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Abstract

Agricultural emissions of ammonia (NH3) impact air quality, human health, and the vitality of aquatic and terrestrial ecosystems.

In the UK, there are few direct policies regulating anthropogenic NH3 emissions and development of sustainable mitigation

measures necessitates reliable emissions estimates. Here we use observations of column densities of NH3 from two space-based

sensors (IASI and CrIS) with the GEOS-Chem model to derive top-down NH3 emissions for the UK at fine spatial (˜10 km)

and time (monthly) scales. We focus on March-September when there is adequate spectral signal to reliably retrieve NH3.

We estimate total emissions of 272 Gg from IASI and 389 Gg from CrIS. Bottom-up emissions are 27% less than IASI and

49% less than CrIS. There are also differences in seasonality. Top-down and bottom-up emissions agree on a spring April peak

due to fertilizer and manure application, but there is also a comparable summer July peak in the top-down emissions that is

not in the bottom-up emissions and appears to be associated with dairy cattle farming. We estimate relative errors in the

top-down emissions of 11-36% for IASI and 9-27% for CrIS, dominated by column density retrieval errors. The bottom-up

versus top-down emissions discrepancies estimated in this work impact model predictions of the environmental damage caused

by NH3 emissions and warrant further investigation.
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Key Points:

• Satellite observations of NH3 from 2 sensors (IASI, CrIS) are used to estimate UK NH3 emissions in
Mar-Sep at fine scales (10 km, monthly)

• Satellite-derived NH3 emissions total 272 Gg from IASI and 389 Gg from CrIS and exhibit a spring
(April) and summer (July) peak

• Bottom-up emissions used for research and policy are 27-49% less than the satellite-derived estimates
and miss the summer emissions peak

Abstract

Agricultural emissions of ammonia (NH3) impact air quality, human health, and the vitality of aquatic
and terrestrial ecosystems. In the UK, there are few direct policies regulating anthropogenic NH3 emissions
and development of sustainable mitigation measures necessitates reliable emissions estimates. Here we use
observations of column densities of NH3 from two space-based sensors (IASI and CrIS) with the GEOS-Chem
model to derive top-down NH3 emissions for the UK at fine spatial (˜10 km) and time (monthly) scales.
We focus on March-September when there is adequate spectral signal to reliably retrieve NH3. We estimate
total emissions of 272 Gg from IASI and 389 Gg from CrIS. Bottom-up emissions are 27% less than IASI
and 49% less than CrIS. There are also differences in seasonality. Top-down and bottom-up emissions agree
on a spring April peak due to fertilizer and manure application, but there is also a comparable summer July
peak in the top-down emissions that is not in the bottom-up emissions and appears to be associated with
dairy cattle farming. We estimate relative errors in the top-down emissions of 11-36% for IASI and 9-27% for
CrIS, dominated by column density retrieval errors. The bottom-up versus top-down emissions discrepancies
estimated in this work impact model predictions of the environmental damage caused by NH3 emissions and
warrant further investigation.

Plain Language Summary

Emissions of ammonia, mostly from agriculture, are often a dominant contributor to fine particles in coun-
tries with well-established policies that have led to large reductions in other precursors of such pollutants
detrimental to our health. Here we use a model and observations of ammonia from two space-based sensors
to estimate emissions in the UK where there are no direct policies regulating agricultural sources of am-
monia. The satellite-derived emissions, limited to March-September when conditions are ideal for viewing
ammonia from space, total 272 kilotonnes from an instrument that passes overhead in the morning and 389
kilotonnes from an instrument with a midday overpass. Though the emissions estimates differ for the two
instruments, both exhibit a spring (April) peak due to fertilizer and manure use and summer (July) peak
likely associated with dairy cattle farming. The summer peak is missing in bottom-up emissions and total
March-September emissions from these inventories are also 27-49% less than those derived with satellites.
Further research is needed to address these discrepancies, as such inventories are widely used for developing
policies and assessing environmental damage caused by ammonia.

1 Introduction

Agricultural practices such as synthetic fertilizer and manure use and livestock farming release large quantities
of ammonia (NH3) to the atmosphere. Once emitted, NH3 partitions to acidic aerosols to form ammonium
that contributes to mass concentrations of fine particles (PM2.5) hazardous to health (Cohen et al., 2017;
Dockery et al., 1993; Vohra et al., 2021b). NH3 and ammonium also deposit to the Earth’s surface and
drastically alter the natural nitrogen balance of terrestrial and aquatic ecosystems (Galloway, 1998; Johnson
& Carpenter, 2010; Vitousek et al., 1997).
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In the UK, agriculture is the dominant (>80%) source of NH3 emissions (Ricardo, 2018b), mostly from
nitrogen fertilizer use, manure management, and farming of dairy and beef cattle (DEFRA, 2019). Modelling
studies suggest that the largest and most extensive decline in PM2.5 in the UK would be achieved by targeting
NH3 sources (Vieno et al., 2016), but only large pig and poultry farms are required to adopt best practices
and technologies that reduce NH3 emissions (DEFRA, 2019). There are additional policy options under
consideration, such as limiting the use of solid urea fertilizer, a large source of NH3 in the UK (DEFRA,
2020a). The UK is a signatory of the United Nations Economic Commission for Europe (UNECE) Gothenburg
protocol, lesgislated through the UK National Emission Ceilings Regulations adopted in 2018 (UK, 2018).
This commits the UK to an anthropogenic NH3 emission ceiling of 297 Gg, informed by annual emissions
estimates from the UK National Atmospheric Emissions Inventory (NAEI). The UK is also required as part
of the protocol to reduce NH3 emissions by 8% in 2020 and beyond relative to emissions in 2005 (UNECE,
2019). The estimated decline in NH3 emissions from 1980 to 2017 is 0.2% a-1 due to a steep decline in
vehicular emissions of NH3 in 1998-2007 and a recent increase in agricultural emissions since 2013 mostly
due to increased use of urea-based fertilizers (Ricardo, 2020). Any future policies targeting NH3 emissions
would also need to consider increases in emissions as the atmosphere warms (Sutton et al., 2013).

Estimates of the contribution of NH3 emissions to PM2.5 and mobilization of nitrogen in aquatic and ter-
restrial ecosystems, assessment of attainment of emissions ceilings commitments and targets, and decisions
on effective mitigation measures demand accurate estimates of NH3 emissions. The NAEI of annual total
and mapped UK NH3 emissions is published each year. These are obtained at high spatial resolution (1 km)
with a model that uses climatological environmental factors and incorporates detailed information about
farming activities that contribute to NH3 emissions. The ability to validate the inventory is challenging,
as there are no long-term measurements of NH3 fluxes. There is a network of very reliable measurements
of rural 24-hour mean surface concentrations of NH3 that cover the full latitudinal extent of the UK from
Cornwall in the south to Shetland in the north (Tang et al., 2018), but there are large monitoring gaps in-
between. Individual sites are also unlikely to be representative of inventory grid cells for an emission source
with large spatial variability. Satellite observations of NH3 retrieved from infrared spectral measurements
offer complete coverage of the UK and routine daily measurements in the absence of clouds and under good
retrieval conditions. Satellites observe NH3 molecules throughout the atmospheric column, but the majority
are within the planetary boundary layer and most of the variability in the column is typically due to NH3

at or near the surface (Clarisse et al., 2010; Nowak et al., 2010; Schiferl et al., 2016; Vohra et al., 2021a).

Retrieval of NH3 from space-based instruments was first described by Beer et al. (2008) for the Tropospheric
Emission Spectrometer (TES) instrument. Satellite NH3 retrieval products have since undergone substantial
retrieval development (Clarisse et al., 2009; Shephard et al., 2011; 2020; Shephard & Cady-Pereira, 2015;
Van Damme et al., 2014a; 2017; 2021; Whitburn et al., 2016a), intercomparisons (Dammers et al., 2019),
and validation against ground-based observations of total atmospheric column densities and surface concen-
trations of NH3 (Dammers et al., 2016; 2017; Van Damme et al., 2015a; Vohra et al., 2021a). These products
have also seen extensive use in characterizing NH3 emissions. This includes detecting global and regional
NH3 emission hotspots (Cady-Pereira et al., 2017; Clarisse et al., 2019; Dammers et al., 2019; Shephard et
al., 2020; Van Damme et al., 2018), constraining NH3 emissions from biomass burning (Adams et al., 2019;
Whitburn et al., 2016b), evaluating regional emission inventories (Chen et al., 2021; Fortems-Cheiney et
al., 2020), identifying underestimated or missing NH3 sources in widely used global and regional emission
inventories and models (Heald et al., 2012; Hickman et al., 2018; Van Damme et al., 2014b), and determining
long-term local and regional trends and variability in NH3 (Hickman et al., 2020; Van Damme et al., 2015b;
2021; Vohra et al., 2021a).

Here we use satellite observations of NH3 and the GEOS-Chem chemical transport model (CTM) to derive
top-down NH3 emissions for the UK and evaluate the NAEI inventory and current understanding of seaso-
nality in emissions as represented in GEOS-Chem. This includes the use of surface observations from the UK
monitoring network to evaluate the model driven with the NAEI to corroborate findings from the satellite
observations.
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2 Space-based observations of column densities of NH3

Satellite observations of NH3 retrieved in the infrared portion of the light spectrum rely on the spectral
signal that depends on the atmospheric state, such as abundance and vertical distribution of NH3 and
thermal contrast between the surface of the Earth and the overlying atmosphere (Clarisse et al., 2010;
Shephard et al., 2011). Two prominent products are available from contemporary space-based instruments
that pass overhead in the morning (the Infrared Atmospheric Sounding Interferometer or IASI) and midday
(the Cross-track Infrared Sounder or CrIS). These products use distinct retrieval approaches, offering two
independent datasets to assess the potential to use satellite observations to constrain the magnitude and
seasonality of UK NH3 emissions.

2.1 Infrared Atmospheric Sounding Interferometer NH3

The IASI instrument onboard the Metop-A satellite was launched into low-Earth polar sun synchronous
orbit in October 2006. The instrument has two overpass times in the morning (09h30 local solar time or
LST) and at night (21h30 LST), providing global coverage twice a day. The elliptical IASI pixels range in
ground pixel resolution from 12 km × 12 km at nadir (directly below the instrument) to about 20 km ×
39 km at the edges of the 2200-km-wide swath (Clarisse et al., 2011). The data product we use is the Level
2 cloud-free reanalysis product of total column NH3 (version 3R-ERA5) (Van Damme et al., 2021). The
retrieval uses machine learning, specifically a neural network trained relationship between column NH3 and
a so-called hyperspectral range index or HRI, where the HRI is a measure of the relative enhancement in the
spectral signature due to NH3 (Van Damme et al., 2014a; 2017; Whitburn et al., 2016a). The data product
includes reported retrieval errors estimated by perturbing individual input parameters in the neural network
framework (Whitburn et al., 2016a). Products resulting from the neural network retrieval approach have been
validated against global and regional networks of ground-based NH3 observations of surface concentrations
and column densities (Dammers et al., 2016; Guo et al., 2021; Vohra et al., 2021a; Whitburn et al., 2016a).
In general, IASI NH3 reproduces the temporal variability in surface concentrations of NH3, but exhibits a
low bias (Dammers et al., 2017; Whitburn et al., 2016a).

We use daytime (09h30 LST) IASI NH3 for 2008-2018 to obtain multiyear monthly means. This dampens
influence of interannual variability and ensures consistency with NAEI NH3emissions that are estimated
with 30-year mean meteorology (Ricardo, 2019a). We grid the data to finer spatial resolution (0.1° × 0.1°; ˜
10 km) than the native resolution of the instrument using the tessellation oversampling technique described
in Zhu et al. (2017) and Sun et al. (2018). This takes advantage of the spatial variability in coverage of
individual orbits and the long data record from IASI to reduce noise and smooth out spatial gradients in the
gridded product (Sun et al., 2018). Briefly, tessellation involves weighting individual IASI pixels by the area
of overlap with the target grid and also includes error-weighting using the reported retrieval error. In our
application of the tessellation gridding technique, we approximate the area of IASI pixels as a quadrilateral
polygon, where the corners of each polygon are estimated as the distance midway between the centres of
neighbouring IASI pixels.

