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Abstract

Agricultural emissions of ammonia (NH3) impact air quality, human health, and the vitality of aquatic and terrestrial ecosystems.

In the UK, there are few direct policies regulating anthropogenic NH3 emissions and development of sustainable mitigation

measures necessitates reliable emissions estimates. Here we use observations of column densities of NH3 from two space-based

sensors (IASI and CrIS) with the GEOS-Chem model to derive top-down NH3 emissions for the UK at fine spatial (˜10 km)

and time (monthly) scales. We focus on March-September when there is adequate spectral signal to reliably retrieve NH3. We

estimate total emissions of 272 Gg from IASI and 390 Gg from CrIS. Bottom-up emissions are 27% less than IASI and 49%

less than CrIS. There are also differences in seasonality. Top-down and bottom-up emissions agree on a spring April peak due

to fertilizer and manure application, but there is also a comparable summer July peak in the top-down emissions that is not

in bottom-up inventories and appears to be associated with dairy cattle farming. We estimate relative errors in the top-down

emissions of 11-36% for IASI and 9-27% for CrIS, dominated by column density retrieval errors. The bottom-up versus top-down

emissions discrepancies estimated in this work impact model predictions of the environmental damage caused by NH3 emissions

and warrant further investigation.
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   17 

Key Points: 18 

 Satellite observations of NH3 from 2 sensors (IASI, CrIS) are used to estimate UK NH3 19 

emissions in Mar-Sep at fine scales (10 km, monthly) 20 

 Satellite-derived NH3 emissions total 272 Gg from IASI and 390 Gg from CrIS and 21 

exhibit a spring (April) and summer (July) peak 22 

 Bottom-up inventories used for research and policy are 27-49% less than the satellite-23 

derived estimates and miss the summer emissions peak  24 
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Abstract 25 

Agricultural emissions of ammonia (NH3) impact air quality, human health, and the vitality of 26 

aquatic and terrestrial ecosystems. In the UK, there are few direct policies regulating 27 

anthropogenic NH3 emissions and development of sustainable mitigation measures necessitates 28 

reliable emissions estimates. Here we use observations of column densities of NH3 from two 29 

space-based sensors (IASI and CrIS) with the GEOS-Chem model to derive top-down NH3 30 

emissions for the UK at fine spatial (~10 km) and time (monthly) scales. We focus on March-31 

September when there is adequate spectral signal to reliably retrieve NH3. We estimate total 32 

emissions of 272 Gg from IASI and 390 Gg from CrIS. Bottom-up emissions are 27% less than 33 

IASI and 49% less than CrIS. There are also differences in seasonality. Top-down and bottom-up 34 

emissions agree on a spring April peak due to fertilizer and manure application, but there is also 35 

a comparable summer July peak in the top-down emissions that is not in bottom-up inventories 36 

and appears to be associated with dairy cattle farming. We estimate relative errors in the top-37 

down emissions of 11-36% for IASI and 9-27% for CrIS, dominated by column density retrieval 38 

errors. The bottom-up versus top-down emissions discrepancies estimated in this work impact 39 

model predictions of the environmental damage caused by NH3 emissions and warrant further 40 

investigation. 41 

Plain Language Summary 42 

Emissions of ammonia, mostly from agriculture, are often a dominant contributor to fine 43 

particles in countries with well-established policies that have led to large reductions in other 44 

precursors of such pollutants detrimental to our health. Here we use a model and observations of 45 

ammonia from two space-based sensors to estimate emissions in the UK where there are no 46 

direct policies regulating agricultural sources of ammonia. The satellite-derived emissions, 47 

limited to March-September when conditions are ideal for viewing ammonia from space, total 48 

272 kilotonnes from an instrument that passes overhead in the morning and 390 kilotonnes from 49 

an instrument with a midday overpass. Though the emissions estimates differ for the two 50 

instruments, both exhibit a spring (April) peak due to fertilizer and manure use and summer 51 

(July) peak likely associated with dairy cattle farming. The summer peak is missing in bottom-up 52 

emission inventories and total March-September emissions from these inventories are also 27-53 

49% less than those derived with satellites. Further research is needed to address these 54 

discrepancies, as such inventories are widely used for developing policies and assessing 55 

environmental damage caused by ammonia.  56 

1 Introduction 57 

Agricultural practices such as synthetic fertilizer and manure use and livestock farming 58 

release large quantities of ammonia (NH3) to the atmosphere. Once emitted, NH3 partitions to 59 

acidic aerosols to form ammonium that contributes to mass concentrations of fine particles 60 

(PM2.5) hazardous to health (Cohen et al., 2017; Dockery et al., 1993; Vohra et al., 2021a). NH3 61 

and ammonium also deposit to the Earth’s surface and drastically alter the natural nitrogen 62 

balance of terrestrial and aquatic ecosystems (Galloway, 1998; Johnson & Carpenter, 2010; 63 

Vitousek et al., 1997). 64 

In the UK, agriculture is the dominant (>80%) source of NH3 emissions (Ricardo, 2018a), 65 

mostly from nitrogen fertilizer use, manure management, and farming of dairy and beef cattle 66 

(DEFRA, 2019). Modelling studies suggest that the largest and most extensive decline in PM2.5 67 
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in the UK would be achieved by targeting NH3 sources (Vieno et al., 2016), but only large pig 68 

and poultry farms are required to adopt best practices and technologies that reduce NH3 69 

emissions (DEFRA, 2019). There are additional policy options under consideration, such as 70 

limiting the use of solid urea fertilizer, a large source of NH3 in the UK (DEFRA, 2020a). As a 71 

signatory of the United Nations Economic Commission for Europe (UNECE) Gothenburg 72 

protocol, the UK is committed to an anthropogenic NH3 emissions ceiling of 297 Gg, informed 73 

by annual emissions estimates from the UK bottom-up National Atmospheric Emissions 74 

Inventory (NAEI). The UK is also required as part of the protocol to reduce NH3 emissions by 75 

8% in 2020 and beyond relative to emissions in 2005 (UNECE, 2019). The estimated decline in 76 

