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Abstract

Particle methods can provide detailed descriptions of sea ice dynamics that explicitly model fracture and discontinuities in the

ice, which are difficult to capture with traditional continuum approaches. We use the ParticLS software library to develop a

discrete element method (DEM) model for sea ice dynamics at regional scales and smaller (<100 km). We model the sea ice

as a collection of discrete rigid particles that are initially bonded together using a cohesive beam model that approximates the

response of an Euler-Bernoulli beam located between particle centroids. Ice fracture and lead formation are determined based

on the value of a non-local stress state around each particle and a Mohr-Coulomb fracture model. Therefore, large ice floes

are modeled as continuous objects made up of many bonded particles that can interact with each other, deform, and fracture.

We generate realistic particle configurations by discretizing the ice in MODIS satellite imagery into polygonal floes that fill the

ice shape and extent that occurred in nature. The model is tested on ice advecting through an idealized channel and through

Nares Strait. The results indicate that the bonded DEM model is capable of capturing the behavior of sea ice over a wide range

of spatial scales, as well as the dynamic sea ice patterns through constrictions (arching, lead formation).
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Key Points:8

• The DEM with bonded particles and physics-based fracture models can qualita-9

tively capture the behavior of sea ice flowing through a channel.10

• Fracture is captured with a non-local stress calculation and Mohr-Coulumb fail-11

ure model to determine when inter-particle bonds fail.12

• We use spatio-temporal scaling analyses to quantitatively assess the model’s abil-13

ity to capture key properties of sea ice deformation.14
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Abstract15

The discrete element method (DEM) can provide detailed descriptions of sea ice dynam-16

ics that explicitly model floes and discontinuities in the ice, which can be challenging to17

represent accurately with current models. However, floe-scale stresses that inform lead18

formation in sea ice are difficult to calculate in current DEM implementations. In this19

paper, we use the ParticLS software library to develop a DEM that models the sea ice20

as a collection of discrete rigid particles that are initially bonded together using a co-21

hesive beam model that approximates the response of an Euler-Bernoulli beam located22

between particle centroids. Ice fracture and lead formation are determined based on the23

value of a non-local Cauchy stress state around each particle and a Mohr-Coulomb frac-24

ture model. Therefore, large ice floes are modeled as continuous objects made up of many25

bonded particles that can interact with each other, deform, and fracture. We generate26

particle configurations by discretizing the ice in MODIS satellite imagery into polygo-27

nal floes that fill the observed ice shape and extent. The model is tested on ice advect-28

ing through an idealized channel and through Nares Strait. The results indicate that the29

bonded DEM model is capable of qualitatively capturing the dynamic sea ice patterns30

through constrictions such as ice bridges, arch kinematic features, and lead formation.31

In addition, we apply spatial and temporal scaling analyses to illustrate the model’s abil-32

ity to capture heterogeneity and intermittency in the simulated ice deformation.33

Plain Language Summary34

Numerical models of sea ice give researchers important tools to study how35

the Arctic is changing. Discrete element method (DEM) models idealize sea ice as36

a collection of individual rigid bodies, or “particles,” that can interact with each37

other independently, and can capture the discontinuities and geometric force con-38

centrations in ice that are common at small scales. In this paper, we extend recent39

DEM models and evaluate a non-local stress state within the modeled ice (bonded40

DEM particles) to determine when the ice should fracture. As a result, the model41

simulates large pieces of ice that can break into smaller pieces, or floes, composed of42

many still-bonded particles. This allows us to represent both discrete fractures, and43

emergent aggregate behavior of ice as it deforms. As an example, we simulate ice44

advecting through Nares Strait.45

1 Introduction46

Numerical models of sea ice play an important role in understanding the47

changing Arctic and allow researchers to predict the dynamic response of sea ice48

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

to different environmental conditions. High resolution forecasts from predictive mod-49

els are also becoming increasingly important due to increased human activity in the50

Arctic. The recent decline in Arctic sea ice has lead to more traffic in the Arctic51

Ocean for fishing, resource extraction, tourism, cargo shipping, and military pur-52

poses. Sea ice models that can explicitly capture small discontinuities and fractures53

in the ice are particularly valuable for navigation. For example, IICWG (2019) lists54

high resolution information about compression and pressure ridges as one of the55

most important things missing in current operational ice products.56

Many sea ice models, such as those used in global climate models, employ57

continuum approaches where the sea ice is discretized with an Eulerian mesh and58

the ice is modeled with constitutive models such as viscous-plastic (VP) or elastic-59

viscous-plastic (EVP) rheologies (Hibler III, 1979; Hunke & Dukowicz, 1997). Re-60

cent studies, such as (Bouchat & Tremblay, 2017) and (Hutter & Losch, 2020), have61

shown that VP/EVP rheologies can capture important statistics about largescale sea62

ice deformation. On smaller scales however, it has been shown that the VP rheolo-63

gies can be inconsistent with observed stress and strain-rate relationships (Weiss et64

al., 2007), tensile strength (Coon et al., 2007), ridge distribution (Schulson, 2004),65

and lead intersection angles (Ringeisen et al., 2019). Efforts to overcome the lim-66

itations of VP rheologies are typically either focused on the development of new67

rheologies (e.g., Schreyer et al. (2006); Wilchinsky & Feltham (2006); Girard et al.68

(2011); Dansereau et al. (2016)) or on the development of discrete techniques, like69

the discrete element method (DEM), that adopt a Lagrangian viewpoint and model70

the interaction of individual ice particles. Other novel methods include the material71

point method (Sulsky et al., 2007) which blurs the lines between an Eulerian and72

pure Langrangian model, or the neXtSIM finite element model (Rampal et al., 2016)73

that takes a Langragian perspective with adaptive re-meshing.74

Several efforts have used the DEM to simulate sea ice dynamics (Hopkins,75

2004; Hopkins & Thorndike, 2006; Herman, 2013a, 2016; Kulchitsky et al., 2017;76

Damsgaard et al., 2018). The DEM explicitly models the dynamics of individual77

rigid bodies, or “particles”, and can therefore capture discontinuities in sea ice78

such as cracks and leads that are common near the ice edge or in the marginal-79

ice-zone (MIZ). The DEM is a promising modeling approach for sea ice forecast-80

ing applications (Hunke et al., 2020), however many DEM sea ice studies to date81

have used simplified contact models and particle geometries in order to lessen the82

computationally-intensive process of tracking and calculating the interaction be-83

tween many particles. For example, it is common to use elastic, viscous-elastic, or84
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Hertzian contact models to calculate inter-particle forces that do not account for the85

energy lost due to ridging between ice floes (Sun & Shen, 2012; Herman, 2013a,b,86

2016; Kulchitsky et al., 2017). It is also common to represent particles with disks or87

simple shapes due to the ease of solving contact between basic shapes (Sun & Shen,88

2012; Herman, 2013a, 2016; Damsgaard et al., 2018; Jou et al., 2019). Although89

these modifications increase the speed of the models, oversimplifying the complex90

geometries and interactions found in real sea ice can limit the accuracy of these91

models. It has been shown that particle shape greatly affects the bulk behavior of92

simulated granular materials (Kawamoto et al., 2016, 2018). In particular, using93

disk-shaped particles reduces the bulk shear strength of the material as compared to94

using irregular particle geometries (Damsgaard et al., 2018).95

In this paper we build upon recent recent advances in DEM models and de-96

velop a 2D model that uses cohesively-bonded polygonal-shaped particles, and a97

non-local physics-based fracture model to capture the behavior of sea ice. Recently,98

Damsgaard et al. (2018) presented a simplified DEM model of ice jamming within99

constrictions, with the goal of developing a computationally efficient DEM model100

that could be used in global climate models. Although they were able to simulate101

jamming behavior, they note that the simplified model misses certain aspects of102

observed sea ice behavior, in part due to their spherical particle shapes and parti-103

cle contact laws. We use a new DEM software library called ParticLS (Davis et al.,104

2021) that can represent sea ice floes with convex polygons to better capture the105

irregular shapes often observed in sea ice. ParticLS implements the cohesive beam106

model (André et al., 2012), which was developed to simulate continuous materials107

as collections of bonded DEM particles. This cohesive model uses the analytical108

response of Euler-Bernoulli beams placed between centroids of adjacent particles to109

propagate stresses and strains through the bonded particle collection. These beams110

can break, thereby simulating discontinuities in the material.111

Many DEM sea ice models have simulated cohesion between particles, however112

they have typically evaluated the local stress state within each bond to determine113

if they should break. Damsgaard et al. (2018) and Herman (2016) compared the114

maximum normal and maximum shear stresses within the bonds against prescribed115

thresholds, whereas Hopkins (2004) decreased the bond stress after a compressive116

or tensile threshold was reached, thereby gradually weakening the ice post-failure.117

