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Abstract

Statistical trend analyses of observed precipitation (P) time series are key to validate theoretical arguments and climate pro-

jections suggesting that extreme P will increase in a warmer climate. Recent work warned about possible misinterpretation of

trend tests if the presence of serial correlation and field significance are not considered. Here, we investigate these two aspects

focusing on extreme P frequencies derived from 100-year daily records of 1087 worldwide gauges of the Global Historical Climate

Network. For this aim, we perform Monte Carlo experiments based on count time series generated with the Poisson integer

autoregressive model and characterized by different sample size, level of autocorrelation, and trend magnitude. The main results

are as follows. (1) Empirical autocorrelations are consistent with those of uncorrelated and stationary or nonstationary count

time series, while empirical trends cannot be explained as the exclusive effect of autocorrelation; incorporating the impact of

serial correlation in trend tests on extreme P frequency has then limited impacts on tests’ performance. (2) Accounting for

field significance improves interpretation of test results by limiting type-I errors, but it also decreases test power; results of

local tests could complement field significance outcomes and help identify weak trend signals where several trends of coherent

sign are detected. (3) Based on these findings, evident patterns of statistically significant increasing (decreasing) trends emerge

in central and eastern North America, northern Eurasia, and central Australia (southwestern America, southern Europe, and

southern Australia). The methodological insights of this work support trend analyses of any hydroclimatic variable

1



 1 

On the role of serial correlation and field significance in detecting  1 

changes in extreme precipitation frequency 2 

 3 

Stefano Farris1, Roberto Deidda1, Francesco Viola1, and Giuseppe Mascaro2 4 

(1) Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università di Cagliari, Italy 5 

(2) School of Sustainable Engineering and the Built Environment, Arizona State University, USA 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
 19 
 20 
 21 
 22 
 23 
Corresponding author address: Giuseppe Mascaro, School of Sustainable Engineering and the Built Environment, Arizona 24 
State University, 126b, 21 E 6th St, Tempe, AZ 85281. E-mail: gmascaro@asu.edu 25 
  26 



 2 

Abstract  27 

Statistical trend analyses of observed precipitation (P) time series are key to validate theoretical 28 

arguments and climate projections suggesting that extreme P will increase in a warmer climate. Recent 29 

work warned about possible misinterpretation of trend tests if the presence of serial correlation and field 30 

significance are not considered. Here, we investigate these two aspects focusing on extreme P frequencies 31 

derived from 100-year daily records of 1087 worldwide gauges of the Global Historical Climate 32 

Network. For this aim, we perform Monte Carlo experiments based on count time series generated with 33 

the Poisson integer autoregressive model and characterized by different sample size, level of 34 

autocorrelation, and trend magnitude. The main results are as follows. (1) Empirical autocorrelations are 35 

consistent with those of uncorrelated and stationary or nonstationary count time series, while empirical 36 

trends cannot be explained as the exclusive effect of autocorrelation; incorporating the impact of serial 37 

correlation in trend tests on extreme P frequency has then limited impacts on tests’ performance. (2) 38 

Accounting for field significance improves interpretation of test results by limiting type-I errors, but it 39 

also decreases test power; results of local tests could complement field significance outcomes and help 40 

identify weak trend signals where several trends of coherent sign are detected. (3) Based on these 41 

findings, evident patterns of statistically significant increasing (decreasing) trends emerge in central and 42 

eastern North America, northern Eurasia, and central Australia (southwestern America, southern Europe, 43 

and southern Australia). The methodological insights of this work support trend analyses of any 44 

hydroclimatic variable. 45 

  46 
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1 Introduction 47 

Extreme precipitation (P) is one of the natural hazards with the most significant socioeconomic 48 

impacts. Heavy P is the primary input of floods and flash floods, which cause annually large damages to 49 

properties and high numbers of fatalities worldwide (Ashley & Ashley, 2008; Peden et al., 2017). For 50 

example, the National Oceanic and Atmospheric Administration (NOAA) estimated that, in United 51 

States, flooding and severe storms resulted in $437 billion damages and 2379 fatalities from 1980 to 52 

2020 (Smith, 2021). In urban regions, intense P storms lead to pluvial flooding with impacts on traffic 53 

(Hooper et al., 2014; Bucar & Hayeri, 2020) and occurrence of power outages (Boggess et al., 2014). 54 

Extreme P events have also significant consequences on public health by degrading water quality 55 

(Gershunov et al., 2018) and increasing outbreaks of waterborne diseases (Cann et al., 2013). Studies 56 

have also shown that extreme P events may reduce crop production (Rosenzweig et al., 2004; Li et al., 57 

2019).  58 

Theoretical arguments suggest that the intensity of P extremes is expected to increase in a future 59 

warmer climate (Trenberth et al., 2003; Emori & Brown, 2005; Trenberth, 2011; Nie et al., 2018). 60 

According to the Clausius-Clapeyron (CC) equation, as surface temperature rises, the atmospheric water-61 

holding capacity should grow at a rate of 7% K-1. Extreme P is held to increase at a rate close to the CC 62 

value or even higher if the strength of moisture convergence will rise (Trenberth et al., 2003). Driven by 63 

these theoretical arguments and the evidence of increasing global surface temperature over the last five 64 

decades (Hansen et al., 2010; Papalexiou et al., 2020), a number of empirical studies have started to 65 

investigate temporal changes of magnitude and frequency in observed records of P extremes based on 66 

the application of statistical trend tests. Table 1 summarizes some of these efforts conducted at global 67 

and regional scales using mainly daily records of rain gages. Conclusions that emerge across all studies 68 

are that (i) trends are mainly increasing but statistically significant only at a limited number of sites; (ii) 69 

statistically significant trends are more evident in frequency rather than magnitude of extreme P; (iii) 70 
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increasing trends are mainly located in eastern and Midwestern U.S. and some regions of Eurasia; and 71 

(iv) decreasing trends occur in western U.S. and southern Australia. Despite these common qualitative 72 

outcomes, Table 1 emphasizes how these studies vary widely in terms of duration of the investigated 73 

time period (ranging from 30 to 112 years); spatial aggregation of the information provided by the rain 74 

gages (from point to subcontinental regions); and metrics used to characterize extreme P (targeting 75 

magnitude or frequencies above a threshold). As a result, it is difficult to quantitatively compare their 76 

results, a task that would be highly needed for practical applications including the update of engineering 77 

design standards (Wright et al., 2019).  78 

A key step to improve empirical trend studies of extreme P, facilitate their comparison, and 79 

corroborate physical hypotheses on future changes in the driving climate dynamics is to critically assess 80 

power and interpret results of statistical trend tests under the possible conditioning of serial correlation, 81 

if any, and when applied at multiple sites. We argue that these tasks have received limited attention, 82 

likely because these tests are easy to apply numerically via widespread software. These issues have been 83 

also recently highlighted by Serinaldi et al. (2018), who discussed potential causes of misuse and 84 

misinterpretation of statistical trend tests. One of these causes is the presence of autocorrelation in the 85 

analyzed time series, which may occur in hydrologic records as a result of long-term natural climate 86 

variability (Koutsoyiannis, 2011; Sun et al., 2018). Several statistical trend tests evaluate the null 87 

hypothesis H0 of random ordering in the time series (note that H0 is more often defined as “the time series 88 

is stationary” or “no trend is present in the time series”). When the time series is autocorrelated while 89 

still being stationary, the ordering is not random and the application of trend tests could result in rejecting 90 

H0 more frequently than expected by the significance level (i.e., the type-I error increases). This problem 91 

has been investigated for time series of real numbers (e.g., P magnitudes), focusing largely on the Mann-92 

Kendall test (von Storch, 1999; Yue et al., 2002; Hamed, 2009, among others). For this test, the presence 93 

of autocorrelation leads to an increase of the test statistic variance, a phenomenon known as variance 94 
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inflation. To address this issue, two main methods have been proposed including: (i) applying trend tests 95 

accounting for a proper estimation of the inflated variance (Hamed & Ramachandra Rao, 1998), and (ii) 96 