Retrieval of NH3 over the UK is challenging, due to persistent clouds and relatively cool conditions. Extreme
retrievals, identified as absolute columns > 5 × 1017molecules cm-2, are removed. We also exclude IASI
NH3 columns retrieved on 26-27 July 2018, coincident with the summer 2018 heat wave (McCarthy et al.,
2019). Record high temperatures (> 30°C) lead to UK IASI NH3column densities 4-times greater (˜4 × 1016

molecules cm-2) than the UK July multiyear mean (˜1 × 1016molecules cm-2). Including these days increases
the July multiyear mean by 11% and reduces its representativeness as a climatological mean for comparison
to the NAEI. A similarly large influence of heat waves on IASI NH3 columns was reported for the summer
2010 heat wave over mainland Europe (Van Damme et al., 2014b). After using oversampling to grid the data
to 0.1° × 0.1°, gridded multiyear means with large relative error (>50%) are removed. This leads to loss
of the majority of IASI NH3 columns in October-February, so only March-September multiyear means are
considered. Additional filtering is applied to the gridded multiyear monthly means to remove extreme values
identified as columns < -1 × 1016 molecules cm-2 and > 1 × 1017molecules cm-2. These only account for
<0.1% of the March-September data, but affect spatial consistency between IASI and CrIS.
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Figure 1. Monthly multiyear (2008-2018) mean IASI NH3. Data are gridded to 0.1° × 0.1° using oversamp-
ling (see text for details). Grey grids, limited to Scotland, have < 10 observations.

Figure 1 shows the gridded March-September multiyear monthly mean IASI NH3 columns. The number
of observations in each grid ranges from 11 to 128. Values over Scotland are very low (typically < 2 ×
1015 molecules cm-2) due to weak signal, lower agricultural activity than the rest of the UK, and greater
distance from sources in mainland Europe. The range in IASI NH3 over the rest of the country of 4-8 × 1015

molecules cm-2 is much less than the NH3 hotspots in other parts of the world. Columns over global hotspots
such as North China, West Africa, the Po Valley (Italy), and the Indo-Gangetic Plain (India) exceed 2 ×
1016 molecules cm-2 (Cady-Pereira et al., 2017; Dammers et al., 2019; Van Damme et al., 2014b; 2018).
These are associated with industrial and agricultural activity in India and China, and intense seasonal open
burning of biomass and relatively low abundance of acidic aerosols in West Africa and northern India. Warm
temperatures in these regions also increase NH3emissions, suppress partitioning of NH3 to aerosols, and
enhance the spectral signal.

2.2 Cross-track Infrared Sounder NH3

The first CrIS sensor launched into low-Earth polar sun synchronous orbit in October 2011 is onboard the
NOAA Suomi-NPP satellite. Like IASI, CrIS observes the Earth twice daily, though in the early afternoon
(13h30 LST) and after midnight (01h30 LST) (Goldberg et al., 2013). It has the same swath width as IASI
and similar ground pixel resolution (14 km circular pixels at nadir). The fast physical retrieval (CFPR)
approach used to retrieve NH3 columns is described in detail in Shephard & Cady-Pereira (2015) and
Shephard et al. (2020). Briefly, it is based on conventional optimal estimation that involves minimizing the
difference between observed and calculated outgoing spectral radiances with a priori vertical profiles of NH3

(Rodgers, 2000). CFPR uses three prior NH3 profiles representing polluted, moderately polluted, and remote
conditions (Shephard et al., 2020) that are selected based on the ammonia spectral signal. This is different to
standard optimal estimation that uses prior information that is independent of the observations and imposes
spatial and temporal information. The CFPR retrieval generates averaging kernels that quantify the vertical
sensitivity of the retrieval. These typically peak between 900 and 750 hPa (˜1-2.5 km altitude) (Dammers
et al., 2017; Shephard & Cady-Pereira, 2015).

We use the Level 2 CrIS NH3 CFPR version 1.6 product for 2013-2018. The predecessor product (version
1.5) exhibited a positive bias for NH3 < 1 × 1016molecules cm-2, as values were only retrieved over scenes
exceeding the instrument detection limit of ˜2 × 1015 molecules cm-2 (Dammers et al., 2017; Shephard &
Cady-Pereira, 2015). This approach filtered out cloud-free scenes below the instrument detection limit and
indirectly removed cloudy scenes when the NH3 signal below clouds could not be detected. In version 1.6

5
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clouds are explicitly identified with information from the space-based Visible Infrared Imaging Radiometer
Suite (VIIRS) (White et al., 2021). We use daytime cloud-free CrIS observations with quality flag [?] 4
(Shephard et al., 2020) and thermal contrast > 0 K, where thermal contrast is the difference between the
reported temperatures at the surface and the lowest atmospheric layer. We identify and correct for a positive
trend in the CrIS baseline that appears to be erroneous, as it is not apparent in the IASI data. We do this
by estimating a statistically significant (p-value = 0.03) increase in monthly mean background NH3columns
over Scotland (Figure S1) of 2.21 x 1013molecules cm-2 per month (amounting to 1.6 x 1015 molecules cm-2

over the whole record) and subtract this from individual CrIS NH3column retrievals. We grid the corrected
data to 0.1deg x 0.1deg using the same tessellation code used for IASI, but without error weighting. The
individual total column errors include measurement and representative errors and cover a much narrower
range (5-55% (Shephard et al., 2020)) than those for IASI (5% to >100%). As a result, higher relative
weighting would be applied to low column densities, leading to anomalously low gridded values in the CrIS
multiyear means. For consistency with IASI, and because of weak spectral signal in autumn and winter, we
only consider CrIS retrievals in March to September.

Figure 2 shows the gridded March-September CrIS NH3multiyear monthly mean columns. As with IASI, we
filter for extreme values in the multiyear means (column densities < -1 x 1016 molecules cm-2 and > 1 x 1017

molecules cm-2), removing <0.1% of the gridded data. Observations during the July 2018 heatwave only
increase the July multiyear mean by 1.6%, but for consistency with IASI these days are also removed. The
number of CrIS retrievals in each grid ranges from 11 to 96. The CrIS multiyear means are roughly double
those for IASI (Figure 1; Figure S2), in part because CrIS passes overhead at midday when higher ambient
temperatures lead to greater volatilization of NH3. Differences in vertical sensitivity and distinct retrieval
approaches likely also contribute. Difference are particularly large in September when background NH3 is
5.3 x 1015 molecules cm-2 more in CrIS than IASI, obtained as the intercept from regressing CrIS against
IASI. The spatial correlation between CrIS and IASI multiyear means isR < 0.5 in most months (March,
June-September),R = 0.53 in May, and R = 0.55 in April. If extreme values in the gridded products are
retained, the spatial correlation degrades to R = 0.42 in April and R = 0.29 in May.

Figure 2. Monthly multiyear (2013-2018) mean CrIS NH3. Data are gridded to 0.1° × 0.1° with oversampling
(see text for details). Grey grids, limited to Scotland, have < 10 observations.

3 The GEOS-Chem chemical transport model

We use the GEOS-Chem CTM version 12.1.0 (https://doi.org/10.5281/zenodo.1553349) to derive UK NH3

emissions from IASI and CrIS. The model is driven with NASA GEOS-FP assimilated meteorology from the

6
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Global Modeling and Assimilation Office (GMAO). Model simulations are conducted on a horizontal grid at
0.25° × 0.3125° (˜25 km latitude × ˜31 km longitude) nested over western Europe (32.75-61.25°N, 15°W-
40°E). The model extends over 47 vertical layers from the Earth’s surface to 0.01 hPa. Dynamic (3-hourly)
boundary conditions are from a global GEOS-Chem simulation at 4° × 5°.

Anthropogenic emissions over the UK, including from agriculture, are updated in GEOS-Chem to include
gridded emissions from the NAEI for 2016 (Ricardo, 2018a). These are annual totals on a 1 km × 1 km grid
available at https://naei.beis.gov.uk/data/map-uk-das (last accessed August 2019). The agricultural NH3

emissions incorporated in the NAEI are calculated at coarser resolution (5 km) than the NAEI with the
nitrogen balance models of Webb & Misselbrook (2004) for livestock sources and Misselbrook et al. (2006)
for fertilizer sources. These models are driven with 30-year mean meteorology for 1981-2010, so the NH3

emissions represent a climatological mean (Ricardo, 2019a). Other anthropogenic NH3 emissions in the NAEI
are typically calculated as the product of emission and activity factors representative of the year of interest
and mapped to the 1 km NAEI emissions grid (Ricardo, 2018b). Mainlaind Europe anthropogenic emissions
for 2016 are updated with the gridded (0.1° × 0.1°) product provided by the European Monitoring and
Evaluation Programme (EMEP) (http://www.ceip.at/new emep-grid/01 grid data; last accessed September
2019. Now at https://www.ceip.at/the-emep-grid/gridded-emissions).

Temporal variability of annual NAEI and EMEP NH3emissions is represented in GEOS-Chem with gridded
monthly scaling factors and spatially uniform diurnal scaling factors. Monthly scaling factors are from the
Generation of European Emission Data for Episodes (GENEMIS) project detailed in Friedrich (2000). These
lead to peak NH3 emissions in April. Hourly scaling factors are from Zhu et al. (2015) calculated using
information about the dependence of NH3 on aerodynamic resistance, surface temperature and Henry’s law.
As a result of these, 30% of NH3 is emitted at midday (noon-2pm LST) coincident with the CrIS overpass
and 20% in the morning (9am-noon LST) coincident with the IASI overpass. Natural NH3 sources are
from inventories already in GEOS-Chem. These include natural emissions from soils and the ocean from
the Global Emissions InitiAtive (GEIA) inventory (Bouwman et al., 1997) and inland and coastal seabird
emissions from the Riddick et al. (2012) inventory. We halve the GEIA inventory emissions, as in Paulot et
al. (2014), informed by a 50% overestimate identified by Simpson et al. (1999).

NH3 is a semi-volatile acid buffer that neutralizes acidic sulfate and nitrate aerosols, so its abundance depends
on the abundance of these acidic aerosols. Sulfate forms from oxidation of SO2 and nitrates from aerosol
uptake of nitric acid formed from oxidation of NOx. The version of the NAEI we use includes outdated
mapping of the location of ships and no vertical or temporal information for aircraft emissions. To address
these issues, we separate ship and aircraft emissions from other sources in the lumped “Other Transport
and Mobile Machinery” category of the NAEI emissions inventory and replace ship emissions with updated
estimates that use geospatial information from the automatic identification system (Ricardo, 2017). We
convert the NAEI aircraft emissions to monthly estimates and distribute these vertically up to 1 km (the
altitude limit of the NAEI emissions) by deriving vertical and temporal scaling factors from the global
Aviation Emissions Inventory version 2.0 (AEIv2) used in GEOS-Chem (Stettler et al., 2011). Above 1
km, the AEIv2 emissions are used. The existing temporal scaling factors in GEOS-Chem that are applied
to NAEI SO2 and NOx emissions lead to peak emissions in winter, due to an increase in energy demand.
SO2 is emitted in the model as 95% SO2and 5% sulfate, using sulfate-to-SO2 emission ratios for Europe
reported by Chin et al. (2000). NAEI emissions are gridded to a uniform 0.1° × 0.1° grid for input to the
Harmonized Emissions Component (HEMCO) processing package version 2.1.010 (Keller et al., 2014) that
maps all emissions to the model grid and applies relevant scaling factors.

The model includes detailed coupled gas- and aerosol-phase chemistry. Sulfate aerosols are formed in the
model from oxidation of SO2 in the gas phase by OH and in the aqueous phase in clouds by ozone and
hydrogen peroxide (Park et al., 2004). Partitioning of NH3 between the gas and acidic aerosol phase is
determined dynamically with the thermodynamic equilibrium model ISORROPIA-II (Fountoukis & Nenes,
2007). Wet and dry deposition, terminal sinks of NH3, are represented with a standard resistances-in-series
scheme for dry deposition (Wesely, 1989) and, for wet deposition, includes scavenging in and below clouds

7
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(Amos et al., 2012).

We use network site measurements of trace gases and aerosols to evaluate model accuracy at reproducing
surface concentrations of NH3, SO2, and sulfate. These include 2 rural sites (Auchencorth Moss in Scotland,
Chilbolton Observatory in southern England) that form part of the EMEP network and the mostly rural UK
Eutrophying and Acidifying Atmospheric Pollutants (UKEAP) network. The 2 EMEP sites include hourly
measurements from Monitor for AeRosols and Gases in Air (MARGA) instruments (Stieger et al., 2017;
ten Brink et al., 2007; Twigg et al., 2015; Walker et al., 2019). The UKEAP network includes monthly
measurements from low-cost denuder filter sampling packs (Tang et al., 2018). In 2016, there were 30 sites
for SO2 and sulfate and 51 for NH3. The MARGA data are from the EMEP Chemical Coordinating Centre
EBAS database (http://ebas.nilu.no/; last accessed February 2020) (Tørseth et al., 2012) and the UKEAP
data are from the UK-AIR data archive (https://uk-air.defra.gov.uk/data/data-availability; last accessed
November 2020).