NH3 emissions from 1980 to 2017 is 0.2% a
-1

 due to a steep decline in vehicular emissions of 77 

NH3 in 1998-2007 and a recent increase in agricultural emissions since 2013 (Ricardo, 2020). 78 

Any future policies targeting NH3 emissions would also need to consider increases in emissions 79 

as the atmosphere warms (Sutton et al., 2013).  80 

Estimates of the contribution of NH3 emissions to PM2.5 and mobilization of nitrogen in 81 

aquatic and terrestrial ecosystems, assessment of attainment of UNECE emissions ceilings and 82 

trends, and decisions on effective mitigation measures demand accurate estimates of NH3 83 

emissions. The NAEI of annual total and mapped UK NH3 emissions is published each year. 84 

These are at high spatial resolution (1 km) and incorporate detailed information about the 85 

farming activities that contribute to NH3 emissions. The ability to validate the inventory is 86 

challenging, as there are no long-term measurements of NH3 fluxes. There is a network of very 87 

reliable measurements of rural 24-hour mean surface concentrations of NH3 that cover the full 88 

latitudinal extent of the UK from Cornwall in the south to Shetland in the north (Tang et al., 89 

2018), but there are large monitoring gaps in-between. Satellite observations of NH3 retrieved 90 

from infrared spectral measurements offer complete coverage of the UK and routine daily 91 

measurements in the absence of clouds and under good retrieval conditions. Satellites observe 92 

NH3 molecules throughout the atmospheric column, but the majority are within the planetary 93 

boundary layer and most of the variability in the column is typically due to NH3 at or near the 94 

surface (Clarisse et al., 2010; Nowak et al., 2010; Schiferl et al., 2016; Vohra et al., 2021b). 95 

Retrieval of NH3 from space-based instruments was first described by Beer et al. (2008) 96 

for the Tropospheric Emission Spectrometer (TES) instrument. Satellite NH3 retrieval products 97 

have since undergone substantial retrieval development (Clarisse et al., 2009; Shephard et al., 98 

2011; 2020; Shephard & Cady-Pereira, 2015; Van Damme et al., 2014b; 2017; 2021; Whitburn 99 

et al., 2016a), intercomparisons (Dammers et al., 2019), and validation against ground-based 100 

observations of total atmospheric column densities and surface concentrations of NH3 (Dammers 101 

et al., 2016; 2017; Van Damme et al., 2015a; Vohra et al., 2021b). These products have also seen 102 

extensive use in characterizing NH3 emissions. This includes detecting global and regional NH3 103 

emission hotspots (Cady-Pereira et al., 2017; Clarisse et al., 2019; Dammers et al., 2019; 104 

Shephard et al., 2020; Van Damme et al., 2018), constraining NH3 emissions from biomass 105 

burning (Adams et al., 2019; Whitburn et al., 2016b), evaluating regional emission inventories 106 

(Chen et al., 2021; Fortems-Cheiney et al., 2020), identifying underestimated or missing NH3 107 

sources in widely used global and regional emission inventories and models (Heald et al., 2012; 108 

Hickman et al., 2018; Van Damme et al., 2014a), and determining long-term local and regional 109 

trends and variability in NH3 (Hickman et al., 2020; Van Damme et al., 2015b; 2021; Vohra et 110 

al., 2021b; Wichink Kruit et al., 2017). 111 
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Here we use satellite observations of NH3 and the GEOS-Chem chemical transport model 112 

(CTM) to derive top-down NH3 emissions for the UK and evaluate the bottom-up NAEI 113 

emissions inventory and current understanding of seasonality in emissions. This includes the use 114 

of surface observations from the UK monitoring network to evaluate GEOS-Chem and 115 

corroborate findings from the satellite observations. 116 

2 Space-based observations of column densities of NH3 117 

Satellite observations of NH3 retrieved in the infrared portion of the light spectrum rely 118 

on the spectral signal that depends on the atmospheric state, such as abundance and vertical 119 

distribution of NH3 and thermal contrast between the surface of the Earth and the overlying 120 

atmosphere (Clarisse et al., 2010; Shephard et al., 2011). Two prominent products are available 121 

from contemporary space-based instruments that pass overhead in the morning (the Infrared 122 

Atmospheric Sounding Interferometer or IASI) and midday (the Cross-track Infrared Sounder or 123 

CrIS). These products use distinct retrieval approaches for us to assess the constraints these 124 

provide on NH3 emissions in the UK. 125 

2.1 Infrared Atmospheric Sounding Interferometer NH3 126 

The IASI instrument onboard the Metop-A satellite was launched into low-Earth polar 127 

sun synchronous orbit in October 2006. The instrument has two overpass times in the morning 128 

(09h30 local solar time or LST) and at night (21h30 LST), providing global coverage twice a 129 

day. The elliptical IASI pixels range in ground pixel resolution from 12 km  12 km at nadir 130 

(directly below the instrument) to about 20 km  39 km at the edges of the 2200-km-wide swath 131 

(Clarisse et al., 2011). The data product we use is the Level 2 cloud-free reanalysis product of 132 

total column NH3 (version 3R-ERA5) (Van Damme et al., 2021). The retrieval uses machine 133 

learning, specifically a neural network trained relationship between column NH3 and a so-called 134 

hyperspectral range index or HRI, where the HRI is a measure of the relative enhancement in the 135 

spectral signature due to NH3 (Van Damme et al., 2014b; 2017; Whitburn et al., 2016a). The data 136 

product includes reported retrieval errors estimated by perturbing individual input parameters in 137 

the neural network framework (Whitburn et al., 2016a). The neural network retrieved product 138 

has been validated against global and regional networks of ground-based NH3 observations of 139 

surface concentrations and column densities (Dammers et al., 2016; Guo et al., 2021; Vohra et 140 

al., 2021b; Whitburn et al., 2016a). In general, IASI NH3 reproduces the temporal variability in 141 

surface concentrations of NH3, but exhibits a low bias of 25-50% (Dammers et al., 2017; 142 

Whitburn et al., 2016a). 143 

We use daytime (09h30 LST) IASI NH3 for 2008-2018 to obtain multiyear monthly 144 

means. This dampens influence of interannual variability and ensures consistency with NAEI 145 