“prewhitening” the time series, i.e., removing the autocorrelation (Katz, 1988; von Storch, 1999). For 97 

both methods, a serial correlation structure of the process has to be adopted based on, e.g., autoregressive 98 

or fractional Gaussian models (Hamed, 2009).  99 

As shown in Table 1, most studies that investigated trends in extreme P have not considered the 100 

presence of autocorrelation at all or found it to be negligible by simply verifying that the lag-1 101 

autocorrelation, r, averaged across all records is close to zero (Groisman et al., 2005; Westra et al., 2013; 102 

Papalexiou & Montanari, 2019). Only a small number of efforts have applied techniques to estimate the 103 

inflated variance (Tramblay et al., 2013; Kunkel & Frankson, 2015) or prewhitening procedures 104 

(Alexander et al., 2006). Unfortunately, several papers have showed that these methods are not easy to 105 

apply, because the interaction between possible trends and autocorrelation leads to biases in the 106 

estimation of their parameters, which could in turn decrease the trend test power (Yue & Wang, 2002; 107 

Bayazit & Önöz, 2007). Moreover, Serinaldi et al. (2018) have demonstrated that the application of 108 

different prewhitening techniques to the same dataset could produce markedly diverse outcomes. We 109 

have also found that, in the literature that investigated the effect of serial correlation on trend tests, 110 

analyses have mainly relied on synthetic experiments in controlled conditions, while observed datasets 111 

have been used only in a limited number of cases. In particular, to our knowledge, no study has 112 

thoroughly investigated this problem focusing on observed extreme P frequencies. 113 

Another aspect that deserves careful consideration when conducting statistical trend analyses of 114 

extreme P is test multiplicity or field significance (Livezey & Chen, 1983; Katz & Brown, 1991; Wilks, 115 

1997; Daniel et al., 2012; Serinaldi et al., 2018). This accounts for the fact that, when a test is applied 116 

collectively at M locations (e.g., rain gages or grid points) with a significance level a, the null hypothesis 117 

may be rejected, on average, at a ∙ M sites while holding true for the entire set of locations. If the test 118 
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outcomes are interpreted locally, one can erroneously conclude that a statistically significant trend exists 119 

at the a ∙ M sites. This could be even more likely when P records are spatially correlated: in such a case, 120 

local tests are not independent and it may be possible to find spatial clusters where H0 has been 121 

erroneously rejected that could mistakenly be considered as physically meaningful spatial features. 122 

Results of multiple tests should be instead interpreted globally. To this end, two types of methods have 123 

been proposed, including (i) techniques based on counting the number of H0 rejections and comparing 124 

them with thresholds derived from the Binomial distribution (Livezey & Chen, 1983) or from 125 

bootstrapping methods (Khaliq et al., 2009; Wilks, 2019), and (ii) methods that minimize the false 126 

discovery rate or FDR (Benjamini & Hochberg, 1995; Wilks, 2006, 2016). Modifications of these 127 

methods have been proposed to account for spatial dependence. The great majority of previous studies 128 

of trend in extreme P have not accounted for field significance, with the exception of Alexander et al., 129 

(2006) and Westra et al., (2013), who used bootstrapping methods, and Tramblay et al. (2013), who 130 

applied a test based on FDR (Table 1). Additional work is then needed to better investigate the importance 131 

of field significance in trend analyses of extreme P records and how its quantification affects power of 132 

statistical trend tests. 133 

Driven by these research needs, this study investigates the effect of serial correlation and field 134 

significance on power, errors, and interpretation of trend tests applied to observed records of extreme P 135 

frequencies at multiple sites. We focus on frequencies (i.e., count time series of exceedances above a 136 

threshold) because changes in extreme P have been more effectively detected on counts rather than 137 

magnitudes (Papalexiou & Montanari, 2019; Wright et al., 2019). For our analyses, we use 100-year 138 

daily P records from 1087 gages the Global Historical Climate Network (GHCN)-Daily dataset (Menne 139 

et al., 2012) covering North America, northern and part of southern Europe, northern Asia, and Australia. 140 

The core of our methodological framework is based on Monte Carlo simulations, where stationary and 141 

nonstationary count time series with different levels of autocorrelation and trend magnitude are generated 142 
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using the Poisson integer autoregressive (INAR) model of order 1 or Poisson-INAR(1). INAR models 143 

were introduced to transfer the structure of autoregressive models for the simulation of integer-valued 144 

time series (e.g., McKenzie, 1985; Al-Osh & Alzaid, 1987; Weiß, 2008; Pedeli et al., 2015) and have 145 

been rarely applied in hydrology. After showing that the Poisson-INAR(1) model adequately reproduces 146 

the autocorrelation structure of most observed count time series, we apply a set of statistical analyses 147 

based on Monte Carlo simulations to gain insights on the impact of serial correlation on trend detection 148 

in the observed records. We then perform additional Monte Carlo experiments to quantify power and 149 

errors of several popular tests (Table 1) conducted locally and at multiple sites, utilizing the FDR test of 150 

Wilks (2006) to account for field significance. Finally, we use the knowledge gained with the analyses 151 

on serial correlation and field significance to apply trend tests to the observed extreme P frequencies and 152 

interpret their results in the studied regions. We repeat the analyses for different sample sizes, ranging 153 

from 30 to 100 years, and thresholds used to define the frequencies. While focused on extreme P, this 154 

work provides methodological insights supporting trend analyses of any hydroclimatic variable.  155 

2 Data 156 

We use daily P records from the GHCN dataset, which includes more than 100,000 stations in 157 

180 countries with record lengths ranging from a few years to more than 175 years and has been 158 

previously used in global (Kunkel & Frankson, 2015; Wilks, 2016; Papalexiou & Montanari, 2019) and 159 

regional (Wright et al., 2019; Kunkel et al., 2020) trend analyses. Here, after retaining only records 160 

passing all quality controls (Durre et al., 2010), for each station we label as “complete years” those with 161 

no more than 10% missing daily data and mark as missing all records collected in those years not 162 

satisfying this constraint. Then, we select M = 1087 stations with at least 95 complete years in a common 163 

100-year period from 1916 to 2015. Fig. 1 shows the selected gages that are located in three main regions, 164 

including North America; northern and part of southern Europe; northern Asia; and Australia. For each 165 

record, we derive the count time series of extreme P frequencies {ot} (t = 1, …, n, with n being the 166 
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number of years), defined as the annual occurrences of daily precipitation exceeding the q-th quantiles 167 

of its empirical cumulative distribution function (including zeros). These count time series are derived 168 

for the nonexceedance probabilities q = 0.9, 0.925, 0.95, 0.975 for n = 100 years and the most recent n = 169 

30 and 50 years.  170 

3 Methodology 171 

The methodology is described in four subsections. In section 3.1, we briefly illustrate the false 172 

FDR test that will be applied to evaluate the field significance in selected statistical tests for trend 173 

detection. In section 3.2, we investigate the parent distribution of the observed {ot} count time series. In 174 

section 3.3 we explain the methods used to generate synthetic count time series simulating statistical 175 

properties and potential trends of the observed {ot}. In section 3.4, we describe how Monte Carlo 176 

simulations based on these synthetic series are used to apply statistical trend tests under different null 177 

hypotheses, including possible presence of trend and autocorrelation.  178 

3.1. Evaluation of field significance 179 

As discussed in the Introduction, results of tests conducted at multiple sites are affected by the 180 

problem known as test multiplicity or field significance. To account for this, the global null hypothesis 181 

H0 assuming that H0 is true at all locations should be investigated with a significance level aglobal. Here, 182 

we evaluate the field significance using the FDR test as described in Wilks (2006), since it has been 183 

proved more powerful than alternative field significance tests while being computationally efficient 184 