Wilchinsky et al. (2010) found that bond failure models that only consider tensile118

and compressive failure can result in unnatural rectilinear crack paths. Therefore,119

they compared the stresses within each bond against a Mohr-Coulomb failure en-120
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velope. A similar approach was used in (Kulchitsky et al., 2017). We also employ a121

Mohr-Coulomb failure model due to its well-known ability to describe sea ice frac-122

ture, but we extend the approach by evaluating the non-local stress states of each123

particle to determine whether bonds should fail. This non-local stress approach,124

which is similar to André et al. (2013), considers the stress-state produced by all125

DEM particles within a small neighborhood, which has been shown to reproduce126

more accurate crack patterns in elastic brittle materials than localized bond frac-127

ture models (André et al., 2013, 2017). We are unaware of applications of either128

the cohesive beam law or non-local stress evaluations in DEM models of sea ice, or129

evaluations of their ability to capture salient sea ice behavior.130

To test our model, we follow the precedent set by earlier works (Dumont et al.,131

2009; Rasmussen et al., 2010; Dansereau et al., 2017; Damsgaard et al., 2018), and132

simulate sea ice advecting through channel domains that encourage arch formation133

and failure. Ice arches are examples of large-scale sea ice behavior that result from134

small-scale interactions of ice parcels that jam in constricted regions. The arches135

form as distinct cracks across the constriction that completely stop and separate the136

ice upstream from the ice flowing downstream. These arches often result in long-137

lasting discontinuities in the ice. We use an idealized channel case from Dumont et138

al. (2009) and Dansereau et al. (2017) to examine the arching and break up pro-139

cess using our bonded-DEM model. Next, we examine the ice dynamics and arch140

behavior through Nares Strait (Figure 1). Additionally, we examine the export of141

ice mass through the strait and explore simulated floe size distributions, both as a142

function of ice strength. The Nares Strait arches are well-studied features that form143

within the strait itself, and at the entrance from the Lincoln sea. These arches play144

important roles in limiting the amount of sea ice flux through that region, but break145

up almost every spring, resulting in highly-discontinuous sea ice that advects out of146

the strait (Moore et al., 2021).147

In the following sections we describe the governing equations, contact laws,148

and forcing functions that comprise our model. Section 2 describes the momentum149

balance driving the ice motion, as well as the DEM approach and different models150

we use to simulate the resultant dynamics. In section 3 we describe the method151

used to initialize the particles from MODIS imagery. In Section 4, we present an ap-152

proach for the spatio-temporal scaling analysis of DEM simulations, which allows us153

to quantitatively assess our model’s ability to capture the heterogeneous and inter-154

mittent deformation of sea ice. Sections 5 and 6 present the results of the idealized155

channel and Nares Strait simulations, and compares the Nares Strait results with156
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Figure 1: Map of Nares Strait region and sub-regions. The underlying MODIS image is

from June 28, 2003, and reflects the ice extent and arch from which we initialized the floe

DEM collection.

behavior seen in optical satellite imagery. Section 7 discusses the effectiveness of this157

method in capturing the sea ice dynamics as well as future developments.158

2 Model Overview159

The principal forces acting on sea ice include drag from wind and ocean cur-160

rents (Fa and Fo), internal stress gradients within the ice (Fs), Coriolis forces (Fc),161

and forces due to sea surface tilt (Ft) (Hibler III, 1979; Steele et al., 1997):162

ρh
du

dt
= Fa + Fo + Fs + Fc + Ft (1)163

where ρ is ice density, h is ice thickness, and du
dt is the ice acceleration. This force164

balance generally consists of wind driven forces trying to move the ice, with ocean165

drag and the internal ice stress resisting the motion (Thorndike & Colony, 1982).166

As a result, the motion of ice in free drift is typically dominated by wind and ocean167

currents, whereas the internal ice stress dominates when the ice is consolidated or168

constricted (Steele et al., 1997). The Coriolis and surface tilt terms are usually small169

(Steele et al., 1997), especially for ice dynamics over the span of a few days and170
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over smaller spatial scales (Wadhams, 2000). In addition, Rallabandi et al. (2017)171

notes that the Coriolis force is diminished within narrow straits because the force172

typically acts normal to the direction of flow. We assume a stagnant ocean current173

and constant surface height. Therefore, we ignore the affects of Coriolis and surface174

tilt forces acting on the ice in our simulations. In the following sections we describe175

how the DEM models these forces, including the cohesion model used to capture the176

internal stress state within consolidated ice and the drag model used to account for177

wind and ocean forces.178

The DEM was first applied to sea ice in the 1990s (Hopkins & Hibler, 1991;179

Løset, 1994b,a; Jirásek & Bažant, 1995; Hopkins, 1996), and it was shown to be180

an effective method for modeling the interactions between individual ice floes. The181

DEM discretizes the ice into particles and then uses the balance of linear and angu-182

lar momentum to define a system of differential equations describing the motion of183

each particle. The conservation of linear momentum results in184

miu̇i(t) =

n∑
j=1

fi,j(t) + fi,s(t), (2)185

where186

• mi is the mass of the i -th particle,187

• u̇i(t) is the particle’s acceleration,188

• fi,j(t) is the force acting on particle i from particle j,189

• fi,s(t) are body forces acting on the surfaces of the particle (e.g., drag),190

Similarly, the conservation of angular momentum results in191

Iiω̇i(t) =

n∑
j=1

τi,j(t) + τi,s(t), (3)192

where193

• Ii is the particle’s moment of inertia tensor about it’s center of mass,194

• ω̇i(t) is the particle’s angular acceleration,195

• τi,j(t) is the torque acting on particle i from particle j,196

• τi,s(t) is the torque from surface forces.197

The system of differential equations (2)–(3) can then be integrated numerically to198

evolve the particle positions and orientations. We direct the reader to (Davis et al.,199

2021) for additional information regarding the specifics of the numerical methods200

used in ParticLS.201
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The surface forces, fi,s, acting on the particles correspond to drag loads that202

drive ice particle motion. The inter-particle forces, fi,j , and torques, τi,j , on the203

other hand, are calculated following a prescribed “contact law” that describes the204

material response to these forcings. The contact law depends on properties of the205

ice pack; a different contact law is required to model ice in free drift compared to206

pack ice where ice floes are bonded to each other. Below, Section 2.1 describes our207

approach for modeling cohesively bonded particles while Section 2.3 describes our208

approach for modeling non-bonded contact. In Section 2.2, we describe a non-local209

failure criteria, which governs the transition from bonded to non-bonded contact.210

We believe our approaches for bonded contact and failure are unique in DEM sim-211

ulations of sea ice. Note that in our simulations, all particles are initially bonded212

together.213

2.1 Cohesive Contact Law214

Ice floes are pieces of ice that move as a single cohesive body, whose size and215

shape change frequently due to fracture and re-freezing. A common approach in216

DEM models of sea ice is to represent each floe as a particle in the simulation (Hop-217

kins, 1996, 2004; Herman, 2013a; Damsgaard et al., 2018). However, this makes218

the floes non-deformable. Hopkins & Thorndike (2006) introduced representations219

of floes as collections of small particles bonded together that can deform via inter-220

particle bonds. In that work, a viscous-elastic “glue” was used to capture tensile221

and compressive forces between particles. Herman (2016) also simulated floes with222

multiple bonded particles, however they used disk particles, which inherently leave223

gaps in the floe. Similar to Hopkins & Thorndike (2006), we treat the initial consol-224

idated ice pack as a collection of bonded polygons, where the evolution of floe sizes225

and shapes results from sequential fracture of the inter-particle bonds. However,226

we employ a different strategy, based on cohesive beams, for bonding particles. The227

cohesive bond model simulates the behavior of an Euler-Bernoulli beam to describe228

the tensile, compressive, and bending forces generated between adjacent bonded229

particles. The equations that describe the bonded inter-particle forces and moments230

can be seen in (André et al., 2012). This cohesion is important for our simulations,231

as it has been found that stable ice arches require cohesive strength between indi-232

vidual ice parcels in order to sustain the stress generated in the arch (Hibler et al.,233

2006; Damsgaard et al., 2018). The cohesive beam model we use has not previously234

been applied to simulations of sea ice, however it has been used to accurately model235

brittle elastic materials as collections of bonded DEM particles (André et al., 2012,236

2013, 2017; Nguyen et al., 2019). To retain numerical stability in our simulations237
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and prevent spurious oscillations in our beam forces we add damping proportional238

to the relative velocity between the particles bonded by the beam. Similar to other239

bonded sea ice models (e.g., Hopkins (1994)), the value used was calculated based on240

a proportion of the critical beam damping, 2ζb
√
Kbmi, where ζb is the beam damp-241

ing ratio, and mi is the ice mass. Kb is the beam stiffness, and is calculated with the242

ratio EbAb/lb, where Eb is the beam modulus, Ab is the beam cross-sectional area,243

and lb is the beam length, defined as the distance between bonded particle centroids.244

