotic regime of complex

soliton-like waves. For specific parameters, the proposed system of equations predicts all three classes of instabilities encountered

in nature. The third class appears for small fluid release reactions rates as a slow quasi-soliton wave for which our parametric

diagram shows possible transition into the Hopf- or Turing-style instability upon dynamic evolution of coefficients.
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Abstract12

Here, we extend the Fisher-Kolmogorov-Petrovsky-Piskunov equation to capture the in-13

terplay of multiscale and multiphysics coupled processes. We use a minimum of two cou-14

pled reaction-diffusion equations with additional nonlocal terms that describe the cou-15

pling between scales through mutual cross-diffusivities. This system of equations incor-16

porates the physics of interaction of thermo-hydro-chemo-mechanical processes and can17

be used to understand a variety of localisation phenomena in nature. Applying bifur-18

cation theory to the system of equations suggests that geological patterns can be inter-19

preted as physical representation of three classes of well-known instabilities: Turing in-20

stability, Hopf bifurcation, and a chaotic regime of complex soliton-like waves. For spe-21

cific parameters, the proposed system of equations predicts all three classes of instabil-22

ities encountered in nature. The third class appears for small fluid release reactions rates23

as a slow quasi-soliton wave for which our parametric diagram shows possible transition24

into the Hopf- or Turing-style instability upon dynamic evolution of coefficients.25

Plain Language Summary26

Regular and irregular patterns of deformation bands and fractures are ubiquitous27

in nature. In this paper, we decipher the patterns in terms of coefficients of a simple set28

of reaction-diffusion equations that can, for a given set of material parameters, describe29

a transition from regular to logarithmically decaying patterns and chaotic instabilities.30

The set of equations has previously been used to explain phenomena in complex chem-31

istry and pattern formation in epidemiology, but without the multiscale and multiphysics32

consideration presented here. This work introduces the mathematical formulation and33

analysis, and quantitative applications to geological observation will follow.34

1 Introduction35

Travelling-wave solutions of reaction-diffusion systems are encountered in many fields,36

e.g. in chemistry, epidemiology, biology, medicine, and physics. They were first identi-37

fied in chemistry by R. Luther in 1906 and demonstrated in an experiment where ox-38

alic acid mixed with potassium permanganate led to a wave propagation of the reaction39

made visible by an oscillatory front of decolorization of the mixture. An English trans-40

lation of the transcript of the original lecture has been published much later (Luther,41

1987). Subsequently, the same fundamental partial differential reaction-diffusion equa-42

tion was shown by R.A. Fisher to explain wave-like propagation of mutant genes (Fisher,43

1937), which is widely used in epidemiology for modeling the spread of viruses as well44

as in many other field of biology (Volpert & Petrovskii, 2009). The equation is now bet-45

ter known as the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation (Kolmogorov46

et al., 1937), recognizing the important early work (Adomian, 1995).47

Although the basic mathematical equation is agnostic of the application, and the48

phenomenon is now well established in the above named disciplines, it has found little49

application in the Earth Science field so far, where reaction-diffusion problems are com-50

mon. Pioneering work was presented in the 1990’s (Dewers & Ortoleva, 1990; Ortoleva,51

1993, 1994). Not much progress has been made on further development of geophysical52

applications to the slow travelling-wave solution. Broader community interest was mainly53

met for the special case of the stationary solution of the system of equations (Ball, 2012).54

The main problem in the application to Earth Sciences is perhaps twofold. The first prob-55

lem is that patterns in nature are mostly observed as frozen in features of the dynamic56

solution and it is difficult to discern from geological observations, whether the rhythmic57

features are frozen-in patterns of an oscillating reaction-diffusion equation propagating58

in time, or whether they are caused by a standing wave solution fixed in space (L’Heureux,59

2013). The second problem is that the original FKPP equation does not replicate the60

rich field of observations encountered in nature.61
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For geological applications, a generalized power-law reactive source term therefore62

has been proposed as an extension to the FKPP equation (Vardoulakis & Sulem, 1995).63

Using the simple case of a time-independent reaction-diffusion equation with a power-64

law reactive source term and integer-valued exponents, standing solitary wave Korteweg-65

De Vries (KdV)-type solutions were obtained analytically (Regenauer-Lieb et al., 2013;66

Veveakis & Regenauer-Lieb, 2015). The inclusion of the power-law source term unfor-67

tunately leads to an infinite amplitude KdV-type solitary wave. Several attempts have68

been made to overcome this shortcoming with the aim to provide an appropriate appli-69

cation for modelling compaction bands in porous (or multiphase) geomaterials. Among70

them, the most impressive one is a specific solution proposed by an additional reaction71

source term buffering the instabilities for carefully chosen cases (Alevizos et al., 2017).72

While the proposed approaches manage to achieve a solution to the ill-posed problem73

of lacking an internal material length for some cases, a generalized approach is in absence.74