(Wilks, 2016). Its application is straightforward; given the p-values from any local test conducted at M 185 

sites, the FDR test rejects the local null hypothesis in those sites where the corresponding p-value is 186 

lower than a threshold pFDR
*  calculated as: 187 

pFDR
* = max

i!1,…,M
#p(i): p(i) ≤ & i

M
' ∙ αFDR( (1) 
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where p(i) is the i-th value in the sorted sample of the M p-values, and αFDR is the significance level of 188 

the local test (see Wilks, 2016 for details). If the p-value is lower than pFDR
*  at one or more sites, then the 189 

global H0 is rejected at a level αglobal	= αFDR. In these sites, the local H0 is also rejected and the potential 190 

existence of spatial patterns where H0 is rejected can be explored. A very attractive property of the FDR 191 

test is that it can be easily adapted to the cases of spatial dependence among the gage records. Using 192 

numerical simulations, Wilks (2016) suggests that the FDR test is robust to the presence of spatial 193 

correlation if a value of αFDR = 2αglobal	is adopted. Unless stated otherwise, for all tests conducted in this 194 

study, we assume αglobal = 0.05 and αFDR = 0.10. 195 

3.2. Preliminary inference on the parent distribution of exceedance counts 196 

We conduct preliminary analyses to identify a reasonable parent distribution for the observed 197 

exceedance counts {ot} at the GHCN gages. Specifically, we apply the Chi-Square and Lilliefors (a 198 

generalization of Kolmogorov-Smirnov) goodness-of-fit (GOF) tests to evaluate the null hypothesis H0 199 

that the Poisson distribution well reproduces the marginal distribution of the observed counts. We do this 200 

for the count series with n = 30, 50, and 100 years. Instead of applying the GOF tests in their traditional 201 

formulation, we build the null distribution of the GOF test statistics through Monte Carlo simulations 202 

(details are provided in Section 3.4), because (i) statistical tables for the Chi-Square null distribution are 203 

usually derived and valid when parameters of the fitted distribution are estimated by minimizing the Chi-204 

Square statistic (Fisher, 1922); and (ii) performances of GOF tests can be biased when applied to discrete 205 

variables (see e.g. Deidda & Puliga, 2006). We then apply the FDR test for both GOF tests, finding that 206 

H0 cannot be rejected in more than 95% of the gages at αglobal = 0.05 for all values of q and n. Given the 207 

very small number of rejections, the Poisson distribution is adopted as the parent distribution of count 208 

time series.  209 

 210 
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3.3 Generation of synthetic count time series 211 

We conduct several Monte Carlo experiments based on the generation of random Poisson-212 

distributed count time series that serve two main goals. The first is to gain insights on the open question 213 

raised by several authors (Yue et al., 2002; Hamed, 2009; Serinaldi & Kilsby, 2016) concerning the 214 

influence of serial correlation on trend detection and vice versa. In particular, we investigate (i) the degree 215 

of autocorrelation that can be detected in time series generated under controlled uncorrelated and 216 

nonstationary conditions, and, conversely, (ii) the trend induced by the presence of autocorrelation in 217 

time series generated under stationary conditions. The second goal of the Monte Carlo experiments is to 218 

generate the null distribution for the statistics of the trend tests (as described in Section 3.4) to account 219 

for discretization, sample length, and possible presence of autocorrelation. In such a way, we can also 220 

explore the type-I error and power of trend tests applied locally and at multiple sites. The generation of 221 

the synthetic count time series is described in the next subsections. 222 

3.3.1 Nonstationary uncorrelated time series 223 

Under the assumption of Poisson distributed counts, we can easily generate synthetic time series 224 

with a controlled trend slope f, applying a linear time-varying relation for the Poisson parameter: 225 

λt = λ0 + ϕ ∙ t , t = 1, …, n (2) 

where the intercept λ0 is derived by constraining the mean value of {λt} to be λ	=	(1− q) ∙ 365.25, with 226 

q being the selected nonexceedance probability. This results in	λ0	=	λ− ϕ ⋅ (n+ 1)/2.  227 

3.3.2 Stationary correlated time series 228 

We use the INAR(1) model to generate random autocorrelated stationary count time series. INAR 229 

models have been mainly applied in economics and finance (e.g., Blundell et al., 2002; Jung and 230 

Tremayne, 2011), epidemiology (e.g., Allard, 1998; Pascual & Akhundjanov, 2019), and insurance (e.g., 231 

Gourieroux & Jasiak, 2004; Boucher et al., 2008), but they have received less attention in hydrology and 232 

climatology. To define the INAR(1) process, we first introduce the binomial thinning operator, “∘” 233 
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(Steutel & van Harn, 1979). If r	∈	[0, 1] and N is a nonnegative integer random variable, this operator is 234 

defined as: 235 

 r ∘ N =2 Yi	,            N > 0
N

i!1
 (3) 

where {Yi} are independent and identically distributed (i.i.d.) variates of a Bernoulli distribution B(r). 236 

While other thinning operators have been proposed (Weiß, 2008), here the binomial thinning operator is 237 

used. A process {Nt} is defined INAR(1) if: 238 

Nt = r ∘ Nt$1 + ϵt (4) 

where {ϵt} is an i.i.d. random process of integer values and the binomial thinning operator with parameter 239 

r is applied to Nt$1. Its lag-k autocorrelation is r(k)	=	r	k, similar to the AR(1) model for real values.  240 

In light of the results discussed in section 3.2, we adopt a Poisson-INAR(1) model to generate 241 

synthetic correlated count series, where {ϵt} is an i.i.d. random process according to a Poisson 242 

distribution with parameter µ, and the marginal distribution of {Nt} is also a Poisson distribution with 243 

parameter 4 μ
1$r5 (Weiß, 2008). Parameters of the Poisson-INAR(1) model reproducing the statistical 244 

properties of an observed count time series {ot} can be estimated as: r = robs, with robs being the observed 245 

lag-1 autocorrelation of {ot}; and μ	=	(1− robs)	λ, with λ	=	(1− q) ∙ 365.25 being the expected number 246 

of annual exceedances above the q-th quantile. An example of the capability of the Poisson-INAR(1) 247 

model to reproduce the statistical properties of our observed counts is shown in Fig. 2, where the 248 

empirical autocorrelation function of two randomly chosen count time series derived from the GHCN P 249 

records is compared to the 95% confidence intervals (CIs) built from 10,000 model simulations with the 250 

parameters estimated as just described. Fig. 2 shows that the Poisson-INAR(1) model captures very well 251 

the empirical autocorrelations at different lags. 252 

 253 
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3.4 Setup of statistical tests through Monte Carlo simulations 254 

To detect empirical trends in our analyses, we focus on three (two) nonparametric (parametric) 255 

statistical tests widely used in trend analyses of P extremes (Table 1). The nonparametric ones include 256 

Mann Kendall (Mann, 1945; Kendall, 1975); Kendall’s t (Kendall, 1938; El-Shaarawi & Niculescu, 257 

1992); and Spearman’s r (Gauthier, 2001). The parametric tests are based on linear and Poisson 258 

regression (Wilks, 2019). All these tests have been originally devised to investigate the null hypothesis 259 

of trend absence in uncorrelated time series. However, some authors have warned about the possible 260 

degraded test performances due to the possible presence of serial correlation in stationary time series 261 

(e.g., Serinaldi & Kilsby, 2016). To investigate this issue, we use Monte Carlo simulations to build the 262 

distribution of the test statistics under any H0 that may include uncorrelated and autocorrelated time 263 

series. In such a way, we also reduce potential biases introduced by finite sample sizes and discrete 264 

records (Deidda & Puliga, 2006), as well as by the presence of ties likely found in count time series.  265 