The beam parameters used in these simulations are summarized in Table 1.245

2.2 Sea Ice Failure Model246

The failure criterion for the inter-particle bonds plays a critical role in our247

analysis, as it dictates how the initial bonded ice pack fractures into smaller floes.248

Like Weiss et al. (2007), Rampal et al. (2016), Wilchinsky et al. (2010), and Kul-249

chitsky et al. (2017), we employ a Mohr-Coulomb failure criterion that accounts for250

tensile (σN,t) and compressive (σN,c) failure. Unlike previous sea ice DEM efforts251

however, we employ a non-local approach for estimating the stress (see discussion252

below). The Mohr-Coulomb failure thresholds are253

σ1 ≤ qσ2 + σc (4)

σ1 + σ2

2
≥ σN,t (5)

σ1 + σ2

2
≤ σN,c, (6)

where tension is positive, compression is negative, and σ1 and σ2 are the principal254

stresses. q and σc are defined following Rampal et al. (2016) and Weiss & Schulson255

(2009):256

q =
[
(µ2 + 1)1/2 + µ

]2
(7)

σc =
2c

(µ2 + 1)1/2 − µ
, (8)

where µ is the internal friction coefficient, and c is the cohesion of the ice. This fail-257

ure criterion has been shown to capture the mechanics of dense granular materials258

(Damsgaard et al., 2018), as well as the failure envelope seen in physical measure-259

ments of sea ice (Weiss et al., 2007). Similar to Dansereau et al. (2017), we use a260

uniform distribution between minimum (cmin) and maximum (cmax) cohesion values261

when initializing our DEM particles to create heterogeneity in the ice strength and262

resultant failure.263

It is well known that bonded lattice-like DEM approaches require calibration of264

bond parameters in order to simulate realistic macroscopic or effective response and265
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failure properties (André et al., 2019). Therefore, we created calibration simulations266

to determine the appropriate failure model values σN,t and σN,c. We studied the267

uniaxial compression and tension of a 154 by 308 km block of ice composed of ap-268

proximately 4000 bonded particles. The failure parameters were prescribed such that269

the specimen failed in tension and compression at the effective stresses found in the270

literature (Weiss & Schulson, 2009) for ice at geophysical scales. We also used these271

simulations to determine appropriate values for the beam elastic modulus, Eb, and272

Poisson’s ratio, νb, for the cohesive model presented in Section 2.1. The beam pa-273

rameters were prescribed such that the specimen’s effective elastic modulus matched274

values found in the literature for sea ice. These failure stresses and beam parameters275

are shown in Table 1.276

Several sea ice DEM models have based bond failure on the stress within each277

individual bond (Hopkins & Thorndike, 2006; Wilchinsky et al., 2010; Herman, 2016;278

Kulchitsky et al., 2017; Damsgaard et al., 2018). As mentioned above, calibration279

studies are often required to find realistic failure parameters, however in our testing280

we found that these per-bond failure models were overly-brittle and created large281

amounts of fragmentation, where large regions of ice disintegrated into many un-282

bonded particles. These per-bond failure methods do not consider the behavior of283

nearby bonds, and do not limit the number of bonds that can fail at a time (Hop-284

kins & Thorndike, 2006; Wilchinsky et al., 2010; Herman, 2016; Kulchitsky et al.,285

2017; Damsgaard et al., 2018). We adapt an alternative approach from André et al.286

(2013) that computes the stress contributions from all neighboring particles within287

a small region around a given particle. Compared to the stress in individual bonds,288

this non-local stress provides a more representative evaluation of the stress state289

at a particle’s location. Following Nguyen et al. (2019), we calculate each particle’s290

symmetric non-local Cauchy stress tensor using291

σΩ =
1

2Ω

( N∑
j=1

1

2
(ri,j ⊗ fi,j + fi,j ⊗ ri,j)

)
, (9)292

where293

• Ω is the volume of particle i,294

• N is the total number of neighboring bonded particles,295

• ⊗ is the tensor product between two vectors,296

• fi,j is the force imposed on particle i from the beam between i and j,297

• ri,j is the vector between the centroids of particles i and j.298
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This tensor is calculated at every time step for each particle i using the N adjacent299

particles that are still bonded to particle i. This stress tensor allows us to compute300

the principal stresses within the ice and compare them against more traditional fail-301

ure surfaces used to capture sea ice failure, like the Mohr-Coulomb envelope defined302

above.303

Once the failure criteria is met, a select portion of the particle’s bonds are bro-304

ken. We find the direction of largest tensile principal stress and then define a plane305

perpendicular to that vector. All bonds that fall on one side of this plane are then306

severed, as shown in Figure 6 of André et al. (2017). A comparison of non-local and307

per-beam failure models in DEM simulations was performed by André et al. (2013).308

They showed that the per-bond failure model resulted in highly-fragmented damage,309

whereas the non-local model produced fractures that quantitatively matched the310

linear, continuous fractures measured in indenter experiments of silica glass (André311

et al., 2013). The results presented below suggest that this type of non-local fail-312

ure model is also able to reproduce the realistic fracture patterns of sea ice flowing313

through a constriction.314

2.3 Ridging Contact Law315

Once the cohesive bonds have broken between two particles, the particles in-316

teract through a contact model that approximates the physics of interacting pieces317

of ice. Many DEM contact laws have been used in the sea ice DEM field, and some318

2D contact models have been developed to approximate out-of-plane behavior, such319

as pressure ridging, which is an important mechanism for dissipating stress in the320

ice pack. For particles in free-drift, we adopt the elastic-viscous-plastic contact321

model developed by Hopkins (1994, 1996) to approximate the energy lost due to322

crushing and ridging between contacting floes. The model accounts for two regimes;323

one where the generated forces are small enough to maintain elastic contact, and a324

second where the forces are large enough that plastic deformation occurs. In both325

regimes, the normal force is a function of the overlap area between contacting poly-326

gons, with a viscous component related to how quickly the overlap area changes.327

The tangential loads are calculated with an elastic contact model that is limited328

by a Coulomb friction limit. Hopkins (1996) provides more details on this contact329

model. Similar to the cohesive beam model, we add damping proportional to the330

relative velocity between the particles undergoing ridging contact to retain numerical331

stability. Following other bonded sea ice models (Hopkins, 1994), the value used was332

calculated based on a proportion of the critical ridging damping, 2ζr
√
Kimi, where333
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ζr is the ridging damping ratio, Ki is the sea ice stiffness and mi is the ice mass.334

The model parameters used in these simulations are adopted from Hopkins (1996),335

and are summarized in Table 1.336

2.4 Atmosphere and Ocean Drag337

Drag forces acting on ice due to wind and ocean currents can be described with338

the following quadratic laws (Hibler, 1986; Hopkins, 2004):339

~Fa = ρaCaAi| ~va|
(
~va cos θa + k̂ × ~va sin θa

)
(10)

~Fo = ρoCoAi|~vo − ~vi|
(
(~vo − ~vi) cos θo + k̂ × (~vo − ~vi) sin θo

)
(11)

where the a, o, and i subscripts correspond to quantities related to the wind, ocean,340

and the individual particles, respectively. The θa and θo terms are the wind and341

ocean turning angles, and k̂ is a unit vector oriented in the direction normal to the342

sea ice plane. Often times the turning angles are assumed to be 0, which is also as-343

sumed for these simulations, thereby simplifying equations (10) and (11). It is also344

commonly assumed that the relative velocity between the air and ice is dominated345

by the wind, which is why equation (10) only considers the wind velocity. In these346

2D simulations we account for the skin drag acting on the horizontal surface of the347

sea ice due to the wind and ocean, and we adopt values for the drag coefficients that348

are similar to those commonly used in the literature (see Table 1) (Hopkins, 2004;349

Martin & Adcroft, 2010; Gladstone et al., 2001).350

The DEM sea ice literature contains several ways of accounting for the torque351

generated by drag. Some authors ignore it altogether (see e.g., Hopkins (2004);352

Martin & Adcroft (2010)) while others calculate the torque due to ocean drag, but353

not atmospheric drag (Herman, 2016). In reality, torque can result from the curl354

of ocean and atmosphere currents. Damsgaard et al. (2018) states however, that it355

is reasonable to ignore the curl of ocean and atmosphere currents on the scale of356

individual ice floes. Due to the length scales of our simulations we ignore the torque357

resulting from curl. However, we apply a resistive moment resulting from the ocean358

drag, similar to Hopkins & Shen (2001), Sun & Shen (2012) and Herman (2016), but359

accounting for only the drag on the submerged horizontal surface of the floe:360

Mo = −ρor3Co,hAo,h|ω|ω, (12)361

where r is the polygonal floe’s effective moment arm, and ω is the floe’s angular362

velocity in the z-direction. We assume the resistive moment due to wind is minimal363

and therefore ignore it. Due to the 2D nature of these simulations, these moments364

result in reduced rotation around the z-direction.365
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3 Particle Initialization366