NH3 emissions that are estimated with 30-year mean meteorology (Ricardo, 2019b). We grid the 146 

data to finer spatial resolution (0.1  0.1) than the native resolution of the instrument using the 147 

tessellation oversampling technique described in Zhu et al. (2017) and Sun et al. (2018). This 148 

takes advantage of the spatial variability in coverage of individual orbits and the long data record 149 

from IASI to reduce noise and smooth out spatial gradients in the gridded product (Sun et al., 150 

2018). Briefly, tessellation involves weighting individual IASI pixels by the area of overlap with 151 

the target grid and also includes error-weighting using the reported retrieval error. In our 152 

application of the tessellation gridding technique, we approximate the area of IASI pixels as a 153 
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quadrilateral polygon, where the corners of each polygon are estimated as the distance midway 154 

between the centres of neighbouring IASI pixels. 155 

Retrieval of NH3 over the UK is challenging, due to persistent clouds and relatively cool 156 

conditions. Extreme retrievals, identified as absolute columns > 5  10
17

 molecules cm
-2

, are 157 

removed. We also exclude IASI NH3 columns retrieved on 26-27 July 2018, coincident with the 158 

summer 2018 heat wave (McCarthy et al., 2019). Record high temperatures (> 30C) lead to UK 159 

IASI NH3 column densities 4-times greater (~4  10
16

 molecules cm
-2

) than the UK July 160 

multiyear mean (~1  10
16

 molecules cm
-2

) and cause an 11% positive bias in the July multiyear 161 

mean. A similarly large influence of heat waves on IASI NH3 columns resulted from the summer 162 

2010 heat wave over mainland Europe (Van Damme et al., 2014a). Following oversampling, the 163 

gridded multiyear means with large relative error (>50%) are removed. This leads to loss of the 164 

majority of IASI NH3 columns in October-February, so only March-September multiyear means 165 

are considered. According to the monthly NH3 emissions estimated by Hellsten et al. (2007), 166 

March-September accounts for ~60% of the annual total. Additional outlier filtering is applied to 167 

the gridded multiyear monthly means to remove columns < -1  10
16

 molecules cm
-2

 and > 1  168 

10
17

 molecules cm
-2

. These account for <0.1% of the March-September data.  169 

 170 

 171 

Figure 1. Monthly multiyear (2008-2018) mean IASI NH3. Data are gridded to 0.1°  0.1° using 172 

oversampling (see text for details). Grey grids have < 10 observations. 173 

Figure 1 shows the gridded March-September multiyear monthly mean IASI NH3 174 

columns. The number of observations in each grid ranges from 11 to 128. Values over Scotland 175 

are very low (typically < 2  10
15

 molecules cm
-2

) due to weak signal and lower agricultural 176 
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activity than the rest of the UK. The range in IASI NH3 over the rest of the country of 4-8  10
15

 177 

molecules cm
-2

 is much less than the NH3 hotspots in other parts of the world. Columns over 178 

global hotspots such as North China, West Africa, the Po Valley (Italy), and the Indo-Gangetic 179 

Plain (India) exceed 2  10
16

 molecules cm
-2

 (Cady-Pereira et al., 2017; Dammers et al., 2019; 180 

Van Damme et al., 2014a; 2018). These are associated with industrial and agricultural activity in 181 

India and China and intense seasonal open burning of biomass in West Africa and northern India, 182 

aided by warm temperatures increasing NH3 emissions and enhancing the spectral signal. 183 

2.2 Cross-track Infrared Sounder NH3 184 

The first CrIS sensor launched into low-Earth polar sun synchronous orbit in October 185 

2011 is onboard the NOAA Suomi-NPP satellite. Like IASI, CrIS observes the Earth twice daily, 186 

though in the early afternoon (13h30 LST) and after midnight (01h30 LST) (Goldberg et al., 187 

2013). It has the same swath width as IASI and similar ground pixel resolution (14 km circular 188 

pixels at nadir). The fast physical retrieval (CFPR) approach used to retrieve NH3 columns is 189 

described in detail in Shephard & Cady-Pereira (2015) and Shephard et al. (2020). Briefly, it is 190 

based on conventional optimal estimation that involves minimizing the difference between 191 

observed and calculated outgoing spectral radiances with a priori vertical profiles of NH3 192 

(Rodgers, 2000). CFPR uses three prior NH3 profiles representing polluted, moderately polluted, 193 

and remote conditions (Shephard et al., 2020) that are selected based on the ammonia spectral 194 

signal. This is different to standard optimal estimation that uses prior information that is 195 

independent of the observations and imposes spatial and temporal information. The CFPR 196 

retrieval generates averaging kernels that quantify the vertical sensitivity of the retrieval. These 197 

typically peak between 900 and 750 hPa (~1-2.5 km altitude) (Dammers et al., 2017; Shephard & 198 

Cady-Pereira, 2015). 199 

We use the Level 2 CrIS NH3 CFPR version 1.6 product for 2013-2018. The predecessor 200 

product (version 1.5) exhibited a positive bias for NH3 < 1  10
16

 molecules cm
-2

, as values were 201 

only retrieved over scenes exceeding the instrument detection limit of ~2  10
15

 molecules cm
-2

 202 

(Dammers et al., 2017; Shephard & Cady-Pereira, 2015). This approach filtered out cloud-free 203 

scenes below the instrument detection limit and indirectly removed cloudy scenes when the NH3 204 

signal below clouds could not be detected. In version 1.6 clouds are explicitly identified with 205 

information from the space-based Visible Infrared Imaging Radiometer Suite (VIIRS) (White et 206 

al., 2021). We use daytime cloud-free CrIS observations with quality flag  4 (Shephard et al., 207 