To ensure consistency between the model and observations, the model is sampled from the lowest to the top
model layer during the satellite overpass times of 08-11 LST for use with IASI and 12-15 LST for use with
CrIS, and as monthly 24-hour means in the lowest model layer for comparison to the surface observations.
The model is sampled in March-September 2016 following a 2-month spin-up for chemical initialization.

4 UK bottom-up emissions of NH3

Figure 3 shows the spatial distribution of annual UK NH3emissions for 2016 from the NAEI. Table 1 gives
the breakdown by sector. Annual emissions for 2016 total 298 Gg, mostly (84%) from agriculture. Natural
emissions of 21.6 Gg (7% of the total) are consistent with annual total natural emissions in GEOS-Chem
of 21.8 Gg. According to GEOS-Chem, these include soils, vegetation and the ocean (together 18.7 Gg)
and seabirds (3.10 Gg). NAEI anthropogenic NH3emissions total 276 Gg, 21 Gg less than the UNECE
Gothenburg protocol emissions ceiling of 297 Gg (UNECE, 2019). The NAEI version we implement in
GEOS-Chem and evaluate against top-down estimates was released in 2018. Two NAEI versions have been
released since. Reported differences in NH3 emissions across these versions for consistent years is minor, just
1-3% (Ricardo, 2019b; 2020).

The spatial patterns in Figure 3 coincide with farming activities that dominate NH3 emissions according
to the modelling study by Hellsten et al. (2008). They used the same Webb & Misselbrook (2004) nitrogen
balance model as the NAEI to identify regionally dominant farming activities. The agricultural sources that
dominate NH3 emissions include sheep farming along the Welsh border where emissions are low, and large
sources like pig and poultry farming and fertilizer use in east England and dairy and beef cattle farming in
west England and Northern Ireland. Hellsten et al. (2008) used agricultural activity data for 2000. Detailed
geospatial farming activity data is confidential and publicly available data are limited to decadal maps of
farming activities in England for 2000 and 2010 and annual regional and national statistics. The decadal
maps suggest that locations of intensive crop and livestock farming in England are relatively unchanged
(DEFRA, 2016b; a). The regional statistics document large changes in the number of livestock and the
amount of nitrogen fertilizer used from 2000 to 2016 that would affect trends in emissions. In general,
livestock numbers in the UK have declined by 20% for sheep, 11% for dairy and beef cattle, and 25% for pigs
(DEFRA, 2020b). Poultry, specifically table chickens, have increased by 10% in the UK, with the largest
increase of 42% in Northern Ireland (DEFRA, 2020b). Nitrogen-based fertilizer usage, a dominant NH3

source in east England (Hellsten et al., 2008), declined by 19% in the UK, though the relative proportion of
urea-based fertilizer has increased (Ricardo, 2020). Regional changes in nitrogen-based fertilizers range from
a 3% increase in Scotland to a 37% decrease in Northern Ireland (AIC, 2020).
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Figure 3. Annual UK NH3 emissions for 2016. Data are in tonnes per year per 0.1° × 0.1° grid from
the NAEI. Inset value is the UK annual total. Boxes demarcate regions with broadly similar NH3 source
types: Northern Ireland (N. Ireland), Northern England and a portion of southern Scotland (N. England),
southwest UK (SW UK), and southeast UK (SE UK).

Table 1. UK sector emissions of NH3 according to the NAEI a

Sources NH3 [Gg a-1]

Agriculture 248.9
Natural b 21.6
Waste 14.2
Point sources 4.4
Road transport 4.4
Other c 4.2
Total 297.7
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a Spatial distribution of UK NAEI NH3emissions are in Figure 3. b Contributors to natural emissions,
according to GEOS-Chem, are soils, vegetation and the ocean (together 18.7 Gg) and seabirds (3.1 Gg). c

Other is industrial and domestic combustion (2.9 Gg) and solvent use (1.3 Gg).

Inversion of column densities of NH3 to estimate top-down surface emissions can be complicated by depen-
dence of NH3 abundance on acidic sulfate aerosols formed from oxidation of SO2 and acidic nitrate formed
from uptake of nitric acid from NOx sources. UK SO2emissions are dominated by large industrial and
energy sector point sources, ships, domestic and industrial combustion, and traffic (Ricardo, 2018b). UK
NOx emissions are dominated by transport, energy generation and manufacturing (Ricardo, 2018b). We
find particularly large discprepancies between monthly mean March-September 2016 observed (EMEP and
UKEAP) SO2 concentrations and those from the model driven with the NAEI (Figure S3). The model
normalized mean bias (NMB) is >600% for modelled SO2 > 2 μg m-3 at sites influenced by point sources
in Yorkshire and 205% for modelled SO2 < 2 μg m-3. Modelled sulfate is also greater than the observations
(NMB of 17%) (Figure S3). This would enhance partitioning of NH3 to acidic aerosols to form ammonium,
leading to a positive bias in the relative amount of NHx (NH3 + ammonium) present as ammonium.

Positive model biases in both SO2 and sulfate (Figure S3) suggest an overestimate in NAEI SO2 emissions
that have implications for UK compliance with commitments to emissions ceilings and reductions. There
are many factors other than emissions that could contribute to model biases. These include, but are not
limited to, misrepresentation of the height at which SO2is emitted from tall stacks, a reported positive bias
in mainland Europe SO2 emissions (Luo et al., 2020), and uncertainties in dry (Fowler et al., 2001; 2007) and
wet (Luo et al., 2019) deposition. We conducted sensitivity simulations to assess the contribution of these
uncertainties to modelled SO2 and sulfate. Details of these simulations and the effect on SO2 and sulfate
concentrations are in the accompanying Supplementary. The factor we find to have the largest influence
relative to the model bias is wet deposition. The more efficient wet deposition scheme of Luo et al. (2019)
leads to an 11% decrease in sulfate concentrations.

Errors in NAEI SO2 emissions could be due to uncertainties in emissions from domestic and industrial
biomass combustion. The third of six generating units at the 3.9 GW generating capacity Drax power
station in Yorkshire transitioned from burning coal to biomass in 2016 (Simet, 2017). SO2 emissions from
biomass combustion depend on fuel sulfur content and combustion efficiency. Reported emission factors range
widely from 1 to 110 mg SO2 MJ-1 (Boersma et al., 2008; Paulrud et al., 2006; EMEP, 2019) and so offer
limited constraints. To reduce the influence of a possible bias in SO2 emissions on GEOS-Chem simulation
of abundance of sulfate and NH3, we decrease land-based gridded (0.1° × 0.1°) NAEI SO2emissions by a
factor of 3 for grids dominated by point sources (identified as grids with SO2 emissions > 10 g m-2 a-1) and
by a factor of 1.3 for all other land-based grids. This reduces the original NAEI SO2 emissions over land
by 49% from 164 Gg to 84.1 Gg. With shipping, the updated annual NAEI SO2 emissions for the domain
shown in Figure 3 total 94.5 Gg. The March-September modelled sulfate NMB changes from +17% (Figure
S3) to -8.8%. We use the scaled SO2 emissions in all subsequent simulations.

5 Top-down NH3 emissions and comparison to bottom-up estimates

We calculate gridded satellite-derived 24-hour monthly mean top-down NH3 emissions (E sat) as follows:

Esat=Ωsat×
(

E

Ω

)
model

(1) ,

where Ωsat is satellite observations of NH3 multiyear monthly mean columns from IASI (Figure 1) or CrIS
(Figure 2), and (E /Ω)model is the GEOS-Chem ratio of 24-hour monthly mean NH3 emissions (E ) to
3-hour monthly mean columns (Ω) during the satellite overpass. Model ratios ((E /Ω)model) are interpolated
to 0.1° × 0.1°. Regression of midday vs morning values of Ωmodel result in slopes that exceed unity (1.6-
2.2), indicative of midday enhancements in NH3 due to warmer temperatures and greater NH3 emissions.
Intercepts are small and slightly negative (-0.1 to -0.7 × 1015molecules cm-2). Regression of CrIS vs IASI Ωsat
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yield a similar range in slopes (1.3-2.2) to the model, but large positive intercepts (0.2-5.4 × 1015molecules
cm-2). This suggests that larger Ωsat for CrIS than IASI is not just due to differences in midday and morning
environmental conditions.

The mass-balance approach that we use in Eq. (1) to infer emissions can be susceptible to spatial misattri-
bution of emissions due to displacement of NH3 from the source. The global mean lifetime of NH3 is ˜15 h
(Hauglustaine et al., 2014), ranging from ˜2 h near large sources (Dammers et al., 2019) to ˜36 h far from
emission sources (Van Damme et al., 2018). The displacement length, the horizontal distance for the target
compound to decay to ˜63% of the original concentration of the emission source, provides a measure of the
spatial smearing or localization error of the satellite-derived emissions (Marais et al., 2012; Palmer et al.,
2003). We estimate a smearing length for satellite-derived NH3 emissions over the UK of 10-12 km for calm
conditions (wind speeds of 5-6 km h-1) typical of the UK in summer (Figure A1f.3 of BEIS (2016)) and a
short NH3 lifetime typical of large sources (2 h). At slightly windier conditions (7 km h-1) and over regions
with lower emissions and a longer NH3 lifetime (15 h), the displacement length increases to 105 km.

Figure 4. IASI-derived NH3 emissions for March-September. Maps are 24-hour total emissions at 0.1° ×
0.1°. Inset values are monthly emissions that sum to 271.5 Gg.
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Figure 5. CrIS-derived NH3 emissions for March-September. Maps are 24-hour total emissions at 0.1° ×
0.1°. Inset values are monthly emissions that sum to 389.4 Gg.

Maps of the resultant top-down monthly NH3 emissions are shown in Figure 4 for IASI and Figure 5 for CrIS.
Qualitatively, both estimates exhibit spatial patterns similar to the NAEI (Figure 3). This includes relatively
low emissions along the Welsh border, and peak emissions in Northern Ireland, the northern portion of the
English side of the Welsh border, and in Norfolk in the east. Emissions for retained grid squares total 271.5
Gg for IASI, whereas these are 43% more from CrIS (389.4 Gg). CrIS monthly emissions are 20-38% more
than IASI for March-July. This is similar in magnitude to the 25-50% low bias in IASI columns, though for an
earlier IASI product (Dammers et al., 2017; Whitburn et al., 2016a). The percentage difference increases to
57% for August and >100% for September. The large difference in September is due to 5.4 × 1015 molecules
cm-2 greater background NH3 in CrIS, even after correcting for the baseline trend (Section 2.2, Figure S1).
CrIS emissions excluding September are 33% more than IASI. Differences in sampling periods (2008-2018 for
IASI, 2013-2018 for CrIS) only has a small effect on satellite-derived emissions, but leads to data gaps over
Scotland and Northern England. IASI-derived emissions obtained for 2013-2018 are only 6% more (288.3
Gg) than those in Figure 4.

For comparison of monthly top-down and bottom-up emissions, we estimate monthly bottom-up emissions
as the product of the annual NAEI emissions in Figure 3 and GEOS-Chem seasonality. The latter we obtain
as ratios of GEOS-Chem monthly to annual 24-hour NH3 emissions interpolated onto the 0.1° × 0.1° grid.
Figure 6 shows the resultant monthly bottom-up NH3 emissions for April and July. The other months are in
the supplementary (Figure S4). The bottom-up emissions peak in April (˜14% of the annual total) coincident
with fertilizer application (Hellsten et al., 2007; Paulot et al., 2014). The gridded difference between top-
down and bottom-up emissions are also shown in Figure 6 for April and July and in Figure S4 for the other
months. Locations where bottom-up emissions exceed those from the top-down approach (red grids) mostly
occur where emissions are low. The largest difference is in July when top-down emissions are 30 Gg more
(IASI) and 46 Gg more (CrIS) than the bottom-up emissions. Pronounced regional differences include lower
bottom-up values in eastern England, particularly in April, where fertilizer use and pigs and poultry farming
are dominant sources, as well as in western England and Northern Ireland, particularly in July, where dairy
cattle farming dominates (Hellsten et al., 2008). The spatial correlation between top-down and bottom-up
gridded emissions in general ranges from R= 0.5 to R = 0.7, except for IASI in September (R = 0.34) when
dynamic range in emissions is low.

