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Abstract

A clustering method is applied to high resolution simulations of shallow continental convection to investigate the size dependence

of coherent structures in the convective boundary layer. The study analyses the geometry of the clusters, along with their profiles

of vertical velocity and total water. The main science goal is to assess various assumptions often used in spectral mass-flux

convection schemes. Novel aspects of the study methodology include i) a newly developed clustering algorithm, and ii) an

unprecedentedly large number of simulations being analysed. In total 26 days of LASSO simulations at the ARM-SGP site are

analyzed, yielding roughly one million individual clusters. Plume-like surface-rooted coherent convective clusters are found to

be omnipresent, the depth of which is strongly dependent on cluster size. The largest clusters carry vertical structures that are

roughly consistent with the classic buoyancy-driven rising plume model, while

smaller clusters feature considerable variation in top height.

The cluster area is found to strongly vary with height and size, with small clusters losing mass and large clusters gaining mass

below cloud base.

Similar size dependence is detected in kinematic and thermodynamic properties, being strongest above cloud base but much

weaker below.

Finally the efficiency of the top-hat approach in flux parameterization is investigated, found to be 80-85 \% including a weak

but well-defined dependence on cluster size. Implications of the results for spectral convection scheme development are briefly

discussed.
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Key Points:8

• A 3D clustering analysis is applied to large-eddy simulations of shallow cumulus9

cloud fields as observed at the ARM SGP site10
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Abstract15

A clustering method is applied to high resolution simulations of shallow continental con-16

vection to investigate the size dependence of coherent structures in the convective bound-17

ary layer. The study analyses the geometry of the clusters, along with their profiles of18

vertical velocity and total water. The main science goal is to assess various assumptions19

often used in spectral mass-flux convection schemes. Novel aspects of the study method-20

ology include i) a newly developed clustering algorithm, and ii) an unprecedentedly large21

number of simulations being analysed. In total 26 days of LASSO simulations at the ARM-22

SGP site are analyzed, yielding roughly one million individual clusters. Plume-like surface-23

rooted coherent convective clusters are found to be omnipresent, the depth of which is24

strongly dependent on cluster size. The largest clusters carry vertical structures that are25

roughly consistent with the classic buoyancy-driven rising plume model, while smaller26

clusters feature considerable variation in top height. The cluster area is found to strongly27

vary with height and size, with small clusters losing mass and large clusters gaining mass28

below cloud base. Similar size dependence is detected in kinematic and thermodynamic29

properties, being strongest above cloud base but much weaker below. Finally the effi-30

ciency of the top-hat approach in flux parameterization is investigated, found to be 80-31

85 % including a weak but well-defined dependence on cluster size. Implications of the32

results for spectral convection scheme development are briefly discussed.33

Plain Language Summary34

This paper studies updrafts, which are volumes of warm air travelling upwards in35

the atmosphere, using high-resolution simulations. These simulations have sufficient res-36

olution to capture how air warmed at the surface by the sun travels upwards. These up-37

drafts are responsible for the formation of cumulus clouds. What separates this study38

from others is the newly developed method used to detect these updrafts in the model39

output, and the comparatively large amount of simulations analysed. The model domain40

is large enough to contain thousands of updrafts at any time throughout the day. 26 days41

of simulations over the great plains in Oklahoma are used, yielding about a million sim-42

ulated updrafts in total for us to study. From our results we conclude that there is a clear43

positive relationship between updraft width and height. Thinner updrafts seldom reach44

up to the cloud base, and they tend to get thinner the further away they are from the45

surface. In contrast, we find that the larger updrafts are wider at cloud base than at the46
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surface. Other aspects of the updrafts, such as their vertical velocity and moisture trans-47

port, are studied to determine how these properties vary with the width of the updrafts.48

1 Introduction49

Meteorologists have attempted to represent unresolved surface driven convection50

in atmospheric models since the very beginning of computational atmospheric modelling.51

While many methods have been developed and applied successfully, shortcomings in con-52

vective parametrizations still cause uncertainty among numerical climate simulations (Sherwood53

et al., 2014; Vial et al., 2016), as well as biases in the onset of continental precipitation54

in numerical weather prediction (Grabowski et al., 2006). The most popular and widespread55

class of convective parametrizations use the mass-flux approach, which was developed56

decades ago (Yanai et al., 1973; Arakawa & Schubert, 1974) and is still an active field57

of research and development (e.g. Lopez-Gomez et al., 2020; Cohen et al., 2020). What58

all mass-flux approaches have in common is that they rely on one or more advective plumes59

to vertically transport near-surface air to higher levels, experiencing lateral mixing on60

the way.61

Mass flux schemes can roughly be divided into single and multi-plume approaches.62

Single-plume approaches typically follow the “bulk” paradigm, in that all unresolved con-63

vective objects in a gridbox are represented through a single parametrized plume (e.g.64

Yanai et al., 1973; Sakradzija et al., 2015; Tan et al., 2018). In contrast, multi-plume ap-65

proaches make use of a spectrum of plumes to achieve the same goal, thus maintaining66

extra information in the dimension in which the spectrum is defined (e.g. Arakawa &67

Schubert, 1974; Neggers, 2015; Suselj et al., 2019; Baba, 2020). A special subclass of spec-68

tral mass flux approaches are those formulated in size space, thus assuming dependence69

on the width of the transporting objects. Recent research has shown that size-dependent70

spectral approaches can in principle capture population-internal interactions between plumes71

(Neggers, 2015), gray-zone scaling (Brast et al., 2018), convective stochasticity (Sakradzija72

& Klocke, 2018) and deep convective memory (Hagos et al., 2018). Some size-dependent73

spectral approaches have successfully been implemented in operational weather forecast-74

ing (Olson et al., 2019).75

With size dependence being at the foundation of many mass flux approaches, it is76

essential to obtain observational evidence for the existence of this dependence in nature.77
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Size dependence has indeed been observed in cumulus cloud populations, but this has78

for a long time mostly been limited to size distributions of object number, often based79

on vertical projections (Plank, 1969; Benner & Curry, 1998; Wood & Field, 2011). It has80

proven much harder to establish clear size dependence in plume internal properties such81

as thermodynamic state, vertical velocity and associated transport, including their ver-82

tical structure. The main problem is that current instrumentation can not yet capture83

the full 3D structure of convective objects at a sufficient temporal and spatial resolution.84