2020) and thermal contrast > 0 K, where thermal contrast is the difference between the reported 208 

temperatures at the surface and the lowest atmospheric layer. We identify and correct for a 209 

positive trend in the CrIS baseline that appears to be erroneous, as it is not apparent in the IASI 210 

data. We do this by estimating a statistically significant (p-value = 0.02) increase in monthly 211 

mean background NH3 columns over Scotland (Figure S1) of 2.33  10
13

 molecules cm
-2

 per 212 

month (amounting to 1.7  10
15

 molecules cm
-2

 over the whole record) and subtract this from 213 

individual CrIS NH3 column retrievals. We grid the corrected data to 0.1  0.1 using the same 214 

tessellation code used for IASI, but without error weighting. The individual total column errors 215 

include measurement and representative errors and cover a much narrower range (5-55% 216 

(Shephard et al., 2020)) than those for IASI (5% to >100%). As a result, higher relative 217 

weighting would be applied to low column densities, leading to anomalously low gridded values 218 

in the CrIS multiyear means. For consistency with IASI, we only consider March to September. 219 
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Figure 2 shows the gridded March-September CrIS NH3 multiyear monthly mean 220 

columns. As with IASI, we filter for outliers in the multiyear means (column densities < -1  221 

10
16

 molecules cm
-2

 and > 1  10
17

 molecules cm
-2

), removing <0.1% of the gridded data. Unlike 222 

IASI, the observations during the July 2018 heatwave only increase the July multiyear mean by 223 

1.6%, so these days are retained. The number of CrIS retrievals in each grid ranges from 11 to 224 

96. The CrIS multiyear means are roughly double those for IASI (Figure 1), in part because CrIS 225 

passes overhead at midday when higher ambient temperatures lead to greater volatilization of 226 

NH3. Differences in vertical sensitivity and distinct retrieval approaches likely also contribute. 227 

This difference is particularly large in September when background NH3 is 5.3  10
15

 molecules 228 

cm
-2

 more in CrIS than IASI, obtained as the intercept from regressing CrIS against IASI. The 229 

spatial correlation between CrIS and IASI multiyear means is R < 0.5 in most months (March, 230 

June-September), R = 0.53 in May, and R = 0.55 in April. 231 

 232 

 233 
 234 

Figure 2. Monthly multiyear (2013-2018) mean CrIS NH3. Data are gridded to 0.1°  0.1° with 235 

oversampling (see text for details). Grey grids have < 10 observations. 236 
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3 The GEOS-Chem chemical transport model 237 

 We use the GEOS-Chem CTM version 12.1.0 (https://doi.org/10.5281/zenodo.1553349) 238 

to interpret constraints on UK NH3 emissions from IASI and CrIS. The model is driven with 239 

NASA GEOS-FP assimilated meteorology from the Global Modeling and Assimilation Office 240 

(GMAO). Model simulations are conducted on a horizontal grid at 0.25  0.3125 (latitude  241 

longitude) nested over western Europe (32.75-61.25N, 15W-40E). The model extends over 47 242 

vertical layers from the Earth’s surface to 0.01 hPa. Dynamic (3-hourly) boundary conditions are 243 

from a global GEOS-Chem simulation at 4  5.  244 

Anthropogenic emissions over the UK, including from agriculture, are updated in GEOS-245 

Chem to include gridded emissions from the NAEI for 2016 (Ricardo, 2018b). These are annual 246 

totals on a 1 km  1 km grid available at https://naei.beis.gov.uk/data/map-uk-das (last accessed 247 

August 2019). The agricultural NH3 emissions incorporated in the NAEI are calculated at coarser 248 

resolution (5 km) than the NAEI with the nitrogen balance models of Webb & Misselbrook 249 

(2004) for livestock sources and Misselbrook et al. (2006) for fertilizer sources. These models 250 

are driven with 30-year mean meteorology for 1981-2010, so the NH3 emissions represent a 251 

climatological mean (Ricardo, 2019b). Other anthropogenic NH3 emissions are typically 252 

calculated as the product of emission and activity factors representative of the year of interest 253 

and mapped to the 1 km NAEI emissions grid (Ricardo, 2018a). Temporal variability of annual 254 

NAEI NH3 emissions is represented in GEOS-Chem with gridded monthly scaling factors 255 

already included in the model and spatially uniform diurnal scaling factors calculated by Zhu et 256 

al. (2015) using information about the dependence of NH3 on aerodynamic resistance, surface 257 

temperature and Henry’s law. As a result of these, 30% of NH3 is emitted at midday (noon-2pm 258 

LST) coincident with the CrIS overpass and 20% in the morning (9am-noon LST) coincident 259 

with the IASI overpass. Monthly scaling factors are from gridded data derived by Friedrich 260 

(2000) and lead to peak NH3 emissions in April. Natural NH3 sources are from inventories 261 

already in GEOS-Chem. These include natural emissions from soils and the ocean from the 262 

Global Emissions InitiAtive (GEIA) inventory (Bouwman et al., 1997) and inland and coastal 263 

seabird emissions from the Riddick et al. (2012) inventory. We halve the GEIA inventory 264 

emissions, as in Paulot et al. (2014), informed by a 50% overestimate identified by Simpson et 265 

al. (1999). 266 

NH3 is a semi-volatile acid buffer that neutralizes acidic sulfate and nitrate aerosols, so 267 

its abundance depends on the abundance of these acidic aerosols. Sulfate forms from oxidation 268 

of SO2 and nitrates from aerosol uptake of nitric acid formed from oxidation of NOx. The version 269 

of the NAEI we use includes outdated mapping of the location of ships and no vertical or 270 

temporal information for aircraft emissions. To address these issues, we separate ship and 271 

aircraft emissions from other sources in the lumped “Other Transport and Mobile Machinery” 272 

category of the NAEI emissions inventory and replace ship emissions with updated estimates 273 

that use geospatial information from the automatic identification system (Ricardo, 2017). We 274 

convert the NAEI aircraft emissions to monthly estimates and distribute these vertically up to 1 275 

km (the altitude limit of the NAEI emissions) by deriving vertical and temporal scaling factors 276 

from the global Aviation Emissions Inventory version 2.0 (AEIv2) used in GEOS-Chem (Stettler 277 

et al., 2011). Above 1 km, the AEIv2 emissions are used. The existing temporal scaling factors in 278 