The bottom-up emissions for March-September total 198.7 Gg. This is 27% less than IASI and 49% less
than CrIS. It is unlikely that the relatively low bottom-up emissions is due to the time period (1981-2020) of
the 30-year meteorology used to determine agricultural NH3 emissions for the NAEI. We find that 2-metre
temperature from the NASA long-term consistent relanalysis product, Modern-Era Retrospective analysis
for Research and Applications Version 2 (MERRA-2), is similar for 1981-2010 (282.750 K) and 1991-2020
(282.957 K). Bottom-up emissions in March-September are 67% of the annual total, similar to ˜60% for the
monthly bottom-up NH3 emissions estimated by Hellsten et al. (2007). If we use this relative contribution
(60-67%) to scale IASI and CrIS to annual totals, this suggests annual NH3 emissions of 405-453 Gg according
to IASI and 581-664 Gg according to CrIS. Subtracting the UK annual natural NH3 emissions of ˜22 Gg
(Section 3) yields top-down annual anthropogenic NH3 emissions of 383-431 Gg according to IASI and 559-
642 Gg according to CrIS. Both top-down estimates exceed annual total anthropogenic emissions from the
NAEI of 276 Gg (Section 3) and the Gothenburg protocol emissions ceiling of 297 Gg.
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Figure 6. Comparison of bottom-up and top-down NH3 emissions for April and July. Panels are bottom-up
emissions (left), and the difference between top-down and bottom-up emissions for IASI (middle) and CrIS
(right) in April (top row) and July (bottom row). Grids are blue for bottom-up < top-down and red for
bottom-up > top-down. Values inset are bottom-up total (left) and differences in (middle and right) monthly
emissions and the Pearson’s spatial correlation (R ) between top-down and bottom-up emissions.

Figure 7 compares regional seasonality in UK NH3emissions from bottom-up and top-down estimates as the
percent change in emissions in each month relative to those in June. Regional seasonality in the top-down
emissions is very similar in March-August in all regions except Northern Ireland. The mismatch between IASI
and CrIS in September is due to the at least 2-times greater CrIS than IASI columns in that month (Section
2). The July peak in emissions in Northern Ireland is more pronounced in IASI than CrIS. This is also
apparent in the seasonality in the column densities (Figure S5). Northern Ireland has experienced dramatic
changes in agricultural activity that includes increases in livetock numbers of 45% for pigs and 42% for table
chickens and a decline in nitrogen fertilizer of 37% from 2000 to 2016 (DEFRA, 2020b). We find though that
the that top-down emissions estimates are relatively insensitive to differences in temporal coverage of the two
sensors (2008-2018 for IASI, 2013-2018 for CrIS). All emission estimates exhibit a spring peak in April due
to intensive fertilizer and manure application in March-April (Hellsten et al., 2007). Paulot et al. (2014) also
identified this April peak in NH3 emissions inferred from ammonium wet deposition measurements, though
a recent study questions the utility of these measurements for constraining NH3 emissions (Tan et al., 2020).
A second summer peak in the top-down emissions in July that is not present in the bottom-up emissions
could be due to the timing of manure spreading, dairy farming practices, or enhanced volatilization and
suppressed dry deposition due to warm summer temperatures (Hellsten et al., 2007; Sutton et al., 1994).
Spatial consistency between the July top-down emissions (Figures 4 and 5) and locations dominated by
emissions from dairy cattle (Hellsten et al., 2008) suggests a it is due to dairy farming, but this requires
further investigation.
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Figure 7. Regional seasonality in March-September NH3 emissions. Points are the percentage change in
emissions in each month relative to those in June for top-down emissions from IASI (black) and CrIS (blue),
and from the bottom-up emissions (red). Regions sampled are in Figure 3. Inset values are March-September
totals for each region from each estimate.

In Figure 8, we compare March-September 2016 mean modelled and observed surface concentrations of NH3

to determine if the model driven with NAEI NH3 emissions and prior assumptions of NH3 seasonality and
diurnal variability corroborates the results obtained with the satellite observations. Monthly means from
model grids coincident with the surface sites are reasonably spatially consistent with the surface observations
(R = 0.54) and the model is 38.3% less than the observations. This is midway between the NAEI comparison
to the top-down emissions of 27% less than IASI and 49% less than CrIS. There are also low-cost passive
sampler measurements of NH3 concentrations at 39 rural sites, but these have relatively low precision, are
not as extensively distributed as the observations in Figure 8, and are only reliable (within ±10% of reference
measurements) at NH3 [?] 2 μg m-3 (Martin et al., 2019; Sutton et al., 2001). Even so, the model is similarly
biased low (by 41.5%) compared to these measurements (not shown).
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Figure 8. Comparison of observed and modelled surface concentrations of NH3. Data are EMEP and
UKEAP site measurements (points) and the model (background) for March-September 2016. Inset values
are the Pearson’s spatio-temporal correlation coefficient (R ) and the model NMB for coincident monthly
means.

6 Error analysis of the top-down emissions

The reported relative error for NAEI NH3 emissions is 31% (Ricardo, 2018b). Quantifiable random errors
that contribute to total March-September satellite-derived emissions include uncertainties in retrieval of
NH3, and in the modelled relationship between NH3 emissions and column densities (Eq. (1)). For the
latter we test sensitivity to modelled sulfate aerosol and nitric acid abundances and prior assumptions of
the spatial and temporal variability of NH3 emissions. IASI NH3retrieval errors for columns [?] 2 × 1015

molecules cm-2 range from 0.7-34%. Retrieval errors larger than 34% do occur, but are in locations with very
low emissions. The CrIS NH3 column errors across all grids range from 0.2-25%. Errors due to uncertainties
in the magnitude and variability in SO2 and NOx emissions that affect abundance of sulfate and nitrate
aerosols and hence the abundance and vertical distribution of NH3 are small compared to column density
retrieval errors. We estimate the error contribution of these as the change in top-down emissions due to a
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perturbation in SO2 emissions for sulfate and NOxemissions for nitric acid. The percent change in top-down
emissions from a 50% decrease in SO2 emissions is 4-5%. A 50% increase in NOx emissions increases nitric
acid by 14%, aerosol nitrate by 11%, and satellite-derived NH3emissions by 8-9%. The limited sensitivity to
sulfate and nitrate in the UK is because NH3 is in excess due to the success of emission controls targeting
SO2 and NOxsources and absence of these for NH3 sources. This would not occur in regions and times with
large unregulated SO2 and NOx sources. We find that (E /Ω)model used to convert satellite observations
of column densities to emissions (Eq. (1)) is relatively insensitive to pertubations in NH3 emissions, so is
relatively unaffected by errors in the spatial and temporal variability of NH3 emissions in GEOS-Chem. A
50% increase in NH3 emissions only causes a small (3-4%) decrease in satellite-derived NH3 emissions. The
total relative error from adding these individual errors in quadrature is 11-36% for IASI and 9-27% for CrIS
and is dominated by errors in retrieval of the columns. Total emissions for March-September are 198.7 ±
61.6 Gg for the bottom-up emissions and up to 271.5 ± 97.7 Gg for IASI and 389.4 ± 105.1 Gg for CrIS.

There are also known systematic biases in the satellite observations. Some studies reported that IASI NH3

column densities are biased low by 25-50% compared to ground-based measurements (Dammers et al., 2017;
Whitburn et al., 2016a). However, these comparisons were for earlier versions of the IASI NH3 product. The
version used here is consistent with columns derived with aircraft observations (Guo et al., 2021), though
Guo et al. (2021) caution that their comparison is limited in time (summer) and location (Colorado, US) and
sensitive to errors in column estimates from integrating aircraft measurements. There are no observations of
the vertical distribution of NH3 over the UK. The CrIS column amounts display a gradual increase with time
(Figure S1) that we correct for in this work, though further work is required to determine the cause. Biases
in the satellite-derived emissions due to differences in overpass times of the two instruments is mitigated by
sampling modelled columns (Ωmodel in Eq. (1)) during the satellite overpass.

Both satellite products preferentially sample clear-sky conditions. The bias that this imparts on the top-down
emissions estimates is challenging to quantify. The modelled emissions and columns used to derive top-down
emissions ((E /Ω)model in Eq. (1)) are sampled under all-sky conditions, though there would likely be
compensating effects of sampling clear-sky conditions on (E /Ω)model. Warmer temperatures and absence of
clouds increase Ω by suppressing the amount of NH3 that partitions to the aqueous phase (Stelson & Seinfeld,
1982; Walters et al., 2018), but E l also increases in response to warmer temperatures (Sutton et al., 2013).
Preferentially sampling clear-sky conditions likely has the largest impact on Ωsat. We find that the effect is
greatest in July when boundary-layer clear-sky air temperatures, according to GEOS-Chem, are warmer than
all-sky scenes by 5.6ºC during the morning overpass and 5.3ºC during the afternoon overpass. According to
Sutton et al. (2013), 5°C warmer temperatures increase NH3 emissions by 42%. Clear-sky temperatures are
only 1.6-1.7 ºC warmer in the preceding month (June), so the greater clear-sky temperature in July may in
part account for the discrepancies between observed and modelled NH3emissions in that month (Figure 6)
and the steep increase in July columns and emissions relative to June (Figures 7 and S5). A challenge though
of using GEOS-Chem to diagnose sensitivity of air temperature to cloud cover is that the model is inferior
to the satellite observations at resolving clouds, due to its coarser spatial resolution (25-31 km), and only
3-12% of daily overpass model data are retained in each month after filtering for cloudy scenes (GEOS-FP
cloud fractions > 0.1). NH3 emissions in GEOS-Chem also do not include changes in farming practices in
response to shifts in meteorology.

7 Conclusions

Emissions of ammonia (NH3) in the UK are mostly (>80%) from agriculture and are challenging to estima-
te with bottom-up approaches and validate exclusively with current ground-based networks. Here we used
satellite observations of NH3 in March-September for multiple years from the Infrared Atmospheric Soun-
ding Interferometer (IASI) (2008-2018) and the Cross-track Infrared Sounder (CrIS) (2013-2018) with the
GEOS-Chem chemical transport model to derive top-down monthly emissions across the UK at high spatial
resolution (˜10 km).

Total top-down March-September emissions are 272 Gg from IASI and 389 Gg from CrIS. Bottom-up emissi-
ons estimated with the UK National Atmospheric Emission Inventory (NAEI) annual emissions and GEOS-
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Chem monthly scaling factors are 27% less than IASI-derived emissions and 49% less than CrIS-derived
emissions. This is supported by a 38-42% underestimate in surface NH3 concentrations from GEOS-Chem
driven with the NAEI. We infer UK top-down annual anthropogenic NH3 emissions of 383-431 Gg from
IASI and 559-642 Gg from CrIS compared to 276 Gg from the NAEI. Seasonality in the top-down emissions
confirms the well-known spring April peak from fertilizer and manure use, but there is also a summer July
peak coincident with intensive dairy farming that is absent in the bottom-up emissions.

The relative error in the top-down emissions, mostly due to NH3 column retrieval errors, is 11-36% for
IASI and 9-27% for CrIS and is similar to the error reported for the NAEI (31%). The top-down emissions
estimates are relatively insensitive to model uncertainties in SO2, NOx and NH3 emissions, as NH3 is in
excess and the relationship between modelled NH3 columns and emissions is near-linear.

Our study demonstrates the tremendous potential to use satellite observations to derive NH3 emissions and
assess bottom-up emissions under particularly challenging observing conditions (cloudy, cool) in the UK.
This is critical for assessing reliability of inventories used to inform policies and mitigation strategies. The
discrepancy between bottom-up and top-down emissions identified here warrants further investigation of
both approaches.
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Key Points: 18 

• Satellite observations of NH3 from 2 sensors (IASI, CrIS) are used to estimate UK NH3 19 

emissions in Mar-Sep at fine scales (10 km, monthly) 20 

• Satellite-derived NH3 emissions total 272 Gg from IASI and 389 Gg from CrIS and 21 

exhibit a spring (April) and summer (July) peak 22 

• Bottom-up emissions used for research and policy are 27-49% less than the satellite-23 

derived estimates and miss the summer emissions peak  24 
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Abstract 25 

Agricultural emissions of ammonia (NH3) impact air quality, human health, and the vitality of 26 

aquatic and terrestrial ecosystems. In the UK, there are few direct policies regulating 27 

anthropogenic NH3 emissions and development of sustainable mitigation measures necessitates 28 

reliable emissions estimates. Here we use observations of column densities of NH3 from two space-29 

based sensors (IASI and CrIS) with the GEOS-Chem model to derive top-down NH3 emissions for 30 

the UK at fine spatial (~10 km) and time (monthly) scales. We focus on March-September when 31 

there is adequate spectral signal to reliably retrieve NH3. We estimate total emissions of 272 Gg 32 

from IASI and 389 Gg from CrIS. Bottom-up emissions are 27% less than IASI and 49% less than 33 

CrIS. There are also differences in seasonality. Top-down and bottom-up emissions agree on a 34 

spring April peak due to fertilizer and manure application, but there is also a comparable summer 35 

July peak in the top-down emissions that is not in the bottom-up emissions and appears to be 36 

associated with dairy cattle farming. We estimate relative errors in the top-down emissions of 11-37 