In the general case of count time series of length n affected by serial correlation, a statistical trend 266 

detection test based on Monte Carlo simulations can be applied as follows: 267 

1. The expected number of exceedances above the q-th quantile is estimated as λ	=	(1− q) ∙ 365.25. 268 

2. Parameters of the Poisson-INAR(1) model in equation (4) are estimated as: r = robs and  269 

μ	=	(1− robs) ∙ λ. 270 

3. An ensemble of nens (e.g. nens = 10,000 in our applications) stationary count time series, each of 271 

length n, is generated using the Poisson-INAR(1) model with parameters estimated in step (2). 272 

4. The s test statistic of interest (e.g., s = t for Kendall’s) is computed for each of the nens count time 273 

series generated in step (3). 274 

5. The empirical cumulative distribution function (ECDF) of the nens test statistics from step (4) is 275 

used to determine the acceptance region of the null hypothesis. For example, for two-sided tests, 276 

this is the interval of s-quantiles corresponding to probabilities a/2 and (1 − a/2), for any 277 
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considered significance level a. The local null hypothesis is therefore accepted or rejected by 278 

comparing the test statistic computed on the time series of interest, sobs, with such acceptance 279 

region. 280 

6. Similarly, the ECDF of the nens test statistics from step (4) is used to determine the p-value of sobs 281 

(note that, for two-sided tests, as those selected here, the corresponding p-value has to be 282 

estimated by doubling the exceedance or nonexceedance probability in the ECDF). 283 

7. If the test is conducted at M sites, the field significance is taken into account through the FDR 284 

test applied with the M p-values determined at each site, as described in steps (1)-(6). 285 

This procedure is general and can be implemented for any trend test by using the corresponding test 286 

statistic in steps (4)-(6) (see Appendix for details on the tests considered here). Moreover, with this 287 

method, different null hypotheses can be tested depending on the properties of the synthetic count series 288 

generated in step (3). We will use the following compact notation to describe the null hypothesis tested 289 

in this study, including: H0: “r0 = 0; f0 = 0” for uncorrelated and stationary signals generated at step (3) 290 

from a Poisson distribution with parameter λ (in this case, step (2) is skipped); and H0: “r0 = r*; f0 = 0” 291 

for serially correlated and stationary signals generated from the Poisson-INAR(1) model with parameter 292 

r = r* (e.g., r* = robs in step (2)). 293 

An analogous procedure can also be implemented to test whether a certain degree of 294 

autocorrelation detected in a count time series can be reasonably due to the presence of a given trend. In 295 

this case: the null hypothesis is H0: “r0 = 0; f0 = f*”; step (2) is skipped; an ensemble of nens nonstationary 296 

uncorrelated count time series of length n is generated in step (3) as described in section 3.3.1, using 297 

parameter λ from step (1) and a given trend slope f*; finally, the lag-1 autocorrelation is used as test 298 

statistic in step (4) and the nens estimated lag-1 autocorrelations are utilized to compute the p-value 299 

associated with the observed autocorrelation. 300 
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4 Results and discussion 301 

4.1. Investigation of autocorrelation and its relationship with linear trends  302 

Deciding whether the possible influence of serial correlation in trend detection should be taken 303 

into account is not an easy question to answer, because, in principle, there can be a reciprocal feedback 304 

between autocorrelation and trend. To investigate this nontrivial issue in our count time series, we use 305 

two simple metrics to characterize autocorrelation and trend, namely the lag-1 autocorrelation, r, and the 306 

linear trend slope, f, respectively. We first compare the empirical distributions of r and f of the M = 307 

1087 observed count time series with the corresponding 95% CI of r and f, respectively, derived from 308 

nens = 10,000 Monte Carlo simulations under H0: “r0 = 0; f0 = 0”. In other words, we evaluate whether 309 

the observed r’s and f’s can be considered statistically different from those of uncorrelated time series 310 

with no trend. Results are shown in Fig. 3 for q = 0.95 and different n (similar patterns are obtained for 311 

the other q’s; see Figs. S1, S2 and S3 in Supplementary Material). As expected, for both metrics the 312 

dispersion of the empirical distributions increases for smaller n. The simple visual comparison of 313 

distributions and 95% CIs suggests that H0 should be locally rejected for r in a relatively small number 314 

of sites (Figs. 3a-c), while the number of rejections appears to be much higher for f (Figs. 3d-f). These 315 

visual speculations are confirmed by results for the local test reported in Table 2 and, more importantly, 316 

by the application of the FDR test, which reveals that for n = 100 only 3% (or 0% for n = 50 and 30) of 317 

the observed r’s can be considered statistically significant at aglobal = 0.05 significance level, while the 318 

percentage of statistically significant observed f’s is much larger (41%). Results for all considered n and 319 

local and FDR tests are reported in Table 2 and consistently show that, while a large number of sites 320 

seem to be affected by significant trend, the same conclusion does not hold for empirical serial 321 

correlation.  322 
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To further explore whether the presence of autocorrelation may introduce bias in the estimation 323 

of the linear trend slope, we analyze the joint distribution of r and f estimated on the M observed 100-324 

year time series. The scatterplot between these values is plotted in Fig. 4a (grey circles) along with 325 

estimates derived from M random stationary and uncorrelated time series (black circles). The visual 326 

inspection clearly suggests that the observations do not appear consistent with a hypothesis of both no 327 

autocorrelation and no trend. In particular, the observed counts exhibit more cases with higher slope 328 

(both positive and negative) that are associated with higher autocorrelation. To gain insights on the 329 

potential cause-effect relationship of this outcome (i.e., is the autocorrelation causing an artificial trend 330 

or is the opposite true? Or are these effects independent?), we first evaluate whether the presence of trend 331 

can artificially induce autocorrelation. For this aim, we generate time series under H0: “r0 = 0; f0 = f”, 332 

with f varying from -0.2 to 0.2 events/yr to cover the whole range of observed trend slopes for n =100. 333 

For each value of f, we produce nens = 10,000 samples, estimate r on each time series, and derive the 334 

95% CI of r (solid lines in Fig. 4b). We find that 95% of the observed (r,f) pairs lie within the CI, 335 

indicating that the observed r’s, even if different from zero, are compatible with those of uncorrelated 336 

series with trend.  337 

Following a similar framework, we then investigate whether the presence of autocorrelation could 338 

artificially induce significant trends. We do so by computing the 95% CI of f from time series randomly 339 

generated under H0: “r0 = r; f0 = 0”, with r varying from 0 to 0.8 (solid line in Fig. 4c). In this case, a 340 

large fraction (40%) of observed (r, f) pairs lies outside of this CI, implying that several high values of 341 

f cannot be explained solely by the presence of autocorrelation. The same conclusion can be drawn by 342 

comparing this CI with that obtained under H0: “r0 = 0; f0 = 0” (dotted line in Fig. 4c): the two CIs are 343 

very close to each other, meaning that accounting or not for the possible presence of serial correlation 344 

has a very limited impact on the assessment of trend significance. The only region where the trend 345 
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significance could be potentially ascribed to the presence of autocorrelation is the area between the two 346 

CIs, which includes only a very limited number of observed cases. It is also worth noticing that such a 347 

few cases would be certainly less if one rightly considers only the component of autocorrelation that is 348 

not ascribed to the presence of trend, which results in a positive overestimation of r, as also clearly 349 

reflected in the CIs shown in Fig. 4b (see also Yue & Wang, 2002).  350 

Results presented in Fig. 4 suggest that autocorrelation in observed count time series of extreme 351 

P is likely caused by the presence of trends. To complement this conclusion relying on statistical 352 

simulations, we provide further evidence based on the physical argument that temporal persistency (if 353 

any) in extreme P should significantly decrease after a few years. From each observed time series, we 354 

sample the record every four years, thus extracting four sub-series of size n = 25; in such a way, we 355 

eliminate the effect of potential autocorrelations at lags from 1 to 3 years. For each sub-series, we 356 

estimate f and plot it against the slope estimated on the full series. Results are presented in Fig. 5a, which 357 

shows that, despite some expected sampling variability, all values are distributed along the 1:1 line. In 358 

addition, we randomly generate M uncorrelated series of duration n = 100 with the same M slopes 359 

estimated on the observed series, and, for each synthetic sample, we repeat the same calculation on four 360 

sub-series of size n = 25 sampled every four years. The corresponding outcome, reported in Fig. 5b, is 361 

consistent with results for the observed series, thus providing further evidence that statistically significant 362 

trends exist in our observed count time series, independently of the possible presence of autocorrelation. 363 