GEOS-Chem that are applied to NAEI SO2 and NOx emissions lead to peak emissions in winter, 279 

due to an increase in energy demand. SO2 is emitted in the model as 95% SO2 and 5% sulfate, 280 

https://doi.org/10.5281/zenodo.1553349
https://naei.beis.gov.uk/data/map-uk-das
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using sulfate-to-SO2 emission ratios for Europe reported by Chin et al. (2000). NAEI emissions 281 

are gridded to a uniform 0.1  0.1 grid for input to the Harmonized Emissions Component 282 

(HEMCO) processing package version 2.1.010 (Keller et al., 2014) that maps all emissions to the 283 

model grid and applies relevant scaling factors. 284 

The model includes detailed coupled gas- and aerosol-phase chemistry. Sulfate aerosols 285 

are formed in the model from oxidation of SO2 in the gas phase by OH and in the aqueous phase 286 

in clouds by ozone and hydrogen peroxide (Park et al., 2004). Partitioning of NH3 between the 287 

gas and acidic aerosol phase is determined dynamically with the thermodynamic equilibrium 288 

model ISORROPIA-II (Fountoukis & Nenes, 2007). Wet and dry deposition, terminal sinks of 289 

NH3, are represented with a standard resistances-in-series scheme for dry deposition (Wesley et 290 

al., 1998) and, for wet deposition, includes scavenging in and below clouds (Amos et al., 2012).  291 

We use network site measurements of trace gases and aerosols to evaluate model 292 

accuracy at reproducing surface concentrations of NH3, SO2, and sulfate. These include 2 rural 293 

sites (Auchencorth Moss in Scotland, Chilbolton Observatory in southern England) that form 294 

part of the European Monitoring and Evaluation Programme (EMEP) network and the mostly 295 

rural UK Eutrophying and Acidifying Atmospheric Pollutants (UKEAP) network. The 2 EMEP 296 

sites include hourly measurements from Monitor for AeRosols and Gases in Air (MARGA) 297 

instruments (Stieger et al., 2017; ten Brink et al., 2007; Twigg et al., 2015; Walker et al., 2019). 298 

The UKEAP network sites include monthly measurements from low-cost denuder filter sampling 299 

packs (Tang et al., 2018). The MARGA data are from the EMEP Chemical Coordinating Centre 300 

EBAS database (http://ebas.nilu.no/; last accessed February 2020) (Tørseth et al., 2012) and the 301 

UKEAP data are from the UK-AIR data archive (https://uk-air.defra.gov.uk/data/data-302 

availability; last accessed November 2020).  303 

To ensure consistency between the model and observations, the model is sampled from 304 

the lowest to the top model layer during satellite overpasses for comparison to IASI (08-11 LST) 305 

and CrIS (12-15 LST), and as monthly 24-hour means in the lowest model layer for comparison 306 

to the surface observations. The model is sampled in March-September 2016 following a 2-307 

month spin-up for chemical initialization. 308 

4 UK bottom-up emissions of NH3 309 

Figure 3 shows the spatial distribution of annual UK NH3 emissions for 2016 from the 310 

NAEI. Table 1 gives the breakdown by sector. Annual emissions for 2016 total 298 Gg, mostly 311 

(84%) from agriculture. Natural emissions of 21.6 Gg (7% of the total) are consistent with 312 

annual total natural emissions in GEOS-Chem of 21.8 Gg. According to GEOS-Chem, these 313 

include soils, vegetation and the ocean (together 18.7 Gg) and seabirds (3.10 Gg). NAEI 314 

anthropogenic NH3 emissions total 276 Gg, 21 Gg less than the UNECE Gothenburg protocol 315 

emissions ceiling of 297 Gg (UNECE, 2019). The NAEI version we implement in GEOS-Chem 316 

and evaluate against top-down estimates was released in 2018. Two NAEI versions have been 317 

released since. Reported differences in NH3 emissions across these versions for consistent years 318 

is minor, just 1-3% (Ricardo, 2019a; 2020). 319 

The spatial patterns in Figure 3 coincide with farming activities that dominate NH3 320 

emissions according to the modelling study by Hellsten et al. (2008) that uses the same Webb & 321 

http://ebas.nilu.no/
https://uk-air.defra.gov.uk/data/data-availability
https://uk-air.defra.gov.uk/data/data-availability
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Misselbrook (2004) nitrogen balance model as the NAEI. Dominant agricultural sources include 322 

sheep farming along the Welsh border where emissions are low, and large sources like pig and 323 

poultry farming and fertilizer use in east England and dairy and beef cattle farming in west 324 

England and Northern Ireland. Hellsten et al. (2008) used agricultural activity data for 2000. 325 

Detailed geospatial farming activity data is proprietary and publicly available data are limited to 326 

decadal maps of farming activities in England for 2000 and 2010 and annual regional and 327 

national statistics. The decadal maps suggest that locations of intensive crop and livestock 328 

farming in England are relatively unchanged (DEFRA, 2016b; a). The regional statistics 329 

document large changes in the number of livestock and the amount of nitrogen fertilizer used 330 

from 2000 to 2016 that would affect trends in emissions. In general, livestock numbers in the UK 331 

have declined by 20% for sheep, 11% for dairy and beef cattle, and 25% for pigs (DEFRA, 332 

2020b). Poultry, specifically table chickens, have increased by 10% in the UK, with the largest 333 

increase of 42% in Northern Ireland (DEFRA, 2020b). Nitrogen-based fertilizer usage, a 334 

dominant NH3 source in east England (Hellsten et al., 2008), declined by 19% in the UK, ranging 335 

from a 3% increase in Scotland to a 37% decrease in Northern Ireland (AIC, 2020). 336 

 337 

 338 
 339 

Figure 3. Annual UK NH3 emissions for 2016. Data are in tonnes per year from the NAEI 340 

gridded to 0.1  0.1. Inset value is the UK annual total. Boxes demarcate regions with broadly 341 

similar NH3 sources: Northern Ireland (N. Ireland), Northern England and a portion of southern 342 

Scotland (N. England), southwest UK (SW UK), and southeast UK (SE UK).  343 

 344 

Table 1. UK sector emissions of NH3 according to the NAEI
 a
 345 

Sources NH3 [Gg a-1] 