Here, we develop a theory that has the potential to solve the problem directly for75

all cases by using an approach that is based on internal length scales stemming from the76

physics of the feedbacks of multiple processes operating across multiple characteristic scales.77

We introduce the lacking internal material length scale through an integration of non-78

local diffusion and reaction coefficients originating from lower-scale processes. In a sim-79

ple formulation, the feedbacks can be captured mathematically by the interaction be-80

tween at least two reaction-diffusion equations coupled through two sufficiently large cross-81

diffusion coefficients between interweaved dynamic systems, e.g., a saturated porous medium82

in the post-yield regime (Hu et al., 2020).83

The system of equations has been generalized to describe multiphysics couplings84

between multiple scales (Regenauer-Lieb et al., 2021). In such a formulation, the cross-85

diffusion coefficients are derived through volume integration of diffusion processes that86

are spatially connected to interactions at the lower scale and therefore also called non-87

local diffusion processes. In this sense, the diffusion of a given concentration of species88

does not only depend on its position in space and its gradient, but also on the nonlocal89

effect of the values of concentrations around it and the convolution of the concentration90

with the probability distribution to jump from one location to another (Amdreo-Valle91

et al., 2010). Such nonlocal diffusion processes have recently attracted much attention92

from the mathematics community as the FKPP-equation was found to display unexpected93

wave front accelerations due to the nonlocal terms, as first observed in the invasion of94

cane toads in Australia (Bouin et al., 2017).95

As an innovation in this paper, we also consider nonlocal reactions where the non-96

locality arises from modeling the behavior of one phase interacting with another in its97

immediate environment and vice versa, concurrently - lending itself to a dynamical sys-98

tem approach that captures the multiphysics involved in a tightly coupled fashion. The99

beauty of this new class of nonlocal approaches lies in the fact that it naturally allows100

process coupling across spatial and temporal scales where runaway reactions can be buffered101

via infinite-speed propagation of such perturbations through the nonlocal diffusion pro-102

cess (Amdreo-Valle et al., 2010). In this letter, we perform a linear stability analysis of103

the newly proposed system of equations, revealing three fundamentally different types104

of instabilities.105

2 Korteweg-De Vries-type standing-wave limit106

The dynamic equation for the momentum balance of the solid skeleton in a hydro-107

poromechanic nonlinear visco-plastic medium is expressed in the Perzyna overstress (Duszek-108

Perzyna & Perzyna, 1996) formulation (describing the viscous material behaviour post109

yield) as a FKPP-type reaction-diffusion equation:110
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∂p̄s
∂t

= DM
∂2p̄s
∂x2

+R1, (1)

where in the above 1-D formulation p̄s denotes the Perzyna overpressure for the111

solid skeleton and R1 a nonlinear reactive source pressure term.112

Under the standing-wave assumption, this travelling-wave equation becomes a static113

mechanical viscous overpressure reaction-diffusion equation:114

DM
∂2p̄s
∂x2

+R1 = 0. (2)

The coupled dynamic fluid pressure system can be described by a similar wave equa-115

tion:116

∂pf
∂t

= DH
∂2pf
∂x2

+R2, (3)

which for the static case with a zero source term R2 becomes the Darcy equation:117

DH
∂2pf
∂x2

= 0. (4)

We introduce a dimensionless form118

p̃s =
p̄s
p′ref

, x̃ =
x

l0
, λ =

DM

DH
, (5)

where p′ref and l0 are reference pressure and reference length, respectively. Assuming a119

power-law reactive pressure source term with a power-law exponent m, the coupled sys-120

tem of equations (2) and (4) becomes a Korteweg-De Vries-type standing wave equation:121

∂2p̃s
∂x̃2

− λp̃ms = 0. (6)

Analytical solutions for the practical application to compaction bands with m =122

3 have been suggested (Regenauer-Lieb et al., 2013; Veveakis & Regenauer-Lieb, 2015),123

which feature, for a critical ratio of solid/fluid self-diffusivities λ > 12.7, periodic stand-124

ing waves with infinite-amplitude singularities of the non-dimensional overpressure.125

3 Cross-diffusion equations in geomaterials126

The system of equations can be regularized by extending equations (1) and (3) through127

nonlocal cross-coupling diffusivities between the two dynamic systems considering the128

unique structure of porous media (Hu et al., 2020). Such cross-couplings are well known129

in chemistry as cross-diffusion (Vanag & Epstein, 2009) between chemically reactive con-130

stituents. In our case, cross-diffusion arises as interfacial characteristics (Hu et al., 2020)131

and regularizes the feedbacks between the dynamic evolution of the fluid and solid pres-132

sure. The equations for a fully saturated porous medium post yield can be expressed as:133