4.2. Performance of local trend tests  364 

After analyzing the relations between trend and possible presence of autocorrelation, we now use 365 

Monte Carlo simulations to investigate if accounting or not for autocorrelation can affect the power of 366 

local trend tests. To this end, we generate 10,000 nonstationary uncorrelated time series for different 367 

values of ϕ, n and q using equation (2) as described in Section 3.3.1. For each combination of ϕ, n and q, 368 

we estimate the test power as the fraction of rejections of the null hypotheses H0: “r0 = 0; f0 = 0” and 369 
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H0: “r0 = robs; f0 = 0”, applying the trend tests as described in Section 3.4. Results are presented in Fig. 370 

6, where dotted and solid lines are used for the two H0 settings and colors refer to different tests. For n = 371 

100 years, Fig. 6a shows that the power of all tests increases in quasi-linear fashion from 0.05 (the test 372 

significance level) at f = 0 to ~0.9 at f = 0.05 events/yr, reaching 1 for f > 0.07 events/yr. As expected, 373 

for a given f, the test power decreases with n (Fig. 6b). For f  ≤ 0.05 events/yr, the power is less than 0.5 374 

for n ≤ 70 years, indicating that the statistical tests analyzed here have low ability to detect trends even 375 

when n is relatively large. The use of H0: “r0 = robs; f0 = 0” leads to a slight power reduction compared 376 

to H0: “r0 = 0; f0 = 0”, a further indication that taking or not taking into account autocorrelation does not 377 

significantly impact results. Finally, as better shown in Fig. 6b, parametric (linear and Poisson regression) 378 

and nonparametric (Mann Kendall, Kendall’s t and Spearman r) tests cluster in two separate groups, 379 

with the parametric tests exhibiting slightly higher power than the nonparametric ones. Based on these 380 

findings, we will discuss trends in observed count time series in section 4.4 presenting results only for 381 

the Poisson regression (PR) and Mann Kendall (MK) tests, which are representative of parametric and 382 

nonparametric tests, respectively. The difference in power between these two tests as a function of f for 383 

n = 100 years is reported in Fig. 7. 384 

4.3. Performance of trend tests at multiple sites 385 

We gain insights on tests’ performance at multiple locations by conducting synthetic experiments 386 

on a 50 × 100 grid totaling M = 5,000 sites, where we hypothesize the existence of trend only in an inner 387 

rectangular domain containing 30% of the grid points. In each site of this region, we generate count time 388 

series with a given linear trend slope f, while, in the remaining grid points placed in the outer region, we 389 

generate stationary time series. We do this for q = 0.95 and for n = 50 and 100 years. We discuss here 390 

results for PR trend tests (results are similar for other tests) applied locally under H0: “r0 = 0; f0 = 0”, 391 

and globally by accounting for field significance with the FDR test at αFDR = αglobal	(there is no spatial 392 
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correlation in this experiment). Fig. 8a (Fig. 8b) presents the fraction of H0 rejections in the inner region 393 

with trends (outer region without trends) as a function of f, quantifying test power (type-I error) in that 394 

part of the domain. For small trend slopes, local tests lead to higher power (differences of up to 0.5 395 

compared to global results), but such discrepancies approach zero as f increases (Fig. 8a). As found for 396 

the local analyses, for a given f, the power is heavily affected by the sample size. For example, for f = 397 

0.05 events/yr, the power of the global test drops from 0.8 for n = 100 years to zero for n = 50 years. On 398 

the other hand, applying tests locally without considering field significance leads to much larger type-I 399 

errors in the outer region for any f (Fig. 8b). In other words, the use of local tests leads to several false 400 

rejections of H0 that the FDR test is able to prevent. In this case, the effect of the sample size is negligible. 401 

To visually illustrate performance of tests conducted at multiple sites, we refer to the same 50 × 402 

100 grid with time series in the inner region generated with f = 0.05 events/yr, for n = 100 and 50 years. 403 

Figs. 8c-f present maps of test results applied locally and globally, with red (green) colors indicating H0 404 

rejections for the PR when the trend slope estimated on the generated time series is positive (negative). 405 

We first focus on the maps for n = 100 years (Figs. 8c,d). When tests are performed locally (Fig. 8c), H0 406 

is rejected, as expected, at ~5% of the locations in the outer region. This would erroneously indicate 407 

statistically significant trends at sites where trend is not present, inducing wrong physical interpretations 408 

if these sites coincidentally cluster. Accounting for field significance with the FDR test (Fig. 8d) leads 409 

instead to the rejection of H0 at just a few spurious locations (~1% of the points in the outer region). In 410 

this condition, it is more meaningful to interpret these rejections as a result of randomness rather than 411 

physical processes. When considering the inner region with trends, the application of the more 412 

conservative (i.e., H0 is rejected less) FDR test returns a higher number of false nonrejections of H0 413 

compared to the local test (22.8% vs 8.9% of the cases). However, despite the lower power (also 414 

highlighted in Fig. 8a), H0 is rejected at most locations that are spatially clustered, so that the region with 415 

trend could be readily identified.  416 
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When n = 50 years, results for the local tests (Fig. 8e) do not change in the outer region, with 417 

random occurrence of H0 rejections at ~5% of the points with positive and negative slopes as found for 418 

n = 100 years. The reduction of test power due to the smaller sample size leads instead to less H0 419 

rejections in the inner region. Changes are even more drastic when applying the more conservative FDR 420 

test, which results in H0 nonrejections at all sites (Fig. 8f). This outcome suggests that, when the trend 421 

signal is low, the use of methods accounting for field significance will likely indicate the absence of 422 

statistically significant trends. In this circumstance, a careful interpretation of results of the more 423 

powerful local tests could still allow identifying large areas characterized by statistically significant 424 

trends if the sites exhibit coherent positive or negative trend. This is depicted in the example of Fig. 8e, 425 

where positive trends are correctly detected at a number of nearby locations that is sufficiently large to 426 

identify the inner region. In the outer region, the mixture of both positive and negative trends in sites 427 

close to each other should suggest that no trend signal is detectable in such area. This issue will be further 428 

discussed in the next section.  429 

4.4. Trend analyses of observed count series 430 

In light of the insights gained in the previous sections, we now analyze the presence of trends in 431 

observed count series on the M = 1087 selected stations from the GHCN gage network. Trends are 432 

investigated applying the PR and MK tests and, then, the FDR test at αglobal = 0.05 to account for field 433 

significance. We preliminarily considered two null hypotheses: stationary and uncorrelated signals, and 434 

stationary and autocorrelated series. Regarding the second null hypothesis, our previous analyses have 435 

shown that a large portion (or perhaps all) of the lag-1 autocorrelation estimated on the observed sample, 436 

robs, is likely induced by the presence of trend (see Fig. 4b). As a result, when testing the null hypothesis 437 

of autocorrelated signals, we should consider only the residual component of robs that cannot be ascribed 438 

to the presence of trend (see discussion in Section 4.1). Considering that implementing such an approach 439 

is not straightforward, the trend tests were preliminary applied under H0: “r0 = 0; f0 = 0” and H0: “r0 = 440 
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robs; f0 = 0”, which represent two extreme conditions. Since we found very similar results and patterns 441 

in the two cases (not shown), we hereon discuss only results for H0: “r0 = 0; f0 = 0”.  442 

Fig. 9 presents maps of statistically significant trends for q = 0.95 and n = 100 years. Colored 443 

circles and triangles locate significant trends for (i) only PR and (ii) both PR and MK tests, respectively. 444 