Targeted observations commonly only sample a subset of relevant variables from a lim-85

ited number of convective objects, with sample sizes too small to draw any meaningful86

conclusions about general applicability. Recent observational studies have slowly started87

to fill this data gap, using continuously operating instruments at permanent meteoro-88

logical sites (e.g. Ghate et al., 2011; Kleiss et al., 2018; Romps & Öktem, 2018; Zheng89

et al., 2021). A few recent studies used multiple years worth of vertically pointing re-90

mote sensing data at the Atmospheric Radiation Measurement Southern Great Plains91

site (ARM-SGP) to investigate size dependence. Lamer and Kollias (2015), Lareau et92

al. (2018) and Lareau (2020) inferred from chord-length analyses that continental shal-93

low clouds do indeed have a clear size dependence in their vertical velocity and specific94

humidity. Despite this clear progress, observational data on the vertical structure of plume95

properties and the associated size dependence is still pending.96

A virtual alternative for investigating the size dependence in moist convection is97

provided by high resolution simulations of turbulence and convection, also know as Large98

Eddy Simulation (LES). Convective processes can be considered for the largest part re-99

solved in these numerical realizations, which can be closely constrained by observations100

of the atmospheric state on days and at sites of interest (Neggers et al., 2012; van Laar101

et al., 2019; Gustafson et al., 2020). Indeed a considerable number of LES studies on the102

shape of individual clouds and their size dependence have been conducted (e.g. Neggers103

et al., 2003; Heus & Seifert, 2013). Neggers (2015) reported size dependence in cloud-104

average profiles of thermodynamic and kinematic state for subtropical marine cumulus105

cloud fields. Recent studies of deep convection have reported similar links between the106

width of convective objects, their entrainment, and their resulting height and strength107

(Peters, Nowotarski, & Mullendore, 2020; Peters, Morrison, et al., 2020). In an effort to108

bridge the gap between observations and high resolution simulations, Griewank et al. (2020)109

applied the same data analysis strategy in LES that Lareau et al. (2018) applied to ob-110
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servations. They found that the simulations they analysed successfully reproduced the111

observed sub-cloud circulations, and provided further evidence that the properties of con-112

tinental shallow cumulus clouds vary with size.113

In this study we use a library of LES realizations of continental shallow cumulus114

at the ARM-SGP site to investigate the size dependence in the properties of resolved in-115

dividual convective objects. The properties we focus on are the vertical profiles of ob-116

ject area, vertical velocity, and total water mixing ratio, which are all needed for spec-117

tral mass flux parameterizations of surface driven convection. To achieve these goals we118

develop a tailor-made object clustering method. This method is inspired by previously119

proposed algorithms to seamlessly track convective motions across cloud base (Couvreux120

et al., 2009; Efstathiou et al., 2020; Denby et al., 2020), but also differs in some key as-121

pects. Another novelty of our study is the type and number of LES runs that are anal-122

ysed. While most previous work is based on the analysis of a single case (e.g. Couvreux123

et al., 2009), which is most often a quasi-steady maritime case (e.g. Heus et al., 2009;124

Neggers, 2015; Park et al., 2018), we analyse simulations of 26 independent days of sum-125

mertime shallow convection at the ARM-SGP site, as part of the LASSO initiative (Gustafson126

et al., 2020). These exact runs were also used in the recent study by Griewank et al. (2020),127

and have been extensively evaluated against lidar observations of vertical velocity and128

water vapor.129

The data and the clustering method used in this study are described in detail in130

Section 2. The sensitivity of the clustering approach to is assessed in Section 3, yield-131

ing a setting that is subsequently used to investigate size dependence in cluster prop-132

erties in Section 4. Our main results and conclusions are summarized and discussed in133

Section 5.134

2 Data and Methods135

2.1 Data136

2.1.1 Cases137

For the current study we selected 26 days with shallow cumulus convection over138

the Department of Energy’s Atmospheric Radiation Measurement site in the Southern139

Great Plains (ARM-SGP). These days are all part of the Large-Eddy Simulation (LES)140

ARM Symbiotic Simulation and Observation (LASSO; Gustafson et al., 2017, 2020) database.141

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

These realistic and routine simulations of cumulus fields over the ARM-Southern Great142

Plains (SGP) observatory in Oklahoma were run using a variety of initial conditions and143

model settings. For each day in the list in Table 1, we selected the setting yielding the144

best match to the observations in cloud cover and liquid water path, according to the145

LASSO Bundle Browser (https://adc.arm.gov/lassobrowser) (skill scores above 0.3).146

2.1.2 Model setup147

For all 26 cases LES runs were generated with the MicroHH code (van Heerwaar-148

den et al., 2017). This Large Eddy Simulation model has been validated against a wide149

range of standard cases, including shallow cumulus intercomparsion cases in marine (e.g.150

BOMEX Siebesma et al., 2003) and continental (e.g. ARM, Brown et al., 2002) condi-151

tions.152

The experimental setup includes a simulated domain with horizontal and vertical153

dimensions of 25.6 x 25.6 km2 and 9 km, respectively. Below 6 km a 25 m grid spacing154

is used in all directions, a resolution 4x higher compared to the standard LES runs in155

the LASSO archive. Estimating that the smallest resolvable feature is about four times156

larger than the grid size, the 25 m grid spacing should allow reliable simulation of plumes157

with sizes down to 100 m. Above 6 km height the vertical gridspacing stretches from 25158

m to 150 m. Adaptive time stepping with a constant Courant-Friedrichs-Lewy criterion159

resulted in an effective time discretization between 1 and 2 seconds. Periodic boundary160

conditions were adopted, as were homogeneous and prescribed surface fluxes, as well as161

a prescribed profile of radiative tendencies. MicroHH uses a double moment warm mi-162

crophysics scheme, with a fixed cloud droplet number concentration of 200 cm−3.163

During the runs, instantaneous three-dimensional snapshots of all thermodynamic164

variables were saved every 1800 s. To trace the behavior of the plumes, a passive scalar165

c was included as a prognostic variable in the runs, largely following the methodology166

of Couvreux et al. (2009). This scalar is emitted with a fixed, homogeneous, surface flux,167

and removed from the domain by an exponential decay with a half life time of 1800 s.168

The scalar concentration is only used in relative amounts, rendering the actual amount169

of the surface flux irrelevant and set to 1 · 10−5 kg m−2 s−1.170

Note that the 26 runs used in this study are a subset of the 28 runs which Griewank171

et al. (2020) evaluated against observations of vertical velocity, water vapor, and cloud172
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Table 1. Dates of simulations included in the analysis (in Month/Day).