To initialize our particle configurations, we leverage cloud-free MODIS imagery367

and concepts of optimal quantization from semi-discrete optimal transport (Xin et368

al., 2016; Lévy & Schwindt, 2018; Bourne et al., 2018). Using Otsu’s Method (Otsu,369

1979) to threshold pixel intensities, we create a binary mask of sea ice in the image370

(see Figure 2b). We then treat this mask as a uniform probability distribution over371

the sea ice and find the best discrete approximation of this distribution using Lloyd’s372

algorithm to solve the optimal quantization problem (see e.g., Xin et al. (2016) and373

Bourne et al. (2018)). As shown in Figure 2c, the result is a collection of points and374

polygonal cells over the entire domain. The polygonal cells form a power diagram,375

which is a generalization of a Voronoi diagram that enables cells to be weighted and376

thus have different sizes. Here, the cells are constructed so that they each have ap-377

proximately the same overlap area with the sea ice (red region in Figure 2c). Within378

this framework, it is also possible to specify a distribution over cell-ice overlap area379

to generate particle configurations with specific floe size distributions (FSD). While380

Voronoi diagrams are commonly used to construct polygonal DEM discretizations,381

we are unaware of other approaches that can randomly generate polygonal configu-382

rations with specified flow size distributions.383

The final step in our initialization process is to identify the diagram cells that384

fill the ice extent (Figure 2c). Clipping the diagram cells by the ice extent can create385

concave, triangular, or small polygons shapes, which can affect the particle dynam-386

ics. Therefore, we define our ice particle geometries with the diagram cells that fall387

entirely within the ice extent, and take the cells that intersect the ice extent as our388

boundary particles. The final result is a set of polygons matching and filling the ice389

extent observed in the MODIS imagery (Figure 2d).390

4 DEM Scaling Analysis391

Sea ice can accommodate relatively little deformation elastically. Most large392

scale sea ice deformation therefore stems from fracture and motion along leads and393

larger linear kinematic features. As a result, large deformation rates tend to be con-394

centrated in space and time. Scaling analyses have been widely used to statistically395

quantify this behavior using both observations (e.g., Marsan et al. (2004); Rampal396

et al. (2008); Weiss et al. (2009); Hutchings et al. (2011); Oikkonen et al. (2017))397

and models (e.g., Girard et al. (2009, 2010); Dansereau et al. (2016); Rampal et398

al. (2019)). In our results, we adapt the Delaunay triangulation approaches used399

by Oikkonen et al. (2017) and Rampal et al. (2019) to the DEM setting. Scaling400
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(a) (b)

(c) (d)

Figure 2: Workflow for initializing polygonal ice floes from MODIS imagery. Image a is

the MODIS imagery of the simulation domain, image b is a binary image reflecting ice

extent used in the simulation, image c shows the entire set of polygons created by solving

an optimal quantization problem with the ice extent outlined in red, and image d shows

the final particle collection after clipping to the shape and extent of the input ice image.

This set is intentionally a small number of particles (1000) for illustrative purposes.
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analyses are not commonly employed with DEM simulations. We have developed an401

approach that maps DEM particle positions to a Lagrangian mesh that can be used402

for computing strain rates with standard techniques from finite elements. These403

strain rates can then be averaged over temporal and spatial windows of different404

sizes to characterize the intermittency and heterogeneity of the deformation.405

To be more specific, consider a strain rate field ε̇(x, t) that varies in space and406

time. We can average the strain rate over some region X` with size parameter ` and407

some time period Tτ with length τ , resulting in an average strain rate ε̄`τ . The in-408

variants of this average tensor can then be used to define a scalar total deformation409

rate ε̇tot,`τ that also depends on the size of the averaging windows. The dependence410

of ε̇tot,`τ on the spatial window size ` and temporal window τ give insight into the411

localization of strain rate in space and time. It can therefore be used to statistically412

compare the strain rate fields in a simulation to the intermittent and heterogeneous413

total deformation exhibited by real sea ice. Appendix A provides a mathematically414

rigorous definition of the total deformation rate ε̇tot,`τ as well as a description of415

how it can be efficiently computed from the output of a DEM simulation.416

5 Idealized Channel Simulation417

We use a simulation domain from Dansereau et al. (2017) as a baseline for418

testing our model’s ability to simulate ice dynamics through a channel. This geom-419

etry approximates the constriction from Kane Basin into Smith Sound within Nares420

Strait (see dimensions in Figure 4c). Following their simulation setup, we use a stag-421

nant ocean field and a southward wind field starting at 0 m/s and increasing linearly422

to ∼22 m/s over 24 hours, which is then held constant. This wind approximates a423

storm passing (Dansereau et al., 2017). The model parameters for these different424

simulations are presented in Table 1.425

The domain starts as one contiguous piece of ice spanning the entire domain.426

The velocity profiles in Figure 3a show how the ice initially has an hourglass-shape427

velocity profile along the central axis of the channel. This profile mimics the con-428

tours of the channel boundaries, and shows how the cohesive beams facilitate large429

scale deformations within the ice. The principal stress profiles in Figure 3d also430

show a fairly continuous stress through the domain, with evidence of biaxial com-431

pression in the ice above the constricted region and biaxial tension below. The bi-432

axial compression results from the ice being pushed into the convergent boundaries,433

whereas the biaxial tension results from the ice being pulled away from the divergent434

walls.435
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Table 1: Model parameters used in simulations of sea ice advecting through the idealized

channel and Nares Strait.

Parameter Symbol Value Units

Ice Density ρi 900.0 kg/m3

Air Density ρa 1.3 kg/m3

Ocean Density ρo 1027.0 kg/m3

Ice Young’s Modulus Ei 5.0× 108 Pa

Ice Poisson’s Ratio νi 0.3

Ice Thickness ti 1.0 m

Wind Drag Coefficient Ca 1.5× 10−3

Ocean Drag Coefficient Co 5.5× 10−3

Beam Radius Ratio rb 1.25e-2

Beam Young’s Modulus Eb 5.0× 108 Pa

Beam Poisson’s Ratio νb 0.3

Beam Damping Ratio ζb 0.7

Mohr-Coulomb Internal Friction µ 0.7

Mohr-Coulomb Tensile Strength σN,t 80.0× 103 Pa

Mohr-Coulomb Compressive Strength σN,c −192.0× 103 Pa

Mohr-Coulomb Minimum Cohesion cmin 40× 103 Pa

Mohr-Coulomb Maximum Cohesion cmax 56× 103 Pa

Ridging Plastic Hardening knp 928.0 Pa

Ridging Plastic Drag kr 26.1× 103 N/m

Ridging Friction Coefficient µr 0.3

Ridging Damping Ratio ζr 1.0
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(a) (b) (c)

(d) (e) (f)

Figure 3: Velocity and principal stress profiles measured along the central axis of the

idealized geometry. The y-axis corresponds to the diagram in Figure 4c, where 0 km is the

bottom of the channel geometry. Note that the velocity x-axis scale increases going from

left to right.

Cracks in the simulated ice are visualized with “beam damage”, which is the436

number of bonds that have broken for each particle. Damage values of zero indicate437

particles with intact beams, whereas larger values indicate particles who have had438

several beams fail. The damage fields in Figure 4a-f and the damage time series in439

Figure 4g illustrate the highly intermittent ice fracture process. The beam damage440
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Figure 4: Progression of “beam damage”. Cracks initially form near corners along the

boundaries, then propagate into the ice pack to form arches or linear features. Image g

shows the intermittent rate of fracture throughout the simulation. The four points in

image c correspond to the temporal scaling results in Section 5.

rate in Figure 4g is analogous to the failure avalanches discussed in Girard et al.441

(2010) and is related to surface area of leads, and subsequently the fracture energy442
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required to create those leads. Many fractures originate along the boundaries and443

near corners (Figure 4a), as these features create stress concentrations in the ice.444

The first fractures occur at the top corners of the domain, where significant tension445

in σ1 (Figure 5a) results from the wind drag pulling the ice downward. Eventually446

the beams in these regions fail, followed by linear cracks down the vertical walls.447

Once these cracks form the ice in the top region is no longer held in place by the448

boundaries and it starts to move. This is apparent in the increase in velocity in Fig-449

ure 3b for this region of the ice. Figure 4a shows that several fractures also originate450

near the corners of the thinnest channel section, which correspond to regions of large451

tensile or shear stresses in Figure 5. A closer inspection of Figures 4a and 5a shows452

that these individual fractures often connect with each other to form contiguous453

linear cracks along the boundaries.454

The next major event in the break up sequence is the formation of two cracks455

along the divergent angled boundaries, which eventually connect with each other456

near the exit of the channel and form an arch-shaped crack (Figures 4b and c). At457

this point the ice in the lower portion of the domain is completely separated from458

both the boundaries and the ice above the arch, and it begins to flow south in free-459

drift. This is clearly seen as the discontinuity in the velocity profile (Figure 3c).460