We first note that, as suggested by the synthetic experiments, PR detects a larger number of statistically 445 

significant trends than MK, while the opposite never occurs. This is better visualized in the scatterplot 446 

between f and r of Fig. 10, where H0 rejections by only PR or both PR and MK tests are plotted with 447 

different markers. The occurrence of the different cases is controlled by f, while r is not influential, thus 448 

providing additional evidence on the limited effect of autocorrelation on trend detection. In particular, 449 

H0 is rejected by both tests for |ϕ| > ~0.05 events/yr, which is a region where the power of all tests is 450 

high for n = 100 years (Fig. 6a). H0 is rejected only by PR at several sites where |ϕ| is included between 451 

roughly 0.02 and 0.05 events/yr, where the power of both tests decreases (Fig. 6a) but is larger for PR 452 

than MK (Fig. 7). This behavior can, at least partially, explain why the parametric PR rejects H0 in more 453 

cases than the nonparametric MK test.  454 

Despite PR leads to rejection of H0 at several sites where our synthetic experiments suggest low 455 

test power, Fig. 9 clearly shows that locations where trends are statistically significant are well clusterized 456 

in space, with distinct regions where the trend is either increasing (red symbols) or decreasing (green 457 

symbols). As shown in the synthetic experiments at multiple sites of Fig. 8, the presence of spatial clusters 458 

provides further evidence of trend existence. This empirical result is also supported by the physical 459 

argument that extreme P is often controlled by synoptic processes (Barlow et al., 2019), and that their 460 

occurrence is changing in time (Zhang & Villarini, 2019). As a result, when trends exist, they should 461 

manifest over relatively large regions and, if multiple gages are present, statistical tests should detect 462 

statistically significant trends with the same sign at several of these sites (e.g., Kunkel et al., 2020). In 463 

particular, consistent with previous work with global and regional datasets (Table 1), our analyses reveal 464 
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that significant trends are mainly increasing in central and eastern North America (Janssen et al., 2014), 465 

northern Europe (Madsen et al., 2014), northern Asia (Zolotokrylin and Cherenkova, 2017), and central 466 

regions of Australia (Gallant et al., 2007). Extreme P exhibit instead negative trends in southwestern 467 

North America (Hoerling et al., 2016), part of southern Europe (Papalexiou & Montanari, 2019), and 468 

southwestern and southeastern regions of Australia close to the coast (Hughes, 2003).  469 

The synthetic experiments indicate that the tests’ power could be severely reduced when the 470 

sample size decreases. We analyze this issue on the observed count time series by plotting in Fig. 11a 471 

the maps of H0 rejections by the FDR test applied on PR and MK for q = 0.95 and n = 50 years (results 472 

for n = 30 years are presented in Fig. S6). When compared to Fig. 9, the number of H0 rejections 473 

dramatically declines. The only regions with a relatively large number of spatially clustered gages that 474 

exhibit statistically significant trends are northern Europe (increasing trend) and southern Australia 475 

(decreasing trend). In North America, there are some gages where H0 is rejected, but their location is 476 

quite sparse, although there is a relatively clear geographical distinction between increasing and 477 

decreasing trends. In this circumstance where the trend signal might be weak, local test results could be 478 

used to complement results of the more conservative FDR test. As shown in Fig. 11b, local H0 rejections 479 

have a well-defined spatial pattern with two large regions where the trend sign is the same: central and 480 

northeastern (southwestern) North America, with increasing (decreasing) trend, which are the same 481 

regions identified in Fig. 9 for n = 100 years. To complete our analysis, we investigate the role of the 482 

nonexceedance probability q, which controls the threshold used to build the count series of extreme P. 483 

Fig. 12 displays maps of global tests results for n = 100 years for q = 0.90 and 0.975 (results for n = 30 484 

years are presented in Figs. S4-S7). As q increases and focus is placed on rarer events, less statistically 485 

significant trends are detected, but the spatial patterns of increasing and decreasing trends in the different 486 

regions of the worlds are always clearly visible. 487 

 488 
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5 Summary and conclusions 489 

Increasing evidence and theoretical arguments indicate that global warming is causing and will 490 

cause changes in extreme P. Accurate statistical trend analyses of observed and modeled P time series 491 

are key to validate hypotheses on the underlying physical mechanisms and improve our ability to predict 492 

the magnitude of these changes. In this study, we clarified how autocorrelation and field significance 493 

affect application, power, and interpretation of several popular tests for trend detection in count time 494 

series. We focused on count time series because stronger trends have been detected in extreme P 495 

frequencies rather than magnitudes. We used observed records of extreme P frequency in the 100-year 496 

period from 1916 to 2015 collected by 1087 high-quality rain gages of the GHNC network, covering 497 

North America, part of Europe and Asia, and Australia. To investigate the role of autocorrelation and 498 

field significance and interpret trends in observed records, we designed several Monte Carlo experiments 499 

based on the random generation of stationary and nonstationary count time series with different levels of 500 

autocorrelation and sample size. The experiments involved the use of the Poisson-INAR(1) model that 501 

has been rarely adopted in hydroclimatic applications. Our results can be summarized as follows: 502 

1. Although some observed count time series may exhibit some degree of autocorrelation 503 

(quantified through the lag-1 autocorrelation, r), we proved that such correlations are mainly 504 

consistent with those of uncorrelated and either stationary or nonstationary count time series with 505 

the same sample size. We observed that records exhibiting stronger trends (quantified through 506 

the linear slope, f) are also characterized by high r values; in these cases, using statistical 507 

arguments, we proved that the empirical high r values are compatible with uncorrelated time 508 

series with trends of the same observed magnitude. Conversely, we also proved that high trend 509 

slopes cannot be interpreted as a spurious outcome of a stationary autocorrelated signals. As a 510 

result, autocorrelation in observed count time series of extreme P appears to be caused by the 511 
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presence of trends, indicating that taking or not taking into account its presence when applying 512 

statistical trend tests does not significantly impact results. 513 

2. As expected, the power of trend tests is importantly affected by sample size, n, of the analyzed 514 

series and trend magnitude, f. For example, considering the occurrences of daily precipitation 515 

with nonexceedance probability q = 0.95 and a trend slope f = 0.05 events/yr, the power is lower 516 

than 0.5 when n ≤ 70 years, which is a relatively long record. The power of parametric tests (linear 517 

and Poisson regression) is slightly larger than that of nonparametric tests (Mann Kendall, 518 

Kendall’s t and Spearman r). 519 

3. Trend tests are in most cases applied at multiple locations. Here, we confirmed that, if test 520 

multiplicity or field significance is not taken into account, type-I errors could be large and 521 

statistically significant trends could be mistakenly detected at several sites, inducing wrong 522 

physical interpretations when these locations tend to coincidentally cluster. Accounting for field 523 

significance severely reduces this problem. On the other hand, we also showed that the inclusion 524 

of field significance leads to a power reduction compared to local tests. While this issue is 525 

practically irrelevant when the trend signal is moderate and high, it may result in several incorrect 526 

nonrejections of H0, especially when the sample size is small. To limit this, the careful 527 

interpretation of results of local tests could help correctly identify trends in large regions where: 528 

(i) several gages are present; (ii) local tests reject H0 at most locations; and (iii) the trend detected 529 

in close gages has the same sign. These recommendations are supported by the empirical analyses 530 

of observed records presented here, as well as by the physical evidence that extreme P is mainly 531 

driven by large-scale processes whose occurrence has been changing in time. In such a way, the 532 

power of regional trend analyses is expected to increase, a task highly desirable to support 533 

engineering design against natural hazards (Vogel et al., 2013). 534 
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4. The application of several trend tests on the selected 1087 rain gages of the GHNC network 535 

reveals statistically significant increasing trends in several parts of the world, including central 536 

and eastern North America, northern Europe, part of northern Asia, and central regions of 537 

Australia. Decreasing trends are instead found in southwestern North America, part of southern 538 