∂p̄s
∂t

= DM
∂2p̄s
∂x2

+ dH
∂2pf
∂x2

+R1, (7)
134

∂pf
∂t

= dM
∂2p̄s
∂x2

+DH
∂2pf
∂x2

+R2, (8)

where R1 and R2 are the reaction terms in the governing equations for solid and fluid135

pressure, respectively. For completeness, we extend the formulation of the crossover dif-136

fusion problem proposed earlier (Hu et al., 2020) by nonlocal reaction terms. This al-137

lows us to explore a more general solution space.138
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For expanding the reaction term R2 in Eq.(8), we need to consider the feedback139

between solid and fluid pressure reactions. The reaction term R2 incorporates cross-scale140

coupling to gradients of the pressure in the solid matrix ps in the surrounding pore space,141

which exerts a “nonlocal” effect on the fluid pressure pf inside the pore. For the local142

source term, we assume a simple linear process for the fluid phase, which can be water143

production/depletion due to dehydration/rehydration of minerals. Thus, to take into ac-144

count the above two factors, we assume that the reaction term R2 follows a linear func-145

tion of the fluid pressure and solid overstress, i.e. R2 = a21p̄s + a22pf , where a21 and146

a22 are the corresponding coefficients.147

Likewise, the reaction term R1 in Eq.(7) is translated into a nonlocal reaction for-148

mulation as we expand the power-law assumption in (Veveakis & Regenauer-Lieb, 2015)149

by higher order terms of p̄s to describe the viscoplastic behaviour of the solid skeleton.150

The feedback to the fluid pressure pf is, however, assumed to be linear, for simplicity.151

The generalized reaction term in Eq.(7) is now written in a non-linear form of R1 = a11p̄s+152

a12pf + a13p̄
2
s + a14p̄

3
s. Note that all the coefficients in the reaction terms would also153

evolve according to the in-situ chemo-hydro-mechanical conditions, but here we just give154

the generalized form and regard them as constants to facilitate the analysis.155

By introducing the dimensionless parameters t̃ = ε̇0t, p̃f = p̄f/p
′
ref , where ε̇0156

denotes the reference strain rate, together with the previously defined p̃s = p̄s

p′
ref

,x̃ =157

x
l0

, we arrive at the normalized cross-diffusion equations with normalized reaction terms158

R̃1 and R̃2 expressed as159

∂p̃s

∂t̃
= D̃M

∂2p̃s
∂x̃2

+ d̃H
∂2p̃f
∂x̃2

+ ã11p̃s + ã12p̃f + ã13p̃
2
s + ã14p̃

3
s, (9)

∂p̃f

∂t̃
= d̃M

∂2p̃s
∂x̃2

+ D̃H
∂2p̃f
∂x̃2

+ ã21p̃s + ã22p̃f , (10)

where D̃M = DM

l02ε̇0
, d̃H = dH

l02ε̇0
, ã11 = a11

ε̇0
, ã12 = a12

ε̇0
, ã13 =

a12p
′
ref

ε̇0
, ã14 =

a12p
′
ref

2

ε̇0
,160

d̃M = dM

l02ε̇0
, D̃H = DH

l02ε̇0
, ã21 = a21

ε̇0
, ã22 = a22

ε̇0
.161

In this paper, we describe only two coupled nonlocal reaction-diffusion processes162

while it is straightforward to extend the approach into a higher degree of coupling such163

as an interaction with a thermal nonlocal reaction diffusion equation. Without loss of164

generality, we also limit the higher-order expansion to the order 3 for numerical anal-165

ysis to capture the essential features of the formulation. In our investigation, an order166

3 was the minimum requirement to obtain the full spectrum of solutions including ex-167

citation waves. The development of a concise formulation for extension to higher degrees168

of coupling is never a trivial task considering the complexity associated with new spa-169

tial and temporal scales introduced into the system, and is hence out of the scope of this170

letter. A simplified meso-scale formalism is proposed in (Regenauer-Lieb et al., 2021)171

by adding additional cross- and self-diffusion coefficients to the system of equations via172

the fully populated true diffusion matrix.173

3.1 System constraints and system behaviour174

In what follows, the behaviour of a system of saturated porous material described175

by Eq.(9) and Eq.(10) for p̃s : Ω→ R1 and p̃f : Ω→ R1, respectively, will be investi-176

gated. We use a classical formulation for modelling wave-propagation problems. Non-177

flux boundary conditions are assumed: n · ∇p̃s = 0 and n · ∇p̃f = 0 for x ∈ ∂Ω.178

Here, Ω ⊂ Rn is a smooth bounded domain with outer unit normal n and total vol-179

ume | Ω |. The initial condition is assumed as p̃s(x, 0) = p̃f (x, 0) = 0 for x ∈ Ω, for180

simplicity.181
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In terms of the Perzyna overstress model used in this formulation, the system size182

is considered to correspond to the region where the overstress has been reached due to183

loading from the far field. The non-flux boundary conditions then correspond to the elastic-184

plastic boundary. In what follows, we arbitrarily choose the left boundary as the one where185

the system receives a perturbation from the outside which may lead to material failure186

within or at the boundaries of the system.187

While the addition of a cross-diffusion term allows a fast response to the coupling188

of the two dynamical equations, thus regulating the coupled system by the new cross-189

diffusivities, the equations become no longer tractable in analytical form. The coupling190

terms may also give rise to new instabilities, for which the linear stability analysis (see191