This is an example of how the DEM is able to simulate the transition from one con-461

tinuous piece of ice to multiple discrete pieces of ice. The reduced velocity in Figure462

3c above the arch show that the DEM approach is able to simulate how ice arches463

effectively plug the constricted region and do not allow the ice above them to move -464

an important aspect of ice arching in nature.465

The σ1 image in Figure 5b shows how the cracks propagating into the ice orig-466

inate from fractures along the boundaries. These crack fronts are preceded by large467

tensile stresses (boxed regions in Figure 5b). These results are evidence that the468

model is able to capture cracks forming due to failure in tension, supporting obser-469

vations of lead formation in sea ice (Timco & Weeks, 2010). After this initial arch,470

the stresses above the constriction become more compressive as the ice is pushed471

against the convergent boundaries, whereas the stresses in the ice below the arch472

drop to zero because the ice is in free-drift. The ice within the channel experiences473

large shear stresses along the boundaries (Figure 5a) and ultimately fails (Figures 4b474

and c). These fractures then connect and form a clear arch in the convergent region475

above the channel (Figure 4c). This is followed by several linear features emanating476

from the vertical and convergent boundaries that sometimes connect to form a net-477

work of cracks surrounding regions of still-bonded particles–or floes. Eventually the478
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(a) First and second principal stresses at 16.5 hrs.

(b) First and second principal stresses at 41.3 hrs.

(c) Principal stress states through-

out simulation colored by frequency

of occurrence. Red line is the pre-

scribed Mohr-Coulomb failure surface.

Figure 5: Images a and b show the principal stress fields before and after fracture events.

Note the different scales of σ2 between a and b, as well as the two boxes in the σ1 b image

that show the location of crack tips moving through the ice. The damage field in Figure

4d corresponds to the same time as image b. Image c shows the stress states throughout

the entire simulation, where the red dashed lines indicate a Mohr-Coulomb envelope with

a cohesion stress of c = 56 kPa, tension failure strength of σN,t = −80 kPa, and compres-

sion failure strength of σN,c = 192 kPa. The coloring corresponds to the relative frequency

of each stress value occurring throughout the simulation.

arch at the bottom of the channel fails and the ice within the channel breaks into479

smaller floes, which then move south. The top arch remains fairly stable, however480

the ice along the convergent boundaries continues to fail as it is crushed against the481

walls.482
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Although not shown, several simulations were run and the trends described483

above match the general progression of all results. The arch in the simulation shown484

in Figures 3-5 ultimately fails, however increasing the ice cohesion, c, above 64 kPa485

results in stable arches. Similar to Dansereau et al. (2017), we do not attempt to486

identify appropriate cohesion values for these test cases as ice arch failure depends487

on a number of other factors including ice thickness and applied drag loads. Our488

goal is to illustrate that the bonded DEM model is a useful tool for estimating real-489

istic sea ice dynamics within channel regions.490

Figure 6: Spatial scaling of the total deformation rate 〈ε̇tot,`τ 〉x for increasing window

sizes.

Two important characteristics of sea ice deformation are its heterogeneity491

(localization in space) and intermittency (localization in time) (Weiss et al., 2007;492

Girard et al., 2009; Dansereau et al., 2016), and recent studies have used these493

to assess how well numerical models capture the deformation of the modeled ice494

(Dansereau et al., 2016; Girard et al., 2009). Figure 4a-f shows how the DEM ap-495

proach presented in this paper captures regions of highly-localized damage in the496

form of linear features that propagate through the ice, similar to what has been ob-497

served remotely (Kwok, 2001) and in other modeling papers (Dansereau et al., 2016;498

Girard et al., 2009). Comparing these linear features with Figures 5a-c shows that499

these cracks coincide with regions of high tensile or compressive stresses, which make500

up a small portion of the overall ice stress states. Only 12.9% of the stress states501
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Figure 7: Temporal scaling of the total deformation 〈ε̇tot,`τ 〉t at several spatial locations

within the channel domain. The locations of these points are highlighted in Figure 4c.

for all particles throughout the entire simulation fall outside of the high-frequency502

yellow and green regions in Figure 5c (probability density less than 0.0001).503

The time series in Figure 4g illustrates the sporadic evolution of ice damage504

throughout the simulation. The drag loads in this simulation increase through the505

first 24 hours, and around 16.5 hours the ice begins to experience intermittent peri-506

ods of large spikes in beam damage, followed by relatively calm periods of minimal507

break up. This cyclic behavior of stress building up in the ice followed by sudden508

relaxation through deformation is also seen in the work of Dansereau et al. (2016)509

and Weiss & Dansereau (2017).510

Figures 6 and 7 provide a spatio-temporal scaling analysis to further assess511

the heterogeneity and intermittency of dynamics in our simulation. The mean de-512

formation rates (black dots) exhibit power law behavior (black lines), indicating the513

model captures localization of large strain rates in both space and in time. This is514

in agreement with scaling analyses of observed ice motion (see e.g., Marsan et al.515

(2004); Oikkonen et al. (2017)) as well as other modeling results (see e.g., Girard et516

al. (2009); Dansereau et al. (2016); Rampal et al. (2019)). The values of β2, which517

are larger at later times, are in agreement with the damage fields in Figure 4 and518

the strain rates in Figure 8. Initially the ice has relatively homogeneous strain rates,519
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except for a few localized arching events, but the strain rates are more heteroge-520

neous at later times when the ice has broken into many small floes. The temporal521

scaling coefficients are larger for points in and below the neck of the channel, which522

indicates strong temporal localization of strain rates in these areas. This makes in-523

tuitive sense: these regions experience a short period of high strain rates during the524

initial fracture event and then are in relatively free drift.525

Figure 8: Strain rates within the idealized channel simulation at different instances in

time. Comparing these patterns with the beam damage fields in Figure 4 indicates that

the linear cracks coincide with regions of localized high strain rates. Note the arch shaped

linear features that propagate up the channel throughout the break up process.

Figure 8 complements the quantitative scaling analysis with a visual represen-526

tation of the principal strain rates. The velocities of the DEM particles are mapped527

onto a Delaunay triangulation of the particle centroids at t = 0, which allows the528

strain rate tensor to be computed over the cells in the triangulation. The strain529

rates are localized in the same regions that experience large damage rates (see Fig-530

ure 4). Bands of compressive strain rates (negative values) can also be seen on either531
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side of large tensile strain rates (positive values), indicating that the arches are532

supporting the ice above.533

We feel the results from the idealized channel simulations show how the534

bonded DEM approach is able to capture the salient features of ice advecting535

through a constriction and the subsequent jamming, as well as important defor-536

mation characteristics (heterogeneity and intermittency) seen in real sea ice. Next,537

we apply this same model to the Nares Strait geometry and estimate a distribution538

of floe areas and the amount of ice flowing out of Kane Basin into Smith Sound.539

6 Nares Strait Simulation540

In our Nares Strait simulations we once again adopt the linearly-increasing541

wind current and stagnant ocean current used in Dansereau et al. (2017). The wind542

field is oriented down channel starting at 0 m/s and increasing to ∼22 m/s over 24543

hours, which is then held constant through 72 hours. As noted by Dansereau et al.544

(2017), ice motion through Nares Strait is believed to be primarily driven by winds545

flowing south between Ellesmere Island and Greenland. The model parameters used546

in these simulations are similar to those in Table 1, except for the number of parti-547

cles. Our model domain is a reduced region of Nares Strait focused on Kane Basin,548

and we use MODIS imagery from June 28, 2003 to initialize the ice extent (see549

section 3 and Figure 2a). We chose the June 28, 2003 ice state because the clarity550

of the MODIS imagery before and after the arch fails provides a useful compari-551

son. The resultant particle set has 8682 polygonal ice particles, and 695 stationary552

boundary particles. Although not shown here, we created additional particle set553

with more and less ice particles and found very similar results, suggesting that the554

8682 particle set is able to capture the salient dynamics.555

Our model uses synthetic wind and ocean loads, as well as a uniform ice thick-556

ness of 1 m, meaning the driving forces and ice conditions in the model do not557

precisely match the conditions in the real Nares Strait. Due to these discrepancies,558

we do not expect an exact match between model and observations, and therefore559

provide a qualitative comparison in Figure 9 as an illustration of how the bonded560

DEM model is a useful tool for simulating and studying ice dynamics within channel561

domains. Despite the aforementioned differences, there are similarities between the562

model and observations. Figure 9a shows a rounded fracture upstream of the initial563

arch, resulting from tensile failure near the right edge of the arch that propagates564

into the ice. This arch-like fracture is clearly seen as one of the first major break up565

events in the corresponding MODIS image. As the break up progresses to Figure 9b,566
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(a)