36% for IASI and 9-27% for CrIS, dominated by column density retrieval errors. The bottom-up 38 

versus top-down emissions discrepancies estimated in this work impact model predictions of the 39 

environmental damage caused by NH3 emissions and warrant further investigation. 40 

Plain Language Summary 41 

Emissions of ammonia, mostly from agriculture, are often a dominant contributor to fine particles 42 

in countries with well-established policies that have led to large reductions in other precursors of 43 

such pollutants detrimental to our health. Here we use a model and observations of ammonia from 44 

two space-based sensors to estimate emissions in the UK where there are no direct policies 45 

regulating agricultural sources of ammonia. The satellite-derived emissions, limited to March-46 

September when conditions are ideal for viewing ammonia from space, total 272 kilotonnes from 47 

an instrument that passes overhead in the morning and 389 kilotonnes from an instrument with a 48 

midday overpass. Though the emissions estimates differ for the two instruments, both exhibit a 49 

spring (April) peak due to fertilizer and manure use and summer (July) peak likely associated with 50 

dairy cattle farming. The summer peak is missing in bottom-up emissions and total March-51 

September emissions from these inventories are also 27-49% less than those derived with satellites. 52 

Further research is needed to address these discrepancies, as such inventories are widely used for 53 

developing policies and assessing environmental damage caused by ammonia.  54 

1 Introduction 55 

Agricultural practices such as synthetic fertilizer and manure use and livestock farming 56 

release large quantities of ammonia (NH3) to the atmosphere. Once emitted, NH3 partitions to 57 

acidic aerosols to form ammonium that contributes to mass concentrations of fine particles (PM2.5) 58 

hazardous to health (Cohen et al., 2017; Dockery et al., 1993; Vohra et al., 2021b). NH3 and 59 

ammonium also deposit to the Earth’s surface and drastically alter the natural nitrogen balance of 60 

terrestrial and aquatic ecosystems (Galloway, 1998; Johnson & Carpenter, 2010; Vitousek et al., 61 

1997). 62 

In the UK, agriculture is the dominant (>80%) source of NH3 emissions (Ricardo, 2018b), 63 

mostly from nitrogen fertilizer use, manure management, and farming of dairy and beef cattle 64 

(DEFRA, 2019). Modelling studies suggest that the largest and most extensive decline in PM2.5 in 65 

the UK would be achieved by targeting NH3 sources (Vieno et al., 2016), but only large pig and 66 

poultry farms are required to adopt best practices and technologies that reduce NH3 emissions 67 
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(DEFRA, 2019). There are additional policy options under consideration, such as limiting the use 68 

of solid urea fertilizer, a large source of NH3 in the UK (DEFRA, 2020a). The UK is a signatory 69 

of the United Nations Economic Commission for Europe (UNECE) Gothenburg protocol, 70 

lesgislated through the UK National Emission Ceilings Regulations adopted in 2018 (UK, 2018). 71 

This commits the UK to an anthropogenic NH3 emission ceiling of 297 Gg, informed by annual 72 

emissions estimates from the UK National Atmospheric Emissions Inventory (NAEI). The UK is 73 

also required as part of the protocol to reduce NH3 emissions by 8% in 2020 and beyond relative 74 

to emissions in 2005 (UNECE, 2019). The estimated decline in NH3 emissions from 1980 to 2017 75 

is 0.2% a-1 due to a steep decline in vehicular emissions of NH3 in 1998-2007 and a recent increase 76 

in agricultural emissions since 2013 mostly due to increased use of urea-based fertilizers (Ricardo, 77 

2020). Any future policies targeting NH3 emissions would also need to consider increases in 78 

emissions as the atmosphere warms (Sutton et al., 2013).  79 

Estimates of the contribution of NH3 emissions to PM2.5 and mobilization of nitrogen in 80 

aquatic and terrestrial ecosystems, assessment of attainment of emissions ceilings commitments 81 

and targets, and decisions on effective mitigation measures demand accurate estimates of NH3 82 

emissions. The NAEI of annual total and mapped UK NH3 emissions is published each year. These 83 

are obtained at high spatial resolution (1 km) with a model that uses climatological environmental 84 

factors and incorporates detailed information about farming activities that contribute to NH3 85 

emissions. The ability to validate the inventory is challenging, as there are no long-term 86 

measurements of NH3 fluxes. There is a network of very reliable measurements of rural 24-hour 87 

mean surface concentrations of NH3 that cover the full latitudinal extent of the UK from Cornwall 88 

in the south to Shetland in the north (Tang et al., 2018), but there are large monitoring gaps in-89 

between. Individual sites are also unlikely to be representative of inventory grid cells for an 90 

emission source with large spatial variability. Satellite observations of NH3 retrieved from infrared 91 

spectral measurements offer complete coverage of the UK and routine daily measurements in the 92 

absence of clouds and under good retrieval conditions. Satellites observe NH3 molecules 93 

throughout the atmospheric column, but the majority are within the planetary boundary layer and 94 

most of the variability in the column is typically due to NH3 at or near the surface (Clarisse et al., 95 

2010; Nowak et al., 2010; Schiferl et al., 2016; Vohra et al., 2021a). 96 

Retrieval of NH3 from space-based instruments was first described by Beer et al. (2008) 97 

for the Tropospheric Emission Spectrometer (TES) instrument. Satellite NH3 retrieval products 98 

have since undergone substantial retrieval development (Clarisse et al., 2009; Shephard et al., 99 

2011; 2020; Shephard & Cady-Pereira, 2015; Van Damme et al., 2014a; 2017; 2021; Whitburn et 100 

al., 2016a), intercomparisons (Dammers et al., 2019), and validation against ground-based 101 

observations of total atmospheric column densities and surface concentrations of NH3 (Dammers 102 

et al., 2016; 2017; Van Damme et al., 2015a; Vohra et al., 2021a). These products have also seen 103 

extensive use in characterizing NH3 emissions. This includes detecting global and regional NH3 104 

emission hotspots (Cady-Pereira et al., 2017; Clarisse et al., 2019; Dammers et al., 2019; Shephard 105 

et al., 2020; Van Damme et al., 2018), constraining NH3 emissions from biomass burning (Adams 106 

et al., 2019; Whitburn et al., 2016b), evaluating regional emission inventories (Chen et al., 2021; 107 

Fortems-Cheiney et al., 2020), identifying underestimated or missing NH3 sources in widely used 108 

global and regional emission inventories and models (Heald et al., 2012; Hickman et al., 2018; 109 

Van Damme et al., 2014b), and determining long-term local and regional trends and variability in 110 

NH3 (Hickman et al., 2020; Van Damme et al., 2015b; 2021; Vohra et al., 2021a). 111 
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Here we use satellite observations of NH3 and the GEOS-Chem chemical transport model 112 

(CTM) to derive top-down NH3 emissions for the UK and evaluate the NAEI inventory and current 113 

understanding of seasonality in emissions as represented in GEOS-Chem. This includes the use of 114 

surface observations from the UK monitoring network to evaluate the model driven with the NAEI 115 

to corroborate findings from the satellite observations. 116 

2 Space-based observations of column densities of NH3 117 

Satellite observations of NH3 retrieved in the infrared portion of the light spectrum rely on 118 

the spectral signal that depends on the atmospheric state, such as abundance and vertical 119 

distribution of NH3 and thermal contrast between the surface of the Earth and the overlying 120 

atmosphere (Clarisse et al., 2010; Shephard et al., 2011). Two prominent products are available 121 

from contemporary space-based instruments that pass overhead in the morning (the Infrared 122 

Atmospheric Sounding Interferometer or IASI) and midday (the Cross-track Infrared Sounder or 123 

CrIS). These products use distinct retrieval approaches, offering two independent datasets to assess 124 

the potential to use satellite observations to constrain the magnitude and seasonality of UK NH3 125 

emissions. 126 

2.1 Infrared Atmospheric Sounding Interferometer NH3 127 

The IASI instrument onboard the Metop-A satellite was launched into low-Earth polar sun 128 

synchronous orbit in October 2006. The instrument has two overpass times in the morning (09h30 129 

local solar time or LST) and at night (21h30 LST), providing global coverage twice a day. The 130 

elliptical IASI pixels range in ground pixel resolution from 12 km  12 km at nadir (directly below 131 

the instrument) to about 20 km  39 km at the edges of the 2200-km-wide swath (Clarisse et al., 132 

2011). The data product we use is the Level 2 cloud-free reanalysis product of total column NH3 133 

(version 3R-ERA5) (Van Damme et al., 2021). The retrieval uses machine learning, specifically a 134 

neural network trained relationship between column NH3 and a so-called hyperspectral range index 135 

or HRI, where the HRI is a measure of the relative enhancement in the spectral signature due to 136 

NH3 (Van Damme et al., 2014a; 2017; Whitburn et al., 2016a). The data product includes reported 137 

retrieval errors estimated by perturbing individual input parameters in the neural network 138 

framework (Whitburn et al., 2016a). Products resulting from the neural network retrieval approach  139 

have been validated against global and regional networks of ground-based NH3 observations of 140 

surface concentrations and column densities (Dammers et al., 2016; Guo et al., 2021; Vohra et al., 141 

2021a; Whitburn et al., 2016a). In general, IASI NH3 reproduces the temporal variability in surface 142 

concentrations of NH3, but exhibits a low bias (Dammers et al., 2017; Whitburn et al., 2016a). 143 

We use daytime (09h30 LST) IASI NH3 for 2008-2018 to obtain multiyear monthly means. 144 

This dampens influence of interannual variability and ensures consistency with NAEI NH3 145 

emissions that are estimated with 30-year mean meteorology (Ricardo, 2019a). We grid the data 146 

to finer spatial resolution (0.1  0.1; ~ 10 km) than the native resolution of the instrument using 147 

the tessellation oversampling technique described in Zhu et al. (2017) and Sun et al. (2018). This 148 

takes advantage of the spatial variability in coverage of individual orbits and the long data record 149 

from IASI to reduce noise and smooth out spatial gradients in the gridded product (Sun et al., 150 

2018). Briefly, tessellation involves weighting individual IASI pixels by the area of overlap with 151 

the target grid and also includes error-weighting using the reported retrieval error. In our 152 

application of the tessellation gridding technique, we approximate the area of IASI pixels as a 153 
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quadrilateral polygon, where the corners of each polygon are estimated as the distance midway 154 

between the centres of neighbouring IASI pixels. 155 

Retrieval of NH3 over the UK is challenging, due to persistent clouds and relatively cool 156 

conditions. Extreme retrievals, identified as absolute columns > 5  1017 molecules cm-2, are 157 

removed. We also exclude IASI NH3 columns retrieved on 26-27 July 2018, coincident with the 158 

summer 2018 heat wave (McCarthy et al., 2019). Record high temperatures (> 30C) lead to UK 159 

IASI NH3 column densities 4-times greater (~4  1016 molecules cm-2) than the UK July multiyear 160 

mean (~1  1016 molecules cm-2). Including these days increases the July multiyear mean by 11% 161 

and reduces its representativeness as a climatological mean for comparison to the NAEI. A 162 

similarly large influence of heat waves on IASI NH3 columns was reported for the summer 2010 163 

heat wave over mainland Europe (Van Damme et al., 2014b). After using oversampling to grid the 164 

data to 0.1  0.1, gridded multiyear means with large relative error (>50%) are removed. This 165 

leads to loss of the majority of IASI NH3 columns in October-February, so only March-September 166 

multiyear means are considered. Additional filtering is applied to the gridded multiyear monthly 167 

means to remove extreme values identified as columns < -1  1016 molecules cm-2 and > 1  1017 168 

molecules cm-2. These only account for <0.1% of the March-September data, but affect spatial 169 

consistency between IASI and CrIS.  170 

 171 

 172 

Figure 1. Monthly multiyear (2008-2018) mean IASI NH3. Data are gridded to 0.1°  0.1° using 173 

oversampling (see text for details). Grey grids, limited to  Scotland, have < 10 observations. 174 

Figure 1 shows the gridded March-September multiyear monthly mean IASI NH3 columns. 175 

The number of observations in each grid ranges from 11 to 128. Values over Scotland are very low 176 
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(typically < 2  1015 molecules cm-2) due to weak signal, lower agricultural activity than the rest 177 

of the UK, and greater distance from sources in mainland Europe. The range in IASI NH3 over the 178 

rest of the country of 4-8  1015 molecules cm-2 is much less than the NH3 hotspots in other parts 179 

of the world. Columns over global hotspots such as North China, West Africa, the Po Valley 180 

(Italy), and the Indo-Gangetic Plain (India) exceed 2  1016 molecules cm-2 (Cady-Pereira et al., 181 