Supporting Information) provides a robust derivation. With sufficiently large perturba-192

tion applied on the left boundary of the domain, three different types of instabilities are193

encountered: (1) Turing instabilities, (2) Hopf-bifurcations, and (3) cross-diffusional waves.194

The corresponding systems are investigated numerically in the following subsections. Se-195

lections of parameters are based on the linear stability analysis presented in the Support-196

ing Information.197

3.2 Turing bifurcations198

When the system undergoes Turing bifurcations, standing waves are generated, lead-199

ing to space-periodic patterns. Turing bifurcations require the system to be stable when200

diffusion is not considered, and an unstable saddle comes into effect when the control201

parameters vary (see Supporting Information). In our formulation, the phase space is202

spanned by the two main variables p̃s and p̃f , and the main control variables for these203

are ã11 snd ã22, scaling the sign and magnitude of the solid and fluid pressure reactive204

source terms, respectively. A saddle point in the p̃s - p̃f phase space is defined as a crit-205

ical point where the phase switches from a stable manifold to an unstable manifold. In206

other words: (I) a stable manifold is achieved via Re(sk) < 0, i.e. the real part of sk207

being negative, when the wavenumber k = 0; (II) an unstable manifold exists with the208

variation of wavenumber k, if a real positive number (no imaginary part) exists for sk,209

which corresponds to the growth rate of the perturbation. To satisfy the above require-210

ments, a sufficient condition for the onset of Turing instabilities is summarized as fol-211

lows:212

(a) tr0 = ã11 + ã22 < 0, where tr0 denotes the value of trk for wavenumber k =213

0.214

(b) ∆0 = ã11ã22 − ã12ã21 > 0, where ∆0 denotes the value of ∆k for wavenum-215

ber k = 0.216

Here, trk and ∆k are coefficients in the characteristic polynomial of sk as defined217

in the Supporting Information.218

(c) At the critical wavenumber kc,219

k2
c = ã11D̃H+ã22D̃M−ã21d̃H−ã12d̃M

2(D̃M D̃H−d̃M d̃H)
,220

∆kc = ∆0 − (ã11D̃H+ã22D̃M−ã21d̃H−ã12d̃M )
2

4(D̃M D̃H−d̃M d̃H)
< 0.221

Since the current cross-diffusion formulation is essentially a mass balance based ap-222

proach, it is expected that the two self-diffusion coefficients D̃M and D̃H are positive and223

that the two cross-diffusion coefficients d̃M and d̃H are of opposite sign. Hence, (D̃M D̃H−224

d̃M d̃H) > 0 is naturally satisfied, i.e. ∆k at the critical wavenumber corresponds to a225

local minimum. This criterion combines the self- and cross-diffusion coefficients and ex-226

tends the original formulation for Turing instabilities (Regenauer-Lieb et al., 2013; Ve-227

veakis & Regenauer-Lieb, 2015).228
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It is worth noting that the characteristic Turing wavelength is an intrinsic char-229

acteristic for the reaction-diffusion equation. It is λ = 2π/kc, which shows that the wave230

length is determined by the material coefficients and the system properties comprising231

the diffusivities and the size of the system (plastic zone) considered (Regenauer-Lieb et232

al., 2013). This implies that if the size of the plastic zone is known, the diffusive mate-233

rial properties can directly be derived from the observation of the localisation pattern,234

e.g., the spacing of fractures or deformation bands (Elphick et al., 2021; Hu et al., 2020),235

since the diffusion properties also control the spacing of the pattern.236

To illustrate the Turing bifurcation solution, we plot numerical results obtained with237

the Finite Difference Method (FDM) in Fig. (1a) and Fig. (1b).238

The Turing-style instabilities lead to an equally spaced segmentation of the plas-239

tic zone with a distinct striped pattern of localisation (Fig. 1b). Upon continued defor-240

mation, the system size and the diffusivities change because inelastic strain localisation241

modifies the material properties, strain, and the local state of stress. For example in the242

case of compaction of the plastic zone, the entire zone shrinks continuously, accommo-243

dated by discrete Turing-patterned compaction bands. Compaction also changes the dif-244

fusivities because permeability is commonly reduced due to inelastic porosity loss through,245

e.g., grain crushing in the bands (Elphick et al., 2021). Finally, low-porosity compaction246

bands are also expected to cause local elastic stress amplification, facilitating further strain247

localisation (Elphick et al., 2021). These effects are not considered in our current cal-248

culation. However, for cases where only small deformations are encountered, we expect249

preservation of Turing-style deformation since the Turing standing wave is essentially250

a stationary solution.251

3.3 Hopf bifurcations252

When the system undergoes Hopf bifurcations, travelling waves are generated, and253

temporally periodic (oscillation) patterns can be found (see Fig. 2). The Hopf bifurca-254

tion changes a stable focus (Re(sk) < 0) into an unstable one (Re(sk) > 0) with the255

change of control parameters. This requires the existence of certain complex number sk256

with the real part (i.e., 1
2 trk) no less than zero when the wavenumber k varies. Given257

that the maximum value of trk is always obtained when k = 0, the above requirement258

for Hopf instability can be translated to tr0 = ã11+ã22 ≥ 0, tr0
2−4∆0 = (ã11 + ã22)