2015 06/06 06/09 06/27

2016 05/18 05/30 06/11 06/19 06/25

07/19 07/20 08/18 08/19 08/30

2017 05/09 06/05 06/27 07/04 07/16

07/19 07/20 07/22

2018 05/22 06/06 07/05 07/09 07/10

fraction. The 2 days not included were rejected due to technical errors that occurred in173

regards to the passive tracer used for clustering. Crucial for this paper is that Griewank174

et al. (2020) showed that the runs reproduce both the shape and amplitude of the ob-175

served sub-cloud vertical velocity fields, as well as the observed relationship between cloud176

chord length and updraft strength.177

While the bulk of the statistical analysis in this study relies on all 26 cases, we se-178

lected a single day to illustrate the working of the cluster algorithm and its sensitivities179

(see Section 3). As can be seen from the true color MODIS (MODerate-resolution Imag-180

ing Spectroradiometer) satellite image shown in Figure 1, on this day more or less ho-181

mogeneous shallow cumulus cloud fields are present over most of western Oklahoma. Deeper182

convection with cold pools occur farther to the south along the border to Texas. To give183

an idea of the simulated clouds we also included a 3D render of the model clouds at noon,184

positioned above a cloud free MODIS image of the surface (Figure 2). The smallest white185

dots in the satellite picture correspond to clusters of individual clouds in the model runs186

(Figure 2). There is no unique feature about this day that made us choose it as our il-187

lustrative example, our only selection requirement was that the run should reach a cloud188

fraction above 10 % during the day (see Figure 2 of (Griewank et al., 2020)).189

2.2 Clustering algorithm190

Many clustering methods have been developed over the last decades to investigate191

various aspects of convection, but none suited to our task. We adopt a new method to192

meet the following four requirements necessary to address our research questions:193
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Figure 1. MODIS Aqua true color image of a convective cloud field over western Oklahoma,

USA, in the early afternoon of 11 June 2016. Image data obtained at 250 m resolution through

NASA Worldview. The state borders are marked in black, and the magenta box marks the size

and location of the model domain described in Subsection 2.1 and shown in Figure 2.

Figure 2. 3D rendering of simulated clouds over the ARM SGP site during the 11 June 2016

LASSO case. The 3D rendering is performed using Blender (http://blender.org), with the ray

tracing acting on cloud liquid water. A MODIS cloud free satellite image is used as the surface,

the MODIS image from the same day is shown in Figure 1.
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1. Coherent clusters must be identified in three dimensional space, labeled individ-194

ually, and sorted by size;195

2. Individual clusters can be directly adjacent to each other;196

3. Clusters must able to extend from the surface up till cloud top, and be definable197

also in absence of condensate;198

4. The method must be robust and computationally efficient enough to be generally199

applicable to multiple cases.200

The first requirement disqualifies many previously published approaches which only dis-201

tinguish between convective and non-convective air, and do not consider the size and shape202

of individual convective objects (e.g. Siebesma et al., 2007; Couvreux et al., 2009; Chinita203

et al., 2018; Efstathiou et al., 2020). The second requirement is designed to prevent clus-204

ters potentially taking a dendritic, elongated shape covering the whole domain. This re-205

quirement means that individual clusters can not solely be defined by their spatial con-206

nectivity, as done for example by Brient et al. (2019). The third requirement eliminates207

approaches relying on cloud properties to define clusters (e.g Neggers, 2015; Park et al.,208

2018; Tan et al., 2018; Suselj et al., 2019). The fourth requirement rules out computa-209

tionally demanding methods such as Lagrangian particle or object tracking through time210

(e.g. Romps & Kuang, 2010; Dawe & Austin, 2012; Heus & Seifert, 2013; Hernandez-211

Deckers & Sherwood, 2016), or 3D filtering of the flow-field (Park et al., 2016).212

The clustering method recently proposed by Denby et al. (2020) in principle ful-213

fills these four requirements. While it inspires the method adopted here, some key dif-214

ferences also exist, as explained below. Similar to previous methods a passive tracer C215

is required, being released at the surface and decaying over time. This easy to implement216

and computationally cheap approach was initially proposed by (Couvreux et al., 2009),217

and has become widely used. A high tracer concentration at a specific height level shows218

that this air was in contact with the surface more recently than the surrounding air, and219

the higher the concentration the quicker the air travelled upward and the less mixing it220

experienced along the way. Our method consists of four steps, as explained below. An221

idealized 2D example (see Figure 3) and an actual 2D slice through a 3D snapshot (see222

Figure 4) are used to illustrate key concepts.223
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2.2.1 Step 0: Anomaly normalization224

Before we begin our clustering approach we first convert the tracer concentration225

C(x, y, z) of each snapshot to a horizontal tracer anomaly, which we normalize by the226

standard deviation of the tracer at each height (σC(z)).227

c′(x, y, z) =
C(x, y, z)− C(z)

σC(z)
(1)

where c′ stands for the normalized anomaly, the overbar for the horizontal mean,228

and σ for the standard deviation. An example of the normalized tracer anomaly at a spe-229

cific height is shown in Figure 4 a. To avoid spurious tracer anomalies in regions where230

the total tracer concentration is so small that numerical noise affects the results, the hor-231

izontally mean tracer concentration C(z) is set to 1·10−10 at heights where the mean232

concentration value is lower.233

2.2.2 Step 1: Decomposition234

Our clustering algorithm first separates the 3D model snapshot into 3 distinct ar-235

eas. Following Couvreux et al. (2009), we first separate the whole domain into a con-236

vective and non-convective area. All cells which have a tracer anomaly c′ higher than237

a threshold value mmask are part of the convective area, all others are masked out and238

considered non-convective. The third area is a subsection of the convective area, which239

we call the core area. It consists of all cells with a tracer anomaly surpassing a higher240

threshold mcore, which must be larger than mmask. In Section 3 we will look into how241

the threshold values chosen affect the resulting clustering. In our simplified 2D exam-242

ple shown in Figure 3, the grey pixels in Subplot a are the non-convective pixels, the light243

blue pixels are the convective pixels, and the dark red pixels are the cells which belong244

to the core area. Figure 4 b shows what the convective and core areas would be for a range245

of threshold values used.246

Note that Couvreux et al. (2009) also used vertical velocity and cloud water to de-247

termine which regions are convective, but we only use the tracer concentration, in line248

with the recent approaches of Brient et al. (2019); Efstathiou et al. (2020), and Denby249

et al. (2020).250
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2.2.3 Step 2: Cores and watershedding251