2017; Dammers et al., 2019; Van Damme et al., 2014b; 2018). These are associated with industrial 182 

and agricultural activity in India and China, and intense seasonal open burning of biomass and 183 

relatively low abundance of acidic aerosols in West Africa and northern India. Warm temperatures 184 

in these regions also increase NH3 emissions, suppress partitioning of NH3 to aerosols, and 185 

enhance the spectral signal. 186 

2.2 Cross-track Infrared Sounder NH3 187 

The first CrIS sensor launched into low-Earth polar sun synchronous orbit in October 2011 188 

is onboard the NOAA Suomi-NPP satellite. Like IASI, CrIS observes the Earth twice daily, though 189 

in the early afternoon (13h30 LST) and after midnight (01h30 LST) (Goldberg et al., 2013). It has 190 

the same swath width as IASI and similar ground pixel resolution (14 km circular pixels at nadir). 191 

The fast physical retrieval (CFPR) approach used to retrieve NH3 columns is described in detail in 192 

Shephard & Cady-Pereira (2015) and Shephard et al. (2020). Briefly, it is based on conventional 193 

optimal estimation that involves minimizing the difference between observed and calculated 194 

outgoing spectral radiances with a priori vertical profiles of NH3 (Rodgers, 2000). CFPR uses three 195 

prior NH3 profiles representing polluted, moderately polluted, and remote conditions (Shephard et 196 

al., 2020) that are selected based on the ammonia spectral signal. This is different to standard 197 

optimal estimation that uses prior information that is independent of the observations and imposes 198 

spatial and temporal information. The CFPR retrieval generates averaging kernels that quantify 199 

the vertical sensitivity of the retrieval. These typically peak between 900 and 750 hPa (~1-2.5 km 200 

altitude) (Dammers et al., 2017; Shephard & Cady-Pereira, 2015). 201 

We use the Level 2 CrIS NH3 CFPR version 1.6 product for 2013-2018. The predecessor 202 

product (version 1.5) exhibited a positive bias for NH3 < 1  1016 molecules cm-2, as values were 203 

only retrieved over scenes exceeding the instrument detection limit of ~2  1015 molecules cm-2 204 

(Dammers et al., 2017; Shephard & Cady-Pereira, 2015). This approach filtered out cloud-free 205 

scenes below the instrument detection limit and indirectly removed cloudy scenes when the NH3 206 

signal below clouds could not be detected. In version 1.6 clouds are explicitly identified with 207 

information from the space-based Visible Infrared Imaging Radiometer Suite (VIIRS) (White et 208 

al., 2021). We use daytime cloud-free CrIS observations with quality flag  4 (Shephard et al., 209 

2020) and thermal contrast > 0 K, where thermal contrast is the difference between the reported 210 

temperatures at the surface and the lowest atmospheric layer. We identify and correct for a positive 211 

trend in the CrIS baseline that appears to be erroneous, as it is not apparent in the IASI data. We 212 

do this by estimating a statistically significant (p-value = 0.03) increase in monthly mean 213 

background NH3 columns over Scotland (Figure S1) of 2.21  1013 molecules cm-2 per month 214 

(amounting to 1.6  1015 molecules cm-2 over the whole record) and subtract this from individual 215 

CrIS NH3 column retrievals. We grid the corrected data to 0.1  0.1 using the same tessellation 216 

code used for IASI, but without error weighting. The individual total column errors include 217 

measurement and representative errors and cover a much narrower range (5-55% (Shephard et al., 218 

2020)) than those for IASI (5% to >100%). As a result, higher relative weighting would be applied 219 
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to low column densities, leading to anomalously low gridded values in the CrIS multiyear means. 220 

For consistency with IASI, and because of weak spectral signal in autumn and winter, we only 221 

consider CrIS retrievals in March to September. 222 

Figure 2 shows the gridded March-September CrIS NH3 multiyear monthly mean columns. 223 

As with IASI, we filter for extreme values in the multiyear means (column densities < -1  1016 224 

molecules cm-2 and > 1  1017 molecules cm-2), removing <0.1% of the gridded data. Observations 225 

during the July 2018 heatwave only increase the July multiyear mean by 1.6%, but for consistency 226 

with IASI these days are also removed. The number of CrIS retrievals in each grid ranges from 11 227 

to 96. The CrIS multiyear means are roughly double those for IASI (Figure 1; Figure S2), in part 228 

because CrIS passes overhead at midday when higher ambient temperatures lead to greater 229 

volatilization of NH3. Differences in vertical sensitivity and distinct retrieval approaches likely 230 

also contribute. Difference are particularly large in September when background NH3 is 5.3  1015 231 

molecules cm-2 more in CrIS than IASI, obtained as the intercept from regressing CrIS against 232 

IASI. The spatial correlation between CrIS and IASI multiyear means is R < 0.5 in most months 233 

(March, June-September), R = 0.53 in May, and R = 0.55 in April. If extreme values in the gridded 234 

products are retained, the spatial correlation degrades to R = 0.42 in April and R = 0.29 in May. 235 

 236 

 237 
 238 

Figure 2. Monthly multiyear (2013-2018) mean CrIS NH3. Data are gridded to 0.1°  0.1° with 239 

oversampling (see text for details). Grey grids, limited to Scotland, have < 10 observations. 240 
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3 The GEOS-Chem chemical transport model 241 

 We use the GEOS-Chem CTM version 12.1.0 (https://doi.org/10.5281/zenodo.1553349) 242 

to derive UK NH3 emissions from IASI and CrIS. The model is driven with NASA GEOS-FP 243 

assimilated meteorology from the Global Modeling and Assimilation Office (GMAO). Model 244 

simulations are conducted on a horizontal grid at 0.25  0.3125 (~25 km latitude  ~31 km 245 

longitude) nested over western Europe (32.75-61.25N, 15W-40E). The model extends over 47 246 

vertical layers from the Earth’s surface to 0.01 hPa. Dynamic (3-hourly) boundary conditions are 247 

from a global GEOS-Chem simulation at 4  5.  248 

Anthropogenic emissions over the UK, including from agriculture, are updated in GEOS-249 

Chem to include gridded emissions from the NAEI for 2016 (Ricardo, 2018a). These are annual 250 

totals on a 1 km  1 km grid available at https://naei.beis.gov.uk/data/map-uk-das (last accessed 251 

August 2019). The agricultural NH3 emissions incorporated in the NAEI are calculated at coarser 252 

resolution (5 km) than the NAEI with the nitrogen balance models of Webb & Misselbrook (2004) 253 

for livestock sources and Misselbrook et al. (2006) for fertilizer sources. These models are driven 254 

with 30-year mean meteorology for 1981-2010, so the NH3 emissions represent a climatological 255 

mean (Ricardo, 2019a). Other anthropogenic NH3 emissions in the NAEI are typically calculated 256 

as the product of emission and activity factors representative of the year of interest and mapped to 257 

the 1 km NAEI emissions grid (Ricardo, 2018b). Mainlaind Europe anthropogenic emissions for 258 

2016 are updated with the gridded (0.1  0.1) product provided by the European Monitoring and 259 

Evaluation Programme (EMEP) (http://www.ceip.at/new_emep-grid/01_grid_data; last accessed 260 

September 2019. Now at https://www.ceip.at/the-emep-grid/gridded-emissions). 261 

Temporal variability of annual NAEI and EMEP NH3 emissions is represented in GEOS-262 

Chem with gridded monthly scaling factors and spatially uniform diurnal scaling factors.  Monthly 263 

scaling factors are from the Generation of European Emission Data for Episodes (GENEMIS) 264 

project detailed in Friedrich (2000). These lead to peak NH3 emissions in April. Hourly scaling 265 

factors are from Zhu et al. (2015) calculated using information about the dependence of NH3 on 266 

aerodynamic resistance, surface temperature and Henry’s law. As a result of these, 30% of NH3 is 267 

emitted at midday (noon-2pm LST) coincident with the CrIS overpass and 20% in the morning 268 

(9am-noon LST) coincident with the IASI overpass. Natural NH3 sources are from inventories 269 

already in GEOS-Chem. These include natural emissions from soils and the ocean from the Global 270 

Emissions InitiAtive (GEIA) inventory (Bouwman et al., 1997) and inland and coastal seabird 271 

emissions from the Riddick et al. (2012) inventory. We halve the GEIA inventory emissions, as in 272 

Paulot et al. (2014), informed by a 50% overestimate identified by Simpson et al. (1999). 273 

NH3 is a semi-volatile acid buffer that neutralizes acidic sulfate and nitrate aerosols, so its 274 

abundance depends on the abundance of these acidic aerosols. Sulfate forms from oxidation of 275 

SO2 and nitrates from aerosol uptake of nitric acid formed from oxidation of NOx. The version of 276 

the NAEI we use includes outdated mapping of the location of ships and no vertical or temporal 277 

information for aircraft emissions. To address these issues, we separate ship and aircraft emissions 278 

from other sources in the lumped “Other Transport and Mobile Machinery” category of the NAEI 279 

emissions inventory and replace ship emissions with updated estimates that use geospatial 280 

information from the automatic identification system (Ricardo, 2017). We convert the NAEI 281 

aircraft emissions to monthly estimates and distribute these vertically up to 1 km (the altitude limit 282 

of the NAEI emissions) by deriving vertical and temporal scaling factors from the global Aviation 283 

https://doi.org/10.5281/zenodo.1553349
https://naei.beis.gov.uk/data/map-uk-das
http://www.ceip.at/new_emep-grid/01_grid_data
https://www.ceip.at/the-emep-grid/gridded-emissions
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Emissions Inventory version 2.0 (AEIv2) used in GEOS-Chem (Stettler et al., 2011). Above 1 km, 284 

the AEIv2 emissions are used. The existing temporal scaling factors in GEOS-Chem that are 285 

applied to NAEI SO2 and NOx emissions lead to peak emissions in winter, due to an increase in 286 

energy demand. SO2 is emitted in the model as 95% SO2 and 5% sulfate, using sulfate-to-SO2 287 

emission ratios for Europe reported by Chin et al. (2000). NAEI emissions are gridded to a uniform 288 

0.1  0.1 grid for input to the Harmonized Emissions Component (HEMCO) processing package 289 

version 2.1.010 (Keller et al., 2014) that maps all emissions to the model grid and applies relevant 290 

scaling factors. 291 

The model includes detailed coupled gas- and aerosol-phase chemistry. Sulfate aerosols 292 

are formed in the model from oxidation of SO2 in the gas phase by OH and in the aqueous phase 293 

in clouds by ozone and hydrogen peroxide (Park et al., 2004). Partitioning of NH3 between the gas 294 

and acidic aerosol phase is determined dynamically with the thermodynamic equilibrium model 295 

ISORROPIA-II (Fountoukis & Nenes, 2007). Wet and dry deposition, terminal sinks of NH3, are 296 

represented with a standard resistances-in-series scheme for dry deposition (Wesely, 1989) and, 297 

for wet deposition, includes scavenging in and below clouds (Amos et al., 2012).  298 

We use network site measurements of trace gases and aerosols to evaluate model accuracy 299 

at reproducing surface concentrations of NH3, SO2, and sulfate. These include 2 rural sites 300 

(Auchencorth Moss in Scotland, Chilbolton Observatory in southern England) that form part of 301 

the EMEP network and the mostly rural UK Eutrophying and Acidifying Atmospheric Pollutants 302 

(UKEAP) network. The 2 EMEP sites include hourly measurements from Monitor for AeRosols 303 

and Gases in Air (MARGA) instruments (Stieger et al., 2017; ten Brink et al., 2007; Twigg et al., 304 

2015; Walker et al., 2019). The UKEAP network includes monthly measurements from low-cost 305 

denuder filter sampling packs (Tang et al., 2018). In 2016, there were 30 sites for SO2 and sulfate 306 

and 51 for NH3. The MARGA data are from the EMEP Chemical Coordinating Centre EBAS 307 

database (http://ebas.nilu.no/; last accessed February 2020) (Tørseth et al., 2012) and the UKEAP 308 

data are from the UK-AIR data archive (https://uk-air.defra.gov.uk/data/data-availability; last 309 

accessed November 2020).  310 

To ensure consistency between the model and observations, the model is sampled from the 311 

lowest to the top model layer during the satellite overpass times of 08-11 LST for use with IASI 312 

and 12-15 LST for use with CrIS, and as monthly 24-hour means in the lowest model layer for 313 

comparison to the surface observations. The model is sampled in March-September 2016 314 

following a 2-month spin-up for chemical initialization. 315 

4 UK bottom-up emissions of NH3 316 

Figure 3 shows the spatial distribution of annual UK NH3 emissions for 2016 from the 317 

NAEI. Table 1 gives the breakdown by sector. Annual emissions for 2016 total 298 Gg, mostly 318 