2−259

4(ã11ã22 − ã12ã21) < 0.260

The characteristics of Hopf bifurcations are illustrated with numerical solutions ob-261

tained with FDM in Fig. (1c) and Fig. (1d). The periodic solutions are similar to Tur-262

ing bifurcations, replacing a singular frequency spectrum with an exponentially decay-263

ing frequency spectrum (Fig. 1c). The oscillation frequency f of the Hopf bifurcation264

is an intrinsic material property of the reaction-diffusion equation and is defined by f =265

1/T =
√
ã11ã22 − ã12ã21/2π. Inversion of material properties from temporal observa-266

tion thus appears to be possible.267

In our example calculation shown in Fig. (1c) and Fig. (1d), the frequency spec-268

trum has distinct gaps between the longest waves and the shortest wavelength at the zero-269

flux (reflecting) opposite boundary of the plastic zone. As the waves are dissipative, they270

act like damage waves that continuously change the mechanical properties of the medium271

they traverse. An important observation is that the travelling Hopf wave does not re-272

flect from the system boundary but dumps its energy into the boundary.273

3.4 Cross-diffusion waves for the excitable system274

With the variation of parameters in reaction terms R̃1 and R̃2, we encounter a slow275

reaction case where the coefficients in R̃2 are much smaller than those in R̃1. In this case,276

the whole system would become excitable, and soliton-like behaviours can be observed.277

–7–
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This situation differs significantly from the above solutions. Upon initiation, the wave278

does not contain information of the system size but constitutes a pure material insta-279

bility, carrying only information on the material defining the cross-diffusion matrix (Tsyganov280

et al., 2007). Upon reflection on the opposite boundaries of the plastic zone, the wave281

can, however, ’sense’ the system size and alter its behaviour accordingly. A special char-282

acteristic of a quasi-soliton is that it does not depend on initial conditions but its prop-283

agation velocity is a material constant which does not alter after reflection (Tsyganov284

et al., 2007).285

Fig. (1e) and Fig. (1f) illustrate the behaviour of quasi-soliton travelling waves in286

an excitable system prior to collision or reflection on boundaries with numerical simu-287

lations. Our results show that the frequency content changes after interaction with bound-288

aries. Fig. (1e) shows the frequency spectrum after first collision with the boundary where289

the wave picks up its first information of the system size. Prior to collision with the right290

boundary, the wave is unaffected by the system size, which is an important difference291

to the Turing and Hopf style instability. The speed of the dominant wave group of the292

quasisoliton is a material property and independent of initial conditions (Tsyganov et293

al., 2007). An important aspect is the maximum amplitude at zero frequency, or ’infi-294

nite’ wavelength, which suggests that relativistic considerations need to be introduced295

for high wave speeds which are not expected to be encountered in geological applications.296

We show in Fig (1e) a frequency plot after interaction with the opposite boundary which297

moves the zero frequency maximum to a low frequency maximum.298

The frequency spectrum and the behaviour of these waves are complex. Our nu-299

merical results show that the cross-diffusion waves can behave like solitons, i.e., they can300

penetrate through each other or reflect from boundaries. However, there are a number301

of significant differences (Tsyganov & Biktashev, 2014): (1) their amplitude and speed302

depend entirely on material parameters whereas those of true solitons depend on initial303

conditions, (2) true solitons do not change after interpenetration or reflection from bound-304

aries while quasi-soliton waves change frequency spectrum and amplitudes after inter-305

action, and (3) their peculiar behaviour upon collision/reflection classifies them as quasi-306

solitons encountered in particle physics as they behave like unstable particles (Lioubashevski307

et al., 1996) and in the extreme case can lead to catastrophic instabilities (Eberhard et308

al., 2017) sampling wave energy over multiple length scales to release it in a rogue wave.309

4 Discussion310

Excitation-wave theory has progressed greatly in Russia following the seminal pa-311

per by Kolmogorov et al. (1937) on the FKPP equation. Excitation waves are self-excited312

waves designated as a new fundamental class of waves encountered in all reaction-diffusion313

systems in physics, biology, and chemistry (Vasil’ev, 1979). Although significant progress314

has been made in biology, epidemiology, medicine and other fields, the progress in Earth315