We now define individual cluster cores from all cells in the core area. We do this252

by treating all cells which are directly connected to each other as one core, with connec-253

tivity being defined as a neighboring cell in x, y, or z direction (no diagonals). So for the254

2D example shown in Figure 3 a, there are a total of 6 core cells, which form 4 individ-255

ual cluster cores. In 3D the connectivity can be much more convoluted.256

Starting at the individual cores, the surrounding convective area is then scanned257

outwards and labeled until it is completely filled. This is done using a watershedding al-258

gorithm, and the speed of the outward scan in 3D space is determined by the gradient259

of c′(x, y, z). This is illustrated in Figure 3 b, where the 4 cores have spread out to fill260

all the convective regions shown in light blue in Subfigure 3 a.261

A convective area which contains no core will not be included in a cluster, and will262

at the end be reverted back to the non-convective area (see the 4 pixels in the bottom263

left of Figure 3). Watershedding is used in a similar manner in the clustering method264

of Denby et al. (2020), which in turn is heavily inspired by that of Park et al. (2018).265

The key difference is that the initial points of their watersheds are local maxima in the266

tracer anomaly, and not the connected cores we use.267

In the non idealized example shown in Figure 4, we chose a slice that contains two268

large plumes with diffuse borders and tracer anomalies between 1 and 3 standard devi-269

ations, as well as various smaller more compact plumes with higher tracer anomalies. The270

two subfigures on the right of Figure 4 show the resulting clusters for two different core271

thresholds. While the more compact plumes (e.g. at x=1 km,y=1 km and x=6 km, y=4272

km) remain a single cluster, the larger plumes separate into multiple individual clusters.273

But a higher core threshold does not automatically mean that more individual clusters274

are formed. For example, the small group of clusters at x=1 km and y=4km shows the275

opposite behaviour (Figure 4 c,d).276

2.2.4 Step 3: Merging and cleaning277

The aim of the final step of the clustering is to reduce the large amount of very small278

but numerous clusters, many which are direct neighbors of much larger clusters. We do279

this primarily for practical reasons, as these small but numerous clusters substantially280
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Figure 3. Simplified illustration of the clustering algorithm described in Subsection 2.2 in 2D.

Light blue convective cells and core cells (a), and resulting clusters each marked by a random

color (b).

increase the memory footprint and computation time of the post-processing, while con-281

tributing very little to the total volume or fluxes. We reduce the clusters in two ways.282

Firstly, by merging a small cluster to a larger neighboring cluster if they are directly in283

contact with each other and the ratio in volume between the clusters exceeds a certain284

threshold. We choose a value of 100 for this threshold to ensure that clusters are only285

merged when the larger is at least two orders of magnitude larger. Neighbors are merged286

iteratively, starting from the largest clusters down to the smallest. This process is re-287

peated until no more mergeable neighbors remain. And at the very end we remove all288

clusters that have less than 30 cells. Brient et al. (2019) also use such a minimum clus-289

ter size, although their default value of 1000 cells is substantially larger than ours. It should290

be noted that while our clustering approach itself does not filter out many clusters, we291

will often only analyse a subset of all clusters (Section 4).292

3 Clustering sensitivity293

In this section we assess how the clustering algorithm reacts to changes to the two294

main free parameters of our clustering algorithm, namely the threshold values that de-295

termine what counts as convective and what counts as core-convective. We will not look296

into the effect of the tracer decay time, as both Park et al. (2016) and Brient et al. (2019)297

have already shown that the effect is negligible for decay times between 15 and 60 min-298

utes, for similar shallow convection cases. For simplicity’s sake we will illustrate the ef-299

fects using a single snapshot from the 2016-06-11 case, at a local time of 13:30 when con-300

vection is approximately at its most intense (profiles of total water, potential temper-301

ature, and cloud fraction are shown in Figure 5 a and e). The basic clustering behaviour302
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Figure 4. Surface emitted tracer anomaly regularized by standard deviation at 1500 m height

at 13:30 local time, 2016-06-11 (top). Only a 7x7 km subdomain of the full 25x25 km model

domain is shown. The same data is plotted with a smooth (left) and discrete color map of the

threshold values used in Subsection 3 (right). Clusters resulting from different core thresholds are

represented by a randomized color (bottom).
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is consistent across snapshots. We will first only look at the properties of the total con-303

vective area, before we address how the total convective area is decomposed into indi-304

vidual clusters of varying size.305

3.1 Total convective area306

In this subsection we look at the properties over the total convective area, defined307

as the region with a tracer anomaly greater than mmask, for mmask ∈ {1.0, 1.5, 2.0} (in308

units of standard deviation). Our goal here is to ensure that using the surface emitted309

tracer C to mask out the convective regions works as expected from previous research.310

And indeed, the profiles of the convective volume (Figure 5 b) closely mirror those of other311

studies. No matter which threshold is used, the area is relatively constant with height312

until cloud base, but decreases above cloud base with a small peak at the inversion height.313

Using a threshold of 1 results in roughly 15 % of the domain below cloud base being clas-314

sified as convective, which is quite similar to the values reached by Couvreux et al. (2009)315

and Efstathiou et al. (2020) when using a threshold of 1. Brient et al. (2019) detect a316

smaller fraction of around 10 % for the same threshold, which is likely due to their anal-317

ysis of a slightly different cloud regime (strato-cumulus). Denby et al. (2020) used a higher318

threshold of 2, resulting in a roughly 6 % convective component, which is again similar319

to our value as well as that Couvreux et al. (2009) found in their sensitivity test.320