Europe, and southwestern and southeastern regions of Australia. These results are largely 539 

consistent with previous studies. 540 

Our work provides useful guidance for a more informed application of statistical trend tests in regional 541 

and global trend analyses of hydroclimatic extremes, and for a more realistic interpretation of test results. 542 
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Appendix A  549 

Given the count time series {ok} with k = 1, …, n, we investigate the existence of trend through 550 

three nonparametric tests (Mann Kendall, Kendall’s t, and Spearman’s r) and two parametric tests (test 551 

on linear regression slope and Poisson regression). In the following, we report the statistics of each test, 552 

which are used to build the null distribution via Monte Carlo simulations as described in section 3.4.  553 

The Mann-Kendall test is based on the test statistic S calculated as: 554 

 S =2 2 sign7oj − ok8
n

k!j&1

n$1

j!1
=2 2 sign7Rj − Rk8

n

k!j&1

n$1

j!1
 (A1) 

where oj and ok represent j-th and k-th values of the count time series, Rj and Rk the corresponding ranks, 555 

n is the length of the series and: 556 

	sign7Rj − Rk8 9
 1       for	7Rj − Rk8 > 0

 0       for	7Rj − Rk8 = 0

-1       for	7Rj − Rk8 < 0

 (A2) 

In the Spearman’s rank correlation test, the following rs test statistics is used: 557 

rs =  1− 6∑ (Ri − i)2n
i!1

n(n2 − 1)  (A3) 

The Kendall’s t test is based on a measure of the rank correlation evaluated as follows: 558 

 τ =  
2

n(n− 1)2 2 sign7Ri − Rj8
n

j!i&1

n$1

i!1
sign(i− j) (A4) 

The trend test on linear regression slope is based on the regression between {ok} and k = 1, …, 559 

n as follows: 560 

μk = b0 + b1k, (A5) 

where μk is the predicted value, and b0 and b1 are parameters estimated through the least squares 561 

approach. Here, we apply the trend test using b1 as test statistic.  562 
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The Poisson regression is a generalized linear model that links a Poisson-distributed variable with 563 

a set of predictors. Here, we consider only one predictor. The model relates the logarithm of the µ 564 

parameter of the parent Poisson distribution of the predictand with the predictor as: 565 

ln(μk) = b0 + b1k (A6) 

The statistics used to apply the test under the proposed modification with Monte Carlo simulations is b1. 566 

  567 
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Figures 784 

 785 

Figure 1. GHCN rain gauges selected for this study with indication of the three regions of (i) North 786 

America, (ii) Europe and Asia, and (iii) Australia displayed in subsequent figures. 787 

788 
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 789 

Figure 2. Examples of empirical autocorrelation function of two randomly chosen observed count time 790 

series (q = 0.95, n = 100 years) of the GHCN dataset along with 95% confidence interval (CI) derived 791 

from 10,000 synthetic time series generated with the Poisson-INAR(1) model. For both series, the slope 792 

of the linear trend is smaller than 0.02 events/yr.  793 
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  794 
Figure 3. Histograms of (a)-(c) lag-1 autocorrelation r and (d)-(f) linear trend slope f estimated on the 795 

M = 1087 observed count time series for q = 0.95 and sample size n = 100, 50, and 30 years (from left 796 

to right). Vertical lines depict the 95% confidence intervals obtained from 10,000 synthetic uncorrelated 797 

and stationary time series (H0: “r0 = 0; f0 = 0”).798 
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 799 

Figure 4. Scatterplot between f and r computed on M = 1087 observed count time series for q = 0.95 800 

and n = 100 years (grey circles) along with: (a) scatterplot between f and r calculated on synthetic counts 801 

with H0: “r0 = 0; f0 = 0” (black circles); (b) 95% CIs of r computed under H0: “r0 = 0; f0 = f” (solid 802 

line) with f being the value in the x-axis, and H0: “r0 = 0; f0 = 0” (dashed line); (c) 95% CIs of f computed 803 

under H0: “r0 = r; f0 = 0” (solid line) with r being the value in the y-axis, and H0: “r0 = 0; f0 = 0” (dashed 804 

line).   805 
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 806 
Figure 5. (a) Scatterplot of linear slopes f estimated on M = 1087 observed count time series for q = 807 

0.95 and n = 100 years versus linear slopes fS* (* = 1, 2, 3, 4) estimated on the corresponding 4 x M  sub-808 

series of n = 25 years extracted from each full series by sampling one record every four years and denoted 809 

with S1-S4. (b) Same as (a) but for synthetic time series generated under H0: “r0 = 0; f0 = fobs”, with fobs 810 

being the observed slope.   811 
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 812 

Figure 6. Performances of several trend tests with the null distribution of the test statistics built under 813 

H0: “r0 = 0; f0 = 0” (dashed line) and H0: “r0 = robs; f0 = 0” (solid line), evaluated on synthetic count 814 

time series relative to q = 0.95. (a) Power of tests as a function of f for uncorrelated nonstationary time 815 

series for length n = 100 years. (b) Power of tests as a function of n for uncorrelated nonstationary time 816 

series for f = 0.02, 0.05, 0.10, and 0.30 events/yr.  817 
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 818 

Figure 7. Gaussian-weighted moving average of the differences between power of PR and MK tests 819 

(indicated with Dp) reported in Fig. 6a for q = 0.95 and n = 100 years.  820 
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 821 

Figure 8. Performance of trend test at multiple sites quantified through a synthetic experiment in a 50 x 822 

100 grid points (see text for details). (a) Fraction of local (L) and global (G) rejections of H0 as a function 823 

of f in the inner region with trend (test power) for n = 100 and 50 years. (b) Same as (a) but for the outer 824 

region with no trend (type-I error). (c) Map of local rejections of H0 for the case where an increasing 825 

trend with slope f = 0.05 events/yr is assumed in the inner region and n = 100 years. (d) Same as (c), but 826 

for global rejections of H0 after applying the FDR test. (e)-(f) same as (c)-(d), but for n = 50 years. In 827 

(c)-(f), red (green) dots represent rejections of H0 with increasing (decreasing) trend, while grey dots are 828 

used when H0 is not rejected.   829 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
 [events/yr]

0

0.02

0.04

0.06

0.08

0.1

Re
je

ct
io

n 
ra

te
 in

 re
gi

on
 w

ith
 n

o 
tre

nd
s [

-]

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
 [events/yr]

0

0.2

0.4

0.6

0.8

1

Re
je

ct
io

n 
ra

te
 in

 re
gi

on
 w

ith
 tr

en
ds

 [-
]

(a) Test power (b) Type-I error

(c) Local test (n

(f

 = 100 yr) (d) Global test (n  = 100 yr)

) Global test (n  = 50 yr)(e) Local test (n  = 50 yr)

L1
00

G
10

0
L5

0

G5
0

L100

G50

G100

L50



 44 

 830 

Figure 9. Statistically significant trends at the GHCN gages after applying the FDR tests at αglobal = 0.05 831 

for n = 100 and q = 0.95. Larger circles (triangles) are used when H0 is rejected by PR only (PR and MK), 832 

with colors based on the trend slope value and sign. Smaller grey dots are used when H0 is not rejected 833 

by both tests.  834 
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 835 

Figure 10. Scatterplot between f and r computed on M = 1087 observed count time series for q = 0.95 836 

and n = 100 years, with different markers visualizing possible combined outcomes of PR and MK tests.  837 
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 838 

Figure 11. (a) As in Fig. 9 but for n = 50 yr. (b) As in (a) but for local results without the application of 839 

the FDR test.  840 
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 841 

Figure 12. As Fig. 9 but for (a) q = 0.90 and (b) q = 0.975. 842 
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Reference Spatial 
coverage 

Time 
Period 

Number 
of years Data Spatial 

aggregation Metrics Statistical 
techniques 

Account for 
field 

significance 

Account for 
serial 

correlation 
Main results 

Groisman et 
al., (2005) Global 1893-

2002  32 to 110 NCDC 
rain gages 

Sub-
continental 

regions 

AFPOT and 
ATPOT SP No No significant 

observed r’s 
Statistically significant increasing (decreasing) trends in Europe, 
America, South-Africa (southwestern Australia). 