(84%) from agriculture. Natural emissions of 21.6 Gg (7% of the total) are consistent with annual 319 

total natural emissions in GEOS-Chem of 21.8 Gg. According to GEOS-Chem, these include soils, 320 

vegetation and the ocean (together 18.7 Gg) and seabirds (3.10 Gg). NAEI anthropogenic NH3 321 

emissions total 276 Gg, 21 Gg less than the UNECE Gothenburg protocol emissions ceiling of 297 322 

Gg (UNECE, 2019). The NAEI version we implement in GEOS-Chem and evaluate against top-323 

down estimates was released in 2018. Two NAEI versions have been released since. Reported 324 

http://ebas.nilu.no/
https://uk-air.defra.gov.uk/data/data-availability
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differences in NH3 emissions across these versions for consistent years is minor, just 1-3% 325 

(Ricardo, 2019b; 2020). 326 

The spatial patterns in Figure 3 coincide with farming activities that dominate NH3 327 

emissions according to the modelling study by Hellsten et al. (2008). They used the same Webb 328 

& Misselbrook (2004) nitrogen balance model as the NAEI to identify regionally dominant 329 

farming activities. The agricultural sources that dominate NH3 emissions include sheep farming 330 

along the Welsh border where emissions are low, and large sources like pig and poultry farming 331 

and fertilizer use in east England and dairy and beef cattle farming in west England and Northern 332 

Ireland. Hellsten et al. (2008) used agricultural activity data for 2000. Detailed geospatial farming 333 

activity data is confidential and publicly available data are limited to decadal maps of farming 334 

activities in England for 2000 and 2010 and annual regional and national statistics. The decadal 335 

maps suggest that locations of intensive crop and livestock farming in England are relatively 336 

unchanged (DEFRA, 2016b; a). The regional statistics document large changes in the number of 337 

livestock and the amount of nitrogen fertilizer used from 2000 to 2016 that would affect trends in 338 

emissions. In general, livestock numbers in the UK have declined by 20% for sheep, 11% for dairy 339 

and beef cattle, and 25% for pigs (DEFRA, 2020b). Poultry, specifically table chickens, have 340 

increased by 10% in the UK, with the largest increase of 42% in Northern Ireland (DEFRA, 341 

2020b). Nitrogen-based fertilizer usage, a dominant NH3 source in east England (Hellsten et al., 342 

2008), declined by 19% in the UK, though the relative proportion of urea-based fertilizer has 343 

increased (Ricardo, 2020). Regional changes in nitrogen-based fertilizers range from a 3% increase 344 

in Scotland to a 37% decrease in Northern Ireland (AIC, 2020). 345 

 346 

 347 
 348 

Figure 3. Annual UK NH3 emissions for 2016. Data are in tonnes per year per 0.1  0.1 grid 349 

from the NAEI. Inset value is the UK annual total. Boxes demarcate regions with broadly similar 350 

NH3 source types: Northern Ireland (N. Ireland), Northern England and a portion of southern 351 

Scotland (N. England), southwest UK (SW UK), and southeast UK (SE UK).  352 

 353 

Table 1. UK sector emissions of NH3 according to the NAEI a 354 

Sources NH3 [Gg a-1] 
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Agriculture 248.9 

Natural b 21.6 

Waste 14.2 

Point sources 4.4 

Road transport 4.4 

Other c 4.2 

Total  297.7 
a Spatial distribution of UK NAEI NH3 emissions are in Figure 3. b Contributors to natural emissions, according 355 

to GEOS-Chem, are soils, vegetation and the ocean (together 18.7 Gg) and seabirds (3.1 Gg). c Other is industrial 356 

and domestic combustion (2.9 Gg) and solvent use (1.3 Gg). 357 

Inversion of column densities of NH3 to estimate top-down surface emissions can be 358 

complicated by dependence of NH3 abundance on acidic sulfate aerosols formed from oxidation 359 

of SO2 and acidic nitrate formed from uptake of nitric acid from NOx sources. UK SO2 emissions 360 

are dominated by large industrial and energy sector point sources, ships, domestic and industrial 361 

combustion, and traffic (Ricardo, 2018b). UK NOx emissions are dominated by transport, energy 362 

generation and manufacturing (Ricardo, 2018b). We find particularly large discprepancies 363 

between monthly mean March-September 2016 observed (EMEP and UKEAP) SO2 364 

concentrations and those from the model driven with the NAEI (Figure S3). The model normalized 365 

mean bias (NMB) is >600% for modelled SO2 > 2 g m-3 at sites influenced by point sources in 366 

Yorkshire and 205% for modelled SO2 < 2 g m-3. Modelled sulfate is also greater than the 367 

observations (NMB of 17%) (Figure S3). This would enhance partitioning of NH3 to acidic 368 

aerosols to form ammonium, leading to a positive bias in the relative amount of NHx (NH3 + 369 

ammonium) present as ammonium.  370 

Positive model biases in both SO2 and sulfate (Figure S3) suggest an overestimate in NAEI 371 

SO2 emissions that have implications for UK compliance with commitments to emissions ceilings 372 

and reductions. There are many factors other than emissions that could contribute to model biases. 373 

These include, but are not limited to, misrepresentation of the height at which SO2 is emitted from 374 

tall stacks, a reported positive bias in mainland Europe SO2 emissions (Luo et al., 2020), and 375 

uncertainties in dry (Fowler et al., 2001; 2007) and wet (Luo et al., 2019) deposition. We conducted 376 

sensitivity simulations to assess the contribution of these uncertainties to modelled SO2 and sulfate. 377 

Details of these simulations and the effect on SO2 and sulfate concentrations are in the 378 

accompanying Supplementary. The factor we find to have the largest influence relative to the 379 

model bias is wet deposition. The more efficient wet deposition scheme of Luo et al. (2019) leads 380 

to an 11% decrease in sulfate concentrations. 381 

Errors in NAEI SO2 emissions could be due to uncertainties in emissions from domestic 382 

and industrial biomass combustion. The third of six generating units at the 3.9 GW generating 383 

capacity Drax power station in Yorkshire transitioned from burning coal to biomass in 2016 384 

(Simet, 2017). SO2 emissions from biomass combustion depend on fuel sulfur content and 385 

combustion efficiency. Reported emission factors range widely from 1 to 110 mg SO2 MJ-1 386 

(Boersma et al., 2008; Paulrud et al., 2006; EMEP, 2019) and so offer limited constraints. To 387 

reduce the influence of a possible bias in SO2 emissions on GEOS-Chem simulation of abundance 388 

of sulfate and NH3, we decrease land-based gridded (0.1°  0.1°) NAEI SO2 emissions by a factor 389 
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of 3 for grids dominated by point sources (identified as grids with SO2 emissions > 10 g m-2 a-1) 390 

and by a factor of 1.3 for all other land-based grids. This reduces the original NAEI SO2 emissions 391 

over land by 49% from 164 Gg to 84.1 Gg. With shipping, the updated annual NAEI SO2 emissions 392 

for the domain shown in Figure 3 total 94.5 Gg. The March-September modelled sulfate NMB 393 

changes from +17% (Figure S3) to -8.8%. We use the scaled SO2 emissions in all subsequent 394 

simulations. 395 

5 Top-down NH3 emissions and comparison to bottom-up estimates 396 

We calculate gridded satellite-derived 24-hour monthly mean top-down NH3 emissions 397 

(Esat) as follows: 398 

𝑬𝐬𝐚𝐭 = 𝛀𝐬𝐚𝐭 × (
𝑬

𝛀
)

𝐦𝐨𝐝𝐞𝐥
                                                                                                                    (𝟏), 399 

where sat is satellite observations of NH3 multiyear monthly mean columns from IASI (Figure 1) 400 

or CrIS (Figure 2), and (E/)model is the GEOS-Chem ratio of 24-hour monthly mean NH3 401 

emissions (E) to 3-hour monthly mean columns () during the satellite overpass. Model ratios 402 

((E/)model) are interpolated to 0.1°  0.1°. Regression of midday vs morning values of model 403 

result in slopes that exceed unity (1.6-2.2), indicative of midday enhancements in NH3 due to 404 

warmer temperatures and greater NH3 emissions. Intercepts are small and slightly negative (-0.1 405 

to -0.7  1015 molecules cm-2). Regression of CrIS vs IASI sat yield a similar range in slopes (1.3-406 

2.2) to the model, but large positive intercepts (0.2-5.4  1015 molecules cm-2). This suggests that 407 

larger sat for CrIS than IASI is not just due to differences in midday and morning environmental 408 

conditions.  409 

The mass-balance approach that we use in Eq. (1) to infer emissions can be susceptible to 410 

spatial misattribution of emissions due to displacement of NH3 from the source. The global mean 411 

lifetime of NH3 is ~15 h (Hauglustaine et al., 2014), ranging from ~2 h near large sources 412 

(Dammers et al., 2019) to ~36 h far from emission sources (Van Damme et al., 2018). The 413 

displacement length, the horizontal distance for the target compound to decay to ~63% of the 414 

original concentration of the emission source, provides a measure of the spatial smearing or 415 

localization error of the satellite-derived emissions (Marais et al., 2012; Palmer et al., 2003). We 416 

estimate a smearing length for satellite-derived NH3 emissions over the UK of 10-12 km for calm 417 

conditions (wind speeds of 5-6 km h-1) typical of the UK in summer (Figure A1f.3 of BEIS (2016)) 418 

and a short NH3 lifetime typical of large sources (2 h). At slightly windier conditions (7 km h-1) 419 

and over regions with lower emissions and a longer NH3 lifetime (15 h), the displacement length 420 

increases to 105 km.  421 
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 422 
Figure 4. IASI-derived NH3 emissions for March-September. Maps are 24-hour total emissions at 423 

0.1  0.1. Inset values are monthly emissions that sum to 271.5 Gg.  424 

 425 

 426 

 427 
Figure 5. CrIS-derived NH3 emissions for March-September. Maps are 24-hour total emissions at 428 

0.1  0.1. Inset values are monthly emissions that sum to 389.4 Gg. 429 

 430 
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Maps of the resultant top-down monthly NH3 emissions are shown in Figure 4 for IASI 431 

and Figure 5 for CrIS. Qualitatively, both estimates exhibit spatial patterns similar to the NAEI 432 

(Figure 3). This includes relatively low emissions along the Welsh border, and peak emissions in 433 

Northern Ireland, the northern portion of the English side of the Welsh border, and in Norfolk in 434 

the east. Emissions for retained grid squares total 271.5 Gg for IASI, whereas these are 43% more 435 

from CrIS (389.4 Gg). CrIS monthly emissions are 20-38% more than IASI for March-July. This 436 

is similar in magnitude to the 25-50% low bias in IASI columns, though for an earlier IASI product 437 

(Dammers et al., 2017; Whitburn et al., 2016a). The percentage difference increases to 57% for 438 

August and >100% for September. The large difference in September is due to 5.4  1015 molecules 439 

cm-2 greater background NH3 in CrIS, even after correcting for the baseline trend (Section 2.2, 440 

Figure S1). CrIS emissions excluding September are 33% more than IASI. Differences in sampling 441 

periods (2008-2018 for IASI, 2013-2018 for CrIS) only has a small effect on satellite-derived 442 

emissions, but leads to data gaps over Scotland and Northern England. IASI-derived emissions 443 

obtained for 2013-2018 are only 6% more (288.3 Gg) than those in Figure 4. 444 

For comparison of monthly top-down and bottom-up emissions, we estimate monthly 445 

bottom-up emissions as the product of the annual NAEI emissions in Figure 3 and GEOS-Chem 446 

seasonality. The latter we obtain as ratios of GEOS-Chem monthly to annual 24-hour NH3 447 

emissions interpolated onto the 0.1  0.1 grid. Figure 6 shows the resultant monthly bottom-up 448 

NH3 emissions for April and July. The other months are in the supplementary (Figure S4). The 449 

bottom-up emissions peak in April (~14% of the annual total) coincident with fertilizer application 450 

(Hellsten et al., 2007; Paulot et al., 2014). The gridded difference between top-down and bottom-451 

up emissions are also shown in Figure 6 for April and July and in Figure S4 for the other months. 452 

Locations where bottom-up emissions exceed those from the top-down approach (red grids) mostly 453 

occur where emissions are low. The largest difference is in July when top-down emissions are 30 454 

Gg more (IASI) and 46 Gg more (CrIS) than the bottom-up emissions. Pronounced regional 455 

differences include lower bottom-up values in eastern England, particularly in April, where 456 

fertilizer use and pigs and poultry farming are dominant sources, as well as in western England 457 

and Northern Ireland, particularly in July, where dairy cattle farming dominates (Hellsten et al., 458 