The properties of the convective and non-convective components also behave as ex-321

pected. The total moisture flux averaged over the whole convective component decreases322

the higher the threshold value is set, with the environment compensating most of the323

upward moisture transport (Figure 5 c). And the higher the threshold is set, the higher324

the moisture anomaly fluxes in the convective clusters, because the convective area shrinks325

to cover only the strongest updrafts. In summary, we conclude that the clustering be-326

haves as expected in regards to the total area and moisture fluxes, and that both are strongly327

and directly affected by the threshold value mmask.328

3.2 Cluster size sensitivity329

In this section we will focus on the number and size of the clusters. Similar to (e.g.330

Neggers & Siebesma, 2013; Sulak et al., 2020), we define the cluster size as a typical di-331

ameter d, which is calculated by first dividing the volume of a cluster by its vertical ex-332

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 10
qt [g/kg]

0

500

1000

1500

2000

2500

3000

3500

he
ig

ht
 in

 m
et

er

a

qt

0.00 0.05 0.10 0.15
cluster area fraction

b

4 2 0 2 4
qtw  [g/(m2 s)]

c
environment

1.0
1.5
2.0

0 1 2 3
q′tw′  [g/(m2 s)]

d
clusters

1.0
1.5
2.0

0.0 0.1
cloud fraction

e
306 316 [K]

Figure 5. Domain averaged profiles of total water and potential temperature a) and cloud

fraction (e) at 13:30 local time, 2016-06-11. The total cluster area (b), total water flux averaged

over the full domain (c), and the total water anomaly averaged over the cluster area (e) are

shown for 3 different mask thresholds of 1.0,1.5, and 2.0 (mask threshold described in Subsection

2.2).

tent 4z, which results in a vertically averaged area A = V/4z, which we then convert333

to a diameter d by assuming the area is a circle,334

d = 2

√
A

π
(2)

Note that the geometry of the clusters can be very complex, and that the bounding box335

of the cluster footprint will always exceeds diameter d. Both a perfect cylinder and a con-336

voluted network with many holes will have the same diameter as long as they have the337

same ratio of volume to vertical extent.338

First the simplest case is considered in which the mask and core thresholds (as de-339

fined in Section 2.2.2) are almost identical. This makes our clustering approach function-340

ally the same as that used by Brient et al. (2019) to identify updrafts, in which all neigh-341

boring convective cells belong to the same cluster. For technical reasons we set the mask342

threshold to be 0.01 below the core threshold for these tests, and we see that the total343

number of plumes with a diameter d larger than 100 m increases as the threshold increases344

(Figure 6). The sudden jump in the largest cluster size between 1 and 1.5 is a good in-345

dication that 1 is already close to a critical percolation threshold in which almost the346

whole convective area is interconnected. This matches the results Brient et al. (2019)347

show in their supplementary material, where reducing the threshold value to 0.5 leads348
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Figure 6. Size of the largest cluster and number of clusters with a diameter larger than 100

m from a single model snapshot at 2016-6-11, 13:30. X and y axis are the values of mmask and

mcore used for the clustering algorithm. Note that when both values look identical mmask is

actually 0.01 smaller mcore (e.g mmask=0.99, mcore=1.0, details in Subsection 2.2).

to only a few individual clusters remaining. The largest cluster for a mask and core thresh-349

old of 1 has a diameter d > 6 km, which means that roughly 5 % of the whole bound-350

ary layer by volume belongs to a single cluster.351

Thanks to the inclusion of the core threshold, we can modify the number and size352

of the clusters while maintaining the same total volume of convective air. We saw in Fig-353

ure 4 that increasing the core threshold can lead to clusters either splitting or merging.354

Our results show that when looking over the whole domain increasing the core thresh-355

old both increases the number of plumes and decreases the diameter of the largest plume356

(Figure 6).357

One motivation for taking this approach is that it enables decomposing the con-358

tribution to the total flux by plume diameter d (Figure 7). Close to the surface the smaller359

plumes contribute more, while the contribution of the larger plumes dominates above360

the cloud base. This configuration is consistent with the behavior of the size-dependent361

multi plume model framework as proposed by (Neggers, 2015). The core threshold only362

has a very slight effect on the total flux changes (visible by looking at the 2.0 line in Fig-363
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Figure 7. Moisture anomaly fluxes averaged over cluster area at 13:30 local time, 2016-06-11.

Flux is decomposed into the contributions of the clusters binned by cluster diameter. All clusters

have a mask threshold of 1.5, and differing core thresholds (cluster algorithm described in Section

2.2). The dark background marks the cloud layer.

ure 7). These slight differences result from areas which are convective not forming a clus-364

ter if the core threshold is sufficiently high that no core is available to form a cluster, as365

illustrated by the four bottom left pixels in Figure 3. So while the total flux is weakly366

affected, the size breakdown varies strongly with the core threshold. For example, if the367

core and mask threshold are set to 1.5, a single cluster with a diameter of 3 km contributes368

roughly 15 % of the moisture anomaly transport above cloud base. If the core thresh-369

old is increased to 2.0, the widest cluster is under 2 km in diameter.370

From these results we can conclude that our clustering approach has fulfilled the371

four criteria we laid out in Section 2.2. By combining the two thresholds and the wa-372

tershedding approach we can freely change the total convective area without running the373

risk of the largest plumes percolating throughout the whole domain, which is a clear ben-374

efit of the clustering method adopted here. However, the total number of clusters and375

their size distribution varies depending on the threshold values chosen, and any quan-376

titative assessment of the clusters needs to take this into account.377

For the full analysis of the LASSO cases (to be discussed in the next Section) a mask378

threshold of 1.5 and a core threshold of 2.0 is adopted. These values were chosen for a379

number of reasons. Firstly, they avoid routinely detecting clusters with diameters above380
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2 km, which when looked at individually are often highly non-cohesive. The chosen pa-381

rameters also avoid a distinct step in size between the largest few clusters and the rest.382