(b)

(c)

Figure 9: Comparison of “beam damage” throughout the Nares Strait simulation with

MODIS images of the actual ice break up. The colored boxes indicate regions of inter-

est where the model captures features of the actual ice break up. The colorbar for the

simulated results are the same as in Figure 4. The MODIS images are courtesy of NASA

Earth Observing System Data and Information System (EOSDIS).
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additional fractures form upstream of these initial arch-like cracks, which is captured567

by the model (black boxes). The ice in the yellow boxes has begun to break up fur-568

ther, and a series linear of cracks have started emanating from the coastline as the569

ice is crushed and sheared against the land (green boxes).570

At this point in the simulation there are multiple cracks bisecting the channel571

and long fractures along the boundaries that effectively separate the ice in the side572

inlets and channels from the ice in Kane Basin. After a period of time the cracks573

along the boundaries accumulate more damage as the ice is crushed against the574

coastline. Eventually the ice in the middle of the channel is no longer bonded to575

the boundaries and it begins to flow into Smith Sound. Similarly, we see that the576

observed ice also begins to move towards Smith Sound, but not uniformly. The ice577

moves fastest within a linear region extending from the exit of Kennedy Channel578

to the entrance to Smith Sound. The ice to the east of this region moves slower–579

particularly the ice near Humboldt Glacier. The model contains multiple cracks580

that separate this portion of the ice from the main channel, which is predominantly581

landfast. Landfast ice is also modeled in other regions, especially in the fjords, in-582

lets, and channels off of Nares Strait, which is also observed in the simulations of583

Dansereau et al. (2017), the RADARSAT observations of Yackel et al. (2001), and584

the estimated strains in Parno et al. (2019).585

The ice continues to break up as it advects out of Kane Basin (Figure 9c),586

and considerable break up occurs along the southern coastlines that form the con-587

striction. The model is able to capture the ice crushing (black boxes) and breaking588

up into floe-like objects (green boxes) in regions similar to the MODIS imagery.589

Interestingly, the model also captures the formation of an open-water region (pink590

boxes) as the ice is sheared away from the western coastline. The ice near the exit of591

Kennedy channel continues to break up into many large floes (yellow boxes). Even-592

tually the southern arch fails completely, and our model produces several floe-like593

objects exiting Kane Basin, which is also clearly seen in the corresponding MODIS594

image (light-blue boxes).595

One major difference between the model and observations is that the sim-596

ulation produces a stable arch where Kennedy Channel enters Kane Basin. This597

arch restricts ice from advecting into and “refilling” Kane basin, which results in598

the large open water region near the top of the basin. This is not observed in the599

MODIS imagery and this model-reality mismatch is likely a result of the model ini-600

tial conditions and wind direction. The model starts with 100% ice concentration in601

Kennedy channel with ice that is also bonded to the sides of the channel. This land-602
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fast ice likely overestimates the strength of the ice in the region, creating conditions603

where a stable arch can form. The MODIS image in Figure 9a indicates that the604

ice in Kennedy Channel has clear areas of open water, and there does not appear605

to be significant regions of landfast ice, thus allowing more of the ice to advect into606

Nares Strait. In Parno et al. (2019), the ice in Nares Strait was also observed to flow607

in from Kennedy channel towards Humboldt Glacier. Despite there being no stable608

arch in the MODIS imagery, this modeled arch closely matches an arch in the Nares609

Strait simulation of Dansereau et al. (2017) using similar conditions (see Figure 6c610

72 hour column in Dansereau et al. (2017)).611

We quantify individual floes as regions of particles that are still connected to612

each other through cohesive beams. Varying the material cohesion parameter affects613

the amount of break up in the ice, which therefore affects the size distribution of614

the simulated floes leaving the channel. Figure 10d compares distributions of floe615

area from three different simulations with different cohesion ranges after 72 hours.616

Similar to Dansereau et al. (2017), lower cohesion results in more break up, as indi-617

cated by the larger number of small floes for lower cohesion distributions in Figure618

10d. Although we are unaware of any observed floe size distributions for Nares619

Strait in the literature, the area distributions follow the general trend of few large620

floes and many small floes, which match general observations from the field (Weiss621

& Marsan, 2004). A significant percentage of these small floes are particles whose622

bonds have entirely failed through crushing against the coastlines, which can be seen623

as the large blue regions in Figure 10a, b, and c. The size of these highly-damaged624

regions appear to increase in size as cohesion values decrease, which reflects weaker625

ice crushing more readily against boundaries than stronger ice.626

Variation in how much the ice breaks apart directly affects the mass export627

out of Nares Strait. Figure 10e shows the normalized ice mass exiting Kane Basin628

into Smith Sound for the three simulations above. The results are normalized by the629

largest mass export at T = 72 hours for the cmin = 32 kPa and cmax = 48 kPa case630

in order to show general trends in the simulated ice mass export for the region. We631

assume a uniform ice thickness, and therefore it is misleading to directly compare632

to the simulated ice mass to observations of ice with varying thickness. The ice in633

all three simulations start to leave Kane Basin at roughly the same time and same634

rate, however the final mass exports are significantly different, with lower cohesion635

values corresponding to larger mass export. The lower cohesion ice breaks into many636

small floes, which are able to flow out of the basin at a higher rate than the stronger637

ice, which remains consolidated in larger floes. These results indicate that weaker ice638
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(a) (b) (c)

(d)

(e)

Figure 10: Floe size area (km2) for three different simulations after 72 hours - (b)

cmin = 32 kPa and cmax = 48 kPa, (c) cmin = 40 kPa and cmax = 56 kPa, (d)

cmin = 48 kPa and cmax = 64 kPa. The results in b correspond to the same simulation in

Figure 9. Image c is the comparison of cumulative ice mass export ice leaving Kane Basin

into Smith Sound (approximately the location of the initial arch in Figure 9a).
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can lead to earlier outflow and more overall ice moving through Nares Strait, which639

supports the findings of Dansereau et al. (2017) and Moore et al. (2021). These640

results also suggest the bonded DEM could be a useful approach for studying the641

increase in ice export seen in recent years through Nares Strait (Moore et al., 2021),642

particularly as increasingly realistic ice thickness, wind forcing, and other variables643

are incorporated into future versions of the model.644

7 Discussion and Conclusions645

We present a bonded DEM model that uses the cohesive beam model and a646

non-local Mohr-Coulomb failure approach to simulate sea ice dynamics. We use an647

idealized channel domain and a Nares Strait domain to illustrate how the model648

can deform continuous ice and subsequently fracture it into many disparate floes.649

Figures 3a, 3d, and 5a show how the model can simulate continuous velocities and650

stresses throughout the ice that account for boundary effects and stress concentra-651

tions. Figure 5b shows that once failure occurs, large tensile stresses often precede652

the crack tips as they propagate through the ice, which matches observations of lead653

formation in nature (Timco & Weeks, 2010). The results in Figures 3c, 4, and 9654

show how the model produces many of the salient features of ice advecting through655

constricted regions-namely jamming, arch-shaped fractures, and ice crushing against656

solid boundaries. The scaling analyses presented in Figures 6 and 7 illustrate how657

our bonded DEM simulations exhibit heterogeneity and intermittency in the re-658

sultant ice deformation. These metrics have been used to validate continuum sea659

ice models in the past, but to the best of our knowledge, have not previously been660

applied to DEM models of sea ice.661

Section 2.2 and the work of André et al. (2013) highlight that local per-beam662

failure models used in previous DEM studies can fail to capture continuous frac-663

ture paths in elastic brittle materials. These methods do not consider the fracturing664

events occurring near each other within the ice, and therefore can exhibit fragment-665

ing behavior. We addressed this issue with a non-local failure model that considers666

the stress and fractures occurring within a small region around each particle. If the667

particle’s stress state violates a Mohr-Coulomb criteria then the model selectively668

chooses which bonds to break at that instance in time, and therefore avoids the frag-669

menting behavior observed by André et al. (2013). In addition, our bond clipping670

method encourages tensile crack growth, matching observations of ice.671

Comparing the Nares Strait simulation with the MODIS images in Figure672

9 shows the potential for using this model to simulate real world scenarios. The673
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model is able to qualitatively capture many of the salient features, including how the674

southern arch fractures into multiple large floes, and the development of multiple675

arch-like fractures upstream within Kane Basin. The model also accurately simulates676

landfast ice in the channels and fjords off of the Basin and near Humboldt Glacier,677

similar to the observations of Yackel et al. (2001). Figure 10 shows how the modeled678

ice fractures into different sized floes near the exit of Kane Basin into Smith Sound,679

similar to the observed ice in Figure 9a. As expected, we see a correlation between680

weaker ice, earlier failure of the ice arches, and increased ice export out of the strait.681