2008). The spatial correlation between top-down and bottom-up gridded emissions in general 459 

ranges from R = 0.5 to R = 0.7, except for IASI in September (R = 0.34) when dynamic range in 460 

emissions is low.  461 

The bottom-up emissions for March-September total 198.7 Gg. This is 27% less than IASI 462 

and 49% less than CrIS. It is unlikely that the relatively low bottom-up emissions is due to the time 463 

period (1981-2020) of the 30-year meteorology used to determine agricultural NH3 emissions for 464 

the NAEI. We find that 2-metre temperature from the NASA long-term consistent relanalysis 465 

product, Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-466 

2), is similar for 1981-2010 (282.750 K) and 1991-2020 (282.957 K). Bottom-up emissions in 467 

March-September are 67% of the annual total, similar to ~60% for the monthly bottom-up NH3 468 

emissions estimated by Hellsten et al. (2007). If we use this relative contribution (60-67%) to scale 469 

IASI and CrIS to annual totals, this suggests annual NH3 emissions of 405-453 Gg according to 470 

IASI and 581-664 Gg according to CrIS. Subtracting the UK annual natural NH3 emissions of ~22 471 

Gg (Section 3) yields top-down annual anthropogenic NH3 emissions of 383-431 Gg according to 472 

IASI and 559-642 Gg according to CrIS. Both top-down estimates exceed annual total 473 
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anthropogenic emissions from the NAEI of 276 Gg (Section 3) and the Gothenburg protocol 474 

emissions ceiling of 297 Gg. 475 

 476 

 477 
 478 

Figure 6. Comparison of bottom-up and top-down NH3 emissions for April and July. Panels are 479 

bottom-up emissions (left), and the difference between top-down and bottom-up emissions for 480 

IASI (middle) and CrIS (right) in April (top row) and July (bottom row). Grids are blue for bottom-481 

up < top-down and red for bottom-up > top-down. Values inset are bottom-up total (left) and 482 

differences in (middle and right) monthly emissions and the Pearson’s spatial correlation (R) 483 

between top-down and bottom-up emissions.  484 

Figure 7 compares regional seasonality in UK NH3 emissions from bottom-up and top-485 

down estimates as the percent change in emissions in each month relative to those in June. 486 

Regional seasonality in the top-down emissions is very similar in March-August in all regions 487 

except Northern Ireland. The mismatch between IASI and CrIS in September is due to the at least 488 

2-times greater CrIS than IASI columns in that month (Section 2). The July peak in emissions in 489 

Northern Ireland is more pronounced in IASI than CrIS. This is also apparent in the seasonality in 490 

the column densities (Figure S5). Northern Ireland has experienced dramatic changes in 491 

agricultural activity that includes increases in livetock numbers of 45% for pigs and 42% for table 492 

chickens and a decline in nitrogen fertilizer of 37% from 2000 to 2016 (DEFRA, 2020b). We find 493 

though that the that top-down emissions estimates are relatively insensitive to differences in 494 

temporal coverage of the two sensors (2008-2018 for IASI, 2013-2018 for CrIS). All emission 495 

estimates exhibit a spring peak in April due to intensive fertilizer and manure application in March-496 

April (Hellsten et al., 2007). Paulot et al. (2014) also identified this April peak in NH3 emissions 497 

inferred from ammonium wet deposition measurements, though a recent study questions the utility 498 
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of these measurements for constraining NH3 emissions (Tan et al., 2020). A second summer peak 499 

in the top-down emissions in July that is not present in the bottom-up emissions could be due to 500 

the timing of manure spreading, dairy farming practices, or enhanced volatilization and suppressed 501 

dry deposition due to warm summer temperatures (Hellsten et al., 2007; Sutton et al., 1994). Spatial 502 

consistency between the July top-down emissions (Figures 4 and 5) and locations dominated by 503 

emissions from dairy cattle (Hellsten et al., 2008) suggests a it is due to dairy farming, but this 504 

requires further investigation.  505 

 506 

 507 
 508 

Figure 7. Regional seasonality in March-September NH3 emissions. Points are the percentage 509 

change in emissions in each month relative to those in June for top-down emissions from IASI 510 

(black) and CrIS (blue), and from the bottom-up emissions (red). Regions sampled are in Figure 511 

3. Inset values are March-September totals for each region from each estimate.  512 

In Figure 8, we compare March-September 2016 mean modelled and observed surface 513 

concentrations of NH3 to determine if the model driven with NAEI NH3 emissions and prior 514 

assumptions of NH3 seasonality and diurnal variability corroborates the results obtained with the 515 

satellite observations. Monthly means from model grids coincident with the surface sites are 516 

reasonably spatially consistent with the surface observations (R = 0.54) and the model is 38.3% 517 

less than the observations. This is midway between the NAEI comparison to the top-down 518 

emissions of 27% less than IASI and 49% less than CrIS. There are also low-cost passive sampler 519 

measurements of NH3 concentrations at 39 rural sites, but these have relatively low precision, are 520 

not as extensively distributed as the observations in Figure 8, and are only reliable (within ±10% 521 
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of reference measurements) at NH3  2 g m-3 (Martin et al., 2019; Sutton et al., 2001). Even so, 522 

the model is similarly biased low (by 41.5%) compared to these measurements (not shown). 523 

 524 

 525 
 526 

Figure 8. Comparison of observed and modelled surface concentrations of NH3. Data are EMEP 527 

and UKEAP site measurements (points) and the model (background) for March-September 2016. 528 

Inset values are the Pearson’s spatio-temporal correlation coefficient (R) and the model NMB for 529 

coincident monthly means.   530 

6 Error analysis of the top-down emissions 531 

The reported relative error for NAEI NH3 emissions is 31% (Ricardo, 2018b). Quantifiable 532 

random errors that contribute to total March-September satellite-derived emissions include 533 

uncertainties in retrieval of NH3, and in the modelled relationship between NH3 emissions and 534 

column densities (Eq. (1)). For the latter we test sensitivity to modelled sulfate aerosol and nitric 535 

acid abundances and prior assumptions of the spatial and temporal variability of NH3 emissions. 536 

IASI NH3 retrieval errors for columns ≥ 2  1015 molecules cm-2 range from 0.7-34%. Retrieval 537 

errors larger than 34% do occur, but are in locations with very low emissions. The CrIS NH3 538 

column errors across all grids range from 0.2-25%. Errors due to uncertainties in the magnitude 539 

and variability in SO2 and NOx emissions that affect abundance of sulfate and nitrate aerosols and 540 

hence the abundance and vertical distribution of NH3 are small compared to column density 541 

retrieval errors. We estimate the error contribution of these as the change in top-down emissions 542 

due to a perturbation in SO2 emissions for sulfate and NOx emissions for nitric acid. The percent 543 

change in top-down emissions from a 50% decrease in SO2 emissions is 4-5%. A 50% increase in 544 

NOx emissions increases nitric acid by 14%, aerosol nitrate by 11%, and satellite-derived NH3 545 

emissions by 8-9%. The limited sensitivity to sulfate and nitrate in the UK is because NH3 is in 546 

excess due to the success of emission controls targeting SO2 and NOx sources and absence of these 547 

for NH3 sources. This would not occur in regions and times with large unregulated SO2 and NOx 548 

sources. We find that (E/)model used to convert satellite observations of column densities to 549 

emissions (Eq. (1)) is relatively insensitive to pertubations in NH3 emissions, so is relatively 550 
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unaffected by errors in the spatial and temporal variability of NH3 emissions in GEOS-Chem. A 551 

50% increase in NH3 emissions only causes a small (3-4%) decrease in satellite-derived NH3 552 

emissions. The total relative error from adding these individual errors in quadrature is 11-36% for 553 

IASI and 9-27% for CrIS and is dominated by errors in retrieval of the columns. Total emissions 554 

for March-September are 198.7 ± 61.6 Gg for the bottom-up emissions and up to 271.5 ± 97.7 Gg 555 

for IASI and 389.4 ± 105.1 Gg for CrIS. 556 

There are also known systematic biases in the satellite observations. Some studies reported 557 

that IASI NH3 column densities are biased low by 25-50% compared to ground-based 558 

measurements (Dammers et al., 2017; Whitburn et al., 2016a). However, these comparisons were 559 

for earlier versions of the IASI NH3 product. The version used here is consistent with columns 560 

derived with aircraft observations (Guo et al., 2021), though Guo et al. (2021) caution that their 561 

comparison is limited in time (summer) and location (Colorado, US) and sensitive to errors in 562 

column estimates from integrating aircraft measurements. There are no observations of the vertical 563 

distribution of NH3 over the UK. The CrIS column amounts display a gradual increase with time 564 

(Figure S1) that we correct for in this work, though further work is required to determine the cause. 565 

Biases in the satellite-derived emissions due to differences in overpass times of the two instruments 566 

is mitigated by sampling modelled columns (model in Eq. (1)) during the satellite overpass.  567 

Both satellite products preferentially sample clear-sky conditions. The bias that this 568 

imparts on the top-down emissions estimates is challenging to quantify. The modelled emissions 569 

and columns used to derive top-down emissions ((E/)model in Eq. (1)) are sampled under all-sky 570 

conditions, though there would likely be compensating effects of sampling clear-sky conditions 571 

on (E/)model. Warmer temperatures and absence of clouds increase  by suppressing the amount 572 

of NH3 that partitions to the aqueous phase (Stelson & Seinfeld, 1982; Walters et al., 2018), but El 573 

also increases in response to warmer temperatures (Sutton et al., 2013). Preferentially sampling 574 

clear-sky conditions likely has the largest impact on sat. We find that the effect is greatest in July 575 

when boundary-layer clear-sky air temperatures, according to GEOS-Chem, are warmer than all-576 

sky scenes by 5.6ºC during the morning overpass and 5.3ºC during the afternoon overpass. 577 

According to Sutton et al. (2013), 5C warmer temperatures increase NH3 emissions by 42%. 578 

Clear-sky temperatures are only 1.6-1.7 ºC warmer in the preceding month (June), so the greater 579 

clear-sky temperature in July may in part account for the discrepancies between observed and 580 

modelled NH3 emissions in that month (Figure 6) and the steep increase in July columns and 581 

emissions relative to June (Figures 7 and S5). A challenge though of using GEOS-Chem to 582 

diagnose sensitivity of air temperature to cloud cover is that the model is inferior to the satellite 583 

observations at resolving clouds, due to its coarser spatial resolution (25-31 km), and only 3-12% 584 

of daily overpass model data are retained in each month after filtering for cloudy scenes (GEOS-585 

FP cloud fractions > 0.1). NH3 emissions in GEOS-Chem also do not include changes in farming 586 

practices in response to shifts in meteorology.  587 

7 Conclusions 588 

Emissions of ammonia (NH3) in the UK are mostly (>80%) from agriculture and are 589 

challenging to estimate with bottom-up approaches and validate exclusively with current ground-590 

based networks. Here we used satellite observations of NH3 in March-September for multiple years 591 

from the Infrared Atmospheric Sounding Interferometer (IASI) (2008-2018) and the Cross-track 592 
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Infrared Sounder (CrIS) (2013-2018) with the GEOS-Chem chemical transport model to derive 593 

top-down monthly emissions across the UK at high spatial resolution (~10 km). 594 

Total top-down March-September emissions are 272 Gg from IASI and 389 Gg from CrIS. 595 

Bottom-up emissions estimated with the UK National Atmospheric Emission Inventory (NAEI) 596 

annual emissions and GEOS-Chem monthly scaling factors are 27% less than IASI-derived 597 

emissions and 49% less than CrIS-derived emissions. This is supported by a 38-42% underestimate 598 

in surface NH3 concentrations from GEOS-Chem driven with the NAEI. We infer UK top-down 599 

annual anthropogenic NH3 emissions of 383-431 Gg from IASI and 559-642 Gg from CrIS 600 

compared to 276 Gg from the NAEI. Seasonality in the top-down emissions confirms the well-601 

known spring April peak from fertilizer and manure use, but there is also a summer July peak 602 

coincident with intensive dairy farming that is absent in the bottom-up emissions. 603 

The relative error in the top-down emissions, mostly due to NH3 column retrieval errors, is 604 

11-36% for IASI and 9-27% for CrIS and is similar to the error reported for the NAEI (31%). The 605 

top-down emissions estimates are relatively insensitive to model uncertainties in SO2, NOx and 606 

NH3 emissions, as NH3 is in excess and the relationship between modelled NH3 columns and 607 

emissions is near-linear. 608 

Our study demonstrates the tremendous potential to use satellite observations to derive NH3 609 

emissions and assess bottom-up emissions under particularly challenging observing conditions 610 

(cloudy, cool) in the UK. This is critical for assessing reliability of inventories used to inform 611 

policies and mitigation strategies. The discrepancy between bottom-up and top-down emissions 612 

identified here warrants further investigation of both approaches. 613 
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