A mask threshold of 1.0 was discarded because it leads to a large area of air at the in-383

version height to be classified as convective, causing the cluster area fraction to substan-384

tially exceed the cloud fraction throughout the cloud layer (Figure 5). On the other hand,385

a value of 2.0 was deemed too restrictive, as it masks out areas which seem to still be386

dominated by convective plumes (Figure 4).387

While we determined a suitable pair of threshold values through trial and error,388

other methods have been proposed, for example by following a flux decomposition (Efstathiou389

et al., 2020), or by separating Gaussian and non-Gaussian components in joint proba-390

bility density functions (Chinita et al., 2018). However, it is unclear if these approaches391

are suitable to identify individual clusters. Another option would be to include more de-392

tailed geometric properties of the clusters into the selection process (Denby et al., 2020),393

but we do not expect a more exhaustive analysis to change our chosen threshold values394

by more than 0.5.395

4 Cluster analysis396

In this section we will first take a look at the general properties of all clusters de-397

tected by the algorithm, before analyzing various clusters aspects in relationship to the398

cluster diameter.399

4.1 Cluster types400

In this subsection we first consider all clusters in a single snapshot at 13:30 local401

time of the 2016-06-11 case. The goal is to establish if a clear pattern differentiating clus-402

ters based on their top height, vertical extent, diameter, and vertical velocity exists in403

an instantaneous field (Figure 8). Having this knowledge is helpful for interpreting the404

analysis of multiple fields for 26 cases, as discussed in the next section. Based on the group-405

ing of points in Figure 8 we loosely categorize three distinct types:406

• Type 1 Coherent structures extending down to the surface. These are situated407

on the diagonal, because their vertical extent equals their top height. These clus-408

ters all have positive mean vertical velocities, and the clusters with the largest di-409

ameters all belong to this group. Accordingly, these structures adhere to what is410
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commonly understood to be a “plume”, in that they are an interconnected mass411

of air moving from the surface upwards.412

• Type 2 Clusters not reaching lifting condensation level (LCL) and not connected413

to the surface. This type generally has a positive vertical velocity, but a small di-414

ameter and vertical extent (Figure 8). Because of these aspects this type can be415

interpreted as representing dry subcloud layer turbulent structures.416

• Type 3 Clusters not connected to the surface but reaching above their LCL. Some417

of these clusters are quite wide and tall, and they tend to have neutral or nega-418

tive vertical velocities. Therefore, we assume that these clusters are the decaying419

remnants of previously active Type 1 plumes, or independent fragments of sub-420

siding shells which split from their plume.421

While the characteristics of cluster Types 2 and 3 are certainly interesting in themselves,422

in the remainder of the paper we choose to focus mainly on Type 1, i.e. plume-like struc-423

tures connected to the surface, given their strong contribution to vertical transport. Gain-424

ing insights in the other types and in life-cycle effects is for now considered a future re-425

search topic.426

4.2 Cluster height427

The next step is to dramatically enhance the sample size of the analysis, by now428

considering all clusters detected in the simulations of all 26 LASSO cases. This yields429

a total of 650 3D snapshots, each 30 minutes apart, from 6:30 to 18:00 local time.430

First the cluster height is studied as a function of diameter d. All clusters are dis-431

carded which i) do not begin in the lowest 100 m or ii) which have diameters or heights432

smaller than 100 m. This selection still leaves us with 800.000+ clusters. The single snap-433

shot shown in Figure 8 already indicates that a well-defined size-height relationship ex-434

ists, but with substantial spread. By further improving the sample size by considering435

26 days this spread reduces, and the relationship becomes stronger (Fig. 9 a). There is436

no noticeable change in functionality at any scale, suggesting that there is no fundamen-437

tal difference between clusters which reach the cloud base and those which do not. This438

also suggests that the model domain is large enough to not impose an artificial limit on439

cluster size.440
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Figure 8. Scatter plot of cluster vertical extent and top height at 13:30, 2016-06-11. The size

of each circle marks the average diameter of the cluster, and the color gives the mean vertical

velocity averaged over the whole cluster. Clusters along the diagonal have the same top height as

vertical extent, meaning that they connect directly to the surface. The darker background marks

the cloud layer.

A noticeable feature is a small branch of clusters which are only a few hundred me-441

ters high but with diameters up to 1000 m (Figure 9 a). Over 90 % of these flat clus-442

ters occur in the morning and evening transition periods, when the boundary layer is not443

fully convective. While we could easily filter these anomalous clusters out, they are suf-444

ficiently rare that they do not substantially affect the average size-height relation, as ap-445

parent in this Figure 9, or any other of our analyses.446

4.3 Vertical structure447

In this subsection we evaluate profiles of cluster area, vertical velocity and humid-448

ity. The goal is to determine if these properties also stratify with cluster diameter, and449

if so, if this stratification is also height dependent. To achieve this clusters are first sorted450

by diameter, before studying the bin-average properties.451
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Figure 9. Histograms of cluster diameter vs cluster height (a), and flux ratio (b). All clus-

ters with diameters and vertical extents below 100 m or which do not begin in the lowest 100 m

of the domain are filtered out, leaving 801644 Type 1 clusters. The distinct branch of wide but

low clusters visible in panel a) is discussed in Subsection 4.2). The flux ratio Ftop/Fref shown

in panel b) is the ratio of the integrated vertical moisture flux approximated through the top

hat approach, divided by the flux of the 3D cluster (Equation 3, Subsection 4.4). The white line

marks the average value over all clusters in that diameter bin.
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4.3.1 Two bin analysis452

The first exploratory step is to consider cluster properties of only two bins, 400-453

600 and 1200-1600 m (Figure 10). The goal here is to understand not only the bin-average454

behavior, but also the bin-internal variability that might exist. As there are only about455

10 clusters per snapshot that fall within the 1200-1600 bin, we include clusters from 3456

consecutive snapshots (13:00, 13:30, 14:00). The 30 minutes time delay between the snap-457

shots is sufficiently long that any cluster will have evolved substantially over time, so that458

all clusters can be considered independent. Consistent with the results from the last sub-459

section, we find that the wider clusters also reach higher (Figure 10). Most (i.e. 26 of460