Sciences has been limited to only a few contributions. The closest bridge to geomate-316

rials is in material science and particular metal deformation processes which can be used317

to better understand basic phenomena. Metals provide simpler crystallographic struc-318

tures and less complex compositions than rock-forming minerals. An excellent review319

of the application of self-excitation theory crossing material and geoscience disciplines320

is available (Makarov & Peryshkin, 2017). The review elaborates on the key hypothe-321

sis that slow self-excitation waves propagate at different scales in fault damage zones.322

They are postulated to be a common physical phenomenon in geomaterials. They have,323

however, not yet been detected by geophysical methods as they require new low frequency324

sensors. Empirical comparisons of the excitation wave phenomenon with processes in fault325

zones are described in (Kuz’min, 2012).326

To discuss the geoscientific implications of our newly proposed nonlocal reaction-327

diffusion equation, we map the three fundamental classes of instabilities - Turing-, Hopf-328
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, and excitation waves - in the parametric space ã11−ã22 (Fig. 3). The control param-329

eters ã11 and ã22 represent the first-order coefficients of the solid and fluid pressure re-330

action rates R̃1 and R̃2. Although we need an order 3 expansion for the mechanical re-331

action term to obtain excitation waves, these first-order terms fully control the onset of332

excitation wave instabilities. We find that the appearance of the self-excitation wave cor-333

responds to a narrow domain (highlighted polygon in Fig. 3) where ã11 is negative and334

the magnitude of the coefficient for fluid pressure rate ã22 is small. Interestingly, exci-335

tation waves are even possible for very small negative ã11, corresponding to very small336

values of solid overstress rate (low tectonic loads).337

The fact that in our stability analysis excitation waves are expected for such low338

values in mechanical reaction rates R̃1 coupled with low reaction rate R̃2 (slow produc-339

tion of fluid pressure source from chemical reactions) implies that such excitation waves340

are common features. An example for such low fluid pressure source terms is the dissolution-341

precipitation reaction during diagenesis or metamorphic breakdown which occurs on long342

time scales. These reactions are therefore expected to trigger slow excitation waves which343

may be interpreted geologically as the first step in a long road to failure.344

The modification of an originally homogeneous material into a structured one may,345

under continued geodynamic loading, lead to further amplification of the applied stress,346

resulting in the activation of high-stress micro-deformation processes such as crystal-plastic347

dislocation creep. Zaiser and Hähner (1997) describe a range of processes in this dislo-348

cation regime which can lead to an oscillatory response. These oscillatory phenomena349

encountered in metals and alkali halides have been identified as an excitable wave phe-350

nomenon (Zuev & Barannikova, 2010) based on the particle-like discrete foundation of351

their slip systems.352

Similar to the self-excitation waves, the Turing instability occupies only a narrow353

domain of parameters while the Hopf instability covers the largest section of the mapped354

space (Fig. 3). One would therefore expect Hopf bifurcations to be most common in na-355

ture because they cover the largest parameter space. Hopf waves occur for either a pos-356

itive ã11 or a sufficiently large ã22 in the case of a negative ã11. Hopf and Turing bifur-357

cations have been applied to explain the rhythmic layering observed in many geologi-358

cal/chemical systems as found in experiments where oscillatory reactions occur in solid359

solutions grown from aqueous solutions (L’Heureux, 2013).360

Hopf- and Turing-style instabilities in geomaterials have first been described by Dewers361

and Ortoleva (1990). The authors formulate a mathematical model for interaction be-362

tween chemical and mechanical thermodynamic forces and fluxes that appear in randomly363

varying mixtures of mechanically strong and weak reacting minerals in the presence of364

an applied stress field. Stress concentrations in the stronger phase were described to in-365

crease the chemical potential and lead to transport down chemical potential gradients366

into regions initially depleted in the strong phase. This positive feedback between chem-367

ical and mechanical thermodynamic forces leads to chemo-mechanical oscillations where368

textural variations become amplified. In their introduction, Dewers and Ortoleva (1990)369

describe many observations of metamorphic patterns, resulting from a change in the struc-370

ture of an initially random material into a strongly layered medium.371

In our analysis, we found that Hopf waves do not reflect from boundaries but dump372

their energy into them. This property could become important as a potential mechanism373

for pre-seismic slip on a future major fault. While in this simulation the Hopf waves fo-374

cus cumulative damage on the opposite boundary, in a more realistic geological scenario375

damage accumulation can occur on pre-existing faults or fractures, which can act as in-376

ternal elastic-plastic system boundaries embedded in the large-scale plastic zone. The377