Agriculture 248.9 

Natural b 21.6 

Waste 14.2 

Point sources 4.4 

Road transport 4.4 
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Other c 4.2 

Total  297.7 
a 

Spatial distribution of UK NAEI NH3 emissions are in Figure 3. 
b 

Contributors to natural emissions, 346 

according to GEOS-Chem, are soils, vegetation and the ocean (together 18.7 Gg) and seabirds (3.1 Gg). 
c 
Other 347 

is industrial and domestic combustion (2.9 Gg) and solvent use (1.3 Gg). 348 

Inversion of column densities of NH3 to estimate top-down surface emissions can be 349 

complicated by dependence of NH3 abundance on acidic sulfate aerosols formed from oxidation 350 

of SO2. UK SO2 emissions are dominated by large industrial and energy sector point sources, 351 

ships, domestic and industrial combustion, and traffic (Ricardo, 2018a). We find that monthly 352 

mean March-September 2016 GEOS-Chem SO2 concentrations driven with the NAEI are much 353 

greater than those measured at EMEP and UKEAP network sites (Figure S2). The model 354 

normalized median bias is >500% for modelled SO2 > 2 g m
-3

 at sites influenced by point 355 

sources in Yorkshire and ~280% for modelled SO2 < 2 g m
-3

. Modelled sulfate is also greater 356 

than the observations (normalized mean bias or NMB of 17%) (Figure S2). This would enhance 357 

partitioning of NH3 to acidic aerosols to form ammonium, leading to a positive bias in the 358 

relative amount of NHx (NH3 + ammonium) present as ammonium.  359 

Positive model biases in both SO2 and sulfate (Figure S2) suggest an overestimate in 360 

NAEI SO2 emissions, though other factors may contribute. These include, but are not limited to, 361 

misrepresentation of the height at which SO2 is emitted from tall stacks, a reported positive bias 362 

in mainland Europe SO2 emissions (Luo et al., 2020), and uncertainties in wet deposition (Luo et 363 

al., 2019). We conducted sensitivity simulations to assess the contribution of these uncertainties 364 

to modelled SO2 and sulfate. Details of these simulations and the effect on SO2 and sulfate 365 

concentrations are in the accompanying Supplementary. The factor we find to have the largest 366 

influence relative to the model bias is wet deposition. The more efficient wet deposition scheme 367 

of Luo et al. (2019) leads to an 11% decrease in sulfate concentrations. 368 

Errors in NAEI SO2 emissions could be due to uncertainties in emissions from domestic 369 

and industrial biomass combustion. The third of six generating units at the 3.9 GW generating 370 

capacity Drax power station in Yorkshire transitioned from burning coal to biomass in 2016 371 

(Simet, 2017). SO2 emissions from biomass combustion depend on fuel sulfur content and 372 

combustion efficiency. Reported emission factors range widely from 1 to 110 mg SO2 MJ
-1

 373 

(Boersma et al., 2008; Paulrud et al., 2006) and so offer limited constraints. To reduce the 374 

influence of a possible bias in SO2 emissions on GEOS-Chem simulation of abundance of sulfate 375 

and NH3, we decrease land-based gridded (0.1°  0.1°) NAEI SO2 emissions by a factor of 3 for 376 

grids dominated by point sources (identified as grids with SO2 emissions > 10 g m
-2

 a
-1

) and by a 377 

factor of 1.3 for all other land-based grids. This reduces the original NAEI SO2 emissions over 378 

land by 49% from 164 Gg to 84.1 Gg. With shipping, the updated annual NAEI SO2 emissions 379 

for the domain shown in Figure 3 total 94.5 Gg. The March-September modelled sulfate NMB 380 

changes from +17% (Figure S2) to -8.8%. We use the scaled SO2 emissions in all subsequent 381 

simulations. 382 

5 Top-down NH3 emissions and comparison to bottom-up estimates 383 

We calculate top-down NH3 emissions by multiplying the satellite NH3 multiyear 384 

monthly mean columns (Figure 1 for IASI, Figure 2 for CrIS) by GEOS-Chem ratios of 24-hour 385 
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mean NH3 emissions to 3-hour mean columns (08-11 LST for IASI, 12-15 LST for CrIS) after 386 

interpolating the model fields to 0.1°  0.1°. The mass-balance approach that we use to infer 387 

emissions can be susceptible to spatial misattribution of emissions due to displacement of NH3 388 

from the source. The global mean lifetime of NH3 is ~15 h (Hauglustaine et al., 2014), ranging 389 

from ~2 h near large sources (Dammers et al., 2019) to ~36 h far from emission sources (Van 390 

Damme et al., 2018). The displacement length, the distance for NH3 to decay to ~63% of the 391 

original concentration of the emission source (Marais et al., 2012; Palmer et al., 2003), is similar 392 

to the resolution of the satellite-derived emissions (10-12 km) for calm conditions (wind speeds 393 

of 5-6 km h
-1

) and short NH3 lifetimes (2 h). Conditions are relatively stable in the UK in 394 

summer (Figure A1f.3 of BEIS (2016)), so meteorological mean wind speeds typically reach ~7 395 

km h
-1

. At these slightly windier conditions and for a longer NH3 lifetime of 15 h, the 396 

displacement length increases to 105 km. 397 

Maps of the resultant top-down monthly NH3 emissions are shown in Figure 4 for IASI 398 

and Figure 5 for CrIS. Emissions for retained grid squares total 271.5 Gg for IASI, whereas these 399 

are 44% more from CrIS (389.6 Gg). CrIS monthly emissions are 19-37% more than IASI for 400 

March-July, similar in magnitude to the reported 25-50% low bias in IASI columns (Dammers et 401 

al., 2017; Whitburn et al., 2016a). The percentage difference increases to 56% for August and 402 

>100% for September. The large difference in September is due to 5.3  10
15

 molecules cm
-2

 403 

greater background NH3 in CrIS, even after correcting for the baseline trend (Section 2.2, Figure 404 