28) larger clusters terminate close to cloud layer top, with only two reaching just above461

cloud base. In contrast, the vast majority of the smaller clusters end below the cloud base,462

with a few noticeable outliers reaching up to 2500 m.463

The area profiles of the individual clusters vary quite strongly with height. This464

complicates calculating a meaningful bin-average. The easiest approach is to average over465

all plumes present at each height (e.g. Neggers, 2015). While this works well when all466

profiles have a similar vertical extent, if the individual profiles have strongly varying top467

heights this means that ensemble effects enter the mean. In that case the top of the mean468

profile is only based on the small minority of clusters which reach that high (a heavy “sur-469

vivor bias”). This averaging method, here referred to as “mean-avail”, is commonly470

used in conditional sampling studies of cumulus cloud fields. A simple alternative is to471

average over all clusters at all heights, by extending the cluster profiles beyond their top472

height with a meaningful reference value. For cluster area this is zero, while for state vari-473

ables these can be domain averages. This method, here labeled “mean-all”, would be474

particularly useful for considering cluster contributions to flux profiles.475

For the small clusters in the 400-600 m bin, switching from main-avail to mean-476

all leads to a gradual decrease in diameter d above the half-way mark of their vertical477

extent, at about 500 m height, see Figure 10 a). This expresses that in the top half a478

strong variation in cluster top height exists. In contrast, for the large clusters both mean-479

avail and mean-all are very similar throughout most of the profile. First the mean di-480

ameter increases up to cloud base, and stays more or less constant from 1500 m to 2500481

m height. Above 2500 m, the mean-all decreases to zero, while the mean-avail does not482

drop below 450 m.483
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Figure 10. Mean area in diameter (left), and vertical velocity (right) profiles of 141 Type 1

clusters with an average diameter between 200 and 400 me (top), and 28 clusters with an aver-

age diameter between 1200-1600 m (bottom). All clusters are included which begin below 100

m, and are taken from 3 snapshots at 13:00, 13:30, and 14:00 local time. Dark grey background
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for Subfigures a and c the mean diameter is calculated by first calculating the average area of the

clusters, and then converting that area to a diameter.
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Concerning vertical velocity w, for both the small and large clusters the mean pro-484

file below cloud base displays the typical feature of a surface driven free convective layer,485

with a peak velocity reached slightly below the half-way height. In that sense these pro-486

files conform to the classic model for a rising buoyancy-driven moist plume (e.g. Simp-487

son & Wiggert, 1969). A brief acceleration above cloud base can be distinguished in both488

bins, associated with latent heat release due to condensation. However, significant dif-489

ferences also exist. While the velocity profiles of the smaller clusters begin very similar490

to those of the larger clusters, it peaks at a smaller value (2.5 m s−1 versus 3 m s−1).491

In addition, most of the smaller clusters stop quite far below cloud base, although a few492

do reach condensation. What stands out is that the spread among the smaller clusters493

is larger, in the amplitude of w but also in their top height (as discussed before). The494

latter is expressed in the more significant difference between mean-avail w and mean-495

all w for the smaller clusters, which also starts at a much lower height. The small spread496

among the larger plumes suggests that the rising plume model is in principle more ap-497

plicable to the larger size category than the smaller clusters.498

4.3.2 Multi bin analysis499

After analysing of two size bins at the extremes of the cluster distribution, we now500

consider the full spectrum (Figure 11). To also capture the time evolution, all plumes501

during three mid-day time periods of the 11 June 2016 case are included. The one hour502

time periods containing three snapshots were again chosen to enhance sample size.503

We find that at all three timepoints, the profile of mean-all Type 1 cluster area is504

a smooth function of bin size. The smaller the bin, the quicker the cluster diameter de-505

creases with height towards cloud base. This changes into an increasing diameter with506

height for the largest sized clusters. Above cloud base, the area quasi-linearly decreases507

to zero near cloud top for all bins. Over the 5 hours shown, the effect of boundary layer508

deepening is visible in the higher extent of the clusters and in the more pronounced ac-509

celeration above cloud base. Over time more larger clusters emerge, with diameters ex-510

ceeding 1400 m. This diurnal increase in the largest cluster size is consistent with the511

recent findings of van Laar et al. (2019). Note that the strong variability that still ex-512

ists among the largest cluster bins suggests that sample size is still limited.513
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At all 3 times of day the vertical velocity w and the total specific humidity anomaly514

q′t shows only weak size dependence below cloud base in bins larger than 1000 m (Fig-515

ure 11). However, above cloud base significant size dependence exists. For w this sig-516

nal is still somewhat overshadowed by sampling noise, but for q′t this stratification as a517

function of size is well defined and much stronger. This size-stratification in both vari-518

ables is the reason why the largest clusters contribute so much to the moisture flux above519

cloud base (shown in Figure 7). This seems more due to their high moisture anomalies520

than their vertical velocities. For interpreting these profiles it is important to keep in mind521

that the profiles of the smaller bins (600 m and below) smoothly approach zero because522

the clusters have a wide variability in termination heights (as shown in Figure 10).523

4.4 Plume-internal variability524

The often-used “top hat approach” in plume modeling (e.g. Davidson, 1986; Wang525

& Stevens, 2000) assumes that its internal structure is horizontally homogeneous, ne-526

glecting the variability inside the plume. In this subsection we attempt to quantify the527

error resulting from applying the top hat assumption to the clusters. Chinita et al. (2018)528

also attempted to quantify this error, but our approach differs in two crucial aspects. Firstly,529

we again separate the clusters by their diameter, and secondly instead of looking at the530

profile we will integrate the flux over the whole cluster to only compare a single value531

per cluster. We take this approach to allow us to include all clusters from all simulations532

into a single comparison (Figure 9 b). The reference flux Fref is the integral over the533

total water anomaly flux, which can be computed from the average over the total wa-534

ter anomaly times the vertical velocity at each level (the tilde marks an average over the535

cluster):536

Fref =

∫
q̃′tw
′A dz Ftop =

∫
q̃′tw̃
′A dz (3)

The simplified top hat flux Ftop replaces the horizontal integral with the anomalies of537

w and qt averaged over the cluster, multiplied with the area A of the cluster at that height.538