Hopf bifurcation is therefore here interpreted to prepare a given internal structure for378

failure. In this sense, we may speculate that, in terms of geological interpretation, Hopf379
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bifurcations could be a mechanism for generating distributed fault damage zones as de-380

fined in Table 1 in Peacock et al. (2017).381

For the Hopf bifurcation, our simulations show two regimes with an irregular pat-382

tern: a transient regime prior to the wave reaching the opposite boundary with expo-383

nentially decaying frequency-amplitude relationships, and a post-boundary interaction384

regime with a stable orbit (Fig. 2), also with an exponential frequency-magnitude re-385

lationship (Fig. 1c). Similar patterns have been reported in the geological literature (Elphick386

et al., 2021). For the application of the approach to geology, L’Heureux (2013) empha-387

sizes the caveat that it is impossible to differentiate between the dynamic or stable-orbit388

type of solution. The time sequence of the pattern development requires careful microstruc-389

tural and field geological analysis which is beyond the scope of this contribution.390

The quasi-soliton (cross-diffusion) wave solution has the interesting property that391

the velocity of the wave is a material property and not affected by initial conditions. Once392

the wave is triggered by perturbations, it continues and sustains itself (at perpetuity if393

the coefficients do not change) as a self excitation wave. The quasi-soliton (auto)wave394

is argued here to be the most often encountered in nature as chemical fluid-release re-395

actions are often very slow, thus favouring the nucleation of cross-diffusion waves. It may396

be seen to prepare the material for Hopf- or Turing bifurcations or directly lead to catas-397

trophic instabilities.398

The propagating cross-diffusion waves lead to continuous material damage, which399

in turn changes the material parameters over time, accelerating the reaction rates and400

pushing the deforming system out of the stability diagram for quasi-soliton waves. These401

waves are dissipative waves that travel through the material leaving a different struc-402

ture in their wake. They may be seen as the dynamic solution of a continuum damage403

mechanics approach from a thermodynamic perspective. They do not generally form sta-404

ble localisation bands as they have finite group velocity and can be reflected from inter-405

nal boundaries. Cross-diffusion (quasi-soliton) waves have a complex frequency-magnitude406

relationship and have been classified as a new type of wave (Tsyganov et al., 2007). A407

particular feature of cross-diffusion waves is that under special circumstances they can408

lead to extreme events upon collision which are known as rogue waves (Zakharov et al.,409

2004). A possible scenario for the generation of a catastrophic rogue-wave instability gen-410

erating earthquakes is described in Regenauer-Lieb et al. (2021).411

The relationship between the three types of instabilities is thus argued to be of evo-412

lutionary type. A material point should change properties after the propagation of a cross-413

diffusion excitation wave, and the geological structures formed by either Hopf- or Tur-414

ing style instabilities are generating internal material interfaces. Therefore, while we pre-415

dict strictly defined interfaces between the three types of instabilities mathematically,416

in reality evolutionary crossovers between the instability regimes are expected from ex-417

citation waves to Hopf- or Turing instabilities because the material properties evolve dis-418

sipatively. Obviously, natural phenomena are restricted in the parameter range, and it419

is possible that only specific classes of instabilities are encountered due to material co-420

efficients and boundary conditions.421

5 Conclusions422

In this contribution, we derived a multiphysics and multiscale approach to local-423

isation phenomena in geomaterials by considering explicitly the feedbacks between mul-424

tiple reaction-diffusion dynamic regimes regularized by considering nonlocal effect of cross-425

diffusional coupling. This analysis has enriched the classes of stress waves in solids (Kolsky,426

1964) by three well defined domains of instability: (1) a narrow domain of Turing insta-427

bilities, (2) a broader Hopf domain instability and (3) a new domain of cross-diffusion428

waves. Both Turing and Hopf instabilities are here proposed to cause geological local-429
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isation structures of either brittle or ductile nature. We identified diagnostic signatures430

of these waves, which may be used to test their existence in nature. Turing instabilities431

have a characteristic wavelength λ = 2π/kc, Hopf-waves show a characteristic frequency432

f = 1/T =
√
ã11ã22 − ã12ã21/2π, and cross-diffusional quasisolitons have a charac-433

teristic FKPP wave velocity which is a material constant (Tsyganov et al., 2007).434

In this work, we substantiated the hypothesis that slow waves propagating as dis-435

sipative stress/strain perturbations are a common feature in solids as a result of hier-436

archically organised multiscale system dynamics (Makarov & Peryshkin, 2017). Seismo-437

genic instabilities themselves are required to couple across the entire range of length scales,438

from crystal-lattice (chemical) to plate-tectonic scale. This long range multiscale cou-439

pling has been proposed by (Regenauer-Lieb et al., 2021) to be facilitated by cross-diffusion440

waves because of their multiscale frequency spectrum. Future work invites the develop-441

ment of new diagnostic geological and geophysical tools to detect these new types of slow442

stress waves in solids.443

Refer to supplementary material S1.444

Movie S1=Turing Instability, S2=Hopf Bifurcation and S3=Quasi-Soliton445
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Figure 1. Three types of instabilities. Type-I bifurcation (Turing instability): a) propagating

standing wave before reaching the boundary; b) final standing-wave pattern. The dimensionless

group of parameters used: ã11 = 1.5, ã12 = −1.3, ã13 = 1, ã14 = −1, ã21 = 2, ã22 = −1.6, D̃M =

1, D̃H = 3, d̃M = 2, d̃H = −1.5. Type-II (Hopf) bifurcation: c) Hopf waves in frequency domain;

d) travelling Hopf waves in space domain. The dimensionless group of parameters used: ã11 =

0.3, ã12 = −3, ã13 = 0.5, ã14 = −0.5, ã21 = 0.1, ã22 = −0.1, D̃M = 0.1, D̃H = 0.1, d̃M = −1, d̃H = 1.