The idealized channel simulations allow us to compare our DEM results with682

the different continuum approaches used to simulate ice advecting through similar683

geometries. Both Dumont et al. (2009) and Rasmussen et al. (2010) used models684

based on the EVP rheology, and Dumont et al. (2009) showed that it is possi-685

ble to capture stable ice bridges in a channel by modifying the eccentricity of the686

EVP elliptical yield curve. However, Rasmussen et al. (2010) noted that due to the687

isotropic assumption in the EVP model, it may be unsuitable for simulating ice688

in Nares Strait because the complex coastline affects the ice stress state at much689

smaller scales than 100 km. Alternatively, Dansereau et al. (2017) used the Maxwell690

elasto-brittle (Maxwell-EB) model, which tracks strain induced damage in the ice to691

approximate the location of leads and cracks.692

Our results in Figures 3, 4, and 5 match the simulated results in Dansereau et693

al. (2017) remarkably well considering the differences in modeling approaches. We694

believe this is one of the strengths in our approach. While DEM models are known695

to be well-suited for MIZ simulations (Damsgaard et al., 2018), where continuum sea696

ice methods may suffer in accuracy, we believe the results in Sections 5 and 6 also697

indicate that the DEM can qualitatively match the continuum-like behavior cap-698

tured with the Maxwell-EB model, as well as subsequent complex fracture events,699

for sea ice flowing through channels. In addition, the spatial and temporal analyses700

indicate that the bonded DEM is able to capture important deformation proper-701

ties of sea ice, like spatial heterogeneity and temporal intermittency. This suggests702

that DEM models have the potential to capture sea ice behavior across contiguous,703

fractured, and completely broken regimes. We do not attempt to definitively state704

when and where DEM models should be used instead of continuum models, as both705

approaches have utility in the sea ice modeling landscape. Instead, we aim to show706

that the bonded DEM approach can capture continuum-like behavior within consol-707

idated ice, as well as the transition to highly-discontinuous ice after failure. Future708
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work will continue to validate the model results against observations of real ice, in709

non-channel domains, and across a range of spatial and temporal scales.710

Despite the qualitative agreement between our model results, the Dansereau711

et al. (2017) results, and satellite observations, there are several areas where the712

DEM model could be improved. First and foremost, assimilating more observational713

data into the model could improve accuracy. For example, we used wind speeds714

that approximate a large idealized storm passing through the idealized channel and715

Nares Strait. Actual winds were slower and more complex. As a result we see much716

larger displacements in that simulation than after 72 hours in the MODIS imagery.717

This uniform wind load and the stagnant ocean load vastly oversimplify the drag718

loads acting on the real ice. Incorporating more accurate wind and ocean data could719

improve the accuracy of the model. In addition, infusing additional data products720

such as SAR imagery can inform future simulations with a better understanding of721

the ice type (first-year or multi-year), thickness, or existing flaws, which can signifi-722

cantly change the ice properties. Future simulations will assimilate more data, as it’s723

available.724

At this point our model does not evolve any thermodynamics or change the725

ice thickness throughout the simulation. Hibler et al. (2006) states that the Nares726

Strait arch may become stronger due to thermodynamic processes, which our model727

ignores, and could be a source of mismatch between the simulated results and ob-728

servations. However, the time scales of these DEM simulations are quite short - on729

the order of several hours or a few days. Effects such as thermodynamic thickening730

likely play a smaller role in the dynamics over these short timescales. However, me-731

chanical thickening could play an important role in these regional scale simulations,732

particularly in the large crushing regions in Figures 9 and 10 where the ice in Nares733

Strait would likely become thicker due to ridging. In fact these same regions become734

thicker in the Nares Strait simulations in both Dumont et al. (2009) (Figure 13)735

and Dansereau et al. (2017) (Figure 11a). Future DEM studies will vary ice particle736

thicknesses to investigate how thickness affects arch stability, and how it relates to737

earlier arch break up and greater export out of the strait.738

A known limitation with bonded DEM or lattice spring methods is the need739

to calibrate local model parameters (Nguyen et al., 2019). Often times setting the740

bond’s properties such as Young’s Modulus, or failure strengths to the macroscopic741

values of a particular material do not yield realistic results. The extra step of cal-742

ibrating these parameters to achieve realistic elastic and fracture behavior can be743

time consuming, and does not guarantee accurate macroscopic behavior. Future744
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work may incorporate an optimization routine to learn the appropriate model pa-745

rameters from the mismatch between model output and satellite observations.746

Alternatively, the use of non-local distinct lattice spring (André et al., 2019), or747

peridynamic models (Davis et al., 2021; Silling & Askari, 2005) could avoid the need748

for time intensive calibration studies, and facilitate using real-world values for the749

model parameters.750

As sea ice models continue to develop towards forecasting dynamics on751

tactically-relevant scales, the ability to model explicit leads and cracks in the ice752

may prove critical to the overall utility of the ice forecasts. Future studies will look753

at how well the bonded DEM method presented here can capture dynamics across a754

range of spatial scales, including those relevant to navigation and shipping. We feel755

that the bonded-DEM with a non-local failure model shows promise as a useful tool756

to provide estimates of compression, deformation, and lead formation, thereby filling757

the gaps in current operational ice products identified by IICWG (2019).758

8 Open Research759
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André, D., Jebahi, M., Iordanoff, I., Charles, J.-l., & Néauport, J. (2013). Using781
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Kawamoto, R., Andò, E., Viggiani, G., & Andrade, J. E. (2016). Level set dis-865

crete element method for three-dimensional computations with triaxial case study.866

Journal of the Mechanics and Physics of Solids, 91 , 1–13.867
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Samaké, A. (2019). On the multi-fractal scaling properties of sea ice deformation.912

Cryosphere, 13 (9), 2457–2474. doi: 10.5194/tc-13-2457-2019913

Rampal, P., Weiss, J., Marsan, D., Lindsay, R., & Stern, H. (2008). Scaling prop-914

erties of sea ice deformation from buoy dispersion analysis. Journal of Geophysical915

Research: Oceans, 113 (3), 1–12. doi: 10.1029/2007JC004143916

Rasmussen, T. A., Kliem, N., & Kaas, E. (2010). Modelling the sea ice in the nares917

strait. Ocean Modelling , 35 (3), 161–172.918

Ringeisen, D., Losch, M., Tremblay, L. B., & Hutter, N. (2019). Simulating inter-919

section angles between conjugate faults in sea ice with different viscous–plastic920

rheologies. The Cryosphere, 13 (4), 1167–1186.921

–36–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Schreyer, H., Sulsky, D., Munday, L., Coon, M., & Kwok, R. (2006). Elastic-922

decohesive constitutive model for sea ice. Journal of Geophysical Research:923

Oceans, 111 (C11).924

Schulson, E. M. (2004). Compressive shear faults within arctic sea ice: Fracture on925

scales large and small. Journal of Geophysical Research: Oceans, 109 (C7).926

Silling, S. A., & Askari, E. (2005). A meshfree method based on the peridynamic927

model of solid mechanics. Computers & structures, 83 (17-18), 1526–1535.928

Steele, M., Zhang, J., Rothrock, D., & Stern, H. (1997). The force balance of sea929

ice in a numerical model of the arctic ocean. Journal of Geophysical Research:930

Oceans, 102 (C9), 21061–21079.931

Sulsky, D., Schreyer, H., Peterson, K., Kwok, R., & Coon, M. (2007). Using the932

material-point method to model sea ice dynamics. Journal of Geophysical Re-933

search: Oceans, 112 (C2).934

Sun, S., & Shen, H. H. (2012). Simulation of pancake ice load on a circular cylinder935

in a wave and current field. Cold Regions Science and Technology , 78 , 31–39.936

Thorndike, A., & Colony, R. (1982). Sea ice motion in response to geostrophic937

winds. Journal of Geophysical Research: Oceans, 87 (C8), 5845–5852.938

Timco, G., & Weeks, W. (2010). A review of the engineering properties of sea ice.939

Cold regions science and technology , 60 (2), 107–129.940

Wadhams, P. (2000). Ice in the ocean. CRC Press.941

Weiss, J., & Dansereau, V. (2017). Linking scales in sea ice mechanics. Philosophi-942

cal Transactions of the Royal Society A: Mathematical, Physical and Engineering943

Sciences, 375 (2086), 20150352.944

Weiss, J., & Marsan, D. (2004). Scale properties of sea ice deformation and fractur-945

ing. Comptes Rendus Physique, 5 (7), 735–751.946

Weiss, J., Marsan, D., & Rampal, P. (2009). Space and Time Scaling Laws Induced947

by the Multiscale Fracturing of The Arctic Sea Ice Cover. IUTAM Bookseries, 10 ,948

101–109. doi: 10.1007/978-1-4020-9033-2 10949

Weiss, J., & Schulson, E. M. (2009). Coulombic faulting from the grain scale to the950

geophysical scale: lessons from ice. Journal of Physics D: Applied Physics, 42 (21),951