A ratio above 1 means that by neglecting the horizontal covariances within the cluster539

the top hat simplification overestimates the flux, and below 1 signals an underestima-540

tion.541

The results are shown in Figure 9 b. For this analysis we only look at Type 1 clus-542

ters that begin below 100 m, and have both a diameter and vertical extent higher than543
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Figure 11. Mean-all vertical velocity, moisture anomaly, and diameter profiles of Type 1

clusters beginning in the lowest 100 m on the 2016-06-11 (see in Figure 10 for a description of

mean-all, and Figure 8 for Type 1). The horizontal dotted line marks cloud base. Each row rep-
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(bottom). The width of the lines indicates the total area covered by all clusters in that specific
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100 m, which still leaves us with over 800,000 clusters. While the thinnest clusters with544

diameters below 500 m have a wide spread in ratios above and below 1, clusters wider545

than 1000 m very rarely have a ratio above 1. While there is a substantial spread for the546

thinnest clusters, the logarithmic coloring used in Figure 9 shows that there is a very clear547

peak in the distribution between 1.0 and 0.95 up until roughly 750 meters. At these ranges548

the mean and the median match quite closely. Above 1000 m the most likely ratio re-549

mains near 0.95, but with almost no ratios above 1 and a sizeable number of ratios be-550

tween 0.4 and 0.8, the mean drops lower than the median. For the largest clusters be-551

tween 1.5 and 2 km in diameter the flux underestimation ranges between 15 and 20 %.552

We were surprised to see how closely a linear relationship matches the data, suggesting553

that on average the impact of plume-internal variability on its flux is directly linked to554

the cluster width. That the highest underestimation occurs in the largest clusters can555

in part be explained by the findings of Chinita et al. (2018), who reported that the co-556

variances increase with distance from cloud base. And given that the wider clusters ex-557

tend higher (see Figure 9 a), our results agree well with those of Chinita et al. (2018).558

5 Discussion and Summary559

5.1 Discussion560

The results obtained by our clustering analysis of coherent structures in the moist561

convective boundary layer can inform the development and evaluation of convection schemes562

consisting of a size-spectrum of plumes (Arakawa & Schubert, 1974; Neggers, 2015; Brast563

et al., 2018; Sakradzija & Klocke, 2018; Hagos et al., 2018; Olson et al., 2019). The well-564

defined size-height relationship we find strongly supports the spectral basis of these schemes.565

In addition, the persistent and frequent occurrence of surface-rooted plume-like struc-566

tures in many independent 3D snapshots, in combination with their significant contri-567

bution to transport, further supports use of the classic rising plume model as part of such568

schemes (Simpson & Wiggert, 1969).569

Apart from these encouraging findings, new insights into the vertical structure of570

these Type 1 clusters were also obtained that call for caution in applying some often-571

made assumptions in plume models. First and foremost is the assumption of a constant572

plume area with height, which is sometimes used as a practical simplification (e.g. Neg-573

gers, 2015; Suselj et al., 2019). We find strong height dependence in the plume area. While574
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vertical velocity and moisture anomalies also show size dependence, this pales in com-575

parison to the plume diameter. The way plume profiles change with height also strongly576

depends on plume diameter; small plumes behave substantially different in that respect577

compared to large plumes, featuring significant loss of collective mass while still trav-578

eling upward. In contrast, larger clusters gain mass up to the cloud base, above which579

they shed it in a quasi-linear way, at least for the SGP cases studied. These clear sig-580

nals motivate and support the use of aggregate plume models in which the area can change581

with height (e.g. Pergaud et al., 2009; Tan et al., 2018). Larger plumes should widen from582

the surface to cloud base, and smaller plumes should decrease in width with height.583

Note that these height dependencies are still aggregates, in that they represent bin-584

averages over many plumes in a similar size category. This means that ensemble effects585

such as the survivor-bias can at least partially explain the effective height dependence.586

Insight into this process was provided by contrasting the mean-avail with the mean-all587

averaging methods. On the other hand, the analysis of individual plumes (Figure 10) in-588

dicates that also single large coherent structures tend to gain mass, mainly in the lower589

half of the convective layer but especially close to the surface. Our method does not pro-590

vide information on how such clusters gain and shed mass. In other words, we can not591

distinguish between clusters loosing mass to the environment or to other (larger) clus-592

ters. It also remains unclear to which degree the larger clusters grow by incorporating593

smaller clusters or entraining air from the environment. These are valid questions to ask594

when interested in how plumes of different sizes exchange mass, which is part of some595

predator-prey type convection schemes (e.g. Wagner & Graf, 2010; Hagos et al., 2018).596

Gaining insight into these processes requires further research.597

Impacts on vertical transport were also investigated. While we find that the height-598

dependence in plume area contributes significantly to the net flux profile, our results also599

provide information about the often-used top-hat approach in convective modeling. Al-600

though the potential errors resulting from this assumption can be large for individual601

clusters, on average the top hat approach only weakly underestimates moisture fluxes,602

between 0 and maximally 20 %. This underestimation scales in a well-defined and lin-603

ear way with the cluster diameter, which in principle facilitates accounting for this be-604

havior in models.605
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5.2 Summary606

A clustering method is applied to high resolution simulations of shallow cumulus607

convection over land to investigate the size dependence of coherent structures in the con-608

vective boundary layer. Our two-threshold clustering approach successfully identifies in-609

dividual coherent structures, further supporting the popular use of a surface tracer to610

efficiently study convection via LES as first proposed by (Couvreux et al., 2009). The611

two main free parameters of the algorithm have the desired effect of i) control over the612

total volume of convective clusters, ii) independent core masking, iii) consistency with613

previously proposed methods in terms of area profiles.614

Using this clustering method, the behavior of more than 800k coherent structures615

in 26 LASSO simulations at the ARM SGP site was investigated. The insights on clus-616

ter behavior obtained in this study can guide the development and evaluation of in par-617

ticular spectral convection schemes. The main findings can be briefly summarized as fol-618

lows:619

• Surface-rooted coherent structures resembling plumes are frequently and persis-620

tently present in instantaneous 3D snapshots;621

• There is a well-defined and strong relationship between the vertical extent and di-622

ameter of these clusters;623

• The vertical velocity profile of larger clusters matches that expected from the clas-624

sic buoyancy-driven plume model (Simpson & Wiggert, 1969), including latent heat625

effects above cloud base.626

• Smaller clusters have positive vertical velocities all the way up to their tops, but627

feature substantial variation in top heights;628

• A strong size dependence also exists in the vertical structure of aggregate plume629

diameter. While smaller clusters have decreasing diameter with height below cloud630

base, larger clusters have increasing diameter;631

• The size dependence in vertical velocity and total water content is largest above632

cloud base, but much weaker in the subcloud layer;633

• The top hat approach can explain between 80-100 % of the cluster transport, the634

underestimation increases linearly with cluster diameter.635
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