S1). CrIS emissions excluding September are 34% more than IASI. Qualitatively, both estimates 405 

exhibit similar spatial patterns to the NAEI (Figure 3). This includes relatively low emissions 406 

along the Welsh border, and peak emissions in Northern Ireland, the northern portion of the 407 

English side of the Welsh border, and in Norfolk in the east. 408 

 409 

 410 
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Figure 4. IASI-derived NH3 emissions for March-September. Maps are at 0.1  0.1. Inset 411 

values are monthly emissions that sum to 271.5 Gg.  412 

 413 

 414 
 415 

Figure 5. CrIS-derived NH3 emissions for March-September. Maps are at 0.1  0.1. Inset 416 

values are monthly emissions that sum to 389.6 Gg. 417 

For comparison of monthly top-down and bottom-up emissions, we estimate bottom-up 418 

emissions as the product of the annual NAEI emissions in Figure 3 and ratios of GEOS-Chem 419 

monthly to annual NH3 emissions interpolated onto the 0.1  0.1 grid. Figure 6 shows the 420 

resultant monthly bottom-up NH3 emissions for April and July. The other months are in the 421 

supplementary (Figure S3). The bottom-up emissions peak in April (~14% of the annual total) 422 

coincident with fertilizer application (Hellsten et al., 2007; Paulot et al., 2014). The gridded 423 

difference between top-down and bottom-up emissions are also shown in Figure 6 for April and 424 

July and Figure S3 for the other months. Locations where bottom-up emissions exceed those 425 

from the top-down approach (red grids) mostly occur where emissions are low. The largest 426 

difference is in July when top-down emissions are 30 Gg more (IASI) and 48 Gg more (CrIS) 427 

than the bottom-up inventory. Pronounced regional differences include lower bottom-up values 428 

in eastern England, particularly in April, where fertilizer use and pigs and poultry farming are 429 

dominant sources, as well as in western England and Northern Ireland, particularly in July, 430 

where dairy cattle farming dominates (Hellsten et al., 2008). The spatial correlation between top-431 

down and bottom-up gridded emissions in general ranges from R = 0.5 to R = 0.7, except for 432 

IASI in September (R = 0.34) when dynamic range in emissions is low.  433 

The bottom-up emissions for March-September total 198.7 Gg. This is 27% less than 434 

IASI and 49% less than CrIS. According to the bottom-up inventory and Hellsten et al. (2007), 435 

March-September captures 60-67% of annual emissions. If we use this to scale IASI and CrIS to 436 
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annual totals, this suggests annual NH3 emissions of 405-453 Gg according to IASI and 581-649 437 

Gg according to CrIS. Natural NH3 emissions total ~22 Gg in the UK (Section 3), so top-down 438 

annual anthropogenic NH3 emissions are 383-431 Gg according to IASI and 559-627 Gg 439 

according to CrIS. Both top-down estimates exceed annual total anthropogenic emissions from 440 

the NAEI of 276 Gg (Section 3) and the UNECE Gothenburg emissions ceiling of 297 Gg. 441 

 442 

 443 
 444 

Figure 6. Comparison of bottom-up and top-down NH3 emissions for April and July. Panels are 445 

bottom-up emissions (left), and the difference between top-down and bottom-up emissions for 446 

IASI (middle) and CrIS (right) in April (top row) and July (bottom row). Grids are blue for 447 

bottom-up < top-down and red for bottom-up > top-down. Values inset are bottom-up total (left) 448 

and differences in (middle and right) monthly emissions and the Pearson’s spatial correlation (R) 449 

between top-down and bottom-up emissions.  450 

Figure 7 compares regional seasonality in UK NH3 emissions from bottom-up and top-451 

down estimates as the percent change in monthly means relative to June. Regional seasonality in 452 

the top-down emissions is very similar in March-August in all regions except Northern Ireland. 453 

The mismatch between IASI and CrIS in September is due to a positive offset in CrIS relative to 454 

IASI columns. The July peak in emissions in Northern Ireland is more pronounced in IASI than 455 

CrIS. This is also apparent in the seasonality in the column densities (Figure S4). This may be 456 

due to differences in temporal coverage of the two sensors (2008-2018 for IASI, 2013-2018 for 457 

CrIS) over a location that has experienced dramatic changes in agricultural activity. This 458 

includes increases in livetock numbers of 45% for pigs and 42% for table chickens and a decline 459 

in nitrogen fertilizer of 37% from 2000 to 2016 (DEFRA, 2020b). All emission estimates exhibit 460 

a spring peak in April due to intensive fertilizer and manure application in March-April (Hellsten 461 
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et al., 2007). Paulot et al. (2014) also identified this April peak in NH3 emissions inferred from 462 

ammonium wet deposition measurements, though a recent study questions the utility of these 463 

measurements for constraining NH3 emissions (Tan et al., 2020). A second summer peak in the 464 

top-down emissions in July that is not present in the bottom-up inventory could be due to manure 465 

spreading and dairy farming (Hellsten et al., 2007). The likely contribution from dairy farming is 466 

supported by spatial consistency between the July top-down emissions (Figures 4 and 5) and 467 

locations dominated by emissions from dairy cattle (Hellsten et al., 2008).  468 

 469 

 470 
 471 

Figure 7. Regional seasonality in March-September NH3 emissions. Points are the percentage 472 

change in monthly emissions relative to June for top-down emissions from IASI (black) and CrIS 473 

(blue), and from the bottom-up inventory (red). Regions sampled are in Figure 3. Inset values are 474 

March-September totals for each region from each estimate.  475 
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In Figure 8, we compare March-September 2016 mean modelled and observed surface 476 

concentrations of NH3 to determine if the model driven with NAEI NH3 emissions and prior 477 

assumptions of NH3 seasonality and diurnal variability corroborates the results obtained with the 478 

satellite observations. Monthly means from model grids coincident with the surface sites are 479 

reasonably spatially consistent with the surface observations (R = 0.54) and the model is 38.3% 480 

less than the observations. This is midway between the NAEI comparison to the top-down 481 

emissions of 27% less than IASI and 49% less than CrIS. There are also rural low-cost passive 482 

sampler measurements of NH3 concentrations, but these have low precision and are only reliable 483 