Type-III bifurcation (Quasi-soliton wave): e) Quasi-soliton waves in frequency domain; f) travel-

ling Quasi-soliton waves before and after reflection in space domain. The dimensionless group of

parameters used: ã11 = −0.05, ã12 = −3, ã13 = 1, ã14 = −1, ã21 = 0.01, ã22 = 0, D̃M = 0.01, D̃H =

0.01, d̃M = −1, d̃H = 1.
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Figure 2. Phase diagram of Hopf bifurcation upon reaching stable orbits (clockwise oscilla-

tion).

Figure 3. Parametric ã11 versus ã22 space of instabilities
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S1. Linear stability analysis

The proposed system of reaction-cross-diffusion equations (equation 9 and 10 in the main text)

describing the porous material behavior post yield are high-order nonlinear partial differential

equations, for which no analytical solutions can be obtained. To conduct the linear stability

analysis, we first consider a set of solutions described by a small perturbation (denoted with *)

around the steady state (p̃s0, p̃f0)=(0, 0):

p̃s(x̃, t̃) = p̃s0(x̃, t̃) + p̃∗s(x̃, t̃), (1)

p̃f (x̃, t̃) = p̃f0(x̃, t̃) + p̃∗f (x̃, t̃), (2)

The perturbation satisfies the following linearized version of the cross-diffusion equations given

by:

∂p̃∗s
∂t̃

= D̃M
∂2p̃∗s
∂x̃2

+ d̃H
∂2p̃∗s
∂x̃2

+ ã11p̃
∗
s + ã12p̃

∗
f (3)
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∂p̃∗f
∂t̃

= d̃M
∂2p̃∗s
∂x̃2

+ D̃H
∂2p̃∗s
∂x̃2

+ ã21p̃
∗
s + ã22p̃

∗
f (4)

where ã11 = ∂R̃1

∂p̃s

∣∣∣
p̃s=p̃s0

, ã12 = ∂R̃1

∂p̃f

∣∣∣
p̃f=p̃f0

, ã21 = ∂R̃2

∂p̃s

∣∣∣
p̃s=p̃s0

, ã22 = ∂R̃2

∂p̃f

∣∣∣
p̃f=p̃f0

are the first order

derivatives of the normalized reaction terms.

By applying a space Fourier transform to the above equations, the perturbation can be ex-

pressed as:

p̃∗s(x̃, t̃) = p̃?s exp(ikx̃ + sk t̃) (5)

p̃∗f (x̃, t̃) = p̃?f exp(ikx̃ + sk t̃) (6)

where k denotes the wavenumber in space while sk is the growth rate of the perturbation. By

substituting Eq. (5) and Eq. (6) into Eq. (3) and Eq. (4), the applied perturbation translates

into:

[
sk + k2D̃M − ã11 k2d̃H − ã12

k2d̃M − ã21 sk + k2D̃H − ã22

] [
p̃?s
p̃?f

]
=

[
0
0

]
(7)

which leads to the following condition:

det

[
sk + k2D̃M − ã11 k2d̃H − ã12

k2d̃M − ã21 sk + k2D̃H − ã22

]
= 0 (8)

From Eq. (8), we derive a characteristic equation of sk:

sk
2 − trksk + ∆k = 0 (9)

where trk = (ã11 + ã22) − k2(D̃M + D̃H) and ∆k = ã11ã22 − ã12ã21 + k4(D̃MD̃H − d̃M d̃H) −

k2(ã11D̃H + ã22D̃M − ã21d̃H − ã12d̃M). Thus, the solution of Eq. (8) is expressed as

sk =
trk ±

√
trk

2 − 4∆k

2
(10)

Based on material stability theory, the system becomes unstable in the Lyapunov sense if there

exists Re(sk) > 0 since the perturbation would increase with time in this case. Moreover, if skc is
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a real number upon the occurrence of an instability (i.e. skc ≥ 0 for the critical wavenumber kc),

the system undergoes a saddle-node bifurcation or the so-called Turing bifurcation, along with

the previous stable nodes in the phase space changing to the unstable saddle. However, if skc is a

pure complex number upon the occurrence of instability, the system undergoes a Hopf bifurcation

as the previous stable focus in the phase space changes to an unstable one. Based on the above

derivation, we present in the main manuscript a detailed discussion of these typical types of

instabilities as well as a newly discovered quasisoliton wave type in relation to reaction-diffusion

waves in the context of poromechanics.
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