214017.952

Weiss, J., Schulson, E. M., & Stern, H. L. (2007). Sea ice rheology from in-situ,953

satellite and laboratory observations: Fracture and friction. Earth and Planetary954

Science Letters, 255 (1-2), 1–8.955

Wilchinsky, A. V., & Feltham, D. L. (2006). Modelling the rheology of sea ice as956

a collection of diamond-shaped floes. Journal of non-newtonian fluid mechanics,957

–37–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

138 (1), 22–32.958

Wilchinsky, A. V., Feltham, D. L., & Hopkins, M. A. (2010). Effect of shear rupture959

on aggregate scale formation in sea ice. Journal of Geophysical Research: Oceans,960

115 (C10).961
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Appendix A Details of Scaling Analysis.967

A1 Mathematical Formulation.968

Consider a strain rate tensor ε̇(x, t) that varies with spatial location x and969

time t. This tensor could be derived from observations of sea ice velocities or from970

the output of a sea ice model. Scaling analyses consider spatio-temporal averages971

of this pointwise strain tensor, where the average is taken over spatial subdomains972

X`(x∗) ⊂ R2 defined by a length scale ` and time intervals Tτ (t) ⊂ R1 defined by a973

timescale τ . Mathematically, the average strain rate tensor is given by974

ε̄`τ (x∗, t∗) =
1

|X`(x∗)||Tτ (t∗)|

∫
X`(x∗)

∫
Tτ (t∗)

ε̇(x, t) dt dx, (A1)975

where |X`(x∗)| and |Tτ (t∗)| denote the area of X` and length of Tτ , respectively.976

From this average strain rate tensor, the total deformation rate ε̇tot,`τ can be com-977

puted as978

ε̇tot,`τ =
√
ε̇2

d,`τ + ε̇2
s,`τ , (A2)979

where ε̇d,`τ and ε̇s,`τ are the divergent and shear components of the average strain980

rate, defined as981

ε̇d,`τ = ε̄`τ,xx + ε̄`τ,yy

ε̇s,`τ =
√

(ε̄`τ,xx − ε̄`τ,yy)2 + (ε̄`τ,xy + ε̄`τ,yx)2.
(A3)982

Notice that the total deformation rate ε̇tot,`τ is a function of position x and time t983

but also has a dependence on the length scale ` and timescale τ .984

The relationship of ε̇tot,`τ with scales ` and τ provides insight into the struc-985

ture of the deformation field. Many studies have observed that, when averaged over986

all positions x, the total deformation rate has a power law relationship with ` (e.g.,987

Marsan et al. (2004); Hutchings et al. (2011)), so that988

〈ε̇tot,`τ 〉x ≈ β1(τ)`−β2(τ), (A4)989

–38–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

where 〈·〉x denotes the spatial average and β1 and β2 are condition-specific param-990

eters that also depend on timescale τ . Similar power law relationships have been991

observed with the timescale τ , resulting in relationships of the form992

〈ε̇tot,`τ 〉t ≈ α1(`)τ−α2(`), (A5)993

for coefficients α1 and α2 that depend on spatial scale `. Importantly, the value of994

β2 is a quantitative measure of heterogeneity in the deformation field. Similarly, α2995

is a measure of intermittency. As detailed in Girard et al. (2009), model predictions996

should have deformation fields that exhibit this power law behavior and have co-997

efficients β2 and α2 within realistic bounds. Notice that 〈ε̇tot,`τ 〉x still depends on998

time and 〈ε̇tot,`τ 〉t still depends on space; we therefore compute 〈ε̇tot,`τ 〉x at multiple999

times and 〈ε̇tot,`τ 〉t at multiple locations.1000

A2 Numerical Approximation.1001

In practice, we do not have access to a continuous strain rate field ε̇(x, t) be-1002

cause of limited observations and model discretizations. To enable computation,1003

we therefore need to approximate both the strain rate tensor ε̇(x, t) itself and sub-1004

sequently the integral in (A1). Girard et al. (2010) employs what amounts to a1005

piecewise constant approximation of ε̇(x, t) on a regular model grid and then approx-1006

imates (A1) over a square domain X`(x) = [x1 − `/2, x1 + `2]× [x2 − `/2, x2 + `/2] by1007

finding cells with centroids in X`(x) and then computing an area-weighted average1008

of the strain rates in these fields.1 Because the area of the cells will in general not1009

be `2 exactly, the square root of the summed cell areas is used as the “observed”1010

length scale ˆ̀ when computing the power law parameters. Another approach based1011

on Delaunay triangulations of “tracer points” is used for representing ε̇(x, t) and for1012

approximating (A1) in Oikkonen et al. (2017) and Rampal et al. (2019). Again, the1013

strain rate is piecewise constant, but over triangles in the Delaunay triangulation.1014

In that work, the averaging window X`(x, t) is implicitly defined by subsampling1015

the tracer points and creating triangulations with larger cells. We employ a similar1016

triangular representation of the strain rate tensor but use an explicit spatial average1017

of the strain rate tensor more akin to Girard et al. (2010).1018

A DEM simulation gives the position and velocity of each particle at a finite1019

number of times. For the spatial scaling analysis, we use τ = 0 and use the instanta-1020

1 The authors of Girard et al. (2010) actually compute an average of the spatial gradient of the velocity

field, but because the relationship between velocity gradient and strain rate is linear, this is equivalent to

averaging the strain rate.
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neous particle velocities to compute the strain rate without evaluating the temporal1021

integral in (A1). To approximate ε̇(x, t), we construct a Delaunay triangulation of1022

the particle centroids, which gives us a triangular mesh with particle velocities cor-1023

responding to nodal velocities in this mesh. As in Oikkonen et al. (2017), we remove1024

cells in the Delaunay triangulation with a minimum angle of less than 15◦, which1025

could result in poor strain rate approximations and are typically found between par-1026

ticles that are not in contact (i.e., over open water). We also ignore cells based on1027

boundary particles, which do not move in our simulations. Using the nodal veloci-1028

ties, we can then compute cell-wise strain rate tensors using standard finite element1029

machinery (see e.g., Logg & Wells (2010)).1030

Let x(i) denote the centroid of cell i in the triangular mesh. To compute1031

the total deformation rate ε̇tot,`τ at this point, we use use a circular subdomain1032

X`(x(i)) = B`(x
(i)) to define the spatial average, as opposed to the square subdo-1033

main employed in Girard et al. (2010). The circular subdomain allows us to use KD1034

trees for efficient neighborhood searches. We find all cells in the mesh with centroids1035

x(j) ∈ B`(x
(i)) and compute the cell area-weighted average of the strain rates in1036

these cells. More specifically,1037

ε̄
(i)
`τ =

1

A
(i)
tot

∑
{j:x(j)∈B`(x(i))}

A(j)ε̇(j), (A6)1038

where A(j) is the area of triangle j in the Delaunay triangulation and A
(i)
tot

∑
A(j) is1039

the sum of cell areas for cells intersecting B`(x
(i)). The length scale associated with1040

this total deformation is given by ˆ̀(i) =

√
A

(i)
tot. From ε̄

(i)
`τ , we can then compute the1041

total deformation rate ε̇tot,`τ using (A2).1042

For any length scale ` and time t, we obtain pairs (ˆ̀(i), 〈ε̇(i)〉`τ ) for each cell1043

in the Delaunay triangulation. We use the average of these pairs (over all cells) as1044

an estimate of 〈ε̇tot,`τ 〉x in (A4). The process is repeated for multiple length scales1045

(` ∈ {5, 10, 15, 20, 30, 50, 80} for our synthetic results) and a least squares fit in1046

log-log space is used to obtain the coefficients β1 and β2 in the power law.1047

The temporal scaling analysis is simpler because the integral over time in (A1)1048

can be estimated as1049

1

τ

∫ t+τ

t

ε̇(x, t)dt ≈ 1

2τ

[
∇(p(x, t+ τ)− p(x, t)) +∇(p(x, t+ τ)− p(x, t))T

]
, (A7)1050

where p(x, t) is a continuous displacement field that we estimate by treating the1051

particle positions as nodal values with piecewise linear finite elements. We assume1052

that the length scale ` = 0, so we can look at cell-wise deformations and do not need1053

to include the spatial averaging in our temporal scaling analysis. To compute the1054
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average strain rates, we construct a mesh using the positions at time t, then use the1055

change in particle positions to define nodal values for p(x, t + τ) − p(x, t) and again1056

use standard finite element machinery to compute piecewise constant strain rate1057

tensors in each cell of the mesh (i.e., the right hand side of (A7)). For any cell, the1058

same least squares approach described above for computing β1 and β2 can then be1059

used to compute the temporal power law parameters α1 and α2 for 〈ε̇tot,`τ 〉t in that1060

cell.1061
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