Alexander et 
al., (2006) Global 1901-

2003 52 to 102 

GHCN, 
ECA and 
GSN rain 

gages 
(5948) 

Point and 
5° x 5° grids 11 PCCIs MK Bootstrapping  Prewhitening  Trends on extreme events mainly increasing, but statistically significant 

on 13%–37% of the stations depending on the metric. 

Westra et al., 
(2013) Global 1900-

2009 30 to 110 
HadEX2 

rain gages 
(8326) 

Point AM MK Bootstrapping  Negligible mean 
r 

- Increasing trends in 2/3 of rain gages, but only 8.6% statistically 
significant; 
- No evident spatial patterns of significant trends. 

Kunkel & 
Frankson, 

(2015) 
Global 1951-

2014 64 
GHCN 

rain gages 
(6619) 

10° x 10° 
grids 

AFPOT and 
ATPOT KT No 

Trend test 
estimating 

variance inflation 

- Most trends not statistically significant. 
- Increasing trends in most of the world except western North America, 
southern Europe, northern Eurasia and western and eastern coasts of 
Australia. 

Asadieh & 
Krakauer, 

(2015) 
Global 1901-

2010 30 to 110 

HadEX2 
rain gages 
(~11,600); 

CMIP5 
outputs 

2.54° x 3.75° 
grids AM MK No No 

- Increasing (decreasing) trends in 66.2% (33.8%) of grid cells, but only 
18% (4%) statistically significant; 
- Consistent results with CMIP5 outputs but with trend underestimation. 

Papalexiou 
& 

Montanari, 
(2019) 

Global  1964-
2013 50 

GHCN 
rain gages 

(8730) 

Point and  
5° x 5° grids 

AFPOT and 
AMPOT  MC No 

AF: negligible 
mean r 

AMM: use of 
AR(1) in Monte 

Carlo simulations 

- Coherent spatial patterns of trends more evident in frequency (AFPOT) 
than magnitude (AMPOT); 
- For AFPOT: increasing trends in central and eastern USA, Europe, 
eastern Russia and most of China; 
- For AMPOT: increasing trends in western and northern Europe, and 
eastern and central USA; 
- Ratio of increasing/decreasing statistically significant trends: 2.4 (1.3) 
for AFPOT (AMPOT).  

Janssen et 
al., (2014) USA 1901-

2012 112 

HadEX2 
rain gages 

(726) 
CMIP5 
outputs 

Sub-
continental 
regions and 
1° x 1° grids 

AFPOT  PD No No 
- Statistically significant increasing (decreasing) trends in central and 
eastern (western) USA; 
- Consistent results from CMIP5 but with a trend underestimation. 

Hoerling et 
al., (2016) USA 

 1901-
2013; 
1979-
2013. 

35 to 114 
GHCN  

rain gages 
(~10,000) 

Sub-
continental 

regions 

ATPOT, 
AFPOT and 

AMPOT 
ND No No 

- Statistically significant increasing (decreasing) trends in 1901-2013 in 
the northeastern (southwestern) USA; 
- Similar patterns for the 1979-2013 period. 

Wright et al., 
(2019) USA 1950-

2017 68 
GHCN 

rain gages 
(911) 

Sub-
continental 

regions 
AFPOT NB No No Statistically significant increasing trends in eastern USA, smaller and 

less significant changes in western parts 
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Kunkel et 
al., (2020) USA 

- 1949-
2016; 

- 1979-
2016. 

37 to 68  
GHCN 

rain gages 
(3098) 

Sub-
continental 

regions 

AFPOT and 
AT KT No No 

- In 1949-2016, statistically significant increasing trends in several areas 
of USA; statistically significant decreasing trends in western USA, but 
in lower number; 
- Similar patterns in 1979-2016 but lower number of significant trends.  

Kruger & 
Nxumalo, 

(2017) 
South Africa 1921-

2015 95 Rain gages 
(60) 

Point and 
rainfall 
districts 

11 PI t-test No No Statistically significant increasing trends in indices related to extreme 
events in southern and middle regions. 

New et al., 
(2006) South Africa 1961-

2000 30 to 40 Rain gages 
(63) 

Point and 
regions 10 PI  KT No No 

- Increasing trends in indices related to extreme events at regional scale; 
- Few statistically significant trends and no evident spatial patterns at 
local scale.  

Tramblay et 
al., (2013) North-Africa 1950-

2008 33 to 59 Rain gages 
(22) Point 11 PI MK FDR test 

Trend test  
accounting for 

variance inflation  

- Few decreasing trends on indices related to extreme events; 
- Statistically significant trends with local tests, but in much lower 
number after applying the FDR test. 

Hennessy et 
al., (1999) Australia 1910-

1995 86 Rain gages 
(379) Countries Several PI KT No No 

Statistically significant increasing (decreasing) trends on indices 
focused on extreme events in South Australia and New South Wales 
(Western Australia) regions.  

Hughes, 
(2003) Australia - - - - Review  - - - Increasing trends in most areas, decreasing trends in southwestern and 

southeastern regions. 

Gallant et 
al., (2007) Australia 

- 1910-
2005; 

- 1950-
2005. 

56 to 96  Rain gages 
(92) Six regions Several PI KT No No Statistically significant increasing (decreasing) trends on indices related 

to extreme events in central (southwestern and southeastern) regions. 

Alpert et al., 
(2002) 

Mediterra-
nean Basin 

1951-
1995 45 Rain gages 

(265) Countries ATPOT SP FDR test No Statistically significant increasing trends in two of the four considered 
countries.   

Madsen et 
al., (2014) Europe - - -  - Review  - 

 

- Overall increase both in frequency and magnitude of extreme 
precipitation, especially in northern parts. 

Zolotokrylin 
& 

Cherenkova, 
(2017) 

Russia 1961-
2013 53 Rain gages 

(527) Point SFPOT and 
STPOT Not defined No No Statistically significant increasing trends in 2/3 of rain gages for all 

seasons. 
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Table 1. Summary of several empirical trend analyses of precipitation extremes performed at global and regional scale with daily records. 843 

Acronyms for datasets, metrics and statistical tests are defined as follows. (1) Datasets: NCDC = National Climatic Data Center; GHCN = 844 

Global Historical Climate Network; ECA = European Climate Assessment; GCN = GCOS (Global Observing System for Climate) Surface 845 

Network; HadEX2 = Hadley Center Global Climate Extremes Index 2; CMIP5 =Coupled Model Intercomparison Project 5. (2) Metrics: 846 

AM = Annual maxima; AFPOT (SFPOT) = Annual (seasonal) frequencies in peak-over-threshold (POT) series; ATPOT (STPOT) = Annual totals 847 

of exceedances in POT series; AMPOT = Annual average magnitude of exceedances in POT series; AT (ST) = Annual (seasonal) totals; PI 848 

= Precipitation-based indices. (3) Statistical tests: MK = Mann-Kendall test; KT = Kendall's t test; SP = Spearman's r test; PD = Poisson's 849 

distribution-based test; NB = Negative binomial regression; MC = Monte Carlo simulations.850 
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 n = 100 n = 50 n = 30 

Significant r’s for H0: “r0 = 0; f0 = 0” 

Local test 156 (14%) 77 (7%) 80 (7%) 

FDR test 29 (3%) 3 (0%)  0 (0%)  

Significant f’s for H0: “r0 = 0; f0 = 0” 

Local test 467 (43%) 244 (22%) 193 (18%) 

FDR test 451 (41%) 114 (10%) 94 (9%) 

Table 2. Number and percentage of count series derived for q = 0.95 with significant r and/or f for local 851 

and FDR tests assuming H0: “r0 = 0; f0 = 0”. 852 