(within ±10% of reference measurements) at NH3  2 g m
-3

 (Martin et al., 2019; Sutton et al., 484 

2001). Even so, the model is similarly biased low (by 41.5%) compared to these measurements 485 

(not shown). 486 

 487 

 488 
 489 

Figure 8. Comparison of observed and modelled surface concentrations of NH3. Data are EMEP 490 

and UKEAP site measurements (points) and the model (background) for March-September 2016. 491 

Inset values are the Pearson’s spatio-temporal correlation coefficient (R) and the model NMB for 492 

coincident monthly means.   493 

6 Error analysis of the top-down emissions 494 

The reported relative error for NAEI NH3 emissions is 31% (Ricardo, 2018a). 495 

Quantifiable random errors that contribute to total March-September satellite-derived emissions 496 

include uncertainties in retrieval of NH3, and in the modelled relationship between NH3 497 

emissions and column densities. For the latter we test sensitivity to modelled sulfate aerosol and 498 

nitric acid abundances and prior assumptions of the spatial and temporal variability of NH3 499 

emissions. IASI NH3 retrieval errors for columns ≥ 2 10
15

 molecules cm
-2

 range from 0.7-500 

34%. Retrieval errors larger than 34% do occur, but are in locations with very low emissions. 501 

The CrIS NH3 column errors across all grids range from 0.2-25%. Error contributions from 502 

uncertainties in sulfate and nitric acid are small compared to column density retrievals. We 503 

estimate these as the change in top-down emissions due to a perturbation in SO2 emissions for 504 
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sulfate and NOx emissions for nitric acid. The percent change in top-down emissions from a 50% 505 

decrease in SO2 emissions is 4-5%. A 50% increase in NOx emissions increases nitric acid by 506 

14%, aerosol nitrate by 11%, and satellite-derived NH3 emissions by 8-9%. The limited 507 

sensitivity to sulfate and nitrate in the UK is because NH3 is in excess due to the success of 508 

emission controls targeting SO2 and NOx sources and absence of these for NH3 sources. We also 509 

find that our top-down emissions estimates are relatively insensitive to NH3 emissions 510 

perturbations. A 50% increase in NH3 emissions causes a small (3%) decrease in satellite-derived 511 

NH3 emissions. The total relative error from adding these individual errors in quadrature is 11-512 

36% for IASI and 9-27% for CrIS and is dominated by errors in retrieval of the columns. Total 513 

emissions for March-September are 198.7 ± 61.6 Gg for the bottom-up inventory and up to 271.5 514 

± 97.7 Gg for IASI and 389.6 ± 105.2 Gg for CrIS. 515 

There are also known systematic biases. Some studies reported that IASI NH3 column 516 

densities are biased low by 25-50% compared to ground-based measurements (Dammers et al., 517 

2017; Whitburn et al., 2016a). However, these comparisons were for earlier versions of the IASI 518 

NH3 product. The version used here is consistent with columns derived with aircraft observations 519 

(Guo et al., 2021), though Guo et al. (2021) caution that their comparison is limited in time 520 

(summer) and location (Colorado, US) and sensitive to errors in column estimates from 521 

integrating aircraft measurements. The CrIS column amounts display a gradual increase with 522 

time (Figure S1) that we correct for in this work, though further work is required to determine 523 

the cause. Both satellite products preferentially sample clear-sky conditions. The bias that this 524 

may cause is challenging to quantify. Warmer temperatures and absence of clouds would reduce 525 

the amount of NH3 that partitions to the aqueous phase (Stelson & Seinfeld, 1982; Walters et al., 526 

2018), but NH3 emissions would also increase (Sutton et al., 2013). The largest impact of clear-527 

sky sampling in the UK may be in July, when boundary-layer clear-sky air temperatures, 528 

according to GEOS-Chem, are ~6ºC warmer than all-sky scenes. 529 

5 Conclusions 530 

Emissions of ammonia (NH3) in the UK are mostly (>80%) from agriculture and are 531 

challenging to estimate with bottom-up approaches and validate exclusively with current ground-532 

based networks. Here we used satellite observations of NH3 in March-September for multiple 533 

years from the Infrared Atmospheric Sounding Interferometer (IASI) (2008-2018) and the Cross-534 

track Infrared Sounder (CrIS) (2013-2018) with the GEOS-Chem chemical transport model to 535 

derive top-down monthly emissions across the UK at high spatial resolution (~10 km). 536 

Total top-down March-September emissions are 272 Gg from IASI and 390 Gg from 537 

CrIS. Bottom-up emissions estimated with the UK National Atmospheric Emission Inventory 538 

(NAEI) annual emissions and GEOS-Chem monthly scaling factors are 27% less than IASI-539 

derived emissions and 49% less than CrIS-derived emissions. This is supported by a 38-42% 540 

underestimate in surface NH3 concentrations from GEOS-Chem driven with the NAEI. We infer 541 

UK top-down annual anthropogenic NH3 emissions of 383-431 Gg from IASI and 559-627 Gg 542 

from CrIS compared to 276 Gg from the NAEI. Seasonality in the top-down emissions confirms 543 

the well-known spring April peak from fertilizer and manure use, but there is also a summer July 544 

peak coincident with intensive dairy farming that is absent in the bottom-up inventory. 545 
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The relative error in the top-down emissions, mostly due to NH3 column retrieval errors, 546 

is 11-36% for IASI and 9-27% for CrIS and is similar to the error reported for the NAEI (31%). 547 

The top-down emissions estimates are relatively insensitive to model uncertainties in SO2, NOx 548 

and NH3 emissions, as NH3 is in excess and the relationship between modelled NH3 columns and 549 

emissions is near-linear. 550 

Our study demonstrates the tremendous potential to use satellite observations to derive 551 

NH3 emissions and assess bottom-up inventories under particularly challenging observing 552 

conditions (cloudy, cool) in the UK. This is critical for assessing reliability of these inventories 553 

for informing policies and mitigation strategies. The discrepancy between bottom-up and top-554 

down emissions identified here warrants further investigation of both approaches. 555 
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